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Abstract This paper deals with a variational-based
reduced-order model in dynamic substructuring of two cou-
pled structures through a physical dissipative flexible inter-
face. We consider the linear elastodynamic of a dissipative
structure composed of two main dissipative substructures
perfectly connected through interfaces by a linking substruc-
ture. The linking substructure is flexible and is modeled in the
context of the general linear viscoelasticity theory, yielding
damping and stiffness operators depending on the frequency,
while the two main dissipative substructures are modeled in
the context of linear elasticity with an additional classical
viscous damping modeling which is assumed to be indepen-
dent of the frequency. We present recent advances adapted
to such a situation, which is positioned with respect to an
appropriate review that we carry out on the different meth-
ods used in dynamic substructuring. It consists in construct-
ing a reduced-order model using the free-interface elastic
modes of the two main substructures and, for the linking sub-
structure, an appropriate frequency-independent elastostatic
lifting operator and the frequency-dependent fixed-interface
vector basis.
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1 Introduction

The mathematical aspects related to the variational formula-
tion, existence and uniqueness, finite element discretization
of boundary value problems for elastodynamics can be found
in [12,23,37,61,64,76]. General mechanical formulations in
computational structural dynamics, vibration and substruc-
turing techniques can be found in [6,8,10,22,29,52]. In struc-
tural dynamics and coupled problems such as fluid-structure
interaction, general computational methods can also be found
in [11,19,28,32,45,57,88] and algorithms for solving large
eigenvalue problems in [18,70,75]. For computational struc-
tural dynamics in the low- and medium-frequency ranges
and extensions to structural acoustics, we refer the reader to
[62,65] and for uncertainty quantification (UQ) in computa-
tional structural dynamics to [78].

The problem considered here is the construction of a
reduced-order model for linear vibration of a dissipative
structure subjected to prescribed forces and composed of
two main linear dissipative substructures connected through
a physical flexible viscoelastic interface (linking substruc-
ture).

Let us recall that the concept of substructures was first
introduced by Argyris and Kelsey in [5] and by Przemie-
niecki in [71] and was extended by Guyan and Irons in
[30,41]. In Hurty [38,39] considered the case of two sub-
structures coupled through a geometrical interface, for which
the first substructure is represented using its elastic modes
with fixed geometrical interface and the second substruc-
ture is represented using its elastic modes with free geo-
metrical interface completed by static boundary functions
of the first substructure. Finally, Craig and Bampton in [21]
adapted the Hurty method in order to represent each sub-
structure of the same manner consisting in using the elastic
modes of the substructure with fixed geometrical interface
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and the static boundary functions on its geometrical inter-
face. Improvements have been proposed with many vari-
ants [1,7,9,15,17,27,31,35,47,53,54,83,87], in particular
for complex dynamical systems with many appendages con-
sidered as substructures (such as disk with blades) Benfield
and Hruda in [13] proposed a component mode substitution
using the Craig and Bampton method for each appendage.
Another type of methods has been introduced in order to use
the structural modes with free geometrical interface for two
coupled substructures instead of the structural modes with
fixed geometrical interface (elastic modes) as used in the
Craig and Bampton method. In this context, MacNeal in [50]
introduced the concept of residual flexibility which has then
been used by Rubin in [74]. The Lagrange multipliers have
also been used to write the coupling on the geometrical inter-
face [51,67,68,73]. Dynamic substructuring in the medium-
frequency range has been analyzed [33,43,77,81]. On the
other hand, UQ is nowadays recognized as playing an impor-
tant role in order to improve the robustness of the models
for the low-frequency range and especially, in the medium-
frequency range in the context of substructuring techniques
[16,34,36,55,63,79,80]. Reviews have also been performed
[20,24,45]. It should be noted that all these above dynamic
substructuring methodologies, which have been developed
for the discrete case (computational model), have also been
reanalyzed in the framework of the continuous case (contin-
uum mechanics) by Morand and Ohayon in [56] for which
details can be found in [57] for conservative systems and by
Ohayon and Soize in [62] for the dissipative systems.

