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Abstract In this paper we are addressing a new paradigm in
the field of simulation-based engineering sciences (SBES)
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to face the challenges posed by current ICT technologies.
Despite the impressive progress attained by simulation ca-
pabilities and techniques, some challenging problems re-
main today intractable. These problems, that are common
to many branches of science and engineering, are of differ-
ent nature. Among them, we can cite those related to high-
dimensional problems, which do not admit mesh-based ap-
proaches due to the exponential increase of degrees of free-
dom. We developed in recent years a novel technique, called
Proper Generalized Decomposition (PGD). It is based on
the assumption of a separated form of the unknown field
and it has demonstrated its capabilities in dealing with high-
dimensional problems overcoming the strong limitations of
classical approaches. But the main opportunity given by this
technique is that it allows for a completely new approach for
classic problems, not necessarily high dimensional. Many
challenging problems can be efficiently cast into a multi-
dimensional framework and this opens new possibilities to
solve old and new problems with strategies not envisioned
until now. For instance, parameters in a model can be set as
additional extra-coordinates of the model. In a PGD frame-
work, the resulting model is solved once for life, in order
to obtain a general solution that includes all the solutions
for every possible value of the parameters, that is, a sort
of computational vademecum. Under this rationale, opti-
mization of complex problems, uncertainty quantification,
simulation-based control and real-time simulation are now
at hand, even in highly complex scenarios, by combining
an off-line stage in which the general PGD solution, the
vademecum, is computed, and an on-line phase in which,
even on deployed, handheld, platforms such as smartphones
or tablets, real-time response is obtained as a result of our
queries.
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1 Introduction

1.1 Motivation

Six unique initiatives have been recently selected (and
funded with 100 millions of euros per year) by the Euro-
pean Research Council based solely on their potential for
realizing scientific breakthroughs and influencing Europe’s
social and industrial challenges, including health. Their aim
will then be to deliver major breakthroughs in information
and communication technologies (ICT), with the potential
to provide solutions to some of society’s biggest challenges.
Despite being different there is a common ingredient to all
of them, which is to emphasize the necessity of making use
of advanced simulation-driven sciences and engineering, as
will be highlighted below. The six contenders, from which
the two flagship initiatives will be selected, are [37]:

1. Guardian Angels for a Smarter Life [38]: a project aimed
at developing tiny devices without batteries that act like
thinking and autonomous personal assistants, providing
information and communication technologies to assist
people in all sorts of complex situations delivering fea-
tures and characteristics that go well beyond human ca-
pabilities.

2. The Human Brain Project [39] whose goal is to under-
stand the way the human brain works. The long-term
goal of the Human Brain Project is to build the infor-
matics, modeling, and supercomputing technologies that
are needed to simulate and understand the human brain.

3. IT Future of Medicine [40] proposes a data-driven, indi-
vidualized medicine of the future, based on the molec-
ular/physiological/anatomical data from individual pa-
tients. The project outcomes will enable data-driven real-
time calculation of health, disease, therapy and its effects
for individual patients.

4. Robot Companions for Citizens [41]: a project devoted
to developing soft-skinned and intelligent robots with
highly developed perceptive, cognitive and emotional
skills. Robot Companions for Citizens will be based on
the novel solid articulated structures with flexible prop-
erties displaying soft behavior, haptic devices and simu-
lation based real time control in deployed systems. These
companions will also have new levels of perceptual, cog-
nitive and emotive capabilities and be aware of their
physical and social surroundings and respond accord-
ingly.

5. FuturICT Knowledge Accelerator and Crisis-Relief Sys-
tem [42]: What if global scale computing facilities were
available that could analyze most of the data available in
the world? What insights could scientists gain about the
way society functions? What new laws of nature would
be revealed? Could society discover a more sustainable
way of living? ICT (Information and Communication

Technology) can analyze vast amounts of data and com-
plex situations so as to better predict natural disasters,
or manage and respond to man-made disasters that cross
national borders or continents.

