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Abstract In this review article, the focus is on partitioned
simulation techniques for strongly coupled fluid-structure
interaction problems, especially on techniques which use
at least one of the solvers as a black box. First, a num-
ber of analyses are reviewed to explain why Gauss–Seidel
coupling iterations converge slowly or not at all for fluid-
structure interaction problems with strong coupling. This
provides the theoretical basis for the fast convergence of
quasi-Newton and multi-level techniques. Second, several
partitioned techniques that couple two black-box solvers are
compared with respect to implementation and performance.
Furthermore, performance comparisons between partitioned
and monolithic techniques are examined. Subsequently, two
similar techniques to couple a black-box solver with an ac-
cessible solver are analyzed. In addition, several other tech-
niques for fluid-structure interaction simulations are studied
and various methods to take into account deforming fluid
domains are discussed.

Keywords Fluid-structure interaction · Partitioned
simulation · Quasi-Newton · Coupling algorithm

1 Introduction

Fluid-structure interaction (FSI) is the mutual interaction be-
tween a fluid flow and a moving or deforming structure.
A fluid flow exerts forces on the adjacent structure, which

Joris Degroote gratefully acknowledges funding by a Ph.D. fellowship
and a post-doctoral fellowship of the Research Foundation—Flanders
(FWO).

J. Degroote (B)
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
e-mail: Joris.Degroote@UGent.be

can result in motion or deformation of this structure. Signifi-
cant structural motion or deformation will, in turn, affect the
fluid flow. There are numerous examples of fluid-structure
interaction. A selection is presented below to illustrate the
above definition.

A notorious example of FSI is the Tacoma Narrows
Bridge (see Fig. 1). This suspension bridge collapsed due to
aero-elastic fluttering, only two months after being opened
to the public. More specifically, an unstable interaction with
a frequency of 0.2 Hz developed between the second tor-
sional mode of the bridge and the steady lateral wind of
only 68 km/h. By contrast, the von Kármán vortex street
had a frequency of approximately 1 Hz for that geometry
and wind velocity. Therefore, the cause of the collapse was
not forced resonance due to vortex shedding, although the
disaster is often explained that way [16]. After this disaster,
research on aero-elastic phenomena was increased, which
entailed new regulations and improved construction guide-
lines. Fluid-structure interaction has to be taken into account
during the design process of bridges, lightweight membrane
structures [201] and large silos [94].

Machines are also susceptible to flutter. For example, the
wings of an aircraft [1, 64] and the blades of a turbo-machine
[13, 124] can oscillate as a result of a fluid-structure inter-
action. This can lead to fatigue damage or an aircraft that is
hard to handle.

Life-saving examples of fluid-structure interaction are
parachutes [176, 180] and air bags [106]. The opening of
a parachute is enabled through a complex fluid-structure in-
teraction. An air bag consists of a nylon bag which opens
when gas is generated by an electrically ignited pyrotechnic
device. Both the deployment of an air bag and the impact of
a person on an air bag are fluid-structure interactions.

Also the impact of structures on a liquid surface and other
interactions between multi-phase flow and flexible struc-
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Fig. 1 The collapse of the Tacoma Narrows Bridge on 7 November
1940

tures have been analyzed extensively [2, 101, 102, 113, 155,
194, 197]. Applications of that research are the design of
floating wave energy converters [186] and composite ship
hulls [148, 187].

Many fluid-structure interactions occur inside the human
body [158]. One of them is the interaction between the elas-
tic wall of large arteries and the blood flow that passes
through them [11, 82, 147, 170, 183]. The blood flow also
interacts with the heart valves [56, 57, 119, 149, 169] and the
muscular heart wall [150, 193]. Accurate fluid-structure in-
teraction simulations are a prerequisite for the improvement
of artificial heart valves, stents and other medical devices.
Another biomedical application is the prediction of the rup-
ture of aneurysms or the outcome of surgical procedures
[178, 200]. Fluid-structure interaction is also present in the
pulmonary system [195]. Patient-specific data are used for
both material models and geometry to increase the fidelity
of the simulations [34, 82, 195].

After this introduction, this review article focuses on
numerical simulation of fluid-structure interaction, more
specifically partitioned simulations with at least one black-
box solver. In Sect. 2, several computational aspects of fluid-
structure interaction simulations are discussed, followed by
an overview of various simulation techniques in Sect. 3.
Then, Sect. 4 reviews stability analyses of a simple par-
titioned coupling technique. Subsequently, Sects. 5 and 6
compare a number of coupling techniques for respectively
two and one black-box solver more in detail. Finally, Sect. 7
presents the conclusions of this review.

2 Fluid-Structure Interaction Simulations

This section begins with a brief description of the governing
equations in a fluid-structure interaction problem, followed
by a summary of techniques to deal with the deforming fluid
domain and interpolation on the fluid-structure interface.
Subsequently, numerical effects of different time discretiza-
tion techniques in the flow solver and the structural solver

Fig. 2 The fluid
subdomain Ωf , the solid
subdomain Ωs , their boundaries
Γf and Γs and the
fluid-structure interface Γi

are explained. Finally, an example illustrates the possibility
of numerical instabilities due to the so-called added-mass
effect.

2.1 Governing Equations

There are many different ways to discretize the governing
equations in space and time and to solve the resulting dis-
crete equations. However, as the focus of this article lies on
the interaction, the reader is referred to standard text books
for the description of these techniques.

Figure 2 depicts an abstract fluid-structure interaction
problem. The subdomains are indicated as Ωf and Ωs and
their boundaries as Γf = ∂Ωf and Γs = ∂Ωs , with the sub-
scripts f and s respectively denoting fluid and solid. The
fluid-structure interface Γi = Γf ∩Γs is the common bound-
ary of these subdomains.

2.1.1 Flow Equations

The flow of an isothermal fluid is determined by the conser-
vation of mass and the conservation of momentum (Navier–
Stokes equation)

∂ρf

∂t
+ ∇ · (ρf �v) = 0 (1a)

ρf

∂ �v
∂t

+ ρf �v · ∇�v − ∇ · σf = �ff (1b)

for �x ∈ Ωf (t). In these equations, ρf is the fluid density,
�v the velocity, t the time and �ff the body forces per unit of
volume on the fluid. For the Newtonian fluids with dynamic
viscosity μf , the stress tensor σf is defined as

σf = −pI + 2μf εf (2a)

with p the pressure and I the unit tensor. The rate of strain
tensor εf is given by

εf = 1

2

[∇�v + (∇�v)T]. (2b)

This article mainly considers incompressible fluids as they
prove to be most challenging for the fluid-structure interac-
tion techniques. However, it would be no problem to con-
sider compressible fluids instead. For an incompressible,
isothermal fluid, Eqs. (1a) and (1b) simplify to

∇ · �v = 0 (3a)
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ρf

∂ �v
∂t

+ ρf ∇ · (�v�v) − ∇ · σf = �ff (3b)

in conservative form.

2.1.2 Structural Equations

The deformation or displacement �u of a structure is deter-
mined by the conservation of momentum

ρs

D2 �u
Dt2

− ∇ · σs = �fs (4)

for �x ∈ Ωs(t) with ρs the structural density. The notation
D2/Dt2 refers to the second material derivative and �fs de-
notes the body forces per unit volume on the structure. If
the current configuration of the structure is represented by
�x( �X, t) and the reference configuration by �X, the deforma-
tion �u is given by

�u( �X, t) = �x( �X, t) − �X. (5)

The deformation gradient F is equal to

F = ∂ �x
∂ �X (6)

and its determinant is indicated as J = det(F).
The Cauchy stress tensor σs relates forces in the de-

formed configuration to areas in the deformed configuration,
whereas the second Piola–Kirchhoff stress tensor Ss links
forces in the reference configuration with areas in the ref-
erence configuration. The relation between these tensors is
given by

Ss = JF−1σsF−T. (7)

In large displacement calculations, the relation between the
second Piola–Kirchhoff stress tensor Ss and the Green–
Lagrange strain tensor εs is imposed by the constitutive
equation of the material. The Green–Lagrange strain tensor
is given by

εs = 1

2

[∇�u + (∇�u)T + (∇�u)T∇�u] (8a)

for large displacements, which can be linearized as

εs = 1

2

[∇�u + (∇�u)T] (8b)

for small displacements.

2.1.3 Equilibrium Conditions

The equilibrium conditions on a no-slip fluid-structure inter-
face are the equality of velocity (kinematic condition)

�v = d�u
dt

(9)

and the equality of traction (dynamic condition)

σf · �nf = −σs · �ns (10)

for �x ∈ Γi(t). The vector �nf,s is the unit normal vector that
points outwards from the domain Ωf,s . Appropriate bound-
ary conditions are imposed on Γf \ Γi and on Γs \ Γi , de-
pending on the problem at hand.

2.2 Deforming Fluid Domain

In a fluid-structure interaction calculation with large dis-
placements, both the fluid domain and the solid domain are
deforming. Deformations are common in structural calcu-
lations and, therefore, the deformation of the solid domain
normally does not cause difficulties. Structural equations are
usually solved in a Lagrangian formulation, which means
that the grid nodes move at the same velocity as the material.
On the other hand, flow equations are traditionally solved in
a domain that does not deform using an Eulerian formula-
tion, i.e. a fixed grid. However, there are several techniques
to take into account the deforming fluid domain, which are
reviewed in the following pages.

2.2.1 Moving Fluid Grid

One approach to calculate the flow in a deforming domain
is to use the arbitrary Lagrangian–Eulerian (ALE) formu-
lation of the flow equations [54, 55]. In this formulation,
the fluid grid does deform, but at an arbitrary grid veloc-
ity (hence the name) and not necessarily at the velocity of
the fluid (see Fig. 3). Only the velocity of the fluid grid on
the fluid-structure interface is determined by the velocity of
the structure at that location. This ensures that the fluid and
solid domain do not overlap (except for a small overlap if
the grids are non-matching, see Sect. 2.3). The grid velocity
�w is then extended from the fluid-structure interface to the
entire fluid domain to avoid excessive grid distortion.

�wΩf
= Ext( �wΓi

) (11)

There are several possibilities for this extension of the
grid velocity to the entire fluid domain. A common tech-
nique is to replace the edges between the grid nodes by
springs. The initial spacings of the grid nodes before any
grid motion constitute the equilibrium state of the springs.
A displacement of a node on the fluid-structure interface will
generate a force proportional to the displacement along all
the springs connected to this node. Using Hooke’s law, the
force �Fi on grid node i is given by

�Fi =
ni∑

j=1

kij (��xj − ��xi) (12)
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Fig. 3 The comparison between the Eulerian, arbitrary Lagrangian–
Eulerian (ALE) and Lagrangian formulation. The lines represent the
grid and the shaded grey areas represent a certain amount of material.
In the Eulerian formulation, the grid is stationary. In the ALE formu-

lation, the grid and the material can move at the same or at a different
velocity. In the Lagrangian formulation, the grid and the material move
at the same velocity

with ��xi the displacement of node i. This summation is per-
formed over the ni neighbours of node i. The spring constant
kij between nodes i and j is often chosen to be inversely
proportional to the length of the edge

kij = 1
√|�xj − �xi |

(13)

so that short edges become stiffer than long edges [10].
At equilibrium, the net force on each node due to all the
springs connected to this node must be zero ( �Fi = �0). This
equilibrium is calculated using an iterative procedure

��xm+1
i =

∑ni

j=1 kij��xm
j∑ni

j=1 kij

(14)

with the superscript m denoting the iteration. Since dis-
placements are known on the fluid-structure interface and on
the fixed boundaries, this equation is solved using a Jacobi
sweep on all interior nodes. At convergence, the positions
are updated such that

�xn+1
i = �xn

i + ��xlast
i (15)

with the superscripts n and n + 1 denoting the previous and
current time step, respectively. Adding torsional springs in-
creases the robustness of this procedure as they prevent fluid
grid cells from overlapping each other [40, 62]. The fluid
grid can also be considered as an elastic body instead of as
a network of springs [120].

Another technique is to use a Laplace (or diffusion) equa-
tion for the grid velocities [117]. In that case, the grid veloc-
ities �w in the fluid domain are calculated from

∇ · (γ∇ �w) = 0 (16)

with γ the diffusivity. The node positions are updated using

�xn+1
i = �xn

i + �w�t. (17)

The ratio between interval lengths is preserved by the
Laplace equation for the grid velocity with a constant diffu-
sivity. This causes the motion of the fluid-structure interface
to diffuse uniformly throughout the fluid domain.

To modify the grid velocity near the fluid-structure inter-
face or for small cells, a spatially varying diffusivity can be
calculated based on the distance d to the interface

γ = 1

dα
(18)

or the cell volume V

γ = 1

V α
(19)

with α > 0 a coefficient supplied by the user. Whereas
Laplace techniques stipulate either the displacement or the
spacing of the grid, biharmonic operators offer the advan-
tage that both the displacement and the normal grid spacing
along a boundary can be controlled [93].

All previously mentioned techniques require knowledge
of the connectivity between the grid points. An alternative
is to interpolate the displacements of the boundary nodes
to the whole grid using radial basis functions [18]. For the
construction of the interpolation functions, a linear system
with dimension proportional to the number of grid points
on the boundary of the fluid domain has to be solved. The
grid points in the domain are then interpolated one by one,
without need for connectivity information. However, the re-
sulting grid quality depends on the selected basis function
and its parameters.

Nevertheless, every grid motion technique will yield an
unacceptable grid quality when the deformations (trans-
lations or rotations) become large or when the topology
changes. Large deformations are common if a structure
without anchorage moves freely throughout the liquid do-
main; topology changes occur if a structure breaks or if
a valve opens. In that case, a new grid has to be gener-
ated for at least part of the domain. Richter [161] uses lo-
cal grid adaptivity driven by goal-oriented error estimation.
The interpolation from the old to the new grid inevitably
causes errors. Moreover, the grid generation, followed by
load-balancing in a parallel calculation, increases the dura-
tion of the simulation. However, the ALE formulation has
the advantage that the wall shear stress on the fluid-structure
interface can be calculated accurately.
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Fig. 4 The shear slip mesh
update method is developed for
large translations or rotations.
The layer of cells in grey
absorbs the shear and is
reconnected afterwards.
Adapted from [14]

The shear slip mesh update method (SSMUM) is de-
signed for large translations or rotations of rigid bodies [14],
but can also be applied to flexible bodies. The cells adjacent
to the moving body are rigid and move along with this body;
the cells further away are also rigid but have a fixed position.
In between, there are one or more layers of cells which de-
form (see Fig. 4). When the shear deformation of the cells
has become to large, they are reconnected to obtain cells
with a good quality. An alternative technique to deal with
translations or rotations is sliding interfaces. In that case,
two grid regions slide along each other. For every edge or
face on one side, the overlapping edges or faces on the other
side are searched and projected on each other.

If a no-slip boundary condition is applied on the fluid-
structure interface, then both the normal and the tangential
material velocity have to be identical in the fluid and struc-
ture. By contrast, only the grid velocity normal to the in-
terface has to be the same on both sides of the interface. So,
slip of the fluid grid with respect to the structural grid can be
allowed, even for a no-slip boundary condition. In the con-
tinuous equations, a different domain velocity tangential to
the interface has no influence on the physical solution. How-
ever, in the discrete equations, a difference in tangential grid
velocity will inevitably lead to small changes in shape of the
domains.

In several partitioned solution techniques, the flow prob-
lem has to be solved repeatedly for slightly different in-
terface positions. Transpiration boundary conditions can be
used to avoid the cost of the grid motion and the correspond-
ing update of the fluid matrices (if they are calculated explic-
itly) each time the flow problem is solved [52, 68]. As long
as the displacement is small, this linearized model for the in-
fluence of the interface displacement can be used as bound-
ary condition. When the displacement has become too large,
a real grid motion has to be performed, followed by the con-
struction of a new linearized model.

2.2.2 Fixed Fluid Grid

Fixed grid approaches are an alternative to the ALE for-
mulation. A class within these fixed grid techniques are the
immersed boundary (IB) methods [137]. In the original IB
method developed by Peskin [149], the structure was lim-
ited to so-called fibres, which consist of a chain of solid
nodes [150, 151]. Three-dimensional structures could be

Fig. 5 A schematic representation of the immersed boundary (IB)
method for structures without (left) and with (right) volume. The ver-
tical and horizontal lines are the fixed fluid grid; the interconnected
dots are the Lagrangian solid nodes. The weighting functions for the
interpolation of the forces from the solid to the fluid are represented by
dashed circles. Adapted from [196]

created by weaving a net of fibres. However, a fibre-like
one-dimensional immersed structure may carry mass, but it
occupies no volume in the fluid domain. More recently, the
IB method has been extended to allow for structures that
occupy finite volumes in the fluid [84, 199, 206]. Figure 5
shows a schematic representation of the IB method for struc-
tures with and without volume.

In the IB methods, the interconnected Lagrangian solid
nodes move over the fixed fluid grid, resulting in an overlap
of the fluid and solid domain. In the neighbourhood of these
solid nodes, a weighting function is defined to interpolate
the elastic forces from the Lagrangian solid grid to the Eu-
lerian fluid grid. This interpolation results in a body forces
source term �ff in the Navier–Stokes equations. Conversely,
the velocity of the structural nodes is interpolated from the
velocity of the surrounding fluid. The update of the source
term and the velocity could be performed explicitly or im-
plicitly. Generally, however, the structural degrees of free-
dom are eliminated so that the influence of the structure is
represented by velocity-dependent source terms in the mo-
mentum equations [196].

The main advantage of the IB methods is that the fluid
grid does not have to change, whatever the structural dis-
placements are. As a result, the flow solver can be simple
and fast, for example by using Cartesian grids. A weakness
of these techniques is the loss of accuracy near the inter-
face, caused by the interpolations. Moreover, the accuracy
depends on the ratio between the fluid and solid grid size
[61, 114]. The interpolation of the velocities from the in-
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Fig. 6 A schematic representation of the fictitious domain (FD)
method for structures without (left) and with (right) volume. The verti-
cal and horizontal lines are the fixed fluid grid; the interconnected dots
are the Lagrangian solid nodes. A possible location for the Lagrange
multipliers is indicated with crosses. Adapted from [196]

compressible fluid to the structure also implies that the struc-
tural motion is divergence free, although not all structures
behave this way. In addition, the structural equations are
never actually solved, which may lead to a restriction of the
time step to obtain stability of the calculation. Finally, it is
only straightforward to determine the type of the boundary
conditions for the fluid grid if the fluid surrounds the struc-
ture. Non-physical boundary conditions have to be imposed
on the boundaries of the fluid grid where the fluid is sur-
rounded by the structure [150].

Another yet similar class within the fixed grid techniques
are the fictitious domain (FD) methods. The distributed La-
grange multiplier fictitious domain (DLM/FD) method was
originally developed by Glowinski et al. [85] for the simula-
tion of fluids with immersed rigid bodies [86]. Later, it has
been extended to deal with the interaction between a fluid
and flexible bodies [204]. In this method, the region in the
fluid grid that should be occupied by the structure is filled
with the same fluid as the remainder of the fluid domain.
Constraints with Lagrange multipliers are used to impose
that the velocity of this fictitious fluid is equal to the veloc-
ity of the solid in the entire structural domain [204]. Fig-
ure 6 is a schematic representation of the DLM/FD method
for structures with and without volume. Glowinski et al. [86]
refer to the immersed boundary method of Peskin [150] as a
non Lagrange multiplier based fictitious domain method.

Because the FD methods are similar to the IB methods,
they have the same advantages and drawbacks. Furthermore,
van Loon et al. [118] have shown that the difficulties with
accurate calculation of the tractions on the fluid-structure
interface can be reduced by adaptive grid refinement in that
region. The DLM/FD method has been employed success-
fully for heart valve simulations where the fluid domain is
divided into separate regions when the valve closes [119].

It is also possible to use a cut-cell method, as demon-
strated with two-dimensional calculations by Quirk [160].
With a search algorithm, the cells of the fixed Cartesian fluid

grid that are overlapped by the Lagrangian solid grid are de-
tected. If a fluid cell is overlapped completely by the struc-
ture, it is disabled. By contrast, if there is only partial over-
lap, then the overlapped part of the fluid cell is cut off. The
fluid-structure interface is thus sharply defined in the fluid
domain. Moreover, the accuracy near the interface can be
improved by adaptive grid refinement. However, the fluid
cells near the interface often have an irregular shape and
size, which causes difficulties for many solution techniques.
Also, the extension to three dimensions is not straightfor-
ward.

Wall et al. [196] combined the extended finite element
method (XFEM) with a DLM/FD method [83, 198]. The
XFEM originates from the simulation of cracks in finite ele-
ment calculations of structures, without forcing the cracks to
coincide with the element boundaries [15]. Wall et al. [196]
found that the fluid-structure interface can be represented in
the same way as a crack. To this end, enriched finite ele-
ment basis functions are added to the elements of the fixed
fluid grid that are crossed by the fluid-structure interface.
This step is straightforward in a DLM/FD method as the po-
sition of the interface is known exactly from the structural
grid. The additional basis functions are equal to the standard
basis functions, multiplied by a jump function at the inter-
face. The coefficients of these enriched basis functions are
additional unknowns in the finite element problem, which
represent the discontinuity at the fluid-structure interface on
the fixed fluid grid.

The main advantage of combining the XFEM with a
DLM/FD method is that the real fluid around the structure
and the fictitious fluid overlapped by the structure are de-
coupled. The structure does not have to be incompressible
if the fluid is incompressible, nor does the viscosity of the
fictitious fluid influence the motion of the structure.

2.2.3 Moving and Fixed Fluid Grid

Wall et al. [196] also combined the advantages of the
ALE formulation and fixed grid techniques in an overlap-
ping domain decomposition/Chimera-like (ODD/C) tech-
nique [198]. In this technique, the structure is surrounded
by a local, boundary-fitted fluid grid with ALE formulation.
Both the structure and this ALE fluid grid move over a fixed
fluid grid. The part of this fixed grid that is overlapped by
the structure is identified with a quadtree or octree search
algorithm and then disabled. Around this disabled region,
a Dirichlet boundary condition is imposed for the fixed grid.
The boundary condition on the outer boundary of the ALE
fluid grid is usually of the Neumann or Robin type. The fluid
flow on the fixed grid and on the ALE grid are calculated
with a Chimera technique [175]. This means that iterations
are performed between the solution of the flow equations on
the fixed grid and on the ALE grid. The boundary condi-
tions on the one grid are interpolated from the last solution
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on the other grid. The iterations have reached convergence
when the boundary conditions do no longer change signifi-
cantly. Figure 7 is a schematic representation of the ODD/C
technique.

The main advantages of the ODD/C technique are that the
values at the fluid-structure interface can be calculated ac-
curately and that incompressibility of the fluid does not im-
ply incompressibility of the solid. Moreover, the ALE fluid
grid is attached only to the structure so its quality will be
preserved, even when the structure undergoes large transla-
tions or rotations. The iterations between the fluid grids is
the price to pay.

Fig. 7 A schematic representation of the overlapping domain decom-
position/Chimera-like (ODD/C) method. The vertical and horizontal
lines are the fixed fluid grid; the interconnected dots are the Lagrangian
solid nodes. The ALE grid is fitted around the structure. The part of the
fixed fluid grid that is overlapped by the structure is disabled (dashed
line) and surrounded by a Dirichlet boundary condition (thick line).
Adapted from [196]

2.2.4 Particle Methods

Both smoothed particle hydrodynamics (SPH) [140] and the
particle finite element method (PFEM) [100] are particle
methods that have been applied to fluid-structure interac-
tion. The PFEM uses a Lagrangian formulation for both the
solid and the incompressible fluid [101, 102, 144, 145]. Fig-
ure 8 is a schematic representation of the PFEM. Each par-
ticle is a material point with the density of either the fluid or
the solid. Each time step consists of several actions, starting
from the cloud of nodes at tn. First, the boundaries of the
fluid and solid domain are identified, for example with the
α-shape method [59]. When two clusters of nodes are too
far apart, they are considered as separate regions. This ap-
proach allows for automatic treatment of topology changes.
Then, a grid is created in the fluid and solid domain. Nor-
mally, an unstructured grid is generated because the shape
of the domain and the distribution of the nodes will be ir-
regular. Because grid generation occurs in each time step,
the algorithm has to be automatic and fast. Idelsohn et al.
[101] employ the extended Delaunay tessellation [99] for
this action. Next, the standard finite element method is used
to solve the flow equations and the structural equations, both
in Lagrangian formulation, for the velocities, pressure and
viscous stresses in the fluid domain and the displacements,
stresses and strains in the solid domain, all at tn+1. The
Lagrangian formulation of the momentum conservation for
both the fluid and the solid is given by

ρ
D�v
Dt

− ∇ · σ = �f (20)

Fig. 8 A schematic
representation of the particle
finite element method (PFEM).
Adapted from [102]
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Fig. 9 The difference between non-conforming but matching grids
(left) and non-matching grids (right)

with ρ the density, D/Dt the material derivative and �v the
velocity. �f denotes the body forces per unit volume and σ is
the Cauchy stress tensor. Either explicit or implicit coupling
between the flow equations and the structural equations can
be used. Oñate et al. [144] suggest implicit coupling with
iterations between the fluid and the solid, using a fractional
step method for the flow equations. During these iterations,
a new grid is generated if the current one is too distorted.
The resulting velocities are subsequently used to update the
node positions, resulting in a cloud of points at the new time
level.