A physical flexible interface (the linking substructure)
between two coupled substructures, modeled by an elastic
medium, has been considered by Kuhar and Stahle [44] con-
sidering a static behavior of the junction. In this paper, a
generalization of this work is presented in a more general
framework for a viscoelastic dynamic behavior of the junc-
tion using existing component mode synthesis methods (see
[66] for computational details). We consider a structure com-
posed of two dissipative main substructures coupled through
a physical flexible viscoelastic linking substructure by two
geometrical interfaces. The boundary value problem is writ-
ten in the frequency domain. The linking substructure is mod-
eled in the context of the general linear viscoelasticity theory
[14,84], yielding damping and stiffness sesquilinear forms
depending on the frequency, while the two main dissipative
substructures are modeled in the context of linear elasticity
with an additional classical viscous damping modeling which
is assumed to be independent of the frequency.

We present a variational-based reduced-order model in
dynamic substructuring, adapted to computational dynam-
ics, for linear elastodynamic of a dissipative structure com-
posed of two main dissipative substructures coupled through
a physical flexible viscoelastic interface constituting the link-
ing substructure. A reduced-order model is constructed using

the structural modes of the two main substructures with free
geometrical interfaces and, for the linking substructure, using
an adapted frequency-dependent vector basis with fixed geo-
metrical interfaces and an appropriate static lifting operator
with respect to the geometrical interfaces. It should be noted
that the linking substructures models which are used, gen-
erally correspond to a rough modeling of the real linking
systems and consequently, uncertainties induced by model-
ing errors can be introduced [55]. Another interest of using
free structural modes of the two main substructures is also to
allow a direct dynamical identification of the main substruc-
tures using experimental modal analysis [2,3,26,42,49,58–
60,72,86]. Such a reduced-order model is very useful for sen-
sitivity analysis, design optimization and controller design
for vibration active control [25,40,46,69,85].

2 Displacement Variational Formulation for Two
Substructures Connected with a Linking Substructure

2.1 Description of the Mechanical System and Hypotheses

This paper deals with the linear vibration of a free structure,
around a static equilibrium configuration which is taken as
a natural state (for the sake of brevity, prestresses are not
considered but could be added without changing the pre-
sentation), submitted to prescribed external forces which are
assumed to be in equilibrium at each instant. The displace-
ment field of the structure is then defined up to an additive
rigid body displacement field. In this paper, we are only con-
cerned in the part of the displacement field due to the struc-
tural deformation.

Let Ω1, Ω2 and ΩL be three open bounded domains in R3

with sufficiently smooth boundaries. The structure Ω is com-
posed of two substructures Ω1 and Ω2 perfectly connected
through interfaces Γ1L and Γ2L by a linking substructure ΩL

(see Fig. 1). The boundaries are such that ∂Ω1 = Γ1L ∪ Γ1,
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Fig. 1 Two substructures Ω1 and Ω2 connected with a linking sub-
structure ΩL
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∂Ω2 = Γ2L ∪ Γ2, ∂ΩL = Γ1L ∪ ΓL ∪ Γ2L . We then have
Ω = Ω1∪Γ1L ∪ΩL ∪Γ2L ∪Ω2 and ∂Ω = Γ1∪ΓL ∪Γ2. The
physical space is referred to a cartesian reference system and
the generic point is denoted as x = (x1, x2, x3). A frequency
domain formulation is used, the convention for the Fourier
transform being v(ω) = ∫

R e−iωt v(t) dt where ω denotes
the real circular frequency, v(ω) is in C and where v(ω)

denotes its conjugate. The convention of summation over
repeated indices is used and v, j denotes the partial derivative
of v with respect to x j . In u · v, the dot denotes the usual
Euclidean inner product on R3 extended to C3.

For r in {1, L , 2}, the space of admissible displacement
fields defined on Ωr with values inC3 (resp. inR3) is denoted
by CΩr (resp. RΩr ). For substructure Ωr , the test func-
tion (weighted function) associated with ur is denoted by
δur ∈ CΩr (or in RΩr ). The space RΩr is the real Sobolev
space (H1(Ωr ))

3 and the space CΩr is defined as the com-
plexified Hilbert space of RΩr . Let Rrig

r be the subspace (of
dimension 6) of CΩr spanned by all the R3-valued rigid body
displacement fields which are written as ur (x) = t+θ×x for
all x in the closureΩr of Ωr , in which t and θ are two arbitrary
constant vectors in R3. Let RΩ be the space of admissible
displacement fields defined on Ω with values in R3. Let Rrig

be the subspace (of dimension 6) of RΩ spanned by all the
R3-valued rigid body displacement fields which are written
as u(x) = t + θ × x for all x.