6. Graphene Science and technology for ICT and be-
yond [43]: Graphene is a new substance developed by
atomic and molecular scale manipulation that could re-
place silicon as the wonder material of the 21st century.
This aims to explore revolutionary potentials, in terms of
both conventional as well as radically new fields of Infor-
mation and Communication Technologies applications.

It is now well known [39] that the human brain consumes
4 watts for performing some tasks that today’s computers
will require the power of several nuclear plants. It is then
clear that our computers and algorithms for addressing the
models encountered in science and engineering are defini-
tively suboptimal. The above six flagship projects share
some key aspects related to efficient computational sciences.
It is expected that these projects will reach a certain number
of breakthroughs, but all of them will face important limita-
tions of today’s computer capabilities and, notably, simula-
tion techniques.

All these society needs require fast and accurate solu-
tions, in general data-driven, of very complex models, in-
volving an unimaginable amount of information, in most
cases in real time and on deployed platforms. Up to now, the
solution of complex models, preferably fast and accurate, is
addressed by using high performance computing and hyper
powerful computing platforms. Obviously the consecution
of the above “dreams” will require as much as computational
power (supercomputing) as possible, and consequently, ad-
vances in hardware and software for high-performance com-
puting will be necessary. But at the same time, there is a need
for a new generation simulation techniques, beyond high-
performance computing or nowadays approaches (most of
them proposed 40 years ago), to simply improve efficiency
or to allow getting results when other alternatives fail in the
above challenging scenarios.

All the above challenging problems are data-driven. The
importance of Dynamic Data-Driven Application Systems—
DDDAS—in the forthcoming decades has been already no-
ticed by the NSF Blue Ribbon Panel on Simulation Based
Engineering Sciences report, that in 2006 included DDDAS
as one of the five core issues or challenges in the field for
the next decade (together with multi-scale simulation, model
validation and verification, handling large data and visual-
ization). This panel concluded that “Dynamic data-driven
application systems will rewrite the book on the validation
and verification of computer predictions” and that “research
is needed to effectively use and integrate data-intensive com-
puting systems, ubiquitous sensors and high-resolution de-
tectors, imaging devices, and other data-gathering storage
and distribution devices, and to develop methodologies and
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theoretical frameworks for their integration into simulation
systems” [29, 65, 66]. Moreover, the NSF believes that “. . .
The DDDAS community needs to reach a critical mass both
in terms of numbers of investigators, and in terms of the
depth, breadth and maturity of constituent technologies . . . ”
[65].

1.2 Nowadays Computational Issues

Today many problems in science and engineering remain in-
tractable, in spite of the impressive progresses attained in
modeling, numerical analysis, discretization techniques and
computer science during the last decade, because their nu-
merical complexity, or the restrictions imposed by different
requirements (real-time on deployed platforms, for instance)
make them unaffordable for today’s technologies.

We can enumerate different challenging scenarios for ef-
ficient numerical simulations:

– The first one concerns models that are defined in high di-
mensional spaces, usually encountered in quantum chem-
istry describing the structure and mechanics of mate-
rials [4, 21], the kinetic theory description of complex
materials [16, 52], social dynamics and economic sys-
tems, vehicular traffic flow phenomena, complex biolog-
ical systems involving mutation and immune competi-
tion, crowds and swarms encountered in congested and
panic flows, among many other unimaginable possibil-
ities (see [13] and the references therein); the chemical
modeling in too dilute systems where the concept of con-
centration cannot be used, that results in the so-called
chemical master equation governing for example cell sig-
naling and other phenomena in molecular biology [10].

Models defined in high dimensional spaces suffer the
so-called curse of dimensionality. If one proceeds to the
solution of a model defined in a space of dimension d

by using a standard mesh based discretization technique,
where M nodes are used for discretizing each space co-
ordinate, the resulting number of nodes reaches the as-
tronomical value of Md . With M ≈ 103 (a very coarse
description in practice) and d ≈ 30 (a very simple model)
the numerical complexity results 1090. It is important to
recall that 1080 is the presumed number of elementary
particles in the universe!