2.3 Interpolation on the Fluid-Structure Interface

Due to different grid size requirements for the solution of the
flow equations and the structural equations, the cells or ele-
ments of the fluid and solid grid are usually non-conforming
at the interface. When gaps and overlaps occur, the grids are
even non-matching (see Fig. 9). In any case, the displace-
ments and tractions have to be transferred from one side of
the interface to the other side.

The simplest approach is to use the data from the nearest
point on the other side of the interface, the so-called nearest-
neighbour interpolation. Higher accuracy can be obtained by
means of projection methods [33, 63]. To obtain the value at
some point, it is projected on the other grid, followed by
an interpolation to calculate the value at the projected point.
Several algorithms exist to find the nearest cell or element
on the other side of the interface [122]. Also interpolation
with splines and radial basis functions can be applied [19].

2.4 Time Discretization

It is important to keep in mind that differences between the
time discretization of the flow equations and the structural
equations can have unwanted effects, as demonstrated both
analytically and numerically by Vierendeels et al. [191].
When different time integration schemes are used in both
domains, the discrete acceleration of the fluid and solid at
the interface can be different, even though the displacement
or velocity is perfectly matched. As a result, spurious oscil-
lations in time can be present in the acceleration and trac-
tions at the interface, without being visible in the displace-
ment and velocity. Fortunately, these oscillations can often

be removed by sufficient numerical damping in the time in-
tegration schemes.

A simple example of this difficulty can be found in the
discretization of the displacement u with the backward Euler
method in the fluid domain

u̇n+1
f = u̇n

f + ün+1
f �t (21a)

un+1
f = un

f + u̇n+1
f �t (21b)

and with the Newmark method in the structure domain

u̇n+1
s = u̇n

s + (1 − β)ün
s �t + βün+1

s �t (22a)

un+1
s = un

s + u̇n
s �t + (1/2 − α)ün

s �t2 + αün+1
s �t2 (22b)

with 0 ≤ β ≤ 1 and 0 ≤ α ≤ 1/2. A dot indicates a time
derivative. Assume it is enforced that the displacement is
the same on both sides of the interface in every time step

uf = us (23)

to avoid overlap and gaps. If un+1
f = un+1

s and un
f = un

s , then
it follows from Eqs. (21b) and (22b) that

u̇n+1
f = u̇n

s + (1/2 − α)ün
s �t + αün+1

s �t. (24)

To obtain u̇n+1
f = u̇n+1

s , α and β would have to be chosen so
that the right-hand sides of Eqs. (22a) and (24) are identical.
This is impossible because the linear system
{

1 − β = 1/2 − α

β = α
(25)

has no solution. As a result, it is impossible to enforce equal-
ity of the displacements and velocities at the same time for
these two different time discretizations.

The geometric conservation law (GCL) or space conser-
vation law (SCL) is another issue related to the time dis-
cretization when moving grids are used [50, 76, 115]. For
the discrete equations in a control volume to be conservative
in time, the volume swept by the control volume’s bound-
aries must be calculated in a way that is consistent with the
time discretization of the control volume’s change in vol-
ume. For a finite volume semi-discretization in space, this
gives

V n+1
i − V n

i =
∫ tn+1

tn

∮

Ai

�n · �wdA (26)

with Vi and Ai respectively the volume and the surface
of a finite volume cell. This semi-discrete GCL contains
only geometric quantities and is universal for a given semi-
discretization in space, independent of the time discretiza-
tion. The time discretization has to be chosen such that a
uniform flow is exactly conserved, resulting in a discrete
GCL. This discrete GCL characterizes the time discretiza-
tion scheme and is thus not universal [115].
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2.5 Added-Mass Effect

An important concept in fluid-structure interaction simula-
tions is the added-mass, i.e. the mass of fluid which is ac-
celerated by the structure. This concept can be illustrated by
means of a piston with a fluid on one side and a spring and
damper on the other side (see Fig. 10).

For an inviscid and incompressible fluid, Eqs. (3a)
and (3b) projected on the x-axis simplify to

∂v

∂x
= 0 (27a)

ρf

∂v

∂t
+ ρf

∂vv

∂x
= −∂p

∂x
(27b)

in Ωf . The boundary conditions for the flow at the outlet Γo

and the fluid-structure interface Γi are

p = f (t) on Γo (28a)

v = du

dt
on Γi (28b)

The boundary condition on the wall Γw disappears due to
the projection on the x-axis. The equation for the structure
is given by

m
d2u

dt2
+ c

du

dt
+ bu = Hpi. (29)

The mass of the piston is indicated as m, the damping con-
stant is denoted as c and the spring stiffness factor is b. The
pressure on the fluid-structure interface Γi is given by pi .

The fluid velocity can be eliminated from Eqs. (27a)
and (27b), giving

∂2p

∂x2
= 0 in Ωf (30a)

p = f (t) on Γo (30b)

∂p

∂x
= −ρf

d2u

dt2
on Γi. (30c)

The boundary condition on Γi is obtained by substitut-
ing Eqs. (28b) in (27b). The solution of Eqs. (30a), (30b)
and (30c) is given by

p(x, t) = f (t) − ρf (L + x)
d2u

dt2
. (31)

Substitution in Eq. (29) results in

m
d2u

dt2
+ c

du

dt
+ bu = H

(
f (t) − ρf L

d2u

dt2

)
, (32)

which can be rewritten as

(m + ma)
d2u

dt2
+ c

du

dt
+ blu = Hf (t) (33)

with the added-mass ma = ρf HL. This added-mass reduces
the natural frequency of the structure from ω to ω̃ with

ω =
√

b

m
and ω̃ =

√
b

m + ma

. (34)

In a partitioned simulation, the flow equation for the in-
terface pressure

pi(t) = f (t) − ρf L
d2u

dt2
(35)

and the structural equation

m
d2u

dt2
+ bu = Hpi (36)

are solved separately. The damping c is neglected in the re-
mainder of this analysis. As an example, the structural equa-
tion is discretized using the Newmark method, giving

un+1 = β�t2 d2u

dt2

∣∣∣∣

n+1

+ hn (37)

with hn a combination of terms at time level n.
To find the solution which satisfies both equations simul-

taneously, coupling iterations can be performed in each time
step. If these coupling iterations are indicated with super-
script k and the superscript n+1 is omitted for the changing
terms, this yields

(
m + bβ�t2)d2u

dt2

∣∣∣∣

k+1

+ bhn = Hpk
i (38a)

pk+1
i = f n+1 − ρf L

d2u

dt2

∣∣∣∣

k+1

. (38b)

Equations (38a) and (38b) are solved consecutively for d2u

dt2

and pi and the counter k is increased after both equations

Fig. 10 The piston case to
illustrate the added-mass effect
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have been solved. This iteration process can be written as
pk+1

i = g(pk
i ), which converges if

∣∣∣∣
dg(pk

i )

dpk
i

∣∣∣∣< 1. (39)

For the piston problem, the above condition corresponds
with

ma

m + bβ�t2
< 1. (40)

This means that an added-mass which is too large compared
to the structural mass and stiffness causes divergence of the
coupling iterations.

3 Overview of Simulation Techniques

3.1 Comparison Between Partitioned and Monolithic
Solution

There are two approaches to the numerical simulation of
fluid-structure interaction problems. In the monolithic ap-
proach, the flow equations and the structural equations are
solved simultaneously and, hence, the interaction between
the fluid and the structure can be taken into account during
the solution process. On the other hand, partitioned tech-
niques solve the flow equations separately from the struc-
tural equations. In that case, a coupling algorithm is required
to incorporate the interaction between the fluid and the struc-
ture. This coupling algorithm stipulates in what order the
flow equations and the structural equations have to be solved
and what the conditions at the fluid-structure interface have
to be. If the interaction between the fluid and the structure
is strong, the coupling algorithm generally has to use some
kind of coupling iterations between the solution of the flow
equations and the solution of the structural equations.

The main advantage of the monolithic approach is that no
iterations have to be performed between the solution of the
flow equations and the solution of the structural equations.
In a partitioned simulation of strong interaction, however,
both the flow equations and the structural equations have to
be solved in each coupling iteration. So, the duration of such
a partitioned simulation increases as the number of coupling
iterations per time step increases. If, for a given problem,
the coupling iterations of some partitioned technique con-
verge slowly, then the monolithic approach has a distinct ad-
vantage over that particular partitioned technique. Moreover,
not every coupling algorithm is stable in every situation.

Advantages of the partitioned approach are that it reuses
reliable and optimized codes to solve the flow equations and
the structural equations. Models that have been developed
and implemented over the past decades for either flow prob-
lems or structural problems are readily available and can be

combined. The partitioned approach is also modular, so the
software is easier to maintain. The flow equations and the
structural equations can be solved with different techniques,
particularly suited for these kind of equations. Conversely,
monolithic codes typically solve all equations with the same
solution technique.

From the above, it should be clear that both the mono-
lithic and the partitioned approach have their strengths and
weaknesses. When both approaches are compared in this ar-
ticle, the aim is not to claim that one is better than the other.
Another review which compares partitioned and monolithic
techniques can be found in [95].

3.2 Monolithic Approach

As the focus of this review is on partitioned techniques, only
a brief overview of the monolithic approach is given. In a
monolithic code, the flow equations and the structural equa-
tions are first discretized in space and time with a method of
choice, which results in a system of coupled discrete equa-
tions with the flow variables and the structural variables
as unknowns. The discrete flow equations are represented
by f , the discrete structural equations by s. The vector v

groups the flow variables (velocity, pressure, etc.) for the
entire fluid domain; the vector u groups the structural vari-
ables (displacement, stress, etc.) in the entire solid domain.
Both v and u are at the new time level tn+1; the dependence
of the solution on the variables at tn, tn−1, . . . is hidden.
{

f (v,u) = 0

s(v,u) = 0
(41)

The interaction between fluid and structure is taken into ac-
count by calculating all variables at once. As the equations
are generally nonlinear, they are often solved with Newton–
Raphson iterations [8, 9, 11, 97, 165]. In each Newton–
Raphson iteration, a linear system

[
∂vf ∂uf

∂vs ∂us

][
�vk

�uk

]
= −

[
f (vk,uk)

s(vk,uk)

]
(42)

has to be solved, with the superscript k denoting the
Newton–Raphson iteration, �vk = vk+1 − vk and �uk =
uk+1 − uk . The notation ∂vf refers to the Jacobian matrix
containing the partial derivatives of f (v,u) with respect
to v. All blocks in the Jacobian are evaluated at (vk,uk).

Several authors simplify or approximate the matrix in
Eq. (42) or they fix part of the variables while calculating
the others. For example, Heil [92] analyzed the effect of ne-
glecting the block above and/or below the diagonal on the
convergence of the Newton–Raphson iterations. He noticed
that even the omission of one off-diagonal block causes a
significant increase in the number of Newton–Raphson it-
erations. However, he also observed that a block triangular
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approximation for the Jacobian is a good preconditioner if
the system is solved with an iterative linear solver. To reduce
the cost of this preconditioner, the Navier–Stokes block can
be replaced by a global pressure Schur complement block.
Moreover, as the linear system with the preconditioner does
not have to be solved exactly, it can be substituted by a
limited number of multi-grid cycles. Multi-grid can also be
applied to reduce the cost of solving the linear system in
Eq. (42) itself. Hron and Turek [96] use geometric multi-
grid, i.e. a hierarchy of grids obtained by successive regular
refinement of a given coarse grid [20]. They apply the stan-
dard defect-correction framework with a V- or F-type cycle.
Gee et al. [79] developed an algebraic multi-grid solver for
fluid-structure interaction problems.

The derivatives of the momentum and continuity residu-
als with respect to the interface displacements are referred
to as shape derivatives. There are several ways to com-
pute these shape derivative matrices, required for a con-
sistent linearization of the fluid-structure systems. Balaban
et al. [5] use both automatic and manual derivation of the
shape derivatives in the reference domain and Bazilevs et
al. [12] work with a change of variables. Finite differences
[127, 128] can be applied, but the resulting derivatives can
lead to slower convergence of the Newton iterations com-
pared to exact derivatives from shape differentiation [69].
Furthermore, van der Zee et al. [205] calculate the shape
derivatives by remapping to the reference domain.

The complete fluid-structure interaction problem can also
be discretized with space-time finite elements [98, 181, 182].
This method discretizes both the spatial domain and the time
with finite element basis functions. Consecutive time steps
are called “slabs” of the space-time domain. In each time
step, Hübner et al. [98] first solve all governing equations
without the nonlinearity due to large displacement of the
structure, convection in the fluid and deformation of the
fluid grid, followed by an update of the fluid grid. Then,
two to four iterations are performed to reach convergence.
Tezduyar et al. [182] compare what they call block iterative,
quasi-direct and direct coupling. Block iterative coupling
means that the off-diagonal blocks are neglected and that
the flow equations and the structural equations are solved
separately, in a partitioned way. In quasi-direct coupling,
the dependence of the off-diagonal block in the flow equa-
tions on the grid motion is not taken into account. Finally,
direct coupling employs the exact Jacobian matrix. In that
case, the authors solve the system with an iterative linear
solver using finite differences for part of the matrix-vector
product.

3.3 Partitioned Approach

In the partitioned approach, the flow equations and the struc-
tural equations are solved separately. The code that solves

Algorithm 1 The steps within the flow solver
1: Apply the displacement x to the boundary of the fluid

domain.
2: Adapt the grid in the entire fluid domain to the displace-

ment of the boundary.
3: Calculate the flow variables v in the entire fluid domain.
4: Extract the traction y on the boundary of the fluid do-

main.

Algorithm 2 The steps within the structural solver
1: Apply the traction y to the boundary of the solid do-

main.
2: Calculate the structural variables u in the entire solid

domain.
3: Extract the displacement x on the boundary of the solid

domain.

the flow equations is called the flow solver and the code that
solves the structural equations is called the structural solver.
The partitioned techniques can be further categorized as ex-
plicit, implicit or semi-implicit coupling. Another review of
these techniques can be found in [66].

The partitioned techniques will be explained using a
moving grid flow solver and a Dirichlet–Neumann (DN) de-
composition of the coupled problem, as this is the most com-
mon decomposition for fluid-structure interaction problems.
In a DN decomposition, the flow equations are solved for
a given velocity (or displacement) of the fluid-structure in-
terface (Dirichlet boundary condition), while the structural
equations are solved for a given traction distribution on the
interface (Neumann boundary condition). The displacement
of the interface is represented by the vector x and the trac-
tion on the interface by the vector y. With these definitions,
the flow solver can be written as

y = F(x). (43)

This function represents the steps listed in Algorithm 1.
Similarly, the structural solver is given by

x = S(y), (44)

which represents the steps in Algorithm 2.
Other decompositions are the Neumann–Dirichlet (ND)

[32], Robin–Neumann (RN) and Robin–Robin (RR) [4] de-
composition. The names of these decompositions contain
the types of boundary conditions that have been applied on
respectively the fluid and structure side of the fluid-structure
interface. In theory, the ND decomposition could be a useful
alternative to the DN decomposition. In practice, however, it
is rather involved when using a moving grid flow solver be-
cause the flow equations and the equations that govern the
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deformation of the fluid grid have to be solved simultane-
ously for the velocity, the pressure and the displacement of
the fluid grid.

A disadvantage of the DN decomposition is that an en-
closed domain or a domain with only velocity boundary con-
ditions combined with an incompressible fluid causes diffi-
culties. An example of such a problem is a balloon which is
being filled with water. If the change in volume of the fluid
domain due to the displacement of the structure is not com-
patible with the net volumetric influx caused by the velocity
boundary conditions (if present), the mass conservation can-
not be satisfied for the fluid. Moreover, the pressure in the
flow problem alone is defined up to an arbitrary constant,
whereas the physical pressure level is completely defined in
the coupled problem.

The DN decomposition with interface artificial com-
pressibility [46] and the RN decomposition do not suffer
from these problems. Küttler et al. [110] solve the prob-
lems of the DN decomposition by adding the conservation of
the fluid’s volume as a constraint to the structural equations.
The Lagrange multiplier for that constraint is the constant
that has to be added to the pressure in the fluid domain to
obtain the physically correct pressure. As the authors men-
tion themselves, the addition of the volume constraint in
the structural equations couples all interface displacements,
which is undesired for the solution of the structural equa-
tions.

On the following pages, several coupling algorithms are
described. They are classified as explicit, implicit or semi-
implicit coupling.

3.3.1 Explicit Coupling

Several explicit (also known as loosely or weakly coupled)
partitioned techniques exist [64, 65, 116, 153, 154, 209,
210]. These techniques solve the flow equations and the
structural equations separately and only once in each time
step. Therefore, these techniques do not impose both equi-
librium conditions on the fluid-structure interface exactly,
which results in restrictions on the time step for stability rea-
sons. It has been shown that the added-mass effect causes
this instability of explicit coupling with an incompressible
fluid and a rather flexible structure [32, 77]. However, ex-
plicit coupling is suitable for aero-elastic simulations [25].
Farhat et al. [64] note that for these simulations, it is not
clear that a better computational efficiency cannot be ob-
tained simply by reducing the time step and performing the
simulation using a good explicit coupling technique instead
of using a technique with coupling iterations, unless no solu-
tion can be found with explicit coupling. Typically, explicit
coupling requires a smaller time step size but less compu-
tational effort per time step due to the absence of coupling
iterations within the time step. A smaller time step can be

Algorithm 3 The conventional serial staggered (CSS)
scheme

1: Solve the flow equations yn+1 = F(xn).
2: Solve the structural equations xn+1 = S(yn+1).
3: Go to the next time level.

Algorithm 4 The improved serial staggered (ISS) scheme

1: Predict the displacement of the interface xn+1/2.
2: Solve the flow equations yn+1/2 = F(xn+1/2).
3: Predict the traction on the interface yn+1.
4: Solve the structural equations xn+1 = S(yn+1).
5: Go to the next time level.

used for the flow solver than for the structural solver, which
is called subcycling.

The most basic explicit coupling technique is the conven-
tional serial staggered (CSS) scheme [116]. This technique
consists of the steps in Algorithm 3 to go from time level tn

to tn+1, with a superscript n to indicate the time level.
This scheme is only first-order accurate in time, whatever

the time accuracy of the flow solver and the structural solver
is. Moreover, the maximal time step in a CSS simulation is
generally much smaller than that of the flow solver and the
structural solver alone [64]. In the generalized serial stag-
gered (GSS) scheme, a prediction of the displacement of the
interface is added to line 1, based on the displacements in
previous time steps. Also, a correction of the fluid traction
is added to line 2.

In the improved serial staggered (ISS) scheme of
Lesoinne and Farhat [116], the flow equations and the struc-
tural equations are not solved at the same time levels. By
contrast, the flow variables are calculated at time levels

. . . , tn−1/2, tn+1/2, tn+3/2, . . . , (45)

while the structural variables are calculated at

. . . , tn−1, tn, tn+1, . . . , (46)

as shown in Algorithm 4. If both solvers are second-order
accurate in time and the flow solver satisfies the geometric
conservation law, this ISS scheme is also second-order ac-
curate in time.

Higher-order time accuracy was studied by van Zuijlen
and Bijl [207]. They integrate the flow equations and the
structural equations in time with an implicit Runge–Kutta
scheme, except for the coupling terms, which are integrated
in time with an explicit Runge–Kutta scheme of the same
order. This implicit/explicit (IMEX) time integration allows
for a partitioned solution as well as accuracy in time of ar-
bitrary order. Because multi-step implicit time integration
requires more work per time step, the authors also analyzed
the time accuracy of the solution as a function of the amount
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of work to obtain it. For the one-dimensional linear piston
problem [17, 154], the third- and fifth-order IMEX scheme
were computationally more efficient than a monolithic solu-
tion with the second-order backward difference integration.

Later, van Zuijlen et al. [209] investigated the effect of
a coarse grid correction or prediction. In their study, only
the fluid grid was coarsened. For the correction, the differ-
ence between the implicit monolithic solution and the IMEX
partitioned solution is restricted to the coarser grid. Subse-
quently, a calculation on the coarse grid yields the correc-
tion, which is then prolongated to the original grid and added
to the solution. For the prediction, on the other hand, the
difference between a monolithic solution with implicit and
explicit time integration is restricted to the coarser grid. The
prolongation of the result on the coarse grid is then added to
a standard extrapolation based on previous time steps. This
sum is used as the starting value for the IMEX partitioned
solution on the fine grid. Moreover, the numerical experi-
ments demonstrate that the coarse grid calculations do not
have to be performed monolithically; one iteration between
the flow solver and the structural solver is sufficient to im-
prove the accuracy of the simulation.

For the explicit partitioned solution of fluid-structure in-
teraction problems with incompressible fluids, finite ele-
ment techniques based on Nitsche’s principle have been
developed [29, 30]. Nitsche’s principle weakly enforces a
Dirichlet boundary condition, instead of the more tradi-
tional strong enforcement of a Dirichlet boundary condi-
tion which imposes that the function spaces satisfy this
boundary condition. This principle is only used for the kine-
matic equilibrium condition on the fluid-structure interface;
other Dirichlet boundary conditions can be strongly en-
forced. The fluid-structure problem with Nitsche’s formu-
lation can then be rewritten in a partitioned way, resulting
in a fluid problem with Dirichlet–Nitsche transmission con-
dition and a structure problem with a Robin transmission
condition. This Robin boundary condition originates from
the Nitsche penalty term. The key to stabilising this scheme
is a weakly consistent penalty term in the fluid problem to
control the spurious oscillations of the fluid pressure at the
interface. A few defect correction iterations are used to re-
cover the time accuracy of the corresponding implicit cou-
pling scheme.

Guidoboni et al. [90] proposed an explicit kinematically
coupled time-splitting scheme. As opposed to classical par-
titioned schemes, which rely on splitting the fluid from the
structure, this strategy is based on splitting the structure
equation into an elastic and a hydrodynamic part. By treating
the elastic part separately, a wide range of structure mod-
els can be applied. The hydrodynamic part consists of the
fluid stress acting on the interface and viscoelastic terms.
This part is solved together with the fluid problem, so the
inertia of both fluid and structure are taken into account at

the same time, which avoids instabilities due to the added-
mass effect. The acceleration term in the structural equation
is rewritten in terms of the fluid velocity at the interface us-
ing the kinematic coupling condition and the fact that the
structure is thin. The splitting error depends on the physical
parameters of the solid. This explicit scheme corresponds
with using a generalized Robin boundary condition to in-
clude the structural inertia and damping into the flow equa-
tions [70]. As this non-incremental scheme may lack accu-
racy, Fernandez [67] extended this approach to incremen-
tal schemes. Optimal accuracy is achieved by extrapolating
the displacement in a first step and correcting it in a sec-
ond step. Subsequently, this scheme has been generalized
to thick structures with linear elasticity [70]. However, the
non-uniformity of the discrete operators only yields quasi-
optimal accuracy for thick solids. Stability analysis demon-
strated that these explicit Robin–Neumann schemes can be
stable, independent of the added-mass.

3.3.2 Implicit Coupling

Implicit (or strongly coupled) partitioned techniques enforce
the equilibrium of the traction and velocity (or displace-
ment) on the fluid-structure interface in each time step. This
can be achieved with iterations between the solvers or with
Newton–Raphson iterations.

Jacobi (see Algorithm 5) and Gauss–Seidel (see Algo-
rithm 6) iterations between the solvers are the most basic
implicit coupling techniques. The same notations and def-
initions as for the explicit coupling are used. However, the
superscript n + 1 is replaced by a superscript k + 1 to indi-
cate the coupling iteration within the time step as all vari-
ables are at time level tn+1. The values that are calculated
by the solvers are indicated with a tilde, to distinguish them
from the values that are provided to the solvers in the same
coupling iteration. The notation S ◦F indicates that the re-
sult of the function F is given as argument to the function S .
The residual rk = x̃k − xk has to become smaller than the
tolerance εo to reach convergence.