Each substructure is a three-dimensional dissipative elas-
tic medium. The linking substructure ΩL is modeled in the
context of the general linear viscoelasticity theory while the
two main dissipative substructures Ω1 and Ω2 are modeled
in the context of linear elasticity with an additional classical
viscous damping modeling which is assumed to be indepen-
dent of the frequency. For r in {1, L , 2}, for all fixed ω and for
each point x, the displacement field is denoted by ur (x, ω) =
(ur

1(x, ω), ur
2(x, ω), ur

3(x, ω)), the external given body and
surface force density fields applied to Ωr and Γr are
denoted by gΩr (x, ω) = (gΩr

1 (x, ω), gΩr
2 (x, ω), gΩr

3 (x, ω))

and gΓr (x, ω) = (gΓr
1 (x, ω), gΓr

2 (x, ω), gΓr
3 (x, ω)) respec-

tively. Let be

gΩ(x, ω) =
∑

r=1,L ,2

1Ωr (x) gΩr (x, ω), (1)

g∂Ω(x, ω) =
∑

r=1,L ,2

1Γr (x) gΓr (x, ω). (2)

in which 1B is the indicator function of set B. Since we are
only concerned in the part of the displacement field due to
the structural deformation, it will be assumed that the given
external forces are such that, for all u in Rrig,

∫

Ω

gΩ(x, ω) · u(x) dx +
∫

∂Ω

g∂Ω(x, ω) · u(x) ds(x) = 0. (3)

2.1.1 Constitutive Equations

For r in {1, L , 2}, the linearized strain tensor is defined by

εi j (ur ) = 1

2
(ur

i, j + ur
j,i ). (4)

(i) For r in {1, 2}, the constitutive equation for substructure
Ωr , which is assumed to be made up of an elastic material
with linear viscous term, is written as

σ r
tot = σ r + iω sr , (5)

where σ r is the elastic stress tensor defined by σ r
i j (u

r ) =
ar

i jkh(x) εkh(ur ) and where iω sr is the viscous part of the
total stress tensor such that sr

i j (u
r ) = br

i jkh(x) εkh(ur ). The
mechanical coefficients ar

i jkh(x) and br
i jkh(x) depend on x but

are independent of frequency ω and verify the usual proper-
ties of symmetry, positiveness and boundedness (lower and
upper).

(ii) For r = L , the constitutive equation for linking sub-
structure ΩL , which is assumed to be made up of a linear
viscoelastic material, is written as

σ L
tot = σ L + iω sL , (6)

where σ L is the elastic part of the total stress tensor defined
by σ L

i j (u
L) = aL

i jkh(x, ω) εkh(uL) and where iω sL is the

viscous part of the total stress tensor such that sL
i j (u

L) =
bL

i jkh(x, ω) εkh(uL). The mechanical coefficients aL
i jkh(x, ω)

and bL
i jkh(x, ω) depend on x and on frequency ω and, for all

fixed ω, verify the usual properties of symmetry, positive-
ness and boundedness (lower and upper). At zero frequency,
aL

i jkh(x, 0) is the equilibrium modulus tensor (which differs
from the initial elasticity tensor). For more details concern-
ing the properties of tensors aL

i jkh(x, ω) and bL
i jkh(x, ω), see

[23,62,84].

2.2 The Boundary Value Problem

2.2.1 Equilibrium Equations in the Frequency Domain for
Each Substructure

For all fixed ω and for r in {1, L , 2}, the equilibrium equation
for substructure Ωr is written as

−ω2 ρr ur
i − {σ r

tot}i j, j = gΩr
i in Ωr for i = 1, 2, 3, (7)

in which ρr is the mass density depending on x (which is
assumed to be strictly positive and bounded), with the bound-
ary condition,

{σ r
tot}i j nr

j = gΓr
i on Γr for i = 1, 2, 3, (8)
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in which the vector nr = (nr
1, nr

2, nr
3) is the unit normal to

∂Ωr , external to Ωr .