Traditionally, high dimensional models were addressed
by using stochastic simulations. However these tech-
niques have their own challenges: variance reduction is
always an issue and the construction of distribution func-
tions in high dimensional spaces remains in most cases
unaffordable. It is also quite difficult within the stochastic
framework to implement parametric or sensitivity analy-
sis that go beyond the brute force approach of computing
a large number of expensive, individual simulations.

– Online control can be carried out following different ap-
proaches. The most common one consists in considering
systems as a black box whose behavior is modeled by a
transfer function relating certain inputs to certain outputs.
This modeling that may seem poor has as main advantage
the possibility of proceeding rapidly due to its simplic-
ity. This compromise between accuracy and rapidity was
often used in the past and this pragmatic approach has al-
lowed us to control processes and to optimize them, once
the transfer function modeling the system is established.

The establishment of such goal-oriented transfer func-
tion is the trickiest point. For this purpose, it is possi-
ble to proceed from a sometimes overly simplified phys-
ical model or directly from experiments (allowing us to
extract a phenomenological goal-oriented transfer func-
tion) or from a well-balanced mixture of both approaches.
In all cases, the resulting modeling can only be applied
within the framework that served to derive it. However, on
one hand, the fine description of systems requires a suffi-
ciently detailed description of them and, in that case, tra-
ditional goal-oriented simplified modeling becomes inap-
plicable. On the other hand, actual physical models result,
in general, in complex mathematical objects, non-linear
and strongly coupled partial differential equations. Such
mathematical objects are representing physical reality up
to a certain degree of accuracy. However, the available
numerical tools capable of solving these complex mod-
els require the use of powerful computers that can require
hours, days and weeks to solve them. Known as numerical
simulation, its output solution is very rich but it seems in-
applicable for control purposes that require fast responses,
often in real-time.

Until now, numerical simulation has been used offline
but in some cases it allows us to define simplified models
(with their inherent limitations and drawbacks) running
in real-time that could be used online but such simplified
modeling has the previously quoted drawbacks.

– Many problems in parametric modeling, inverse identi-
fication, and process or shape optimization, usually re-
quire, when approached with standard techniques, the di-
rect computation of a very large number of solutions of
the concerned model for particular values of the problem
parameters. When the number of parameters increases
such a procedure becomes inapplicable.

– Traditionally, Simulation-based Engineering Sciences—
SBES—relied on the use of static data inputs to perform
the simulations. These data could be parameters of the
model(s) or boundary conditions. The word static is in-
tended to mean here that these data could not be modi-
fied during the simulation. A new paradigm in the field
of Applied Sciences and Engineering has emerged in the
last decade. Dynamic Data-Driven Application Systems
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(DDDAS) constitute nowadays one of the most challeng-
ing applications of simulation-based Engineering Sci-
ences. By DDDAS we mean a set of techniques that allow
the linkage of simulation tools with measurement devices
for real-time control of simulations. DDDAS entails the
ability to dynamically incorporate additional data into an
executing application, and in reverse, the ability of an ap-
plication to dynamically steer the measurement process.

In this context, real time simulators are needed in many
applications. One of the most challenging situations is
that of haptic devices, where forces must be translated to
the peripheral device at a rate of 500 Hz. Control, mal-
functioning identification and reconfiguration of malfunc-
tioning systems also need to run in real time. All these
problems can be seen as typical examples of DDDAS.

– Augmented reality is another area in which efficient (fast
and accurate) simulation is urgently needed. The idea is
supplying in real time appropriate information to the re-
ality perceived by the user. Augmented reality could be
an excellent tool in many branches of science and engi-
neering. In this context, light computing platforms are ap-
pealing alternatives to heavy computing platforms that in
general are expensive and whose use requires technical
knowledge.