Algorithm 5 The Jacobi iteration scheme
1: k = 0
2: ỹ0 = F(x0)

3: x̃0 = S(y0)

4: r0 = x̃0 − x0

5: while ‖rk‖2 > εo do
6: xk+1 = x̃k

7: yk+1 = ỹk

8: ỹk+1 = F(xk+1)

9: x̃k+1 = S(yk+1)

10: rk+1 = x̃k+1 − xk+1

11: k + +
12: end while
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Algorithm 6 The Gauss–Seidel iteration scheme
1: k = 0
2: x̃0 = S ◦F(x0)

3: r0 = x̃0 − x0

4: while ‖rk‖2 > εo do
5: xk+1 = xk + rk = x̃k

6: x̃k+1 = S ◦F(xk+1)
7: rk+1 = x̃k+1 − xk+1

8: k + +
9: end while

The Jacobi iteration scheme begins from suitable extrap-
olations x0 and y0, based on previous time steps. On the
other hand, Gauss–Seidel iterations only require the extrap-
olation x0. In the Jacobi scheme, the flow solver and the
structural solver can be executed in parallel. Therefore, this
is called an additive or parallel Schwarz procedure in the
domain decomposition community [184]. By contrast, the
solvers in a Gauss–Seidel scheme have to be executed se-
quentially, so this is a multiplicative or serial Schwarz proce-
dure [129]. Gauss–Seidel iterations between the flow solver
and the structural solver correspond to Richardson iterations
on the FSI problem.

In Gauss–Seidel iterations, the displacement at the begin-
ning of the iteration is identical to the one calculated by the
structural solver in the previous iteration, so

xk+1 = xk + rk = x̃k. (47)

Consequently, a Gauss–Seidel iteration can be written in
fixed-point formulation

x̃k+1 = S ◦F(xk+1)= S ◦F(x̃k
)
. (48)

Is has frequently been observed that Jacobi and Gauss–
Seidel iterations between the flow solver and structural
solver within the time step converge slowly, if at all, espe-
cially if the fluid is incompressible. However, it has been
demonstrated that the convergence of Gauss–Seidel itera-
tions is accelerated if the influence of the flow on the struc-
ture is included in the structural solver by means of an ap-
proximated added-mass matrix [32]. This added-mass ma-
trix represents the effect of the flow on the structure, refor-
mulated as a mass matrix in the structural equations. As will
be explained in Sect. 4, an acceleration can also be obtained
if a local, scalar approximation for the structural solver is
substituted in the flow solver [42, 142].

Both the interface artificial compressibility (IAC) tech-
nique [46, 163, 190] and generalized Robin boundary con-
ditions [4, 142] are based on a local, scalar approximation
for the structural solver substituted in the flow solver (see
Sect. 6). The former creates a linear approximation for the
structural solver and includes this relation in the flow solver

as a source term in the continuity equation of the control
volumes adjacent to the fluid-structure interface; the latter
transforms the structural model into a Robin boundary con-
dition in the flow solver.

The convergence of Gauss–Seidel iterations can also be
accelerated by Aitken relaxation [103, 108, 138, 139]. This
technique adds a dynamically varying relaxation factor ωk

to the Gauss–Seidel iterations

xk+1 = xk + ωkrk = (1 − ωk
)
xk + ωkx̃k. (49)

The relaxation factor is adapted based on the result of the
previous iterations

ωk = −ωk−1 (rk−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)
. (50)

More information on Aitken relaxation is provided in
Sect. 5. Steepest descent relaxation [108] is another tech-
nique with a varying relaxation factor, but it exhibits step-
wise or zig-zag convergence, which is well understood and
typical of steepest descent methods [143].

Vector extrapolation uses a longer sequence of interface
displacements to approximate the correct interface displace-
ment. Vector extrapolation methods can be classified into
two families. The first family contains the minimal polyno-
mial extrapolation (MPE) method [31], the reduced rank ex-
trapolation (RRE) method [58, 133] and the modified min-
imal polynomial extrapolation (MMPE) method [21, 157,
174]. The second class includes the topological ε-algorithm
(TEA) [21] and the scalar and vector ε-algorithm (SEA and
VEA) [202]. When applied to linearly generated vector se-
quences, the MPE, the RRE and the TEA methods are math-
ematically equivalent to the method of Arnoldi [166], the
generalized conjugate residual (GCR) method [60] (which is
mathematically equivalent to the generalized minimal resid-
ual (GMRES) method [168]) and the method of Lanczos
[167], respectively [173].

Küttler and Wall [109] described the application of the
first family of vector extrapolation techniques to fluid-
structure interaction. Starting from the current interface dis-
placement xk , m Gauss–Seidel iterations are performed to
generate the required converging sequence of interface dis-
placements xk,xk+1, . . . ,xk+m. Generally, a fixed relax-
ation factor should be applied in these iterations to avoid
divergence. These iterations also bring about a sequence rk,

rk+1, . . . , rk+m−1, with rk+i = x̃k+i − xk+i . Based on this
second sequence, an extrapolation is constructed for the
residual vector

r̂k+m =
m−1∑

i=0

αir
k+i . (51)

The unknown extrapolation factors αi are calculated by min-
imizing ‖r̂k+m‖2. The minimization of ‖r̂k+m‖2 is then per-
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formed using Eq. (51) with the αi as variables. The differ-
ence between the vector extrapolation methods lies in how
this minimization is performed. The MPE, RRE, MMPE and
TEA method require the solution of the equations

m−1∑

j=0

Ai,jαj = 0 (52)

for i = 0, . . . ,m − 2 under the constraint

m−1∑

j=0

αj = 1. (53)

The elements of the matrix A are given by

– Ai,j = (rk+i )T(rk+j ) for the MPE method,
– Ai,j = (�rk+i )T(rk+j ) for the RRE method,
– Ai,j = (si )T(rk+j ) for the MMPE method,
– Ai,j = (s)T(rk+j ) for the TEA method,

for i = 0, . . . ,m − 2 and j = 0, . . . ,m − 1 with �rk+i =
rk+i+1 − rk+i . The vectors si (with i = 0, . . . ,m − 2) are a
set of linearly independent vectors and s is an arbitrary fixed
vector. Once the coefficients αi are known, the extrapolation
for the interface displacement is calculated as

x̂k+m =
m−1∑

i=0

αix
k+i (54)

It would be difficult to choose the number of Gauss–Seidel
iterations m between two extrapolations of the interface dis-
placement in advance. Therefore, the extrapolation r̂ is cal-
culated after each Gauss–Seidel iteration. The extrapolation
of the displacement is only performed when this vector r̂ has
become smaller than a predefined tolerance in some norm.
Although vector extrapolation seems promising compared to
Aitken relaxation because it takes into account a sequence of
interface displacements, it turns out to be only slightly faster
[109, 111].

Newton–Raphson techniques can also be used in parti-
tioned simulations. These coupling algorithms generally dis-
play faster convergence but it is often difficult to obtain the
Jacobian needed for Newton–Raphson iterations due to limi-
tations of the flow solver and structural solver [53]. Newton–
Raphson iterations can be applied either to the system with
all variables in Eq. (41) or to the system condensed on the
fluid-structure interface.
{
F(x) − y = 0

S(y) − x = 0
(55)

The traction on the interface y can be eliminated from
Eq. (55), resulting in an equation for the interface displace-
ment only

S ◦F(x) − x = 0. (56)

The introduction of a residual operator

R = S ◦F − I, (57)

with I the identity operator of appropriate dimension, yields
a short equation with x as unknown.

R(x) = 0 (58)

The Jacobian of R with respect to x will further be denoted
as R′. In each Newton iteration, a linear system

R′k�xk = −R
(
xk
)

(59)

has to be solved, with �xk = xk+1 − xk .
Michler et al. [135] solve Eq. (58) with a Newton–Krylov

solver. In particular, they use the generalized minimal resid-
ual (GMRES) method [168] as Krylov solver for the linear
system in Eq. (59). Because the displacement of the inter-
face is the unknown in Eq. (58), they call this technique
Interface-GMRES. In each Newton step, they first perform
a number of relaxed Gauss–Seidel iterations to construct a
linear approximation to the residual operator R(x). With
this linear approximation, they calculate the matrix-vector
products for the Krylov solver. However, because the solu-
tion of a linear system with the Jacobian of the residual op-
erator is circumvented in this way, Küttler and Wall [109]
argue that this is not a Newton technique so that the name
Newton–Krylov is not appropriate. They refer to this tech-
nique as RRE-based, which is equivalent to GMRES for lin-
early generated vector sequences. Section 5 provides an in-
depth analysis of this technique, using the terminology given
by the developers.

The matrix-vector products that have to be calculated
during the solution of Eq. (59) with a Krylov solver can also
be approximated by a finite difference approximation [81,
111]. The product of R′k with an arbitrary vector z is then
calculated as

R′kz ≈ R(xk + εz) −R(xk)

ε
. (60)

In this case, the function R has to be evaluated in each
Krylov iteration within each Newton iteration. However, the
function R calculates the residual of the coupled problem
condensed on the interface, which requires the solution of
the flow equations and the structural equations in the entire
domain. Hence, this function is very expensive to be evalu-
ated repeatedly inside each Newton iteration. Moreover, this
approach is sensitive to the parameter ε when it is set manu-
ally by the user [81]. This might be remedied with the tech-
niques to determine an appropriate value for ε automatically
as listed by Knoll and Keyes [107].

The most difficult part in the calculation of

R′ = S ′F ′ − I (61)
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is usually the Jacobian of the flow solver F ′. Therefore, Ger-
beau and Vidrascu [81] proposed approximating the Jaco-
bian of the flow solver by the Jacobian of a reduced-physics
model, indicated as F̂FF ′. For the simulation of blood flow in
arteries and several other applications, the added-mass effect
of the flow on the structure is the most important feature.
This mechanism can be reasonably captured with a linear,
inviscid model for the incompressible fluid. Such a model is
obtained by assuming that the fluid domain is fixed and that
the pressure p and velocity �v satisfy

∇ · �v = 0 in Ωf (62a)

ρf

d�v
dt

+ ∇p = �0 in Ωf (62b)

�v = d�u
dt

on Γi, (62c)

with ρf the fluid density and �u the displacement of the struc-
ture. Appropriate boundary conditions have to be applied on
Γf /Γi . After elimination of �v by using ∇ · �v = 0, Eqs. (62a),
(62b) and (62c) are given by

�p = 0 in Ωf (63a)

∂p

∂n
= −ρf

d2�u
dt2

· �n on Γi, (63b)

with ∂p/∂n the normal derivative of the pressure and �n the
unit normal on the interface. These equations are not used
to approximate the flow solver F ; only the Jacobian of the
flow solver F̂ ′ is approximated using Eqs. (63a) and (63b).
The product of R′ with an arbitrary vector z is calculated
according to the steps listed in Algorithm 7.

This solution to the Poisson equation on line 1 can be
computed quickly. On line 3, a Jacobian K of the struc-
tural behaviour appears, but this matrix has normally already

Algorithm 7 The product of the approximate Jacobian from
a reduced-physics model with an arbitrary vector

1: Solve

�δp = 0 in Ωf (64a)

∂δp

∂n
= − ρf

�t2
�z · �n on Γi (64b)

for δp.
2: Calculate the change of the traction vector δy (= F̂ ′z)

due to δp.
3: Solve

Kδz = δy (65)

for δz (= S ′F̂ ′z).
4: Calculate R′z as δz − z.

been factorized as the structural equations need to be solved
to evaluate the residual R(xk). This matrix represents the
relation between the displacement of the fluid-structure in-
terface and the load on the structure. Hence, also the linear
system on line 3 can be solved quickly. With this technique,
the propagation of a pressure wave in a cerebral aneurysm
and a carotid bifurcation have been simulated [82].

Furthermore, a stability analysis of Gauss–Seidel itera-
tions between a solver for incompressible flow and a struc-
tural solver (see Sect. 4) demonstrates that only displace-
ments of the interface with a low wave number are unsta-
ble for the flow in a piece of a large artery. Consequently,
a low-rank approximation of the Jacobian R′ (or F ′ and S ′)
is sufficient to obtain fast convergence of the Newton–
Raphson iterations. This principle is implemented by the
interface block quasi-Newton technique with least-squares
models for the Jacobian of both solvers (IBQN-LS) [192]
and by the interface quasi-Newton technique with an ap-
proximation for the inverse of the Jacobian of the coupled
problem from a least-squares model (IQN-ILS) [43]. The
former solves Eq. (55), the latter Eq. (58). Recently, multi-
solver [47] and multi-level [48] versions of these techniques
have been introduced. Because both techniques only manip-
ulate variables on the fluid-structure interface, they can be
used to couple black-box commercial codes. Section 5 de-
scribes these techniques in detail.

Two solvers can also be coupled with a block Newton
method. Many variants of the block Newton method exist
[112]. Artlich and Mackens [3] refer to Keller [105] for the
block elimination (BE) method which solves Eq. (42) in a
partitioned way. The approximate Newton (AN) method of
Chan [35] is a variation of the block elimination method
that is only suitable for systems with a small number of
equations in s. However, both the block elimination method
and the approximate Newton method require knowledge of
∂vf , ∂uf , ∂vs and ∂us.

Starting from the AN method, Artlich and Mackens [3]
developed the iterative approximate Newton (IAN) method
to couple two iterative solvers without knowing the Jacobian
blocks. This method was later named approximate tangen-
tial block Newton (ATBN) method by Mackens et al. [121]
and Menck [131]. Matthies and Steindorf [127] applied this
method to fluid-structure interaction simulations [128, 129,
177]. They assume that an iterative solver is available for
both the flow problem

vi+1 = F
(
vi ,u

)
(66a)

and the structural problem

ui+1 = S
(
v,ui

)
. (66b)

The superscript i denotes the iteration within the solvers. Of
course, the structural variables are constant during the itera-
tions in the flow solver and vice versa. If one of the solvers is
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a direct solver, it is considered as an iterative solver that finds
the solution in one iteration. However, in that case this ap-
proach can become very expensive unless the matrices in the
direct solver do not have to be factorized again for each cal-
culation. Yeckel et al. [203] analyzed the special case where
the iterative solvers are Newton solvers and developed the
approximate block Newton (ABN) method and variations
on the ATBN method with block diagonal preconditioners.

In the paragraphs below, the implementation of Matthies
and Steindorf [128] is summarized. To calculate the solu-
tion of Eqs. (66a) and (66b) with a block Newton scheme,
a linear system
[
I − ∂vF −∂uF
−∂vS I − ∂uS

][
�vk

�uk

]

= −
[

vk − F(vk,uk)

uk − S(vk,uk)

]
(67)

has to be solved in each Newton iteration, with �vk =
vk+1 − vk and �uk = uk+1 − uk . ∂vF denotes the Jacobian
of F with respect to v and I is the unit matrix of appropri-
ate dimension. Because the linear system is solved within a
Newton iteration, the superscript k remains constant during
the solution of the linear system and therefore it is dropped
in the remainder of this explanation. The system in Eq. (67)
is first reformulated as an equation in �u only. Therefore,
the change of the flow variables �v is isolated symbolically
from the first row, giving

�v = δv − C�u (68)

with

C = −(I − ∂vF)−1∂uF (69)

δv = −(I − ∂vF)−1(v − F(v,u)
)
. (70)

The expression for �v from Eq. (68) is then substituted in
the second row of Eq. (67), which yields the equation in �u

only

S�u = −r (71)

with

S = I − ∂uS + (∂vS)C (72)

r = (u − S(v,u)
)− (∂vS)δv. (73)

The matrix S is the Schur complement of I − ∂vF in the
block Jacobian of Eq. (67). Once �u has been calculated
from Eq. (71), the result is inserted into Eq. (68) to ob-
tain �v. The procedure to calculate �v and �u consists
of four steps, listed in Algorithm 8.

On line 1, a Newton iteration is performed to solve the
flow problem (Eq. (66a)) with u fixed. The solution is

Algorithm 8 The approximate tangential block Newton
(ATBN) method

1: Solve (I − ∂vF)δv = −(v − F(v,u)) for δv.
2: Calculate r = (u − S(v,u)) − (∂vS)δv.
3: Solve S�u = −r for �u.
4: Calculate �v = δv − C�u.

Fig. 11 The approximate tangential block Newton method in two di-
mensions. Adapted from [121]

(v + δv,u) and the following steps are linearized around
this point. The residual of the structural problem (Eq. (66b))
at this point is calculated on line 2 by means of lineariza-
tion. On line 3, a Newton iteration is performed to solve the
structural problem for u, while taking into account the effect
of u on v due to the flow problem in a linearized way. Fi-
nally, δv, i.e. the change of v to solve the flow problem with
fixed u, is corrected for the influence of �u, which results
in �v. This process is depicted in Fig. 11 for two dimen-
sions. The method was called approximate tangential block
Newton because the step on line 3 is parallel to the curve
v = F(v,u), albeit in a linearized way.

The equation

(I − ∂vF)δv = −(v − F(v,u)
)

(74)

on line 1 can be interpreted as a Newton linearization around
δv = 0 to solve

v + δv − F(v + δv,u) = 0 (75)

for δv with fixed v and u. Instead of using the Newton lin-
earization from Eq. (74) to solve Eq. (75), δv is calculated
approximately with the iterative flow solver. To this end,
v + δv is replaced by w, followed by m > 1 iterations with
the flow solver

wi+1 = F
(
wi ,u

)
(76)

with i = 0, . . . ,m − 1. These iterations start from w0 = v

and they yield δv ≈ wm − v.
For the calculation of r on line 2, the second and third

term in Eq. (73) are considered as a linearization of −S(v +
δv,u) around δv = 0. As a result, r can be calculated with
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one iteration of the structural solver

r ≈ u − S(v + δv,u). (77)

The solution to the linear system

S�u = −r (78)

for �u on line 3 is calculated with an iterative linear solver.
Such a solver only requires a procedure to multiply the sys-
tem matrix by an arbitrary vector. Therefore, the system ma-
trix S does not have to be known explicitly, which also im-
plies that it does not have to be stored in the computer’s
memory. The product of S with some arbitrary vector z is
approximated by finite differences with a small step size ε.

Sz = 1

ε
S(εz)

= 1

ε

(
I − ∂uS + (∂vS)C

)
(εz)

= 1

ε

(
εz − S

(
v − C(εz),u + εz

)+ S(v,u)
)

(79)

In the previous equation, the product C(εz) appears, which
is further denoted as c. To calculate c, the system

(I − ∂vF)c = −∂uF(εz) (80)

has to be solved. The right-hand side of Eq. (80) is approxi-
mated with finite differences, giving

(I − ∂vF)c = −(F(v,u + εz) − F(v,u)
)
. (81)

This last system is solved by considering it as a Newton lin-
earization around c = 0 for

v + c + F(v,u + εz) − F(v + c,u) − v = 0. (82)

As on line 1, Eq. (82) is solved by replacing v + c by w,
followed by m′ > 1 iterations with the flow solver

wi+1 = −F(v,u + εz) + F
(
wi ,u

)+ v (83)

with i = 0, . . . ,m′ − 1. These iterations start from w0 = v

and they yield c ≈ wm − v.
As �u is now known, �v is calculated on line 4 using

�v = δv − C�u. (84)

The product C�u is calculated in the same way as C(εz)

on line 3.

3.3.3 Semi-Implicit Coupling

To overcome the stability problems of explicit coupling
without the cost of implicit coupling, Fernandez et al. [71]
developed a partially implicit, partially explicit coupling

Algorithm 9 The semi-implicit coupling scheme
1: Calculate the position of the fluid grid.
2: Calculate �v∗ in the explicit ALE-advection-diffusion

sub-step.
3: Couple the fluid projection sub-step with the structure

using one of the implicit coupling techniques.
4: Go to the next time level.

technique. This semi-implicit technique does not impose the
equality of tractions and velocity on the fluid-structure in-
terface exactly but remains stable in several cases that can-
not be solved with explicit coupling. Only the fluid pressure
is coupled implicitly to the structure to make the calcula-
tion stable. All other terms in the flow equations are cou-
pled explicitly to reduce the duration of the calculation. This
splitting of the flow equations is straightforward if they are
solved with a Chorin-Temam projection scheme [37, 179].

In the description of the time semi-discrete version of
this technique, the Navier–Stokes equations are discretized
in time with the backward Euler scheme. Assuming that ev-
erything is known at time tn, the steps in Algorithm 9 are
performed to compute the values at time tn+1.

To calculate the position of the fluid grid on line 1, the
structural displacement is extrapolated as �̃un+1, based on
previous time steps. This grid velocity at the interface is ex-
tended to the rest of the fluid domain using Eq. (11), fol-
lowed by an update of the grid position using Eq. (17).

In the explicit ALE-advection-diffusion sub-step on
line 2, �v∗ is calculated from

ρf

�v∗ − �vn

�t
+ ρf

(�vn − �wn+1) · ∇�v∗

− 2μ∇εf

(�v∗)= �0 (85a)

�v∗ = �wn+1 (85b)

in Ωf and on Γi , respectively. Although this is the explicit
step of the coupling, the flow solver itself can be implicit.
In the second term of Eq. (85a), �vn is used in order to ob-
tain a linear problem but this can be replaced by �v∗ without
influencing the coupling strategy.

On line 3, the fluid projection sub-step is coupled with
the structure using one of the implicit coupling techniques
(see Sect. 3.3.2). If the Dirichlet–Neumann decomposition
of the coupled problem is used, the fluid projection sub-step
is given by

∇ · �vn+1 = 0 (86a)

ρf

�vn+1 − �v∗

�t
+ ∇pn+1 = �0 (86b)



Partitioned Simulation of Fluid-Structure Interaction 203

in Ωf with a known velocity on Γi

�vn+1 = �un+1 − �un

�t
. (86c)

This Darcy problem can be reformulated as a Poisson equa-
tion

�pn+1 = ρf

�t
∇ · �v∗, (87)

which can be solved quickly. Afterwards, the velocity is cor-
rected as

�vn+1 = �v∗ − �t

ρf

∇pn+1. (88)

Subsequently, the structural equations are solved for a given
traction on the interface.

The update of the fluid grid (line 1) and the expensive
ALE-advection-diffusion sub-step (line 2) are performed
only once in each time step, which reduces the compu-
tational cost significantly. For the calculation of a pres-
sure wave in a straight, flexible 3D tube, this semi-implicit
scheme is 25 times faster than Aitken relaxation and 5
times faster than a partitioned Newton solver with exact
Jacobian or approximate Jacobian from a reduced-physics
model [71]. In the semi-implicit simulations of this case, the
implicit coupling between the structure and the projection
sub-step has been performed with Newton iterations using
exact Jacobians. As the projection sub-step is performed on
a fixed grid, the Jacobian of the flow problem can be calcu-
lated more easily than in the case of implicit coupling be-
cause no shape-derivatives have to be calculated. However,
numerical experiments by Fernandez et al. [71] indicate that
when the implicit coupling between the projection sub-step
and the structure is performed with Gauss–Seidel iterations,
the semi-implicit scheme might be slower than the implicit
coupling with Newton iterations.

3.4 Other Coupled Problems

Most coupling algorithms described in this section can be
used for coupled problems in general. Some applications in
fields other than fluid-structure interaction are listed below.

Yeckel et al. [203] solve conjugate heat transfer problems
that represent melt crystal growth processes. Therefore, they
couple a furnace radiation model with a melt crystal growth
model using the ABN method. The partitioned spatial re-
gions are each modelled by independent heat transfer codes
and linked by temperature and flux matching conditions at
the common boundaries.

Jahromi et al. [104] analyze the effect of excavations on
the frame of a building. A code that models the behaviour of
the soil during excavations is coupled with a code for non-
linear structural dynamics using a variation of the IBQN-LS

technique [192]. The interaction between the models occurs
at a relatively small number of points.

Artlich and Mackens [3] calculate the combustion in a
fluidized bed reactor under pressure. Their model takes into
account the exothermic chemical reaction between C and O2

to form CO2. The calculation of the carbon and oxygen con-
centrations is performed separately from the calculation of
the temperature field.

In the last example, there is only one domain and data
are exchanged throughout the domain. In the other exam-
ples, the domains do not overlap and data are exchanged at
the common boundary of the domains. The following sec-
tions will only discuss coupling algorithms applied to fluid-
structure interaction.

4 Stability Analysis of Gauss–Seidel Coupling
Iterations

The previous section illustrates that a partitioned simulation
of strong interaction between a fluid and a structure requires
a coupling algorithm with some kind of iteration between
the solvers. These iterations within the time step are nec-
essary to calculate the value of the degrees of freedom for
which the flow equations, the structural equations and the
equilibrium conditions on the interface are satisfied simulta-
neously.

The convergence of Gauss–Seidel iterations depends on
several parameters, such as the geometry, the time step, the
structural stiffness and the ratio of the fluid density to the
solid density. The exact relation between these parameters
and the convergence of the coupling iterations is different
for every coupling technique.

A stability analysis is the obvious means to gain a clear
understanding of a coupling technique’s behaviour. Such a
stability analysis has been performed by Förster et al. [77]
who analyzed the effect of the aforementioned parameters
on algorithms without coupling iterations. Causin et al. [32]
studied algorithms with and without coupling iterations us-
ing Dirichlet–Neumann and Neumann–Dirichlet decompo-
sition. They derived the maximal relaxation factor that leads
to convergence of the coupling iterations as a function of
these parameters for a simplified model of blood flow in an
artery and then validated the formulas with numerical exper-
iments. Badia et al. [4] derived the relaxation factor for the
same case but with Robin–Dirichlet and Robin–Neumann
decomposition.