2.2.2 Coupling Conditions

The coupling conditions of the linking substructure ΩL with
substructures Ω1 and Ω2 on Γ1L and Γ2L are written as

u1 = uL on Γ1L ,

u2 = uL on Γ2L . (9)

σ 1
tot n1 = −σ L

tot nL on Γ1L ,

σ 2
tot n2 = −σ L

tot nL on Γ2L . (10)

2.2.3 Boundary Value Problem in Displacement

For all fixed ω, the boundary value problem consists in find-
ing the displacement fields u1, uL and u2, verifying, for each
r equal to 1, L or 2, the equilibrium equation Eq. (7) with the
constitutive equation defined by Eq. (5) (for r = 1, 2) or by
Eq. (6) (for r = L), with the Neumann boundary condition
defined by Eq. (8) and with the coupling conditions defined
by Eqs. (9) and (10).

2.3 Variational Formulation of the Boundary Value Problem

2.3.1 Definition of the Sesquilinear Forms of the Problem

For r in {1, L , 2}, a sesquilinear form on CΩr×CΩr is defined
by

mr (ur , δur ) =
∫

Ωr

ρr ur · δur dx. (11)

The sesquilinear form mr is continuous positive definite Her-
mitian on CΩr × CΩr .

(i) For r in {1, 2}, two sesquilinear forms on CΩr × CΩr ,
independent of frequency ω are defined by

kr (ur , δur ) =
∫

Ωr

ar
i jkh(x) εkh(ur ) εi j ( δur ) dx, (12)

dr (ur , δur ) =
∫

Ωr

br
i jkh(x) εkh(ur ) εi j ( δur ) dx. (13)

(ii) For r = L , two sesquilinear forms on CΩr × CΩr ,
depending on frequency ω, are defined by

kL(uL , δuL ;ω) =
∫

ΩL

aL
i jkh(x, ω) εkh(uL) εi j ( δuL ) dx,

(14)

d L(uL , δuL ;ω) =
∫

ΩL

bL
i jkh(x, ω) εkh(uL) εi j ( δuL ) dx.

(15)

Taking into account the usual assumptions related to the
constitutive equations, for r in {1, L , 2}, the sesquilinear
forms kr and dr are continuous semi-definite positive Her-
mitian on CΩr×CΩr , the semi-definite positiveness being due
to the presence of rigid body displacement fields.

(i) For r in {1, 2}, for all δur in CΩr , kr (ur , δur ) and
dr (ur , δur ) are equal to zero for any ur in Rrig

r .
(ii) For r = L , for all fixed frequency ω and for all δuL in

CΩL , kL(uL , δuL ;ω) and d L(uL , δuL ;ω) are equal to zero
for any uL in Rrig

L .

2.3.2 Definition of the Antilinear Forms of the Problem

For r in {1, L , 2} and for all fixed frequency ω, it is assumed
that gΩr and gΓr are such that the antilinear form δur �→
f r (δur ;ω) on CΩr , defined by

f r (δur ;ω) =
∫

Ωr

gΩr (x, ω) · δur (x) dx

+
∫

Γr

gΓr (x, ω) · δur (x) ds(x), (16)

is continuous.

2.3.3 Definition of the Complex Bilinear Forms of the
Problem

(i) For r in {1, 2} and for all fixed ω, the complex bilinear
form zr on CΩr × CΩr is defined by

zr (ur , δur ;ω) = −ω2 mr (ur , δur )

+iω dr (ur , δur ) +kr (ur , δur ). (17)

(ii) For r = L and for all fixed frequency ω, the complex
bilinear form zL on CΩL × CΩL is defined by

zL(uL , δuL ;ω) = −ω2 mL(uL , δuL)

+iω dr (uL , δuL ;ω) + kL(uL , δuL ;ω).

(18)

2.3.4 Variational Formulation of the Boundary Value
Problem

The variational formulation of the boundary value problem
in u1, uL and u2 is defined as follows. For all fixed real ω, find
(u1(ω), uL(ω), u2(ω)) in CΩ1×CΩL×CΩ2 verifying the linear
constraints u1(ω) = uL(ω) on Γ1L and u2(ω) = uL(ω) on
Γ2L , such that, for all (δu1, δuL , δu2) in CΩ1 × CΩL × CΩ2
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Variational-Based Reduced-Order Model 325

verifying the linear constraints δu1 = δuL on Γ1L and δu2 =
δuL on Γ2L , we have

z1(u1(ω), δu1;ω) + zL (uL (ω), δuL ; ω) + z2(u2(ω), δu2; ω)

= f 1(δu1; ω) + f L (δuL ; ω) + f 2(δu2; ω). (19)

Under the given hypotheses relative to the constitutive equa-
tions and the hypothesis on the external given forces defined
by Eq. (3), the existence and uniqueness of a solution can
be proven for all real ω. This solution corresponds only to
deformation of the structure (i.e. without rigid body displace-
ments).