Vierendeels et al. [191] analyzed the stability of coupling
iterations for the one-dimensional motion of a rigid object
in a channel as a function of the density ratio and the size of
the gap between the object and the channel. In their model,
the structure only has inertia and no stiffness. Consequently,
the inertia of the fluid and of the structure are balancing each
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other out, which results in an error amplification factor of the
coupling iterations that is independent of the time step. The
difference between compressible and incompressible fluids
is analyzed by van Brummelen [25] for the partitioned sim-
ulation of the flow over a flexible panel.

In this section, a von Neumann stability analysis on
Gauss–Seidel coupling iterations is reviewed, also for a sim-
plified model of blood flow in an artery. This analysis re-
sults in a modal decomposition of the error on the inter-
face’s displacement during Gauss–Seidel coupling iterations
and the error amplification factor that corresponds with each
mode. Such a modal decomposition provides more informa-
tion than a single relaxation factor and explains the fast con-
vergence of the quasi-Newton techniques with a Jacobian
from a least-squares model that will be introduced in the
following section.

The stability analysis of the Gauss–Seidel iterations is
first performed with a simple structural model that consists
of independent segments without structural inertia such that
a linearized model for the structure can be substituted in the
flow solver [42]. Subsequently, an extension of this analy-
sis is reviewed with a more complex structural model that
includes both the interaction between the segments of the
tube and the structural inertia but without a substitution of
the structural model in the flow solver [44].

4.1 Independent Tube Segments Without Structural Inertia

4.1.1 Description of the Model

The flow in an artery is simplified to the unsteady, incom-
pressible flow in a straight, flexible tube with a circular
cross-section and length L, depicted in Fig. 12. The model is
one-dimensional and gravity and viscosity are not taken into
account. The flow is governed by the continuity and momen-
tum equation which can be written in conservative form as

∂a

∂t
+ ∂av

∂z
= 0 (89a)

∂av

∂t
+ ∂av2

∂z
+ 1

ρf

(
∂ap′

∂z
− p′ ∂a

∂z

)
= 0 (89b)

with z the coordinate along the axis of the tube, a = πr2

the cross-sectional area of the tube and r the inner radius.
t is the time, v the velocity along the axis of the tube, p′ the
pressure and ρf the density of the fluid.

The behaviour of the elastic tube wall is described with
a Hookean constitutive relation. The structure contains no
mass, as the inertia of the tube wall is neglected with re-
gard to that of the fluid. An axisymmetric model is used in
the coordinate system (r ,ϕ,z), with ϕ the angle in the cross-
sectional plane as indicated in Fig. 12. The stress in the tube

Fig. 12 The model for blood flow in an artery with details of the cross–
section and a control volume used in the discretization of the governing
equations

wall in circumferential direction σϕϕ is approximated as

σϕϕ = E
r − ro

ro
+ σϕϕo (90)

with E the Young’s modulus and ro the radius for which
σϕϕ = σϕϕo. As other stress components are neglected, this
model only allows for radial motion of the tube wall. The
force balance on the fluid-structure interface is

rp′ = σϕϕh (91)

with h the thickness of the tube wall.
By substituting the constitutive equation (Eq. (90)) and

the kinematic pressure p = p′/ρf in Eq. (91), the following
relation holds

rp = Eh

ρf ro
(r − ro) + ropo (92)

with rop
′
o = σϕϕoh. This can be rewritten as

a = ao

(
po − 2c2

MK

p − 2c2
MK

)2

(93)

by using a = πr2 and by introducing the Moens–Korteweg
wave speed

cMK =
√

Eh

2ρf ro
. (94)

The kinematic pressure p = p′/ρf is referred to as the pres-
sure in the remainder of this section.

The tube wall thus has a constitutive law of the form
a = a(p), with the cross-sectional area only a function of
the local pressure. The wave speed c is defined as

c2 = a

da
dp

(95)
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and with Eq. (93), it is given by

c2 = c2
MK − p

2
. (96)

The straight tube with circular cross-section and length
L is discretized with a one-dimensional grid with N cells
of length �z, as indicated in Fig. 12. The fluid velocity and
pressure are stored in the cell centres. Central discretization
is used for all terms in the continuity and momentum equa-
tion, except for the convective term in the momentum equa-
tion which is discretized with a first-order upwind scheme.
The time discretization scheme is backward Euler and the
time step is indicated with �t . The conservation of mass
and momentum in a control volume around cell centre i is
expressed by the following system of equations

�z

�t

(
ai − an

i

)+ vi+1/2ai+1/2 − vi−1/2ai−1/2

− α(pi+1 − 2pi + pi−1) = 0 (97a)

�z

�t

(
viai − vn

i an
i

)+ vivi+1/2ai+1/2 − vi−1vi−1/2ai−1/2

+ 1

2

(
ai+1/2(pi+1 − pi) + ai−1/2(pi − pi−1)

)= 0 (97b)

for vi ≥ 0. The subscripts i, i + 1 and i − 1 indicate the
cell centres (i = 1, . . . ,N ) and the subscript i ± 1/2 sig-
nifies the values calculated at the cell interfaces, vi−1/2 =
(vi−1 + vi)/2 and vi+1/2 = (vi + vi+1)/2. The superscript
n denotes the previous time level; the superscript n + 1 for
the new time level is omitted. A pressure stabilization term
with coefficient α = ao/(vo +�z/�t) has been added in the
continuity equation to prohibit pressure wiggles due to cen-
tral discretization of the pressure in the momentum equation,
with vo the reference flow velocity. This stabilization term
can be written as

ao

vo + �z/�t

(
�z2 ∂2p

∂z2

∣∣∣∣
i

+ O
(
�z4)

)
(98)

on Cartesian grids. In Eq. (97a), the first term and the com-
bination of the second and the third term are proportional
to �z but they do not scale with �t . For large �t , the stabi-
lization term is proportional to �z2 so it scales with �z with
respect to the other terms in Eq. (97a); for small �t , the sta-
bilization term is proportional to �t�z so it scales with �t

with respect to the other terms. Thus, the stabilization term
does not affect the accuracy of the scheme because the other
terms are also first-order accurate [189].

The geometrical discretization of the elastic problem is
identical to that of the flow problem to avoid errors in
the data transfer between the flow and the structure. Equa-

tion (93) is discretized as

ai = ao

(
po − 2c2

MK

pi − 2c2
MK

)2

(99a)

and linearization of this equation around the reference state
(subscript o) results in

ai − ao = ao

c2
o

(pi − po). (99b)

For Gauss–Seidel coupling iterations, Eqs. (97a)
and (97b) are solved for ṽk+1 and p̃k+1 with a fixed ge-
ometry ak+1 = ãk . Similarly, the cross sectional area ãk+1

is calculated from Eqs. (99a) and (99b) with a fixed pressure
pk+1 = p̃k+1. As in the previous sections, the tilde indicates
a value which is calculated in the current coupling iteration.

The analyze the influence on the convergence of the
Gauss–Seidel iterations, the linearized elastic relation
(Eq. (99b)) is included in the flow equations. Therefore,
ak+1 = ãk is substituted by ãk + γjao/c

2
o(p̃

k+1 − pk) in
Eqs. (97a) and (97b), which is an approximation for ãk+1.
These substitution terms can be activated or deactivated by
setting the parameters γj (j = 1, . . . ,4) to 1 or to 0, which
allows to identify the terms that prevent the instability of the
Gauss–Seidel coupling iterations. Quadratic terms in p are
omitted. Irrespective of this linear substitution, the structure
equation itself can be linear or nonlinear.

The substitution terms are useful because various cou-
pling schemes ranging from monolithic to partitioned can
be studied. If all the coupling terms are enabled (γj = 1,
j = 1, . . . ,4) and the linear elastic relation (Eq. (99b)) is
used, then the modified coupling scheme is in reality a
monolithic code. The importance of the different coupling
terms is investigated in the following paragraphs.

4.1.2 Von Neumann Stability Analysis

The stability of the Gauss–Seidel coupling scheme with ex-
tra coupling terms in the flow equations is now investigated
with von Neumann stability analysis, which does not take
into account the boundary conditions. The velocity, pressure
and cross-sectional area at the new time level in Eqs. (97a),
(97b), (99a) and (99b) are written as the sum of the coupled
solution and the remaining error in the coupling iteration (in-
dicated with an overbar). The coupled solution at both time
level n and n + 1 is in turn linearized as the sum of the ref-
erence value (subscript o) and a perturbation (indicated with
a hat). For the velocity, this gives

vk+1
i = vo + v̂i + v̄k+1

i (100)

for i = 1, . . . ,N and analogously for the pressure and the
cross-sectional area. Subsequently, the equations are lin-
earized by neglecting all nonlinear combinations of the er-
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ror terms and the perturbations. Because the equations lin-
earized around vo, po and ao are also satisfied by the cou-
pled solution, all perturbations from the current and previous
time step cancel out.

The error terms are expanded as the sum of N Fourier
modes, giving

v̄k+1
i = 1

N

N−1∑

�=0

v̌k+1
� exp(jω�i�z) (101)

for the error on the velocity (i = 1, . . . ,N ) with j = √−1
and ω� = 2π�

L
the (angular) wave number.

The amplification of each wave number can be studied
separately since the equations are linear in v̄, ā and p̄.
Therefore, v̄k+1

i is substituted by v̌k+1
� exp(jω�i�z) (� =

0,1, . . . ,N/2 if N is even and � = 0,1, . . . , (N − 1)/2 if N

is odd) and analogously for the error on the pressure and the
cross-section. The dimensionless product ω��z = 2π�/N

is further denoted as the wave number ϑ�. For clarity, the
inverted hat and the subscript � are omitted. This results in
the following equations, with ak+1 = ãk and pk+1 = p̃k+1.

�z

�t
ãk + γ1

�z

�t

ao

c2
o

(
p̃k+1 − pk

)

+ voj sin(ϑ)ãk + aoj sin(ϑ)ṽk+1

+ γ2vo

ao

c2
o

j sin(ϑ)
(
p̃k+1 − pk

)

+ 2α
(
1 − cos(ϑ)

)
p̃k+1 = 0 (102a)

�z

�t

(
voã

k + aoṽ
k+1)+ γ3vo

�z

�t

ao

c2
o

(
p̃k+1 − pk

)

+ v2
oj sin(ϑ)ãk + voao

(
j sin(ϑ) + 1 − exp(−jϑ)

)
ṽk+1

+ γ4v
2
o

ao

c2
o

j sin(ϑ)
(
p̃k+1 − pk

)

+ aoj sin(ϑ)p̃k+1 = 0 (102b)

ãk+1 = ao

c2
o

pk+1 (102c)

By combining Eqs. (102a) and (102b), the amplification
factor of each mode in the error can be calculated. In each
coupling iteration, the error on the interface’s position with
wave number ϑ is amplified by

ak+1

ak
= 1 −

{
v2
o

(
1 − exp(−jϑ)

)
j sin(ϑ) + b1

�z

�t
+ b2

}

×
{
γ1b1

�z

�t
+ γ2b1voj sin(ϑ) + b2

− γ3
�z

�t
voj sin(ϑ) + γ4v

2
o sin2(ϑ)

}−1

(103a)

with

b1 = �z

�t
+ vo

(
j sin(ϑ) + 1 − exp(−jϑ)

)
(103b)

b2 = c2
o sin2(ϑ) + 2b1

c2
o

ao

α
(
1 − cos(ϑ)

)
(103c)

which is a function of ϑ and the parameters vo, ao, co, �z

and �t . The iteration scheme will converge for given values
of the parameters if the error amplification factor μ is less
than one for all ϑ .

μ =
∣∣∣∣
ak+1

ak

∣∣∣∣< 1 (104)

To study the stability of the coupling iterations as a func-
tion of the structural stiffness, the time step �t and the space
step �z, the following combinations of the relevant param-
eters are defined.

κ = co

vo

=
√

Eh
2ρf ro

− po

2

vo

τ = vo�t

L
N = L

�z
(105)

In this article, mainly the Young’s modulus E and the time
step �t are varied so κ represents the dimensionless struc-
tural stiffness and τ the dimensionless time step. The effect
of the reference flow velocity vo can be seen by modifying κ

and τ such that κτ remains constant. The radius ro and the
length L of the tube can be influenced through κ and τ , re-
spectively. Approximate values of κ and τ for a simulation
of a piece of a large human artery are κ ≈ 60 and τ ≈ 0.01
[32].

The error amplitude reduction of the coupling scheme
with Gauss–Seidel iterations is now studied for different val-
ues of the parameters κ and τ and for the most significant
combinations of the coupling terms (indicated by the val-
ues of γ1, γ2, γ3 and γ4). The following conclusions can be
drawn from the study of the error amplification factor.

If γ1 = γ2 = γ3 = γ4 = 1, the coupling is monolithic and
the error amplification factor μ is zero for all wave numbers
ϑ , irrespective of κ , τ and N . Only one coupling iteration
will be required.

If γ1 = γ2 = γ3 = γ4 = 0, the coupling is completely
partitioned and the amplification factor μ in Eqs. (103a)
and (103b) simplifies to

1

κ2

∣∣{(τN)3(1 − exp(−jϑ)
)
j sin(ϑ)

+ (τN)2[j sin(ϑ) + (1 − exp(−jϑ)
)(

1 + j sin(ϑ)
)]

+ τN
(
j sin(ϑ) + 2 − exp(−jϑ)

)+ 1
}

× {(τN)3[sin2(ϑ) + 2
(
1 − cos(ϑ)

)(
j sin(ϑ)

+ 1 − exp(−jϑ)
)]
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Fig. 13 The error amplification factor as a function of the wave
number for constant τN , variable κ and coupling parameters
γ1 = γ2 = γ3 = γ4 = 0, so a completely partitioned simulation, for
τN = 0.1

+ (τN)2[sin2(ϑ) + 2
(
1 − cos(ϑ)

)]}−1∣∣. (106)

The coefficient α of the pressure stabilization term in the
continuity equation has been substituted by

α = ao

vo + �z/�t
(107)

in the previous equation because α cannot be altered inde-
pendently.

Figures 13 and 14 show the error amplification as a
function of ϑ . The dimensionless wave number ϑ� is
equal to 2π�/N (� = 0,1, . . . ,N/2 if N is even and � =
0,1, . . . , (N − 1)/2 if N is odd) and hence it changes dis-
cretely with steps of 2π/N . Nevertheless, continuous curves
are shown for clarity. The lowest wave numbers have the
largest error amplification so that the corresponding Fourier
modes are the most unstable ones during coupling with
Gauss–Seidel iterations without extra coupling terms. Van
Brummelen [26] comes to the same conclusion using a
semi-infinite open fluid domain bounded by a string or a
beam, which demonstrates that this conclusion is not model-
dependent. From Eq. (106), it is clear that the mode with
ϑ = 0 is always unstable if γ1 = 0.

As can be seen in Fig. 13 and Eq. (106), the error am-
plification increases quadratically when the dimensionless
stiffness κ decreases. For vo = 0, κ is infinite and τ = 0, but
limits show that μ is still well defined and given by

μ =
(

�z

co�t

)2∣∣∣∣
1

sin2(ϑ) + 2(1 − cos(ϑ))

∣∣∣∣ (108)

in that case. Figure 14 illustrates that a smaller dimension-
less time step τ makes higher wave numbers unstable if
no coupling terms are used. The error amplification thus
increases when the time step or the structural stiffness de-
creases without coupling terms. The effect of κ is generally

Fig. 14 The error amplification factor as a function of the wave
number for constant κ , variable τN and coupling parameters
γ1 = γ2 = γ3 = γ4 = 0, so a completely partitioned simulation, for
κ = 10

greater than that of τN . The parameter κ determines the ver-
tical position of the curve while τN modifies both its shape
and position. In Fig. 14, the range of ϑ for which μ > 1
grows as τN decreases.

According to Eq. (106), the relation between ϑ and μ in
a completely partitioned simulation only depends on the pa-
rameter κ and the product τN = vo�t/�z; the length of the
tube does not appear in this equation. However, the fact that
the length has no influence on the error amplification factor
does not mean that the length has no influence on the stabil-
ity of the coupling iterations. On the contrary, the determin-
ing factor for the convergence of the quasi-Newton coupling
algorithms in the following section is not the evolution of the
error amplification as a function of the wave number as such
but the number of Fourier modes that have an error amplifi-
cation larger than one. As κ and τN remain constant while
the length increases, the relation between ϑ and μ will not
change. Consequently, the fraction of the modes for which
μ > 1 will be invariant. However, the total number of modes
and thus the number of modes for which μ > 1 will increase.

The increase in the number of unstable Fourier modes as
κ decreases is depicted in Fig. 15(a). An increase in N by
some factor has the same effect on the error amplification
as an increase in τ by the same factor, namely the maximal
ϑ for which μ > 1 decreases, which is a stabilizing effect.
On the other hand, the number of Fourier modes rises for in-
creasing N as the difference 2π/N between the discrete val-
ues of the wave number ϑ decreases, which is a destabilizing
effect because there will be more unstable modes. Together
these influences cause a variation in the number of unstable
Fourier modes with N as shown in Fig. 15(b). The number
of unstable modes only varies significantly with N for small
N , a flexible structure and a small time step. For κ = 10 and
τ = 0.001, all wave numbers are unstable as long as N ≤ 51.
For values of N which are of practical interest, the number
of unstable Fourier modes is almost independent of N .
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Fig. 15 The number of unstable Fourier modes as a function of (a) the
dimensionless stiffness κ with N = 100 and different values of τ ;
(b) the number of tube segments N with different values of κ and τ .
All coupling terms are disabled (γ1 = γ2 = γ3 = γ4 = 0)

Figure 16(a) shows the reduction in the error amplifica-
tion factor due to the coupling term premultiplied with γ1.
When γ1 = 1, κ influences both the shape and the vertical
position of the curve. This coupling term is referred to as the
artificial compressibility term [123, 162, 190]. It includes a
local, linear approximation for the structural behaviour into
the continuity equation of the flow solver (see Sect. 6). Fig-
ure 16(b) shows that with artificial compressibility (γ1 = 1),
the error amplification factor remains nearly constant when
τN decreases, as opposed to Fig. 14 where a smaller τN

causes an increase in the error amplification factor.
In Fig. 17(a), two configurations are shown for which the

term premultiplied with γ1 is not sufficient to stabilize the
Gauss–Seidel iterations. This situation can appear when κ <

1 while τ > 1. This extreme case means that the convective
speed is larger than the critical speed in an iteration where
the solution is sought for a time step which is too large to
follow the convective phenomena accurately. As can be seen
in Fig. 17(b), the only way to stabilize this extreme case is to
add the convective coupling term premultiplied by γ2 in the

Fig. 16 The error amplification factor as a function of the wave num-
ber with coupling parameters γ1 = 1, γ2 = γ3 = γ4 = 0. (a) τN = 1.
(b) κ = 100. The error amplification factor remains nearly constant
when τN is decreased, as opposed to Fig. 14

continuity equation. It can also be noticed that the coupling
term premultiplied by γ3 cannot stabilize this case.

4.2 Interacting Tube Segments with Structural Inertia

The structural model described in Sect. 4.1 disregards
the mass of the structure. Moreover, it is a so-called
independent-rings model [159] because the interaction be-
tween the segments of the tube is not taken into account.
Therefore, the model of the tube’s wall is improved in [44]
by including the structural mass and the interaction between
the segments. This leads to additional insights, among others
with regard to the effect of the time step.

The backward Euler scheme and the Newmark scheme
[141] are used for the time discretization of the flow equa-
tions and the structural equations, respectively. It has been
shown in several studies [32, 42, 77] that the instability of
the coupling iterations within the time step has a physical
cause. Consequently, the time discretization schemes are not
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Fig. 17 The error amplification factor as a function of the wave
number with coupling parameters γ1 = 1, γ4 = 0 and N = 100.
(a) γ2 = γ3 = 0; (b) 1/κ = τ = 10

expected to have much influence on the stability of the cou-
pling iterations although they can influence the final result
of the coupling iterations. This expectation is confirmed by
Degroote et al. [44] who performed the same analysis with
the composite time discretization scheme [6] for both the
flow equations and the structural equations.

4.2.1 Description of the Model

The flow equations and the boundary conditions are identi-
cal to those in the previous section. The structural deforma-
tion in the radial direction is determined by

ρsh
∂2r

∂t2
+ A

∂4r

∂z4
− B

∂2r

∂z2
+ C(r − ro)

= ρf (p − po) (109)

with ρs the solid density and h the thickness of the tube’s
wall [159]. Axial deformations of the structure are not con-
sidered so the length of a tube segment remains constant.

The parameters A and B (A,B ≥ 0) account for the inner
action of the bending and the tension in the tissue, and they
depend on the properties of the structure. The parameter C

is defined as

C = Eh

r2
o (1 − ν2)

(110)

with E the Young’s modulus and ν the Poisson coefficient.
This expression for C corresponds to a thin-walled tube that
is clamped in the axial direction. The radius ro corresponds
to a uniform pressure po if the structure is at rest.

Equation (109) for the structure is discretized in space
with the central difference method and in time with the New-
mark method [141], giving

ρsh

β�t2
r̃k+1
i

+ A

�z4

(
r̃k+1
i+2 − 4r̃k+1

i+1 + 6r̃k+1
i − 4r̃k+1

i−1 + r̃k+1
i−2

)

− B

�z2

(
r̃k+1
i+1 − 2r̃k+1

i + r̃k+1
i−1

)+ C
(
r̃k+1
i − ro

)

= ρf

(
pk+1

i − po

)

+ ρsh

(
1

β�t2
rn
i + 1

β�t
ṙn
i +

(
1

2β
− 1

)
r̈n
i

)
(111a)

for cell i (i = 1, . . . ,N ). An overdot signifies a time deriva-
tive. Once the coupling iterations within time step n+1 have
converged, the corresponding acceleration and velocity are
calculated as

r̈n+1
i = 1

β�t2

(
rn+1
i − rn

i

)− 1

β�t
ṙn
i −

(
1

2β
− 1

)
r̈n
i

(111b)

ṙn+1
i = ṙn

i + �t(1 − γ )r̈n
i + �tγ r̈n+1

i . (111c)

The Newmark parameters β and γ are chosen so that γ ≥ 1
2

and β ≥ 1
4 ( 1

2 + γ )2, which results in an unconditionally sta-
ble integration scheme.

4.2.2 Von Neumann Stability Analysis

The stability of the Gauss–Seidel coupling algorithm is
now determined with von Neumann stability analysis on the
flow equations and the structural equations. As opposed to
Sect. 4.1, the inner radius and not the cross-sectional area is
considered as a variable. Therefore, the velocity, pressure
and inner radius of the tube in Eqs. (97a), (97b), (111a),
(111b) and (111c) are substituted by the sum of the cou-
pled solution and the remaining error in the coupling iter-
ation (indicated with an overbar). The coupled solution at
both time level n and n + 1 is in turn linearized as the sum
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of the reference value (subscript o) and a perturbation (indi-
cated with a hat) as shown in Eq. (100). Subsequently, a is
replaced by πr2 and all equations are linearized by neglect-
ing the nonlinear combinations of the error terms and the
perturbations. Because the equations linearized around vo,
po and ro are satisfied by the coupled solution, all pertur-
bations from the current and previous time step cancel out.
Because Eqs. (111b) and (111c) are only used at the end of
the time step, they are not important for the stability of the
coupling iterations within the time step. This means that γ

is not a parameter in these iterations.
The error terms are expanded as the sum of N Fourier

modes, shown in Eq. (101). The amplification of each wave
number can be studied separately. Therefore, v̄k+1

i is sub-
stituted by v̌k+1

� exp(jω�i�z) and analogously for the error
on the pressure and the radius. The product ω��z is again
denoted as the dimensionless wave number ϑ�. For clarity,
the inverted hat and the subscript � are omitted. This results
in the following equations, with α′ = α/π , rk+1 = r̃k and
pk+1 = p̃k+1.

�z

�t
2ror̃

k + 2voroj sin(ϑ)r̃k + r2
o j sin(ϑ)ṽk+1

+ 2α′(1 − cos(ϑ)
)
p̃k+1 = 0 (112a)

�z

�t

(
2voror̃

k + r2
o ṽk+1)+ 2v2

oroj sin(ϑ)r̃k

+ vor
2
o

(
1 + j sin(ϑ) − exp(−jϑ)

)
ṽk+1

+ r2
o j sin(ϑ)p̃k+1 = 0 (112b)

(
ρsh

β�t2
+ 4A

�z4

(
1 − cos(ϑ)

)2

+ 2B

�z2

(
1 − cos(ϑ)

)+ C

)
r̃k+1 = ρf pk+1 (112c)

For the error amplification factor, dimensionless parame-
ters are used. The parameters κ and τ have the same mean-
ing as in the previous section. An additional dimensionless
parameter φ accounts for the structural inertia, giving

κ = co

vo

τ = vo�t

L
N = L

�z
φ = rovo

�zwo

(113a)

with

co =
√

Eh

2roρf (1 − ν2)
wo =

√
Eβ

ρs(1 − ν2)
. (113b)

The interaction between the segments is determined by the
parameters

χ = 4Ar2
o (1 − ν2)

Eh�z4
ψ = 2Br2

o (1 − ν2)

Eh�z2
. (113c)

By combining Eqs. (112a), (112b) and (112c), the ampli-
fication factor μ of each mode in the error on the radius is
then calculated as

μ =
∣∣∣∣
rk+1

rk

∣∣∣∣= |μ1μ2| (114a)

with

μ1 = 1

(
φ

τN
)2 + χ(1 − cos(ϑ))2 + ψ(1 − cos(ϑ)) + 1

(114b)

and μ2 determined by Eq. (106). The structural model in
Eq. (109) with interaction between the segments and with
structural inertia results in additional contributions to the er-
ror amplification which are all grouped in a term μ1. Conse-
quently, the complete error amplification factor is obtained
as the product of μ1 and μ2.

Because (1 − cos(ϑ)) is never negative and (
φ

τN
)2 + 1 is

always positive, the second and third term in the denomina-
tor of μ1 never increase the error amplification (χ,ψ ≥ 0).
The error amplification will thus always be mitigated by in-
creasing the parameters χ and ψ which account for the in-
teraction between the tube segments. Taking into account
the interaction between the tube segments in the struc-
tural model should therefore facilitate the convergence of
the coupling iterations compared to a simulation with an
independent-rings model. Because both χ and ψ appear
only once in the expression for μ, it is easy to understand
their effect and consequently they can be set to zero in the
remainder of the analysis. With χ = ψ = 0, μ1 is indepen-
dent of the wave number.

The effect of the time step on the stability is important in
many cases and it is more complex. The factor μ1 is propor-
tional to (τN)2 if τN � φ and if the relative contribution of
the terms due to the interaction between the tube segments is
small. If τN � 1 then μ2 is proportional to (τN)−2; other-
wise τN only influences μ2 for the lowest and highest wave
numbers (ϑ ≈ 0 or π ). Apart from τN ≈ 1 and τN ≈ φ

which are difficult to analyze, there are three possibilities
for the effect of the time step on the stability of the coupling
iterations in this particular case:

– μ ∼ (τN)2: if τN � φ and τN � 1;
– μ ≈ constant: if both τN � φ and τN � 1 or if both

τN � φ and τN � 1;
– μ ∼ (τN)−2: if τN � φ and τN � 1.

If the time step is varied over a wide range, its effect on μ

might change throughout that variation as the time step de-
termines which of the above situations is appropriate. The
time step will have no significant influence on the error am-
plification factor μ if τN is sufficiently far outside the range
[
min(1, φ),max(1, φ)

]
. (115)
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Fig. 18 The error amplification factor as a function of the wave num-
ber ϑ for different values of τN

Table 1 The parameter values that are used to model blood flow in a
piece of a large artery

L = 0.050 m E = 300000 N/m2 β = 1/4

h = 0.001 m ν = 0.4 γ = 1/2

ro = 0.005 m ρf = 1000 kg/m3 δ = 1/2

vo = 0.1 m/s ρs = 1200 kg/m3 N = 100

If φ < 1 then μ is proportional to (τN)−2 when τN lies
in the range given above. By contrast, if φ > 1 then μ is
proportional to (τN)2 for τN in that range.

The physical meaning of the previous paragraph can be
explained as follows. If τN � 1, the inertia is dominant in
the flow while if τN � 1, the flow almost reaches steady
state in each time step. For the structure, the inertia is dom-
inant if τN � φ while the stiffness is dominant if τN � φ.
Hence, the inertia in the fluid and in the structure are balanc-
ing each other out if τN � 1 and τN � φ. For τN � 1 and
τN � φ, an equilibrium between the inertia in the fluid and
the structural stiffness has to be found. By contrast, τN � 1
and τN � φ results in an equilibrium between the struc-
tural inertia and the fluid which can be considered to be at
steady state. Finally, if τN � 1 and τN � φ, then inertia is
insignificant in both the fluid and the structure. So, if inertia
is important in either the fluid or the structure, then the error
amplification factor μ is proportional to (τN)−2 or (τN)2,
respectively.

Figure 18 shows μ as a function of the wave number for
four different values of τN . The parameters φ ≈ 0.1 and
κ ≈ 60 approximate the flow in a piece of a large artery (see
Table 1). An increase in μ can be noticed for decreasing τN

as long as τN ∈ [0.1,1] and much smaller changes for τN

outside that range.
When τN � φ, μ1 is proportional to φ−2 and μ2 always

holds a factor κ−2 such that μ is proportional to (φκ)−2,
which contains the ratio of the fluid density to the solid den-

Fig. 19 The number of unstable Fourier modes as a function of the
dimensionless time step τ with N = 100 and φ = 0.1

sity ρf /ρs . As expected, increasing this ratio increases the
error amplification factor.

The number of unstable modes as a function of the di-
mensionless time step is depicted in Fig. 19 for N = 100.
While the error amplification factor μ as a function of ϑ de-
pends on τN , the number of modes with μ > 1 is mainly a
function of τ alone but the boundaries of the region τN =
[0.1,1] in which the number of unstable modes increases for
decreasing τ depend on N .

The findings of this analysis are compared to those of
Causin et al. [32] in the following paragraphs. With a two-
dimensional fluid model and a structural model that takes
into account inertia but not the interaction between the seg-
ments (A = B = 0), Causin et al. [32] calculate the maximal
relaxation factor of Gauss–Seidel iterations with Dirichlet–
Neumann decomposition as

0 < ω <
2(ρsh + C�t2)

ρsh + ρf λmax + C�t2
(116a)

with C the structural stiffness parameter as defined in
Eq. (110). λmax is the maximal eigenvalue of the added-
mass operator, given by

λmax = L

π tanh(πro
L

)
, (116b)

which increases as L increases and decreases as ro increases.
The amplification factor of the Gauss–Seidel iterations with
ω = 1 according to Causin et al. [32] can be rewritten as

μ = 1

(
φ

τN
)2 + 1

1

κ2

(ro/�z)(λmax/�z)

2(τN)2
(117)

by introducing the dimensionless parameters from
Eqs. (113a), (113b) and (113c). Equation (117) is similar to
Eq. (114b), yet it does not represent the difference between
the Fourier modes.
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The model of Causin et al. [32] also predicts that for
very small τN the maximal relaxation factor does not de-
pend on τN . However, for large τN , the amplification fac-
tor varies as (τN)−2. The transition between the different
regimes also depends on the ratios between structural stiff-
ness, structural inertia and fluid inertia as described above.

If the first three terms in the denominator of μ1 are large
compared to the last term, then μ1 is proportional to r−2

o .
By contrast, μ2 is proportional to ro as κ is proportional
to r

−1/2
o . As a result, μ = μ1μ2 decreases for increasing ro,

predicting less instability. As opposed to the analysis of in-
dependent tube segments without structural inertia, the anal-
ysis of interacting tube segments with structural inertia pre-
dicts the same tendency due to an increase of ro as Eq. (117).

4.2.3 Numerical Experiments

Nonlinear simulations of the flow in a flexible tube are used
in [44] to verify the conclusions of the linear analysis, espe-
cially with regard to the effect of the time step as this effect
is the most important one.

A fluid velocity of

vin = vo + vo

100
sin(2πnτ) (118)

has been applied at the inlet of the tube and zero pressure is
imposed at the outlet of the tube (pout = 0). The structure
is initially at rest and both χ and ψ have been set to zero.
The tube is discretized in N = 100 segments with the same
length. The values from Table 1 have been used again for the
geometry and for the properties of the materials.

Simulations with 100 time steps have been performed for
different values of τ and with different coupling algorithms.
The L2-norm of the residual is reduced by three orders of
magnitude with respect to its initial value in the time step. In
Fig. 20, the average number of coupling iterations per time
step is depicted for different sizes of the dimensionless time
step τ and the range [0.1/N,1/N ] is indicated with vertical
dotted lines.

Figure 18 shows that the error amplification is smaller
than one for all wave numbers if the time step is large
(τ ≈ 1), except for ϑ = 0. As a result, Fig. 19 indicates one
unstable mode for τ ≈ 1. Although Gauss–Seidel iterations
are expected to diverge if μ > 1 for at least one mode, they
converge quickly for a large time step (τ ≈ 1). This discrep-
ancy is caused by the boundary conditions which are not
taken into account in the stability analysis. By imposing the
pressure at the outlet and with a wall model a = a(p), the
components of the error on p and a with ϑ = 0 are also de-
termined, so this unstable mode is stabilized by the bound-
ary conditions. When the time step decreases, the conver-
gence of the Gauss–Seidel iterations becomes slow; for ex-
ample, on average 28 Gauss–Seidel coupling iterations per

Fig. 20 The number of coupling iterations per time step (averaged
over 100 time steps) for different values of τ with N = 100. As
predicted by the stability analysis, the average number of IQN-ILS
coupling iterations per time step increases as τ decreases for τ in
the range [10−3,10−2] while it is constant for τ sufficiently far out-
side that range. Reuse of information from the 4 previous time steps
(IQN-ILS(4)) mitigates the increase of the average number of coupling
iterations as τ decreases

time step were required for a dimensionless time step of
τ = 2 × 10−2. The Gauss–Seidel iterations diverged in the
first time step when τ was less than or equal to 10−2.

It is thus impossible to verify the conclusions of the sta-
bility analysis over a wide range of time steps by perform-
ing simulations with the Gauss–Seidel coupling algorithm
because the error amplification factor for the low wave num-
bers would be larger than one in the simulations with a small
time step, which would cause divergence of the Gauss–
Seidel coupling iterations. Other coupling algorithms, such
as IQN-ILS, have to be used for the partitioned simulations
with small time steps. More information on this technique
can be found in the following section. The number of IQN-
ILS coupling iterations per time step (averaged over the 100
time steps in the simulation) is a measure for the number of
unstable modes.

Figure 20 shows that the number of IQN-ILS coupling
iterations per time step is almost constant for τ = 6 × 10−1

to 6 × 10−2 and for τ = 2 × 10−4 to 2 × 10−5. Between
τ = 6 × 10−2 and 2 × 10−4, the number of IQN-ILS iter-
ations increases steadily with decreasing time step. Conse-
quently, the number of IQN-ILS coupling iterations per time
step (Fig. 20) and the number of unstable modes (Fig. 19)
display a similar behaviour.

The increase in the number of IQN-ILS coupling itera-
tions with a decreasing time step can be mitigated by using
information from the coupling iterations in the previous time
steps as well, instead of only information from the current
time step. Figure 20 illustrates that the number of coupling
iterations per time step is reduced significantly if the infor-
mation from the four previous time steps, denoted as IQN-
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ILS(4), is also used. This reuse will be explained in detail in
the following section.

5 Coupling of two Black-Box Solvers

In this section, the focus lies on partitioned methods that
couple a black-box flow solver with a black-box structural
solver. When the solvers are black boxes, it is difficult or
even impossible to obtain the exact Jacobian matrices which
are required in Newton–Raphson methods that solve the
root-finding problem in Eq. (58).

Several coupling algorithms are discussed, namely IQN-
ILS, IBQN-LS, Aitken relaxation, Interface-GMRES(R),
multi-solver techniques and multi-level techniques. The per-
formance of these partitioned techniques is compared, both
in terms of how often the flow problem and structural prob-
lem have to be solved within a time step and in terms of the
total simulation time. The performance of IQN-ILS is also
compared with a monolithic Newton solver.

5.1 IQN-ILS

The previous section described a stability analysis of the
Gauss–Seidel iterations between the flow solver and the
structural solver in a partitioned simulation of the unsteady
flow in a straight, flexible tube. Figure 13 depicts the ampli-
fication of the error as a function of the wave number. Even
for a very flexible tube and a small time step, only some
wave numbers are unstable.

The physical meaning of these curves is shown in Fig. 21.
The position of the wall of a tube, which initially has a con-
stant cross-section and contains a fluid at rest, is perturbed
with two different wave numbers. At the inlet and outlet,
a zero pressure is imposed. Because the fluid is incompress-
ible, a displacement of the interface with a low wave number
requires that the fluid is accelerated globally, which causes
large pressure variations throughout the fluid. On the other
hand, a displacement with the same amplitude and a high
wave number only generates local fluid motion and hence
smaller pressure gradients. The pressure differences in the
case of the high wave number can barely be seen since the
same scale has been used for both wave numbers. The dis-
placement of the structure will be largest when the first pres-
sure distribution is applied. If the fluid were compressible,
a local displacement of the interface would lead to a local
compression/expansion of the fluid instead of a global ac-
celeration/deceleration for an incompressible fluid.

Only the modes of the error which are unstable (μ > 1)
or which disappear slowly (μ ≈ 1) in the Gauss–Seidel iter-
ations have to be removed by another technique. Thus, for
the quasi-Newton iterations to converge quickly, the approx-
imate Jacobian has to describe the reaction to only a limited

Fig. 21 The pressure contours (in Pa) in an axisymmetric tube due to
two displacements of the tube’s wall with the same amplitude but a dif-
ferent wave number. Initially, the fluid is at rest and the tube has a con-
stant cross-section. A displacement of the tube’s wall with a low wave
number (top) creates much larger pressure variations than a displace-
ment with a high wave number (bottom). Only the difference between
the two calculations and not the values as such are important

number of modes in the error on the interface’s displace-
ment, namely the unstable and slowly converging modes.
For the modes which are not included in the approximate
Jacobian, the quasi-Newton iterations correspond to Gauss–
Seidel iterations, as will be explained below.

In the remainder of this section, approximations are indi-
cated with a hat. The output of the solvers F and S is indi-
cated with a tilde because this is only an intermediate value
that is not always passed on to the next coupling iteration.

All coupling algorithms begin a time step from an extrap-
olation of the interface’s displacement based on the previous
time steps, for example

xn+1,0 = 5

2
xn − 2xn−1 + 1

2
xn−2. (119)

Lower-order extrapolations are used for the first two time
steps.

The FSI problem reformulated as a set of nonlinear equa-
tions in the interface’s displacement

R(x) = 0 (120)

can be solved by means of Newton–Raphson iterations

solve R′k�xk = −rk (121a)

xk+1 = xk + �xk (121b)

with the residual calculated as

rk = R
(
xk
)= S ◦F(xk

)− xk = x̃k − xk. (122)

The notation R′k denotes the Jacobian of R, evaluated
at xk . The Newton–Raphson iterations in the time step have
converged when ‖rk‖2 ≤ εo with εo the convergence toler-
ance. However, the exact Jacobian of R is unknown as the
Jacobians of the black-box solvers F and S are unavailable.
Moreover, the linear system in Eq. (121a) with as dimension
the number of degrees of freedom in the displacement of the
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fluid-structure interface has to be solved in each Newton–
Raphson iteration. Although the number of degrees of free-
dom in the interface’s displacement is generally smaller than
that in the entire fluid and structure domain, the Jacobian
matrix R′ is normally dense. As a result, the solution of the
linear system in Eq. (121a) would correspond to a signifi-
cant computational cost in simulations with a high number
of degrees of freedom on the interface if a direct solver were
used.

If the Jacobian R′ is approximated and quasi-Newton it-
erations are performed, black-box solvers can be used. How-
ever, the linear system in Eq. (121a) still needs to be solved.
As will be explained below, it is more advantageous to ap-
proximate the inverse of the Jacobian. The quasi-Newton it-
erations with the approximation for the inverse of the Jaco-
bian can be written as

xk+1 = xk + ̂
(
R′k)−1(−rk

)
. (123)

It can be seen from Eq. (123) that the approximation for
the inverse of the Jacobian does not have to be created ex-
plicitly; a procedure to calculate the product of this matrix
with the vector −rk is sufficient. The vector −rk is the dif-
ference between the desired residual, i.e. 0, and the current
residual rk and it is further denoted as �r = 0 − rk = −rk .
The matrix-vector product is calculated from information
obtained during the previous quasi-Newton iterations. Equa-
tion (122) shows that the flow equations and structural equa-
tions are solved in quasi-Newton iteration k, resulting in
x̃k = S ◦F(xk) and the corresponding residual rk . The
vectors x̃ and r from all previous coupling iterations are also
available, giving a set of known residual vectors

rk, rk−1, . . . , r1, r0 (124a)

and the corresponding set of vectors x̃

x̃k, x̃k−1, . . . , x̃1, x̃0. (124b)

After each coupling iteration, the difference between the
vectors from the current coupling iteration and the vectors
from the previous coupling iteration is calculated

�rk−1 = rk − rk−1 (125a)

�x̃k−1 = x̃k − x̃k−1. (125b)

This yields a set of differences �r i

�rk−1, �rk−2, . . . , �r1, �r0 (126a)

and the corresponding set of differences �x̃i

�x̃k−1, �x̃k−2, . . . , �x̃1, �x̃0, (126b)

which both grow in each coupling iteration. Numerical ex-
periments show that the convergence of the coupling it-
erations is often similar if all differences �r i and �x̃i

(i = 0, . . . , k − 1) are calculated with respect to fixed refer-
ences, for example �r i = r i+1 − r0 and �x̃i = x̃i+1 − x̃0

or �r i = r i − rk and �x̃i = x̃i − x̃k . However, calcula-
tion of the vectors �r i and �x̃i as the difference between
two consecutive coupling iterations facilitates the compari-
son between the IQN-ILS method and Aitken relaxation in
Sect. 5.3.

Each �r i corresponds to a �x̃i and these vectors are
stored as the columns of the matrices

V k = [�rk−1 �rk−2 . . . �r1 �r0
]

(127a)

and

W k = [�x̃k−1 �x̃k−2 . . . �x̃1 �x̃0 ]. (127b)

Due to the similarity between consecutive time steps, the
information from the previous time steps can be reused. The
matrices V k and W k are then combined with those from q

previous time steps (if at least q time steps have already been
performed), giving

V k = [V k V n . . . V n−q+2 V n−q+1
]

(128a)

and

W k = [W k W n . . . W n−q+2 W n−q+1
]
. (128b)

No differences between the first vectors r and x̃ in a time
step and the last vectors in the previous time step should
be added to the matrices V k and W k as will be explained
below. By including the information from q previous time
steps, the convergence of the coupling iterations is remark-
ably accelerated. However, if information from too many
time steps is reused, the convergence can slow down again
as information from time step n − q + 1 might no longer
be relevant in time step n + 1. The optimal value of q is
problem-dependent but the convergence of the coupling iter-
ations does not change significantly near the optimum; con-
sequently, the performance of the method is robust with re-
spect to the parameter q .

The number of columns in V k and W k is indicated with v

which is generally much smaller than the number of rows u.
Nevertheless, in simulations with a low number of degrees
of freedom on the interface, it is possible that the number of
columns has to be limited to u by discarding the rightmost
columns.

The vector �r = 0 − rk is approximated as a linear com-
bination of the known �r i

�r ≈ V kck (129)
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with ck ∈ R

v×1 the coefficients of the decomposition. Be-
cause v ≤ u, Eq. (129) is an overdetermined set of equations
for the elements of ck and hence the least-squares solution to
this linear system is calculated. In [192], the solution to the
least-squares problem is calculated using the normal equa-
tions

ck = (V kTV k
)−1

V kT�r. (130)

However, this implementation becomes unstable if the num-
ber of columns in the matrix V k is rather high, which es-
pecially occurs when information from previous time steps
is reused. For that reason, the so-called economy-size QR-
decomposition of V k is calculated using Householder trans-
formations [88]

V k = QkRk, (131)

with Qk ∈ R

u×v an orthogonal matrix and Rk ∈ R

v×v an
upper triangular matrix. Because new vectors are added to
the left-hand side of the matrices V k and W k in Eqs. (127a)
and (127b), the QR-decomposition cannot be updated but it
has to be recalculated in each quasi-Newton iteration. How-
ever, the cost of the QR-decomposition is small compared to
the cost of F and S .

The coefficient vector ck is then determined by solving
the triangular system

Rkck = QkT�r (132)

using back substitution. If a �r i vector is (almost) a linear
combination of other �rj vectors, one of the diagonal ele-
ments of Rk will (almost) be zero. Therefore, the equation
corresponding to that row of Rk cannot be solved during the
back substitution. If a small diagonal element is detected, the
corresponding columns in V k and W k are removed. Sub-
sequently, the QR-decomposition (Eq. (131)) is performed
again. This procedure is repeated until none of the diagonal
elements is too small.

The tolerance εs for the detection of small diagonal el-
ements depends on how accurately the flow equations and
structural equations are solved. An appropriate value for εs

can be determined by analyzing the change of the vector x̃

due to a small perturbation of the vector x. If the pertur-
bation is too small, the resulting change will be numerical
noise. The value of εs should be chosen so that the change
of x̃ has a physical meaning if the perturbation of x has an
L2-norm larger than εs . If the solution of the flow equations
and the structural equations is calculated with more signifi-
cant digits, for example by using stricter convergence crite-
ria inside the solvers, then a smaller value of εs can be used.

As the coupling iterations converge, the L2-norm of the
most recent differences �rk−1 and �x̃k−1 decreases during
the coupling iterations. Because x̃k is calculated with the

same accuracy in each coupling iteration, the number of sig-
nificant digits in �rk−1 and �x̃k−1 decreases if their norm
decreases. Numerical experiments indicate that the coupling
iterations converge fastest if the new �rk−1 and �x̃k−1 are
added to the left-hand side of V k and W k . Fewer operations
are performed on the columns on the left-hand side during
the QR-decomposition. However, all columns in V k and W k

have not been ordered depending on their L2-norm. In that
case, columns of the current time step could be located to the
right of older columns so they would be eliminated if they
were considered as a linear combination of older columns
(instead of the other way around).

The �x̃ that corresponds to �r is subsequently calcu-
lated as a linear combination of the previous �x̃i , analogous
to Eq. (129), giving

�x̃ = W kck. (133)

From Eq. (122), it follows that

�r = �x̃ − �x (134)

and substitution of Eq. (133) in Eq. (134) results in

�x = W kck − �r. (135)

Because the coefficients ck are a function of �r , Eq. (135)
shows how �x can be approximated for a given �r . Hence,
Eq. (135) can be seen as a procedure to calculate the product
of the approximation for the inverse of the Jacobian and a
vector �r = −rk

�x = ̂
(
R′k)−1

�r = W kck + rk. (136)

The amount of memory required by this matrix-free pro-
cedure is proportional to the number of rows and columns
in V k , so u × v instead of u2. It is also faster than the ex-
plicit creation of the approximation for the inverse of the
Jacobian as

̂
(
R′k)−1 = W k

(
Rk
)−1

QkT − I (137)

with I the unity matrix in R

u×u. This is a significant ad-
vantage for simulations with a high number of degrees of
freedom on the interface compared to the least-squares tech-
nique with explicit construction of the matrices [192].

The relation between �r and �x is thus found by means
of the �x̃ values. One might try to relate the residual r di-
rectly to x instead of to x̃, but this obviously will not work
as the new input for S ◦F would be a linear combination
of the previous inputs. The only new information in the in-
put of S ◦F would originate from numerical errors and the
coupling iterations would not converge.

In Eqs. (127a) and (127b), the columns of V k can be con-
sidered as linearly independent. If a column were a linear
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combination of the other columns, this would be detected as
a small or zero diagonal element in Rk . Consequently, that
column and the corresponding column of W k would be re-
moved. In the following paragraphs, it is demonstrated what
the product of the approximation for the inverse of the Ja-
cobian with a vector �r is for �r either in the subspace
spanned by the columns of V k or orthogonal to that sub-
space.

If �r is equal to one of the columns in V k , say
�r = �r0, then the least-squares solution

ck = arg min
ck

∥∥�r − V kck
∥∥

2 (138)

to the overdetermined problem �r ≈ V kck in Eq. (129) is

ck = [0 . . . 0 1
]T. (139)

This value of ck yields zero error for the least-squares prob-
lem. Any other value of ck would increase the least-squares
error, unless linearly dependent columns would be present
in V k but this was excluded in the first place. According
to Eq. (133), �x̃ = W kck and thus in this specific case
�x̃ = �x̃0. Equation (135) states that �x = W kck − �r .
For �r = �r0 and using the definitions of rk , �rk−1 and
�x̃k−1 in Eqs. (122), (125a) and (125b), this becomes

�x = W kck − �r

= �x̃0 − �r0

= (x̃1 − x̃0)− (r1 − r0)

= (x̃1 − x̃0)− ((x̃1 − x1)− (x̃0 − x0))

= x1 − x0. (140)

So, �r0 = r1 − r0 yields �x = x1 − x0, which is a finite
difference approximation for the product with the inverse of
the Jacobian. The same is true for any other column in V k

and linear combinations thereof. As a result, Newton itera-
tions are performed for all �r in the span of the columns
of V k .