3 Reduced-Order Model

The method is based on the use of the variational formulation
defined by Eq. (19). The reduced-order model is carried out
using (i) for r = 1, 2, the eigenmodes of substructure Ωr

with free interface Γr L , (ii) a frequency-dependent family of
eigenfunctions for linking substructure ΩL with fixed inter-
face Γ1L ∪ Γ2L and (iii) the elastostatic lifting operator of
ΩL with respect to interface Γ1L ∪ Γ2L at zero frequency.

3.1 Eigenmodes of Substructure Ωr with Free Interface
Γr L for r = 1, 2

For r = 1, 2, a free-interface mode of substructure Ωr is
defined as an eigenmode of the conservative problem asso-
ciated with free substructure Ωr , subject to zero forces on
∂Ωr . The real eigenvalues λr ≥ 0 and the corresponding
eigenmodes ur in RΩr are then the solutions of the follow-
ing spectral problem: find λr ≥ 0, ur ∈ RΩr (u

r �= 0) such
that for all δur ∈ RΩr , one has

kr (ur , δur ) = λr mr (ur , δur ) . (20)

It can be shown that there exist six zero eigenvalues 0 =
λr−5 = · · · = λr

0 (associated with the rigid body displacement
fields) and that the strictly positive eigenvalues (associated
with the displacement field due to structural deformation)
constitute the increasing sequence 0 < λr

1 ≤ λr
2, . . .. The six

eigenvectors {ur−5, . . . , ur
0} associated with zero eigenvalues

span Rrig (space of the rigid body displacement fields). The
family {ur−5, . . . , ur

0; ur
1, . . .} of all the eigenmodes forms a

complete family in RΩr . For α and β in {−5, . . . , 0; 1, . . .},
we have the orthogonality conditions

mr (ur
α, ur

β) = δαβ, (21)

kr (ur
α, ur

β) = δαβ λr
α, (22)

in which each eigenmode ur
α is normalized to 1 with respect

to mr and where ωr
α = √

λr
α is the eigenfrequency of mode

α.

3.2 Frequency-Dependent Family of Eigenfunctions for
Linking Substructure ΩL with Fixed Interface
Γ1L ∪ Γ2L

Let us introduce the following admissible space,

R0
ΩL

=
{

uL ∈ RΩL

∣
∣ uL = 0 on Γ1L ∪ Γ2L

}
. (23)

At given frequency ω, a fixed-interface vector basis of linking
substructure ΩL is defined as an eigenfunction of the con-
servative problem associated with ΩL with fixed interface
Γ1L ∪ Γ2L , subject to zero forces on ∂ΩL . A real eigenvalue
λL(ω) > 0 and the corresponding eigenfunction uL(ω) in
RΩL are then the solution of the following spectral problem:
find λL(ω) > 0 and nonzero uL(ω) in R0

ΩL
such that for all

δuL ∈ R0
ΩL

, we have

kL(uL(ω), δuL ;ω) = λL(ω) mL(uL(ω), δuL). (24)

It can be shown that there exist a strictly positive increasing
sequence of eigenvalues, 0 < λL

1 (ω) ≤ λL
2 (ω), . . ., and a

corresponding family {uL
1 (ω), uL

2 (ω), . . .} of eigenfunctions
which constitutes a complete family in R0

ΩL
. For α and β in

{1, 2, . . .}, we have the orthogonality conditions

mL(uL
α (ω), uL

β (ω)) = δαβ, (25)

kL(uL
α (ω), uL

β (ω);ω) = δαβ λL
α (ω), (26)

in which each eigenfunction uL
α (ω) is normalized to 1 with

respect to mL .
Remarks The reduced-order model will be constructed in
using a finite family U L(ω) = {uL

1 (ω), . . . , uL
NL

(ω)} of the

sequence {uL
1 (ω), uL

2 (ω), . . .} of the eigenfunctions associ-
ated with the first NL eigenvalues 0 < λL

1 (ω) ≤ . . . ≤
λL

NL
(ω). In addition, such a reduced-order model will be

constructed for analyzing the response of the structure for
frequency ω belonging to a given frequency band of analy-
sis, B = [ωmin, ωmax], with 0 ≤ ωmin < ωmax. In practice,
the response is calculated for the frequencies belonging to
the finite subset B = {ω1, ω2, . . . , ωμ} of μ sampling fre-
quencies of band B, for which μ can be of several hundreds
or of the order of one thousand.