By contrast, if �r is orthogonal to all of the columns
in V k , then the least-squares solution

ck = arg min
ck

∥∥�r − V kck
∥∥

2 (141)

to the overdetermined problem �r ≈ V kck in Eq. (129) is

ck = [0 . . . 0
]T. (142)

This can easily be seen in Eq. (132) where the coeffi-
cients are calculated as Rkck = QkT�r . As the columns
of Qk span the same subspace as the columns of V k ,
QkT�r = 0 if �r is orthogonal to all columns in V k . Ac-
cording to Eq. (133), �x̃ = W kck and thus in this specific

case �x̃ = 0. Equation (135) states that �x = W kck − �r ,
which gives

�x = W kck − �r

= 0 − �r

= rk. (143)

Using the definition of rk in Eq. (122), the new displacement
is given by

xk+1 = xk + �x

= xk + rk

= xk + (x̃k − xk
)

= x̃k. (144)

So, Gauss–Seidel iterations are performed for all �r orthog-
onal to the span of the columns of V k .

IQN-ILS thus uses a low-rank approximation for the in-
verse of the Jacobian. The convergence behaviour of this
technique can be explained using Fig. 13. In that figure, it
can be observed that only a fraction of the Fourier modes is
unstable during Gauss–Seidel coupling iterations. The rea-
son for this instability is that Gauss–Seidel iterations treat
the interaction between the fluid and the structure explic-
itly during a coupling iteration because they solve the flow
equations with all structural degrees of freedom fixed and
vice versa. Thus only this fraction of unstable modes needs
to be treated implicitly during the coupling iterations. For
the other modes, Gauss–Seidel iterations are an acceptable
solutions strategy. It can thus be concluded that no full-rank
Jacobian is needed to obtain fast convergence. Only a low-
rank approximation for the Jacobian is required, as long as
it represents the behaviour of the small fraction of unstable
and slowly converging modes.

Above, it was mentioned that no differences between the
first vectors r and x̃ in a time step and the last vectors in
the previous time step should be added to the matrices V k

and W k . In that respect, it should be noted that R′k is the
Jacobian of rk as a function of xk , all at time level n+1. So,
R′k is the relation between a given �x between two vectors
x at time level n + 1 and the resulting �r , also at time level
n+1. To approximate the product of the inverse of R′k with
a vector, the product of dx̃/dr with that same vector is ap-
proximated as a linear combination of known �x̃i . Hence,
the �x̃i in this linear combination must be differences be-
tween two vectors x̃ at the same time level; preferably from
time level n+1 but also from previous time levels. However,
if differences between vectors from different time levels are
used, then a time derivative is included while R′k relates
differences within a time step.

The complete IQN-ILS technique is shown in Algo-
rithm 10. Because the matrices V k and W k have to contain
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Algorithm 10 The interface quasi-Newton algorithm with
an approximation for the inverse of the Jacobian from a
least-squares model (IQN-ILS)

1: k = 0
2: x̃0 = S ◦F(x0)

3: r0 = x̃0 − x0

4: while ‖rk‖2 > εo do
5: if k = 0 and (q = 0 or n = 0) then
6: xk+1 = xk + ωrk

7: else
8: construct V k and W k as in Eqs. (125a), (125b),

(127a), (127b), (128a) and (128b)
9: calculate QR-decomposition V k = QkRk

10: solve Rkck = −QkTrk

11: xk+1 = xk + W kck + rk

12: end if
13: x̃k+1 = S ◦F(xk+1)

14: rk+1 = x̃k+1 − xk+1

15: k + +
16: end while

at least one column, a relaxation with factor ω (line 6) is per-
formed in the second coupling iteration of the first time step
if information from the previous time steps is reused (q > 0)
and in the second coupling iteration of each time step with-
out reuse (q = 0). Recently, this algorithm has been applied
to couple an adjoint flow solver with an adjoint structural
solver [49].

From a mathematical point of view, R(x) = 0 is a
set of nonlinear equations in x ∈ R

u×1. Such a system is
commonly solved using Newton–Raphson iterations (see
Eqs. (121a) and (121b)). The construction of a finite differ-
ence approximation for R′k requires the evaluation of the
black-box function R for u perturbations of x, which is ex-
pensive in practice.

R′k ≈
[

rk(1) − rk

ε1

rk(2) − rk

ε2
. . .

rk(u) − rk

εu

]

(145a)

with

rk(i) = R
(
xk + εie

i
)

(145b)

In the equations above, the amplitude of the perturbation in
the ith direction is given by εi and ei ∈ R

u×1 is a vector
with a ‘one’ on row i and a ‘zero’ on all other rows. How-
ever, it is probably possible to use the same finite difference
approximation for a number of Newton iterations or even a
number of time steps but this requires manual fine-tuning to
find the optimal reuse parameter.

Solving Eq. (121a) with a matrix-free Krylov solver is
possible but also expensive. Such a linear solver does not

require that R′k is known explicitly. It only needs a proce-
dure to calculate the product of R′k with a vector δ, which
can be approximated by means of a finite difference approx-
imation.

R′kδ ≈ R(xk + εδ) − rk

ε
(146)

Therefore, the function R has to be evaluated in each
Krylov iteration within each Newton iteration. By contrast,
IQN-ILS only needs one evaluation of R in each quasi-
Newton iteration. The function R calculates the residual
of the coupled problem condensed on the interface, which
requires the solution of the flow equations and the struc-
tural equations in the entire domain. Hence, this black-box
function is expensive to be evaluated repeatedly inside each
Newton iteration. Again, the Krylov vectors from one New-
ton iteration can probably be reused for the following New-
ton iterations or even time steps but this also requires man-
ual fine-tuning. Moreover, this approach is sensitive to the
parameter ε, which has to be set by the user [81].

All of the above indicates that the Jacobian R′k (or the
procedure to calculate the product of R′k with a vector) has
to be approximated, resulting in a quasi-Newton scheme

solve Mk�xk = −rk (147a)

xk+1 = xk + �xk (147b)

with Mk the approximation for the Jacobian. As already
explained for the IQN-ILS method, also the inverse of the
Jacobian can be approximated so that no linear system
(Eq. (147a)) has to be solved, giving

xk+1 = xk − Nkrk (148)

with Nk the approximation for the inverse of the Jacobian.
However, the construction of Mk or Nk should not require
additional evaluations of R. By contrast, the approximation
has to be constructed and updated with the information that
is generated in each quasi-Newton iteration.

If the updates of Mk or Nk are performed so that the
secant equation

Mk
(
xk − xk−1)= rk − rk−1 (149)

or

xk − xk−1 = Nk
(
rk − rk−1) (150)

is satisfied, the method belongs to the secant methods, which
is a subclass of the quasi-Newton methods [51]. Because
Eqs. (149) and (150) only impose u constraints on the u× u

matrix elements, the matrices can be updated in different
ways, resulting in various updating methods. Haelterman
[91] provides an overview of these methods and an analy-
sis of their properties.
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A quasi-Newton method is a rank-one update method if
the update of Mk or Nk can be written as a rank-one matrix

Mk+1 = Mk + abT (151)

or

Nk+1 = Nk + abT (152)

with a,b ∈ R

u×1. Examples of rank-one update meth-
ods are Broyden’s first and second method [22], the (in-
verse) column-updating method [125, 126], the symmetric
rank-one update method [39], Pearson’s method [146] and
McCormick’s method [130]. However, Pearson’s method
and McCormick’s method are only applicable to problems
where R′ is symmetric positive definite at the solution of
R(x) = 0.

An advantage of a rank-one update is that the inverse of
the updated matrix Mk+1 = Mk + abT can easily be com-
puted from the inverse of the previous matrix Mk with the
Sherman-Morrison theorem [172].

(
Mk + abT)−1 = (Mk

)−1 − (Mk)−1abT(Mk)−1

1 + bT(Mk)−1a
(153)

The conditions for this theorem are that Mk is an invertible
square matrix and that bT(Mk)−1a �= −1.

Typically, the matrix M or N is not calculated explicitly.
By contrast, if the initial matrix is for example the identity
matrix (M0 = I ), then the approximate matrix can be stored
as two series of column vectors and reconstructed symboli-
cally as a sum of dyadic products

Mk = I + a1b1T + a2b2T + . . . + akbkT (154)

with ai ,bi ∈ R

u×1 for i = 1, . . . , k. Because generally
k � u, it is much faster to compute the product of Mk with
a vector when Mk is stored as a sum of dyadic products than
when it is stored as a dense matrix.

Rank-two update methods add a matrix of rank two
in each iteration. Well-known rank-two update methods of
Mk are the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [23, 24, 73, 87, 171], the Davidon–Fletcher–Powell
(DFP) method [38, 74] and the Powell–Symmetric–Broyden
(PSB) method [156]. For rank-two update methods, the in-
verse of Mk+1 can be calculated from the inverse of Mk by
applying the Sherman-Morrison theorem (Eq. (153)) twice.
However, all of the above rank-two update methods are
only applicable to problems where R′ is symmetric positive
definite at the solution of R(x) = 0. Finally, Greenstadt’s
method [89] performs a rank-two update on Nk .

The quasi-Newton methods which require symmetric
positive definiteness are useful in optimization problems.
However, only the quasi-Newton methods which do not re-
quire that the matrix is symmetric positive definite can be

used for FSI simulations because R′ does not have this
property. Well-known quasi-Newton methods like PSB and
BFGS are thus not applicable in this case because they en-
force symmetry of the approximate Jacobian. Therefore,
the approximate symmetric Jacobian calculated by these
techniques can be quite different from the real unsymmet-
ric Jacobian. Nevertheless, FSI problems have been solved
with BFGS [129]. This approach requires two times more
coupling iterations than a Gauss–Seidel scheme and ten
times more iterations than a normal Newton scheme [128].
Despite the symmetric approximate Jacobian, the quasi-
Newton iterations do converge in that case, albeit slowly.

Haelterman [91] proves that the IQN-ILS method can
also be formulated as a rank-one update quasi-Newton
method. The method is different from all the methods listed
above. Moreover, the IQN-ILS method respects the secant
equation (Eq. (150)) and even the generalized secant equa-
tion

xk−i+1 − xk−i = Nk
(
rk−i+1 − rk−i

)
(155)

for i = 1,2, . . . ,min(k,u). The IQN-ILS method is also a
least change secant update method because Nk+1 minimizes
the Frobenius norm ‖Nk+1 − Nk‖F .

Nk+1 = arg min
N∗ ‖N∗ − Nk‖F (156a)

with

N∗ ∈ A

([�r]kmax(0,k−u+1), [�x]kmax(0,k−u+1)

)
(156b)

Nk ∈ A

([�r]k−1
max(0,k−u+1), [�x]k−1

max(0,k−u+1)

)
(156c)

The notation A(A,B) defines a set of “interpolating” matri-
ces

A(A,B) = {C ∈R

c×a : B = CA
}

(157)

with A ∈ R

a×b , B ∈ R

c×b , b ≤ a and A of rank b. Hence,
all matrices in A(A,B) project A on B . The square brackets
[�a]ji denote that the set of column vectors �ai , . . . ,�aj

are concatenated to a matrix as

[�a]ji = [�ai �ai+1 . . . �aj
]
. (158)

The subscript max(0, k−u+1) together with the superscript
k avoids that more than u columns are combined, because in
that case the matrices would no longer satisfy the require-
ments for the set of interpolating matrices.

Moreover, for a general affine function R(x) = Ax + b

(A ∈ R

u×u and x,b ∈ R

u×1) and with exact arithmetic,
IQN-ILS converges in u + 1 iterations while Broyden’s
method needs 2u iterations [91]. However, for fluid-structure
interaction problems, even u + 1 iterations would be unac-
ceptable as generally u � k. For affine functions with exact
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arithmetic, the approximation for the inverse of the Jaco-
bian converges to the true inverse of the true Jacobian in a
monotonous way [91].

Haelterman [91] has used the IQN-ILS method, Broy-
den’s methods and the column-updating methods to simu-
late the unsteady, incompressible flow in a one-dimensional
flexible tube (see Sect. 4). In these simulations, the IQN-
ILS method is faster compared to Broyden’s methods and
the column-updating methods. The difference between the
methods is larger when the problem is more difficult to
solve, which means that more iterations are needed. For
other nonlinear problems which only require a small number
of coupling iterations, the differences between the methods
are small.

5.2 IBQN-LS

Vierendeels et al. [192] rewrite the FSI problem as a sys-
tem of equations with both the interface’s displacement
and the traction distribution on the interface as unknowns.
This system is solved with block quasi-Newton iterations
of the Gauss–Seidel type. The Jacobians of the flow solver
and structural solver are approximated by means of least-
squares models, constructed with the displacement of the
fluid-structure interface and the traction distribution on the
interface in all previous quasi-Newton iterations in the time
step [188, 192]. This method will be referred to as IBQN-
LS, meaning interface block quasi-Newton with approxi-
mate Jacobians from least-squares models.

The IBQN-LS method is explained in detail in Algo-
rithm 11. This coupling technique solves the FSI problem
written as
{
F(x) − y = 0

S(y) − x = 0
(159)

with block Newton–Raphson iterations of the Gauss–Seidel
type. The linear system

[
F̂ ′ −I

−I Ŝ ′

][
�x

�y

]
= −

[
F(x) − y

S(y) − x

]
(160)

is thus first solved for �x, followed by an update of x and
the right-hand side. Subsequently, the modified system is
solved for �y and afterwards y is updated. As a conse-
quence, the IBQN-LS method modifies the traction distri-
bution that is calculated by the flow solver before transfer-
ring it to the structural solver, as opposed to the other tech-
niques described in this section. In agreement with the no-
tation for intermediate values, the input and output of the
flow solver are denoted as xk+1 and ỹk+1 and the input and
output of the structural solver as yk+1 and x̃k+1. For this al-
gorithm, the residual vector rk+1 = x̃k+1 −xk+1 is not equal

Algorithm 11 The interface block quasi-Newton algo-
rithm with approximate Jacobians from least-squares mod-
els (IBQN-LS) [45, 192]

1: k = 0
2: ỹ0 = F(x0)

3: y0 = ỹ0

4: x̃0 = S(y0)

5: r0 = x̃0 − x0

6: while ‖rk‖2 > εo do
7: if k = 0 and (q = 0 or n = 0) then
8: xk+1 = xk + ωrk

9: else
10: construct V k

s and W k
s

11: calculate QR-decomposition V k
s = Qk

sR
k
s

12: solve Eq. (161) for �xk

13: xk+1 = xk + �xk

14: end if
15: ỹk+1 = F(xk+1)

16: if k = 0 and (q = 0 or n = 0) then
17: yk+1 = ỹk+1

18: else
19: construct V k+1

f and W k+1
f

20: calculate QR-decomposition
V k+1

f = Qk+1
f Rk+1

f

21: solve Eq. (166) for �yk

22: yk+1 = yk + �yk

23: end if
24: x̃k+1 = S(yk+1)

25: rk+1 = x̃k+1 − xk+1

26: k + +
27: end while

to S ◦F(xk+1) − xk+1 when the linear system in Eq. (160)
is solved because then yk+1 �= ỹk+1.

Starting from the displacement xk that was given as in-
put to the flow solver in the previous coupling iteration, the
displacement xk+1 = xk + �xk is calculated by solving the
system

(
I − Ŝ ′kF̂ ′k)�xk = x̃k − xk + Ŝ ′k(ỹk − yk

)
(161)

for �xk . The prime denotes the Jacobian matrix of a func-
tion. In the original approach of Vierendeels et al. [192], this
linear system is solved with a direct solver and explicit con-
struction of the matrices F̂ ′ and Ŝ ′. By contrast, a matrix-
free implementation is presented by Degroote et al. [45], us-
ing an iterative Krylov solver like the generalized conjugate
residual (GCR) method [60] or the mathematically equiva-
lent generalized minimal residual (GMRES) method [168].
The matrix on the left-hand side of Eq. (161) and thus the

approximate Jacobians F̂ ′k and Ŝ ′k do not have to be cal-
culated explicitly; a procedure to calculate the product of
these matrices with a vector is sufficient.
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The procedure to calculate the product of the approxi-

mate Jacobian F̂ ′k or Ŝ ′k with a vector is similar to the
procedure described in Sect. 5.1. The matrix-vector product

with F̂ ′k is calculated from the previous inputs

x0, . . . ,xk (162a)

and the corresponding outputs

ỹ0 = F
(
x0), . . . , ỹk = F

(
xk
)

(162b)

of the flow solver. After each coupling iteration, the differ-
ence between the vectors from the current coupling iteration
and the vectors from the previous coupling iteration is cal-
culated.

�xk−1 = xk − xk−1 (163a)

�ỹk−1 = ỹk − ỹk−1 (163b)

All �xi and �ỹi (i = 0, . . . , k − 1) from the current time
step (and possibly from previous time steps) are stored as
columns of the matrices V k

f and W k
f , with the subscript f

referring to the flow solver. Subsequently, the economy-size
QR-decomposition of V k

f is calculated. To determine the

product of F̂ ′k with a vector �x, the triangular system

Rk
f ck

f = Qk
f

T�x (164)

is solved for ck
f , after which the matrix-vector product is

calculated as

F̂ ′k�x = W k
f ck

f . (165)

The product of Ŝ ′k with a vector is calculated analogously,
based on the inputs and outputs of the structural solver.

Once xk+1 has been obtained, the corresponding traction
distribution ỹk+1 = F(xk+1) is calculated and the matri-
ces V f , W f , Qf and Rf are updated. To calculate the trac-
tion distribution yk+1 = yk + �yk that has to be applied on
the structure, the system

(
I − ̂F ′k+1Ŝ ′k)�yk = ỹk+1 − yk + ̂F ′k+1(

x̃k − xk+1)

(166)

is solved, again with the matrix-free iterative solver. Each
time the solution to either the flow problem or the structural
problem has been calculated, the procedure for the product
of the corresponding solver’s approximate Jacobian with a
vector is improved by means of that solver’s latest input and
output.

Analogous to the IQN-ILS technique, the matrices V k
s,f

and W k
s,f have to contain at least one column to calculate

the quasi-Newton update; otherwise a relaxation with factor
ω is used for the interface’s displacement (line 8 in Algo-
rithm 11) and the traction distribution is passed on without
modification (line 17).

5.3 Aitken Relaxation

Aitken relaxation [108, 138, 139] (Algorithm 12) deter-
mines a dynamically varying scalar relaxation factor ωk for
the Gauss–Seidel iterations within a time step.

xk+1 = xk + ωkrk

= (1 − ωk
)
xk + ωkx̃k (167)

The next input for S ◦F is thus a linear combination of
the last output and the previous input. Moreover, the up-
date of the interface’s displacement is in the direction of
the residual vector, as opposed to the update from the IQN-
ILS method on line 11 of Algorithm 10. The first relaxation
in a time step is executed with the relaxation factor from
the end of the previous time step, but limited to ωmax , so
ωn+1,0 = sign(ωn)min(|ωn|,ωmax) and ω0,0 = ωmax . The
value of ωk is obtained as

ωk = −ωk−1 (rk−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)
(168)

which is interpreted in [108] as the secant method for scalars
directly applied to vectors and projected on rk − rk−1. By
combining Eqs. (167) and (168), it can be seen that the up-
date of the interface’s displacement is given by

xk+1 = xk + (xk − xk−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)

(−rk
)

= xk +
[
(x̃k − x̃k−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)
− 1

](−rk
)

(169)

Algorithm 12 The Gauss–Seidel iterations with Aitken re-
laxation [108]

1: k = 0
2: x̃0 = S ◦F(x0)

3: r0 = x̃0 − x0

4: while ‖rk‖2 > εo do
5: if k = 0 then
6: ω0 = sign(ωn)min(|ωn|,ωmax)

7: else
8: ωk = −ωk−1 (rk−1)T(rk−rk−1)

(rk−rk−1)T(rk−rk−1)

9: end if
10: xk+1 = xk + ωkrk

11: x̃k+1 = S ◦F(xk+1)

12: rk+1 = x̃k+1 − xk+1

13: k + +
14: end while
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for k > 0. The previous equation is similar to line 11 of Al-
gorithm 10. If the Jacobian were created explicitly in the
IQN-ILS algorithm, if the normal equations were used to
solve the least-squares problem in Eq. (129) and if the matri-
ces V k and W k were limited to their newest column, line 11
of Algorithm 10 would give

xk+1 = xk +
[
(x̃k − x̃k−1)(rk − rk−1)T

(rk − rk−1)T(rk − rk−1)
−I

](−rk
)
. (170)

Equations (169) and (170) are, however, not identical be-
cause the coefficient of −rk is a scalar in the first equation
and a matrix in the second one. This proves that Aitken
relaxation is fundamentally different from the IQN-ILS
method. On the other hand, it demonstrates that implement-
ing the IQN-ILS method is hardly more complex than im-
plementing Aitken relaxation. However, Aitken relaxation
can also be seen as an interface quasi-Newton technique:
if the inverse of the Jacobian in Eq. (123) is approximated
by −ωkI , the Aitken relaxation method is retrieved.

5.4 Interface-GMRES(R)

Interface-GMRES (Algorithm 13) uses the Newton–
Raphson method to solve the nonlinear equation R(x) = 0
for the interface’s displacement. The Newton–Raphson up-
date �x is obtained by approximating the solution to the
linear system in Eq. (121a) with an iterative solver. To be
able to calculate the Jacobian-vector product, Gauss–Seidel
iterations are first performed on lines 7 to 22, which re-
sults in a sequence of interface displacements xi and the
corresponding residuals r i with i = 1, . . . , j . From these se-
quences, differences �xi = xi − x0 and �r i = r i − r0 are
calculated and stored as columns of V j and W j . It has been
proved by induction that the Krylov space corresponding to
the linear system in Eq. (121a) is asymptotically similar to
span{�xi}ji=1 and the Gauss–Seidel iterations thus serve as
a preconditioner to the GMRES solution of Eq. (121a) [27,
135, 136]. The residual at x0 +∑j

i=1 ci�xi is approximated
as

R
(

x0 +
j∑

i=1

ci�xi

)

≈ rk +
j∑

i=1

ci�r i (171)

which can be considered as a finite difference approxima-
tion. When the minimization problem in the residual space

min
c

∥∥∥∥∥
rk +

j∑

i=1

ci�r i

∥∥∥∥∥
2

(172)

has converged sufficiently, the corresponding Newton–
Raphson update is calculated as

c = arg min
c

∥∥
∥∥∥
rk +

j∑

i=1

ci�r i

∥∥
∥∥∥

2

(173a)

Algorithm 13 The interface generalized minimal residual
method (Interface-GMRES) [27]

1: k = 0
2: x̃0 = S ◦F(x0)

3: r0 = x̃0 − x0

4: while ‖rk‖2 > εo do
5: j = 0
6: ζ = ‖rk‖2

7: while ζ > ε1 do
8: j = j + 1
9: �xj = x̃j − x0

10: for i = 1 to j − 1 do
11: �xj = �xj − �xj T�xi

‖�xi‖2
�xi

12: end for
13: �xj = ω

‖r0‖2
‖�xj ‖2

�xj

14: xj = x0 + �xj

15: x̃j = S ◦F(xj )

16: �rj = (x̃j − xj ) − rk

17: construct V j = [�r1 · · ·�rj ]
18: construct W j = [�x1 · · ·�xj ]
19: calculate QR-decomposition V j = QjRj

20: solve Rj c = −Qj Trk

21: ζ = ‖rk + V j c‖2

22: end while
23: x0 = x0 + W j c

24: x̃1 = S ◦F(x0)

25: rk+1 = x̃1 − x0

26: k + +
27: end while

�x =
j∑

i=1

ci�xi . (173b)

The coefficient vector c is calculated in the same way as in
the IQN-ILS method, as shown on line 20 of Algorithm 13.
The expression minc ‖rk +∑j

i=1 ci�r i‖2 is called the lin-
earized residual ζ , as opposed to the true residual ‖rk‖2.

For FSI with strong interaction, the relaxation on line 13
of Algorithm 13 is imperative as the inner loop consists
of Gauss–Seidel iterations which diverge fast without re-
laxation. The optimal value of the relaxation factor ω is
problem-dependent. The lower bound for ω is determined by
the finite accuracy and the solution tolerance of the solvers
and the upper bound has to avoid divergence of the solvers
or grid distortion.

The orthonormalization of the �xi on lines 10 to 12 is
recommended in [27] to improve the accuracy of the solu-
tion of Eq. (172). Due to this orthonormalization, however,
the displacement of the interface on line 14 is significantly
different from the solution so that the flow solver and struc-
tural solver converge slowly. As a result, each evaluation
of the residual operator R takes longer than for the other
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Algorithm 14 The interface generalized minimal residual
method with reuse (Interface-GMRESR) [27]

1: k = 0
2: x̃0 = S ◦F(x0)

3: r0 = x̃0 − x0

4: j = 0
5: ζ = ‖rk‖2

6: while ‖rk‖2 > εo do
7: . . .

24: x̃j = S ◦F(x0)

25: rk+1 = x̃j − x0

26: solve Rjc = −Qj Trk+1

27: ζ = ‖rk+1 + V jc‖2

28: k + +
29: end while

techniques. Hence, the comparison with other techniques is
different when the number of residual evaluations is consid-
ered than when the total duration of the simulation is the
criterion. This is shown by the numerical experiments and is
also mentioned by Küttler and Wall [109].

Algorithm 13 can be conceived as the construction of a
model with the residual as input and the interface’s displace-
ment as output. Instead of using the model to update the
interface’s displacement in the inner loop, relaxed Gauss–
Seidel iterations are performed until the model meets the
user-defined tolerance ε1. To prevent Eq. (172) from being
solved too accurately during the first few Newton–Raphson
iterations, ε1 is set to a fraction λ of the current resid-
ual ‖rk‖.

Instead of discarding the xi and r i from the previ-
ous Newton–Raphson iterations, they can be reused in the
next Newton–Raphson iteration, which is called Interface-
GMRESR. Algorithm 14 shows how Algorithm 13 has to
be altered to reuse the Gauss–Seidel iterations from previ-
ous Newton–Raphson iterations.

The inner loop is executed at least once before going to
the Newton–Raphson update; otherwise no additional �r

and �x are known with respect to the previous Newton–
Raphson update and the Newton–Raphson update would be
ineffective. Each time a Newton–Raphson update is per-
formed on line 23, the reference x0 is modified and the
solvers are evaluated. However, this solver evaluation does
not result in an additional difference �x and �r , whereas
IBQN-LS and IQN-ILS modify the reference in each itera-
tion and obtain a difference of the input and output in each
iteration except for the first one.

Due to the relaxation on line 13, the �xj in Algorithm 13
all have the same norm, regardless of whether it is the first
or the final iteration in the time step. However, the step size
is adapted to the initial residual. If the problem is nonlin-
ear, the �x and �r can be inaccurate because this finite

difference step size is suboptimal. As the norm of the differ-
ences in IBQN-LS and IQN-ILS is equal to the step size, the
norm automatically decreases during the coupling iterations
as they converge so these methods do not require a preset
step size.

Michler et al. [135] introduced reuse of differences from
the previous time steps and not only from the previous
Newton–Raphson iterations. They mention that reuse in-
creases the efficiency, but that it comes at the expense of
robustness and therefore has to be applied cautiously. They
present results for only 25 time steps in a simulation with a
compressible fluid. To enable reuse in Interface-GMRESR,
j should not be reset to 0 at the beginning of the time
step. The convergence plots in [135] demonstrate that with
reuse from the previous time steps, there is a large discrep-
ancy between the linearized residual and the true residual.
The inner loop with Gauss–Seidel iterations converges after
one iteration because the linearized residual is already very
small. Consequently, the algorithm repeatedly performs one
Gauss–Seidel iteration followed by a Newton–Raphson up-
date. In this regime, an additional �x and �r are obtained
at the cost of two solver evaluations.

There are several similarities between IQN-ILS (Algo-
rithm 10) and Interface-GMRES (Algorithm 13), as both al-
gorithms use changes in interface data from one coupling
iteration to another and as both solve a least-squares prob-
lem. However, the major difference is that IQN-ILS cal-
culates �xk (see Eq. (135)) using �x̃j , while Interface-
GMRES uses �xj (see Eqs. (173a) and (173b)). Hence, the
interface displacement resulting from a quasi-Newton step is
a linear combination of previous inputs for the flow solver in
the case of Interface-GMRES, whereas it is a linear combi-
nation of outputs of the structural solver in the case of IQN-
ILS.

As x0 is a linear combination of previous inputs of the
flow solver xj , the dimension of the basis spanned by the
�xj is not increased in the quasi-Newton steps of Interface-
GMRES. The least-squares model thus improves in the
quasi-Newton steps of IQN-ILS but not in those of Interface-
GMRES. Therefore, Interface-GMRES needs a number of
Gauss–Seidel iterations between two quasi-Newton steps in
order to improve the least-squares model. Furthermore, it
can be seen from Eqs. (132) and (173a and (173b)) that
if rk is orthogonal to the basis spanned by the �rj (j =
0, . . . , k−1), then all decomposition coefficients ck are zero.
In that case, the quasi-Newton step of IQN-ILS is actually a
Gauss–Seidel step (xk+1 = xk + rk = x̃k), while Interface-
GMRES performs no step.

5.5 Multi-Solver IQN-ILS

Fluid-structure interaction simulations are often executed on
clusters, consisting of a large number of cluster nodes. Each
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node contains a small number of multi-core processors and
an amount of memory. By running a solver in parallel, i.e.
on more than one core of the cluster, a calculation can gener-
ally be accelerated. Optimally, doubling the number of cores
should halve the calculation’s duration. However, mostly,
the speed-up is only near-linear until a certain numbers of
cores and flattens out or even decreases for larger numbers
of cores.

Once the fluid-structure interaction simulation can no
longer be accelerated by increasing the number of cores per
solver, the multi-solver algorithms can be applied for an ad-
ditional speed-up. These multi-solver algorithms reduce the
calculation time by increasing the number of flow solvers
and structural solvers, while keeping the number of cores
per solver constant. In [47], multi-solver (MS) versions of
both IQN-ILS and IBQN-LS are presented. Here, only MS-
IQN-ILS is discussed as MS-IBQN-LS works in a similar
way.

In Eqs. (127a) and (127b), each column of the matrix V k

is a difference in residual that is related to a difference in
output of the structural solver in the corresponding column
of matrix W k . As explained in Sect. 5.1, data from previous
time steps can be reused in the least-squares model of the
current time step, if consecutive time steps are sufficiently
similar. However, the relation between the columns of V n

and W n is only approximate at tn+1. So, this reuse has to be
applied with caution [135].

Therefore, the multi-solver quasi-Newton coupling al-
gorithms first recalculate the data from the previous time
steps at the current time level, before including that data
in a least-squares model. Consequently, only data from the
current time step is present in the least-squares model. The
columns of the matrix V n contain specific combinations of
the degrees-of-freedom on the interface that accelerated the
convergence of the coupling iterations in the previous time
step. Hence, it is expected that knowing the difference of the
output at tn+1 due to the same difference of the input as used
at time level tn will improve the least-squares model for the
approximate Jacobian. Moreover, the recalculation of differ-
ences from previous time steps can be done in parallel with
normal coupling iterations if g > 1 flow solvers and h > 1
structural solvers are used.

In the following paragraphs, a subscript i or j dis-
tinguishes the different solvers and their respective input
and output. Algorithm 15 describes the Multi-Solver IQN-
ILS (MS-IQN-ILS) algorithm with parallel recalculation of
differences from the previous time step. Solvers F1 and
S1 calculate the solution of the coupled problem, while
solvers F i (i = 2, . . . , g) and Sj (j = 2, . . . , h) recalculate
differences from previous time steps. Lines 5 to 14 describe
the standard IQN-ILS algorithm, with the exception of the
‘start’ that has been added on line 13. This command means
that the calculation has to be started, without waiting for the

Algorithm 15 The multi-solver IQN-ILS (MS-IQN-ILS) al-
gorithm

1: k = 0
2: start r0

1 = x̃0
1 − x0

1 = S1 ◦F1(x
0
1) − x0

1
3: while ‖rk

1‖2 > εo do
4: if F1 and S1 are ready then
5: if k = 0 and (q = 0 or n = 0) then
6: xk+1

1 = xk
1 + ωrk

1
7: else
8: construct V k and W k

9: calculate QR-decomposition V k = QkRk

10: solve Rkck = −QkTrk
1

11: xk+1
1 = xk

1 + W kck + rk
1

12: end if
13: start rk+1

1 = x̃k+1
1 − xk+1

1 = S1 ◦ F1(x
k+1
1 ) −

xk+1
1

14: k + +
15: end if
16: for i = 2 to g do
17: if F i is ready then
18: select �r and �x̃

19: xi = (x0
i + �x̃) − (r0

i + �r)

20: start ỹi = F i (xi )

21: end if
22: end for
23: for j = 2 to h do
24: if Sj is ready then
25: get xj and ỹj from the intermediate FIFO

queue
26: yj = ỹj

27: start rj = x̃j − xj = Sj (yj ) − xj

28: end if
29: end for
30: end while
31: for i = 2 to g do
32: start synchronizing F i with F1

33: end for
34: for j = 2 to h do
35: start synchronizing Sj with S1

36: end for

result to continue the execution of the coupling algorithm.
On line 4, the coupling algorithm checks whether F1 and
S1 have completed the previous calculation, i.e. whether
they are ‘ready’, before starting the following calculation.
The check of the convergence tolerance on line 3 evaluates
to false while the calculation of rk

1 is ongoing.
As opposed to other coupling algorithms, the multi-

solver algorithm does not wait on line 13 until the calcula-
tions by F1 and S1 are ready. Consequently, it can control
the other solvers F i (i = 2, . . . , g) and Sj (j = 2, . . . , h)
in the meantime. On line 16 and line 23, the coupling algo-
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rithm loops over these additional solvers. In a first step of
the recalculation of differences by solver F i and Sj , a col-
umn �r of V n and the corresponding column �x̃ of W n

are selected. Different selection procedures are also pos-
sible: newest first, oldest first, largest ‖�r‖2 first, largest
‖�x̃‖2/‖�r‖2 first, etc.

In the MS-IQN-ILS, �rk−1 and �x̃k−1 are calculated as

�rk−1 = rk − r0 (174a)

�x̃k−1 = x̃k − x̃0, (174b)

instead of using Eqs. (125a) and (125b). So, the selected �r

and �x̃ from tn are differences with respect to the reference
vectors rn,0

1 and x̃n,0
1 which originate from the first coupling

iteration at tn. To be recalculated at tn+1, the vectors �r and
�x̃ have to be added to a value of r and x̃ at tn+1, namely
r0

i and x̃0
i . By using extrapolated values r0

i = 0 and x̃0
i = x0

1
as references at tn+1, the recalculation of differences from
the previous time step can begin immediately at the start of
the new time step, simultaneously with the first coupling it-
eration between F1 and S1. The input xi for F i is then
calculated using Eq. (122) and the calculation by F i starts
on line 20. The coupling algorithm does not wait until this
calculation is complete, but checks on line 17 whether F i

has finished its calculation. When this is the case, xi and the
corresponding ỹi are added to an intermediate first in, first
out (FIFO) queue.

When the coupling algorithm detects that a structural
solver Sj is ready (line 24) and the intermediate FIFO
queue is not empty, then it takes the oldest xj and the
corresponding ỹj from this queue. It subsequently starts a
structural calculation x̃j = Sj (yj ) with yj = ỹj and de-
termines the corresponding residual rj = x̃j − xj . This in-
termediate FIFO queue thus decouples the flow solvers F i

(i = 2, . . . , g) from the structural solvers Sj (j = 2, . . . , h)
and enables a different number of flow solvers and structural
solvers (g �= h). If, for example, a flow calculation takes
significantly longer than a structural calculation, then more
flow solvers than structural solvers can be used as the addi-
tional flow solvers and additional structural solvers have to
recalculate the same number of modes.

At the end of the calculation by Sj , both the residual rj

and the structural displacement x̃j are known. By subtract-
ing the first residual r0

1 and the first displacement x̃0
1 cal-

culated by F1 and S1 as references, a new �r and �x̃ in
the current time step become available. It should be empha-
sized that these �r and �x̃ should not be calculated using
the extrapolated values as references. As long as the correct
reference vectors are unknown because the first calculation
of F1 and S1 at tn+1 is ongoing, the data calculated by F i

(i = 2, . . . , g) and Sj (i = j, . . . , h) are stored in a second
queue. Once the reference values have been calculated, the
differences corresponding to the data in this second queue

are calculated. All differences that have been recalculated
are then combined with V k and W k to form V k and W k .

At the end of each time step, the values of the degrees
of freedom inside the fluid and solid domain have to be the
same in all solvers because the solution at tn, tn−1, . . . influ-
ences the solution at tn+1. Therefore, the additional solvers
F i (i = 2, . . . , g) and Sj (j = 2, . . . , h) have to be synchro-
nized with F1 and S1 (see lines 31 to 36). This can be im-
plemented either by copying all variables from F1 and S1

to all other flow solvers and structural solvers or by solv-
ing the equations once more in F i (i = 2, . . . , g) and Sj

(j = 2, . . . , h) with xlast
1 and ylast

1 as input.

5.6 Multi-Level IQN-ILS

In Sect. 5.1, it has been explained that only a low-rank ap-
proximation to the inverse of the Jacobian is required by
IQN-ILS because only a fraction of the Fourier modes is
unstable according to the stability analysis of Sect. 4. In ad-
dition, it can be noticed in Fig. 13 that the unstable Fourier
modes have a low wave number. Due to their low wave num-
ber, the behaviour of these unstable modes can thus be deter-
mined on a relatively coarse grid. Therefore, the multi-level
IQN-ILS (ML-IQN-ILS) technique uses more than one grid
level, each with a different number of grid points [48]. ML-
IQN-ILS is particularly developed for problems with fine
grids where the phenomena that determine the stability of
the partitioned fluid-structure interaction simulation can be
described on a coarser grid.

ML-IQN-ILS first calculates the coupled solution on the
coarsest grid level and constructs the low-rank approxima-
tion for the inverse of the Jacobian as present in standard
IQN-ILS while doing so. Subsequently, coupling iterations
are performed on the second, finer grid level, during which
the approximation for the inverse of the Jacobian obtained
on the coarsest grid level is further improved by performing
coupling iterations. This procedure is then repeated until the
solution on the finest grid level has been found, as explained
in detail below. Here, only ML-IQN-ILS is discussed as ML-
IBQN-LS works in a similar way.

The goal of the multi-level IQN-ILS technique is thus
to obtain the low-rank approximation for the inverse of the
Jacobian required for the convergence of the coupling itera-
tions on the finest grid level at a lower cost, by constructing
it partly on coarser grid levels. As this reduces the number of
coupling iterations on the finest grid level and as the cost of
the coupling iterations on the coarser grid levels is low, the
total time required to solve the coupled problem decreases.
This multi-level approach is depicted in Fig. 22 for two grid
levels. As only data on the fluid-structure interface is ex-
changed, this partitioned multi-level coupling technique can
couple black-box solvers.

The multi-level IQN-ILS algorithm is not called a multi-
grid technique because there are significant differences.
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Fig. 22 The coarse and fine
fluid grid (left) and the coarse
and fine structural grid (right),
together with the unique
coupling grid (centre) in a
multi-level simulation with two
grid levels. Adapted from [48]

Multi-grid refers to a solution technique [20], which has
been used for fluid-structure interaction simulations in for
example [28, 79, 97, 208, 210]. A major difference is that in
the multi-grid technique, the coarse grids provide a correc-
tion for the smooth error components on the fine grids. By
contrast, the ML-IQN-ILS technique uses the coarse grids
to generate an approximation for the inverse of the Jacobian
on the fine grids. Accordingly, the ML-IQN-ILS technique
begins each time step on the coarsest grid and proceeds to-
wards the finest grid, without returning towards the coarser
grids.

The solution techniques used in the flow solver and struc-
tural solver are not interfering with the ML-IQN-ILS cou-
pling technique, which allows both solvers to be black-box
solvers. Although not required, the calculation in the fluid
and/or structure subdomains on each grid level could be per-
formed with a multi-grid solver. In that case, however, the
coarse grids used in the multi-grid solver would be indepen-
dent of and totally unrelated to the coarse grids used on the
different levels by the ML-IQN-ILS coupling technique.

As the multi-level coupling techniques use several grid
levels for the flow equations and the structural equations,
data has to be interpolated between different discretizations
of the fluid-structure interface. However, even though the
discretization of the interface inside the flow solver and the
structural solver depends on the grid level, all operations of
the coupling algorithm are performed on a unique grid, the
so-called ‘coupling grid’ (see Fig. 22).

In the explanation of this coupling algorithm, the grid
level is indicated with a subscript i. The first grid level is

the coarsest grid level and the gth grid level is the finest one.
Algorithm 16 shows the ML-IQN-ILS technique in detail.
Lines 7 to 17 are the standard IQN-ILS algorithm as de-
scribed above. Around the standard algorithm, an additional
loop over the grid levels is added (line 4). First, the coupled
solution is calculated on the coarsest grid level. Then, start-
ing from that solution, coupling iterations on the following,
finer grid level are performed. These steps are subsequently
repeated for all grid levels until the solution on the finest
grid has been found. The variable � ensures that at least one
coupling iteration is performed on each grid level.

The displacement and the residual are not changed when
the grid level i changes, as both are defined on the coupling
grid. The coupling algorithm itself works with the unique
coupling grid, which determines the dimension of the ap-
proximation for the inverse of the Jacobian. The solvers have
to interpolate the data from the boundary of their grid to
the coupling grid. The interpolation on the fluid-structure
interface is thus the responsibility of the solvers (or a layer
around the actual solvers). In this way, the acceleration of
the coupling iterations and the interpolation of the data on
the fluid-structure interface are completely separated, which
facilitates the implementation.

Because the coupling algorithm operates on the coupling
grid, the difference between r and x̃ in consecutive coupling
iterations is always interpolated to a fixed number of grid
points, regardless of the current grid level. As a result, the
modes that have been generated on a coarse grid level can
be used to accelerate the coupling iterations on the finer grid
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Algorithm 16 The multi-level IQN-ILS (ML-IQN-ILS) al-
gorithm

1: k = � = 0
2: x̃0 = S1 ◦F1(x

0)

3: r0 = x̃0 − x0

4: for i = 1 to g do
5: while ‖rk‖2 > εi or � = 0 do
6: � = 1
7: if k = 0 then
8: xk+1 = xk + ωrk

9: else
10: construct V k and W k

11: calculate QR-decomposition V k = QkRk

12: solve Rkck = −QkTrk

13: xk+1 = xk + W kck + rk

14: end if
15: x̃k+1 = S i ◦F i (x

k+1)

16: rk+1 = x̃k+1 − xk+1

17: k + +
18: end while
19: � = 0
20: end for
21: for i = 1 to g − 1 do
22: synchronize F i and Si with Fg and Sg

23: end for

levels. The same least-squares model is used for all grid lev-
els so the number of columns in the matrices V k and W k

increases on each grid level. The counter k is only set to
zero at the beginning of the time step (line 1) and not when
the coupling iterations on a following grid level start. Lines
21 to 23 show that synchronization of the solvers is neces-
sary at the end of the time step. Once the solution has been
found on the finest grid level, all degrees of freedom on the
coarser grid levels have to be corrected.

It should be noted that the difference between r and x̃ in
the last coupling iteration on a certain grid level i and the
first coupling iteration on the following grid level i + 1,

�rj−1 = Ri+1
(
xj
)−Ri

(
xj−1) (175a)

�x̃j−1 = S i+1 ◦F i+1
(
xj
)−S i ◦F i

(
xj−1), (175b)

should not be added to V k and W k . Otherwise, the approxi-
mation for the inverse of R′ would not only relate a change
of the residual to a change of the interface’s displacement,
but would also represent the additional features that become
visible due to a change of the grid level.

5.7 Comparison Between Partitioned Techniques

Gallinger and Bletzinger [78] compared the performance of
Aitken relaxation, IQN-ILS and a finite-difference Newton–
Krylov solver for the 2D benchmark consisting of a flexible

Table 2 The number of calculations by the flow solver and structural
solver and the relative duration for the steady FSI1 test and unsteady
FSI2 test with the 2D flexible beam behind a rigid cylinder

Algorithm FSI1 FSI2

Calculations Time Calculations Time

IBQN-LS 5 1.18 7.2 1.54

IBQN-LS(3) 4.8 1.00

IQN-ILS 5 1.00 9.4 1.84

IQN-ILS(3) 6.1 1.07

Aitken 8 1.42 9.9 1.81

I-GMRES 7 1.35 10.5 1.94

I-GMRESR 6 1.00 14.4 2.71

I-GMRESR(3) 12.4 2.71

beam behind a rigid cylinder [185]. For both the FSI2 and
FSI3 tests, IQN-ILS with reuse of information from previ-
ous time steps is approximately 3 times faster than Aitken
relaxation, which in turn outperforms the Newton–Krylov
solver, even with reuse of Krylov vectors.

In [45], a comparison is presented between Aitken relax-
ation, IQN-ILS, IBQN-LS and Interface-GMRES for two
different cases, namely the 2D benchmark with a flexible
beam behind a rigid cylinder [185] and the propagation of a
pressure wave in a 3D flexible tube [69, 75, 81].

For the first case, the steady FSI1 test and the unsteady
FSI2 test are performed. The iterative flow solver begins the
calculation in coupling iteration k + 1 from the solution in
coupling iteration k. As a result, the computational cost of
a calculation with the flow solver decreases during the cou-
pling iterations as the difference between the displacements
of the interface decreases. The structural solver begins each
calculation from the solution in the previous time step. Ta-
ble 2 shows the number of calculations by the solvers and the
relative duration of the simulations. The number between
brackets behind the name of an algorithm indicates from
how many time steps information is reused. The number of
solver calculations per time step in the unsteady simulation
has been averaged over the last period of the oscillation.

Interface-GMRESR has been used with λ = 0.01 because
this resulted in the lowest number of solver evaluations. In
the unsteady FSI2 test, Interface-GMRESR requires more
coupling iterations than Interface-GMRES, especially when
the deformation within a time step is large. Reuse of in-
formation from 3 time steps reduces the number of cou-
pling iterations by approximately 30 % for both IQN-ILS
and IBQN-LS. For this unsteady simulation, the duration of
the simulation is similar for IQN-ILS(3) and IBQN-LS(3),
which are significantly faster than Aitken relaxation and
Interface-GMRES(R).

For the second case, Table 3 gives the number of solver
calculations in a time step, averaged over the entire simula-
tion, and the relative duration of the simulations. The num-
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Table 3 The number of calculations by the flow solver and structural
solver per time step and the relative duration for the propagation of a
pressure wave in a 3D flexible tube

Algorithm Calculations Time

IBQN-LS 10.5 1.65

IBQN-LS(10) 6.3 1.00

IQN-ILS 10.9 1.69

IQN-ILS(10) 6.6 1.03

Aitken 26.7 4.69

I-GMRES 16.1 2.71

I-GMRESR(10) 9.5 1.45

ber of solver calculations per time step has been averaged
over the entire simulation. These results demonstrate that
the performance of the coupling methods is different with
respect to number of solver calculations and CPU time. The
reason for this difference is that if the coupling algorithm
predicts an irregular displacement of the interface or pres-
sure distribution on the interface, it will take the flow solver
and structural solver longer to converge. For this case, the
duration of the simulation is again similar for IBQN-LS(10)
and IQN-ILS(10), which are faster than the other methods.

Furthermore, it has been observed that the number of
Krylov iterations required for solving the linear systems
(Eqs. (161) and (166)) in each IBQN-LS iteration is more or
less identical to the number of columns in V k

f,s and W k
f,s .

The convergence criterion for the residual of these linear
systems has been set to 10−10 times their initial residual,
measured in L2-norm. The low number of Krylov iterations
combined with the cheap matrix-vector product results in a
quick solution of these linear systems.

In [47], the performance of the standard and the multi-
solver version of the IQN-ILS and IBQN-LS algorithms
is compared using three cases. First, a 1D model is con-
sidered for the unsteady, incompressible flow in a straight,
flexible tube [42]. The speed-up of a simulation as a re-
sult of the multi-solver approach can be observed in the
average number of coupling iterations between F1 and S1

per time step. The additional solvers F i (i = 2, . . . , g) and
Sj (j = 2, . . . , h) help F1 and S1 to find the solution of
the coupled problem more quickly. Table 4 lists the aver-
age number of coupling iterations between F1 and S1 per
time step for the MS-IQN-ILS algorithm. As the number of
solvers increases from g = 1 to g = 8 (with g = h), the av-
erage number of coupling iterations per time step decreases
from 8 to 2.9 for MS-IQN-ILS. With a negligible duration
of the communication and synchronization compared to the
duration of the calculation, this will result in a reduction of
the run time by at least 50 %.

The second case is a 2D rolling tank, presented by Idel-
sohn et al. [102]. This case consists of a rectangular tank,
filled with oil and air, and a flexible beam which is clamped

Table 4 The average number of
coupling iterations per time step
as a function of the number of
solvers for the 1D model of a
straight, flexible tube using
MS-IQN-ILS

g = h Iterations

1 8.0

2 5.8

3 4.7

4 4.1

5 3.8

6 3.4

7 2.9

8 2.9

to bottom of this tank. An electric motor imposes a harmonic
rolling motion of the tank around the midpoint of its bottom.
With g = 4 and h = 2 or h = 4, the average number of cou-
pling iterations of MS-IQN-ILS decreased by respectively
35 % and 40 % compared to IQN-ILS. It could be remarked
that reuse of information from previous time steps by the
IQN-ILS algorithm can result in a similar acceleration of
the simulation, without the cost of the additional solvers.
However, this case cannot be simulated robustly with sim-
ple reuse (i.e. no recalculation) of data from previous time
steps in the least-squares model.

The third case is again the propagation of a pressure wave
in the 3D flexible tube. The MS-IQN-ILS algorithm uses 4
solvers of each type (g = h = 4) as the duration of a flow
calculation and a structural calculation is approximately the
same. The average number of coupling iterations reduces by
more than 40 % compared to IQN-ILS.