(i) In the above formulation, the generalized eigenvalue
problem defined by Eq. (24) must be solved for all ω in B. If
the number μ of frequencies is not too high (that is generally
the case for the linking substructure), such a computation
remains feasible. It should be noted that the use of massively
parallel computers facilitates the analysis of such numerical
problem depending on continuous parameter ω.

(ii) For solving the generalized eigenvalue problem
defined by Eq. (24) for all ω in B, the numerical cost can
be reduced using the following procedure. First, Eq. (24) is
solved for ω belonging to the subset B′ = {ω′

1, . . . , ω
′
μ′ } of
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chosen frequency points in B with μ′ 
 μ, called master
frequency points. Then, an approximation Ũ L(ω) of U L(ω)

is calculated for all ω in B\B′ by using an interpolation pro-
cedure based on the values U L(ω′

1), . . . ,U L(ω′
μ′) at the μ′

frequency points. Finally, for each ω in B\B′ , the generalized
eigenvalue problem defined by Eq. (24) is projected on the
subspace spanned by the finite family Ũ L(ω) which yields a
reduced-order generalized eigenvalue problem of dimension
NL and which allows an approximation λ̃L

1 (ω), . . . , λ̃L
NL

(ω)

of λL
1 (ω), . . . , λL

NL
(ω) to be calculated. Such a procedure can

be found in [4].
(iii) Another way consists in replacing the above interpola-

tion procedure by the following construction of a frequency-
independent basis adapted to band B. It consists in extract-
ing the larger family of linearly independent functions from
the family U L(ω′

1), . . . ,U L(ω′
μ′) at the μ′ master frequency

points.
(iv) If kL(·, · ;ω) slowly varies for ω in band B, a well

adapted frequency-independent basis for all ω in B, consists
in choosing U L(ω) for an arbitrary ω in B but in such a case
convergence with respect to NL must be carefully checked.

(v) More generally, any subset of NL functions extracted
from a Hilbertian basis of the admissible space R0

ΩL
can be

used.

3.3 Elastostatic Lifting Operator of ΩL with Respect to
Interface Γ1L ∪ Γ2L at Zero Frequency

We consider the solution uL
S of the elastostatic problem at

zero frequency for linking substructure ΩL subjected to pre-
scribed displacement fields uΓ1L on Γ1L and uΓ2L on Γ2L ,
and zero force on ΓL . We introduce the following sets of
functions,

RΓ1L ,Γ2L = (H1/2(Γ1L))3 × (H1/2(Γ2L))3, (27)

RuΓ1L ,uΓ2L
ΩL

= { uL ∈ RΩL

∣
∣ uL = uΓ1L on Γ1L ;

uL = uΓ2L on Γ2Lwith (uΓ1L , uΓ2L ) ∈ RΓ1L ,Γ2L }.
(28)

Displacement field uL
S satisfies the following variational for-

mulation,

kL(uL
S , δuL

S ; 0) = 0 , uL
S ∈ RuΓ1L ,uΓ2L

ΩL
,

∀ δuL
S ∈ R0

ΩL
, (29)

corresponding to the following boundary value problem,

{aL
i jkh(x, 0) εkh(uL)}, j = 0 in ΩL for i = 1, 2, 3,

(30)

with the Neumann and Dirichlet boundary conditions,

aL
i jkh(x, 0) εkh(uL) nL

j = 0 on ΓL for i = 1, 2, 3,(31)

uL = uΓ1L on Γ1L ;
uL = uΓ2L on Γ2L . (32)

The problem defined by Eq. (29) has a unique solution
uL

S which defines the linear continuous operator SL from

RΓ1L ,Γ2L into RuΓ1L ,uΓ2L
ΩL

(called the elastostatic lifting oper-
ator at zero frequency),

(uΓ1L , uΓ2L ) �→ uL
S = SL(uΓ1L , uΓ2L ). (33)

Let Rstat
ΩL

be the subspace of RuΓ1L ,uΓ2L
ΩL

constituted of all the

solutions of Eq. (29) (i.e. the range of operator SL ). It can
then be proven that RΩL = Rstat

ΩL
⊕R0

ΩL
. Finally, introducing

the complexified spaces Cstat
ΩL

and C0
ΩL

of Rstat
ΩL

and R0
ΩL

, it
can be proven that

CΩL = Cstat
ΩL

⊕ C0
ΩL

. (34)

3.4 Construction of a Reduced-Order Model

The following reduced-order model can then be constructed
using the elastostatic lifting operator and performing a Ritz-
Galerkin projection with the free-interface modes of sub-
structures Ω1 and Ω2, and the fixed interface modes of link-
ing substructure ΩL . Let N1, NL and N2 be finite integers.
For all fixed ω, the following finite projections u1,N1(ω),
uL ,NL (ω) and u2,N2(ω) of u1(ω), uL(ω) and u2(ω) are intro-
duced as follows,

u1,N1(ω) =
N1∑

α=−5

q1
α(ω) u1

α, (35)

uL ,NL (ω) = SL(uN1
Γ1L

(ω), uN2
Γ2L

(ω)) +
NL∑

α=1

q L
α (ω) uL

α (ω),

(36)

u2,N2(ω) =
N2∑

α=−5

q2
α(ω) u2

α, (37)

in which uN1
Γ1L

(ω) and uN2
Γ2L

(ω) are such that

uN1
Γ1L

(ω) =
N1∑

α=−5

q1
α(ω) u1

α|Γ1L
, (38)

uN2
Γ2L

(ω) =
N2∑

α=−5

q2
α(ω) u2

α|Γ2L
. (39)

Note that Eq. (36) is due to the property defined by Eq. (34).
The corresponding test functions are then written as,
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δu1,N1 =
N1∑

α=−5

δq1
α u1

α, (40)

δuL ,NL (ω) = SL(δuN1
Γ1L

, δuN2
Γ2L

) +
NL∑

α=1

δq L
α uL

α (ω) , (41)

δu2,N2 =
N2∑

α=−5

δq2
α u2

α, (42)

in which δuN1
Γ1L

and δuN2
Γ2L

are such that

δuN1
Γ1L

=
N1∑

α=−5

δq1
α u1

α|Γ1L
, (43)

δuN2
Γ2L

=
N2∑

α=−5

δq2
α u2

α|Γ2L
. (44)

Substituting Eqs. (35) to (44) into Eq. (19) yields the fol-
lowing variational reduced-order model of order N = N1+
6+ NL + N2 +6. For all fixed Ω , find (q1(ω), qL(ω), q2(ω))

in CN1+6 × CNL × CN2+6 such that, for all (δq1, δqL , δq2)

in CN1+6 × CNL × CN2+6, we have

zred
N (q1(ω), qL(ω), q2(ω), δq1, δqL , δq2;ω)

= f N (δq1, δqL , δq2;ω), (45)

in which q1 = (q1−5, . . . , q1
0 , q1

1 . . . q1
N1

), qL = (q L
1 , . . . ,

q L
NL

), q2 = (q2−5, . . . , q2
0 , q2

1 . . . q2
N2

), δq1 = (δq1−5, . . . ,

δq1
0 , δq1

1 . . . δq1
N1

), δqL = (δq L
1 , . . . , δq L

NL
) and δq2 =

(δq2−5, . . . , δq2
0 , δq2

1 . . . δq2
N2

).

4 Concluding Remarks and Research Perspectives

A continuum-based substructuring techniques has been pre-
sented for the linear dynamic analysis of two substructures
connected with a physical flexible viscoelastic interface, for
which each substructure is reduced using its free-interface
elastic modes. Concerning the research perspectives, for
such a dynamical system, the physical flexible viscoelastic
interface generally presents model uncertainties induced by
imperfect coupling boundary conditions with the substruc-
tures, the viscoelastic model used for of the material and
the geometrical parameters. The complexity of such physi-
cal interface model can require advanced dynamic multiscale
methods in micro-macro mechanics for materials [48] and
requires to take into account model uncertainties induced by
modeling errors. Such implementation using the nonpara-
metric probabilistic approach of model uncertainties, cou-
pling recent advanced research concerning uncertainty quan-
tification for viscoelastic structures [65,82] and uncertain
coupling interface methodologies [55], is in progress. In addi-

tion, the introduction of smart materials in the physical inter-
face would be of prime interest for micromechanical systems.
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