A remark on the performance of the multi-solver al-
gorithms is that they will need a slightly different num-
ber of coupling iterations each time the same simulation is
performed, as opposed to most other coupling algorithms.
The reason is that the order of the various calculations can
change because the multi-solver algorithms involve ‘start’
and ‘ready’ commands. Depending on whether a recalcu-
lated difference becomes available before or after F1 and
S1 start a new calculation, the convergence will be slightly
faster or slower. Therefore, the simulations have been per-
formed several times and the number of coupling iterations
per time step has been averaged over all runs.

The performance of the standard and multi-level version
of the IQN-ILS algorithm is compared in [48]. The first case
is again the 1D model for the unsteady, incompressible flow
in a straight, flexible tube. Table 5 demonstrates that if a
coarse grid level with 103 points and a fine grid level with
104 points are used, ML-IQN-ILS leads to a reduction in the
overall simulation time by approximately 35 % compared
to IQN-ILS. The average number of coupling iterations per
time step on the fine grid level is approximately half of that
in a simulation with a fine grid only. If a coarse grid level
with 4 × 103 points and a fine grid level with 104 points are
used, the reduction of the simulation time obtained by us-
ing the multi-level techniques is smaller. Therefore, it can
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Table 5 The average number of coupling iterations per time step as a
function of the number of grid levels for the 1D model of a straight,
flexible tube using ML-IQN-ILS

Grid points Iterations Time

Coarse Medium Fine Coarse Medium Fine

104 9.2 1.6

103 104 9.2 5.2 1.0

4 × 103 104 9.2 4.2 1.2

103 4 × 103 104 9.2 5.1 3.9 1.0

be concluded that the ratio of the number of degrees of free-
dom on the fine grid level to the number of degrees of free-
dom on the coarse grid level has to be sufficiently large. If an
intermediate grid level with 4 × 103 grid points is added be-
tween the coarse grid level with 103 points and the fine grid
level with 104 points, the additional coupling iterations on
the intermediate grid level more or less outweigh the small
reduction of the number of coupling iterations on the fine
grid. Nevertheless, more than two grid levels might reduce
the duration of the simulation significantly compared to two
grid levels in other cases.

The second case is the propagation of a pressure wave in
a 3D flexible tube. The coarse grid level contains 34944 +
1824 degrees of freedom for the flow and the structure, re-
spectively. For the fine grid level, each direction is refined,
giving 2247168 + 28032 degrees of freedom. In the simula-
tion with two grid levels, the number of coupling iterations
on the fine grid is reduced by approximately 50 % compared
to a simulation with a fine grid only. As the cost of the cou-
pling iterations on the coarse grid level is relatively small,
the duration of the simulation also decreases by approxi-
mately 50 %.

5.8 Comparison Between IQN-ILS and a Monolithic
Technique

Partitioned solution techniques are often compared with
other partitioned techniques but the difference with mono-
lithic techniques in terms of the duration of the simulation
usually remains unclear. Nevertheless, there are some excep-
tions, for example the comparison by Michler et al. [134] us-
ing 1D problems. Furthermore, Küttler et al. [111] presented
a comparison between a monolithic technique and several
partitioned techniques on three 3D biomechanical cases.
One of the cases was the propagation of a pressure wave in
a 3D tube, which is also considered in the comparison pre-
sented here. They came to the conclusion that the computa-
tional time was lowest using a monolithic Newton–Krylov
solver with block Gauss–Seidel preconditioning [92], fol-
lowed by a matrix-free Newton–Krylov solver with calcu-
lation of the matrix-vector product by the solvers. Both
of these techniques require access to the solver internals.

A matrix-free Newton–Krylov solver with finite difference
approximation of the matrix-vector product was the third
best technique in the comparison, followed by vector extrap-
olation [109] and Aitken relaxation [108, 138, 139]. How-
ever, these last three techniques treat the solvers as black
boxes.

Degroote et al. [43] compare the performance of the
partitioned IQN-ILS method with a monolithic Newton
method (MN, see Eq. (42)). To analyze the difference in per-
formance between both solution techniques without other
causes for differences, ADINA (Adina R&D Inc., Water-
town, MA, USA) has been used as this programme is capa-
ble of both monolithic Newton–Raphson iterations and par-
titioned Gauss–Seidel iterations between the flow solver and
the structural solver. Only a small modification of the par-
titioned technique in ADINA was necessary to implement
the IQN-ILS algorithm. As a result, both the mathematical
model and the solver for the resulting discrete equations are
identical in the monolithic and the partitioned simulations.
To ensure that both techniques solve the coupled problem to
the same accuracy, the convergence of the FSI problem is
also controlled by ADINA. Several 2D and 3D cases with
incompressible fluids from different authors [7, 69, 139] are
investigated. The results of this comparison are briefly de-
scribed below.

The first case is the propagation of a pressure wave in
a straight, three-dimensional elastic tube [69, 75, 81]. The
simulation with IQN-ILS takes approximately twice as long
as that with the MN method, regardless of the grid size.
Nevertheless, the partitioned simulation becomes more diffi-
cult as the tube length increases. This has been explained by
the stability analysis in the previous section. The number of
quasi-Newton iterations in the first time step increases sig-
nificantly with increasing length of the tube. Due to the reuse
from previous time steps, however, the ratio of the time for
the IQN-ILS simulation to the time for the MN simulation
increases more slowly. The partitioned simulation requires
20 to 30 % less memory than the monolithic simulation.

Because the deformations in the previous case are small,
a similar case with large deformations is performed. In this
so-called mass conservation test [7], the pressure at the inlet
and outlet of a tube is increased in 16 equal steps and the
steady solution is calculated in each step. The simulation
with IQN-ILS takes 33 % longer than the simulation with
the MN method but both algorithms are capable of calculat-
ing the response. No information from the previous steps is
reused by the IQN-ILS method because the boundary con-
ditions of subsequent steps are significantly different.

The strong coupling test case [7, 98] is an unsteady test
which is difficult to perform due to the strong interaction be-
tween fluid and solid. This test consists of an elastic piston
in a channel which is filled with an incompressible fluid. The
piston is located at the left-hand side of the channel and the
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velocity on its left-hand side is prescribed such that the ac-
celeration has a constant value. At the right-hand side of the
channel, an outflow boundary condition with zero normal
traction is imposed. The simulation continues until the fluid
domain has almost zero thickness. The channel walls are
defined as free-slip boundaries, yielding a one-dimensional
behaviour. Therefore, the coupled system can be conceived
as a linear oscillator, with the piston as linear spring and
the fluid as mass. However, as the fluid mass varies from
its initial value to almost zero, the properties of the oscilla-
tor change significantly during the simulation. For this test,
Gauss–Seidel iterations diverge quickly, even with strong re-
laxation [98]. The IQN-ILS method passes this strong cou-
pling test, but it is 2 to 3 times more expensive than the
monolithic simulation, depending on the grid size.

The shell in steady cross-flow is a benchmark case with
large displacements [7]. It consists of a rectangular, thin
structure clamped at one edge to the wall of a fluid domain
with a brick shape. The cross-flow velocity is increased in
several steps and the steady solution is calculated in each
step. The IQN-ILS method is 30 % to 50 % faster for this
simulation, especially as the grid is refined. The IQN-ILS
algorithm requires on average 3.22 iterations per step and
reuses information from the previous steady step to acceler-
ate the convergence.

The last case is a flexible flap in a converging channel
[139]. The structure has a density of 1500 kg/m3 and the
fluid density is varied from 250 kg/m3 to 1750 kg/m3. As
the fluid density increases, the ratio of the time for the IQN-
ILS simulation to the time for the MN simulation increases
from 1.32 to 2.33. This effect of the fluid/solid density ratio
is expected and has been explained by the stability analysis
in the previous section.

In conclusion, the ratio of the time for the IQN-ILS sim-
ulation to the time for the MN simulation is between 1/2
and 4 for each of these cases. Furthermore, the partitioned
simulation requires 20 to 30 % less memory than the mono-
lithic simulation. Finally, the time spent on the IQN-ILS al-
gorithm is negligible compared to the time spent on the flow
and structural equations.

The conclusions of any comparison with only a limited
number of cases are difficult to generalize. First, while prob-
lems of various characteristics have been solved, still, only
specific and rather small problems have been considered.
Second, the solutions of the structural equations and the
flow equations inside the residual operator (Eq. (122)) of the
partitioned approach have been obtained with full Newton–
Raphson iterations using a direct sparse solver. Typically,
however, different solver schemes are used, in particular
schemes that are much more efficient for the fluid equa-
tions when the number of elements becomes very large. This
means that the partitioned approach has been put at a disad-
vantage in this comparison.

6 Coupling of a black-box solver and an accessible
solver

When two strongly interacting problems are simulated with
coupling iterations between two solvers, at least partially
implicit treatment of the interaction has to be used to avoid
divergence (or slow convergence) of these coupling itera-
tions. Implicit treatment of the interaction means that while
one problem is solved, the influence of the other problem is
taken into account. This influence can be approximated and
a better approximation will result in faster convergence of
the coupling iterations.

In the previous section, both the flow solver and the struc-
tural solver are used as a black box. Gauss–Seidel itera-
tions treat the interaction explicitly when both solvers are
black boxes and therefore they are unsuitable in that case.
However, if one solver is accessible, then an approximation
model for the black-box solver can be included into this ac-
cessible solver. For example, Causin et al. [32] rewrote the
flow equations as an added-mass operator in the structural
equations. Substitution of a linear reduced-physics model
of the flow into the structural equations approximates this
added-mass operator, thus accelerating the convergence of
the Gauss–Seidel coupling iterations [81]. In Sect. 4, the
substitution of a linearized structural model into the conti-
nuity equation of the flow problem proved to stabilize the
Gauss–Seidel iterations. This is the main idea of the inter-
face artificial compressibility (IAC) technique, which is ex-
plained below and subsequently compared with IBQN-LS
and Robin boundary conditions.

6.1 IAC

The IAC technique first constructs an approximate, local
and linear model for the behaviour of the black-box struc-
tural solver. To this end, the displacement of the structure
is calculated for two different pressure distributions on the
fluid-structure interface. This model is then included in the
flow solver by rewriting it as a pressure-dependent source
term in the continuity equation of the cells adjacent to the
fluid-structure interface. The addition of a source term in
the continuity equation is possible in most commercial flow
solvers by means of user-defined functions without access to
the complete source code. However, a source term has to be
added and therefore the solver has to be “accessible”. Due to
this source term, Gauss–Seidel coupling iterations between
the solvers converge quickly.

The construction of the approximate model for the struc-
ture corresponds with determining the suitable amount of
compressibility, which consists of several steps. First, the
deformation of the structure is calculated for two different
pressure distributions on the fluid-structure interface. This
requires two calculations by the black-box structural solver,
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in the same way as a normal time step, with the same time
step size and the corresponding inertia forces.

x1,a = S
(
y1,a

)
(176a)

x1,b = S
(
y1,b

)
(176b)

y1,a and y1,b can be either a spatially varying pressure or a
uniform pressure on the entire interface. If a spatially vary-
ing pressure is applied, y1,a and y1,b refer to pressure distri-
butions pa

i and pb
i = pa

i + �pi on the fluid-structure inter-
face, with i running over all grid cells adjacent to the inter-
face. If uniform pressures pa

i = pa and pb
i = pb are used,

pa and pb can be estimations for the lowest and highest
pressure during the entire simulation.

Subsequently, the displacements x1,a and x1,b are trans-
ferred to the flow solver, which results in two different de-
formations of the grid cells adjacent to the fluid-structure
interface. The volume �Vi swept by the fluid-structure in-
terface as the interface is displaced from x1,a to x1,b is cal-
culated for each grid cell i adjacent to the fluid-structure
interface. The artificial compressibility coefficient ck

i is then
calculated as

(
ck
i

)2 = �pi

�Vi

V k
i

ρf

(177)

with V k
i the current volume of grid cell i. This definition is

similar to the Bramwell–Hill equation for the wave speed
cBH in a straight elastic tube with cross-sectional area a

(cBH )2 = dp

da

a

ρf

. (178)

The values �Vi/�pi are only valid in some range around
the pressure for which they have been calculated. If the be-
haviour of the structure changes significantly during the sim-
ulation, it is possible that this linearization has to be recal-
culated after a number of time steps.

If Eq. (3a) is integrated over an arbitrary, deforming con-
trol volume Vi , the continuity equation is given by

∂Vi

∂t
+
∫

∂Vi

(�v − �w) · d �A = 0, (179)

with ∂Vi the control volume’s boundary and �A the area vec-
tor pointing outward. The compressibility of the fluid near
the fluid-structure interface is achieved by adding a source
term in this equation

∂V k
i

∂t
+
∫

∂V k
i

(�vk+1 − �wk
) · d �A

= −
∫

V k
i

pk+1
i − pk

i

ρf (ck
i )

2�t
dV (180)

for each grid cell i adjacent to the fluid-structure interface
with �t the time step. pi denotes the pressure on the fluid-
structure interface in grid cell i. The flow equations are
solved for pk+1 and �vk+1 and the additional source term is
treated implicitly during the solution of the flow equations.

Substitution of Eqs. (177) in (180) gives

�Vi

�pi

pk+1
i − pk

i

�t
+ ∂V k

i

∂t
+
∫

∂V k
i

(�vk+1 − �wk
) ·d �A = 0. (181)

The first term in the previous equation thus represents a lin-
ear approximation for

V k+1
i − V k

i

�t
. (182)

If a first-order differencing scheme is used for the second
term in Eq. (181)

∂V k
i

∂t
≈ V k

i − V n
i

�t
, (183)

then the first two terms of this equation can be combined as

V k+1
i − V k

i

�t
+ V k

i − V n
i

�t
= V k+1

i − V n
i

�t
. (184)

Consequently, the continuity equation in the flow solver with
the IAC term is given by

∂V k+1
i

∂t
+
∫

∂V k
i

(�vk+1 − �wk
) · d �A = 0. (185)

This demonstrates that the time derivative of Vi due to the
displacement of the interface is now treated implicitly dur-
ing the solution of the flow equations, albeit in an approxi-
mate, linearized way with a finite difference approximation.

The effect of substituting a linearized structural model
in the continuity equation of the flow problem can be in-
terpreted as compressibility. However, when the coupling
iterations converge, pk+1 is equal to pk so that the source
term disappears. As a result, the solution of the last cou-
pling iteration in a time step corresponds to an incom-
pressible fluid. Hence, this technique was named ‘artifi-
cial compressibility’ method and it has been applied to
two- and three-dimensional problems with simple geome-
tries [162, 164, 190]. Subsequently, this method has been
improved by limiting the compressibility to the fluid cells
adjacent to the fluid-structure interface, which is called ‘in-
terface artificial compressibility’ [46, 163].

It is important to limit the artificial compressibility to
the grid cells adjacent to the fluid-structure interface. This
corresponds to mimicking the displacement of the struc-
ture due to the current pressure while the flow equations
are solved. When the pressure on the interface changes, the
source term mimics how much the structure will move due
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to that change. The fluid mass that will be displaced by the
motion of the structure is temporarily produced by or stored
in the source term in the continuity equation of the grid cells
adjacent to the interface. This causes a modification of the
remainder of the flow field so that it already corresponds to
the approximated future displacement of the structure. For
the grid cells which are not adjacent to the interface, it seems
as if the interface has already moved by the approximated
displacement.

The concept of the artificial compressibility method for
fluid-structure interaction bears resemblance to the artificial
compressibility method of Chorin [36] and Témam [179]
who introduced compressibility in pseudo-time to calcu-
late the steady flow of incompressible fluids. This concept
was later extended to unsteady simulations by Peyret [152]
and Merkle and Athavale [132] who used a calculation in a
pseudo-time within each time step. The similarity between
IAC and artificial compressibility methods for the simula-
tion of incompressible flows is that the different coupling it-
erations can be conceived as steps in a pseudo-time. From
that point of view, Eq. (182) is a time derivative in the
pseudo-time (with pseudo-time step equal to �t) which is
added to the continuity equation.

6.2 Comparison Between IAC and IBQN-LS

In [46], the IAC method and the IBQN-LS method have
both been used to simulate the propagation of a pressure
wave in a 3D flexible tube. In this simulation, the rate of
change of the tube’s volume is between −2 × 10−5 m3/s
and 2 × 10−5 m3/s. In comparison, the maximal difference
between the rate of change of the tube’s volume and the net
volumetric influx for the IAC method is 1.85 × 10−9 m3/s,
which proves that the artificially added compressibility has
disappeared to a sufficient level once the coupling iterations
have converged. For this case, different uniform values for
pa and pb have been used.

The number of coupling iterations per time step aver-
aged over an entire simulation is given in Table 6 for both
the IAC method and the IBQN-LS method with a conver-
gence tolerance of εo = 10−3‖r0‖2. The number of itera-
tions per time step has been averaged over the entire simu-
lation. Even though the IBQN-LS method is greatly accel-
erated by reusing information from the previous time steps,
the IAC method required the least CPU time.

The second case is the FSI2 test with the oscillating beam
attached to a rigid cylinder. For this case, the parameters pa

and pb of the IAC method should not be uniform on the
fluid-structure interface. With uniform pa and pb, the com-
pressibility coefficient would approximate the behaviour of
the structure due to a compression loading. However, this is
not an important displacement mode during the simulation.
By contrast, the most important displacement modes of the

Table 6 The number of coupling iterations per time step and relative
duration with respect to the IAC method for the propagation of a pres-
sure wave in a 3D flexible tube. IBQN-LS(q) denotes that information
from q time steps is reused

Algorithm Iterations Time

IAC 4.99 1.00

IBQN-LS 10.48 2.33

IBQN-LS(1) 8.88 1.97

IBQN-LS(5) 7.16 1.57

IBQN-LS(12) 6.04 1.36

Table 7 The number of coupling iterations per time step and relative
duration with respect to the IAC method for the unsteady FSI2 test with
the 2D flexible beam behind a rigid cylinder. IBQN-LS(q) denotes that
information from q time steps is reused

Algorithm Iterations Time

IAC 13.7 1.00

IBQN-LS 7.2 0.73

IBQN-LS(3) 4.8 0.48

beam are its first bending modes. To ensure that the com-
pressibility coefficient approximates the bending behaviour
of the structure, pa is set to zero everywhere and pb depends
on the position

pb =
⎧
⎨

⎩

100 cos
(

x−0.25
0.60−0.25

π
2

)
Pa for y > 0.20 m

−100 cos
(

x−0.25
0.60−0.25

π
2

)
Pa for y < 0.20 m

(186)

with x and y the horizontal and vertical coordinates. x =
0.25 m is the left end of the beam and x = 0.60 m is the
right end; y = 0.20 m is the vertical middle of the beam.
By applying a positive pressure on the top of the beam and
a negative pressure on the bottom, the beam will bend. The
difference between pa and pb on the right end of the beam
is zero; therefore the compressibility coefficient c is set to a
very large value in the cells adjacent to the right end of the
beam.

The average number of coupling iterations per time step
is listed in Table 7 for a convergence tolerance of εo =
10−3‖r0‖2. The number of iterations per time step has been
averaged over the entire simulation. For this case, the IBQN-
LS method with reuse is twice as fast as the IAC method. So,
although it is possible to solve this problem with the IAC
method, IBQN-LS and IQN-ILS (not shown in Table 7) are
preferred. With regard to the number of iterations, the differ-
ence between the IAC method and the IBQN-LS(3) simula-
tion is even larger. However, the flow solver converges faster
when the IAC method is used because the difference be-
tween the displacement in subsequent iterations is smaller.

The examples above demonstrate that a local (scalar)
approximation of the structural behaviour inside the flow
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solver can accelerate the convergence of the Gauss–Seidel
coupling iterations. By contrast, a local approximation of
the flow behaviour inside the structural solver would not
be useful. Instead, a global (matrix) approximation of the
fluid added-mass would have to be included in the struc-
tural solver. For the flow in a flexible tube, this can be ex-
plained as follows. An increase in pressure at some point on
the interface will only influence the structure in the neigh-
bourhood of that point. On the other hand, due to the incom-
pressibility, the displacement of the interface at some point
will influence the entire fluid domain.

Furthermore, fast convergence with the IAC method re-
quires that the local, linear relation between the pressure on
the interface and the displacement of the structure is a good
approximation of the reality. This condition is satisfied for
the flexible tube, but not really for the clamped beam. For
the latter, a difference in pressure between the top and the
bottom near the free end of the beam will cause a deflection
of the entire beam, so not a local relation.

6.3 Comparison Between IAC and Robin Boundary
Conditions

When solving the flow equations, Gauss–Seidel iterations
with Robin–Neumann decomposition (GS-RN) [4, 72, 142]
use a Robin boundary condition for the fluid, given by

�vk+1 + ασk+1
f · �nk = d�uk

dt
+ ασk

s · �nk, (187)

with the coefficient α changing along the fluid-structure in-
terface. As the fluid velocity does not have to match the
structural velocity in this boundary condition, some fluid
is allowed to cross the interface. Conversely, Gauss–Seidel
coupling iterations with Dirichlet–Neumann decomposition
and IAC (GS-DN-IAC) [46] use a Dirichlet boundary con-
dition.

�vk+1 = d�uk

dt
(188)

Degroote [41] demonstrates that GS-RN and GS-DN-
IAC are different implementations of the same underlying
idea, being to include an approximation for the structural
behaviour in the flow solver. In this analysis, a finite vol-
ume discretization is applied. Additionally, they mention
that only GS-DN-IAC neglects the viscous tractions on the
fluid-structure interface in the linearized structural model
(but not in the result). Furthermore, GS-DN-IAC uses the
cell velocity whereas GS-RN uses the face velocity, which
converge towards each other as the cell size decreases. Un-
der those conditions, they demonstrate that GS-RN and GS-
DN-IAC are equal if

αi,m = 1

�t

d(�ui,m · �ni,m)

dpi,m

(189)

for face m of cell i. So, GS-RN includes an approxima-
tion for the structural behaviour in the flow solver by means
of a Robin boundary condition whereas GS-DN-IAC uses a
pressure-dependent source term to achieve this.

For the flow in a straight flexible tube, Sect. 4 demon-
strated that only the source term in the continuity equation is
required for fast convergence of the GS-DN-IAC iterations
as long as the fluid velocity is lower than the wave speed.
Hence, only the source term is added to the continuity equa-
tion in [46, 162, 163] whereas both the continuity and the
momentum equations are modified in [4, 72, 142].

The choice of the technique to calculate the coefficients
is independent of the choice between GS-RN and GS-DN-
IAC. In [4], an analytical expression for the coefficient α

is obtained by considering a membrane so that the struc-
tural equations can be written in the same form as the Robin
boundary condition. Moreover, an optimal value for α de-
rived from a von Neumann analysis has been proposed in
[80]. Conversely, the structural equations are solved twice
in [46], each time with a different pressure on the interface,
followed by a finite difference approximation.

7 Overall Conclusion

This review article focuses on partitioned simulation tech-
niques for strongly coupled fluid-structure interaction prob-
lems, especially techniques which use black-box solvers. In
addition, a review is presented of many different techniques
to take into account the deforming fluid domain (Sect. 2)
and other techniques to perform fluid-structure interaction
simulations (Sect. 3).

The von Neumann stability analysis (Sect. 4) on a one-
dimensional model of the unsteady flow in a straight flexible
tube demonstrates that error modes with a low wave number
in the displacement of the interface are most unstable during
the coupling iterations. Only a limited number of the Fourier
modes are unstable or badly damped if the model parame-
ters are chosen to approximate the flow in a piece of a large
artery. Only these modes need to be treated implicitly dur-
ing the coupling iterations to achieve fast convergence. As a
result, quasi-Newton coupling techniques quickly yield the
coupled solution as long as the behaviour of these unstable
or badly damped modes is captured by the approximate Ja-
cobian(s).

Different techniques to couple two black-box solvers
are analyzed, including IQN-ILS, IBQN-LS, Aitken relax-
ation and Interface-GMRES. Furthermore, multi-solver and
multi-level versions of IQN-ILS are discussed. Both the al-
gorithms and the performance of all these techniques are
compared. For the cases considered, both IQN-ILS and
IBQN-LS require fewer coupling iterations than Interface-
GMRES and Aitken relaxation. Furthermore, the IQN-ILS
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technique has been compared to a monolithic Newton solver
for several two- and three-dimensional cases. For these
cases, the ratio of the partitioned simulation’s duration to
the monolithic simulation’s duration is between 1/2 and 4.

If only one of the two solvers is a black box, the interac-
tion between the solvers can be taken into account implicitly
during the coupling iterations by including an approximate
model for the behaviour of the black-box solver in the ac-
cessible solver. A local, scalar model for the behaviour of
a black-box structural solver can be constructed by means
of finite differencing. This model can be included in a flow
solver by reformulating it as a source term in the continuity
equation of the cells adjacent to the fluid-structure interface
or, alternatively, as a Robin boundary condition at the fluid-
structure interface.
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