– Inevitable uncertainty. In science and engineering, in
its widest sense, it now seems obvious that there are
many causes of variability. The introduction of such vari-
ability, randomness and uncertainty is a priority for the
next decade. Although it was a priority in the preceding
decade, the practical progress attained seems fairly weak.

While the previous list is by no means exhaustive, it in-
cludes a set of problems with no apparent relationship be-
tween them that can however be treated in a unified manner
as will be shown in what follows. Their common ingredi-
ent is our lack of capabilities (or knowledge) to solve them
numerically in a direct, traditional way.

2 Fast Calculations from a Historical Perspective

The human being throughout the history developed several
facilities for giving fast responses to a variety of questions.
Thus, abaci were used 2700 years B.C. in Mesopotamia.
This abacus was a sort of counting frame primarily used for
performing arithmetic calculations. We associate this abacus
to a bamboo frame with beads sliding on wires, however,
originally they were beans or stones moved in grooves in
sand or on tablets of wood, stone, or metal. The abacus was
in use centuries before the adoption of the written modern
numeral system and is still widely used by readers. There
are many variants, the Mesopotamian abacus, the Egyptian,
Persian, Greek, Roman, Chinese, Indian, Japanese, Korean,
native American, Russian, etc.

However, the initial arithmetic needs were rapidly com-
plemented with more complex representations. We are con-
sidering some few variants:

– Charts appeared for graphical representation of data with
multiple meanings. However, there are common features
that provide the chart with its ability to extract mean-
ing from data. In general a chart is graphical, containing
very little text, since humans infer meaning from pictures
quicker than from text. A particular variant of charts in
the Nomogram.

– Nomography, is the graphical representation of mathe-
matical relationships or laws. It is an area of practical
and theoretical mathematics invented in 1880 by Philbert
Maurice d’Ocagne and used extensively for many years to
provide engineers with fast graphical calculations of com-
plicated formulas to a practical precision. Thus, a nomo-
gram can be considered as a graphical calculating device.
There are thousands of examples on the use of nomo-
grams in all the fields of sciences and engineering.

The former facilities allowed for fast calculations and
data manipulations. Nomograms can be easily constructed
when the mathematical relationships that they express are
purely algebraic, eventually non-linear. In those cases it was
easy to represent some outputs as a function of some inputs.
The calculation of these data representations was performed
off-line and then used on-line in many branches of engineer-
ing sciences for design and optimization.

However, the former procedures fail when addressing
more complex scenarios. Thus, sometimes engineers ma-
nipulate not properly understood physics and in that case
the construction of nomograms based on a too coarse mod-
elling could be dangerous. In that cases one could proceed
by making several experiments from which defining a sort of
experiment-based nomogram. In other cases the mathemat-
ical object to be manipulated consists of a system of com-
plex coupled non-linear partial differential equations, whose
solution for each possible combination of the values of the
parameters that it involves is simply unimaginable for the
nowadays computational availabilities. In these cases exper-
iments or expensive computational solutions are performed
for some possible states of the system, from which a sim-
plified model linking the inputs to the outputs of interest is
elaborated. These simplified models have different names:
surrogate models, metamodels, response surface methodolo-
gies, . . . Other associated tricky questions are the one that
concerns the best sampling strategy (Latin hypercube, . . . )
and also the one concerning the appropriate interpolation
techniques for estimating the response at an unmeasured po-
sition from observed values at surrounding locations. Many
possibilities exist, being Kriging one of the most widely
used for interpolating data.

All these techniques allow defining a sort of numerical
or graphical handbook. One of the earliest and most widely
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known within engineering practice is that of Bernoulli [14].
However, we must accept a certain inevitable inaccuracy
when estimating solutions from the available data. It is the
price to pay if neither experimental measurements nor nu-
merical solutions of the fine but expensive model are achiev-
able for each possible scenario.

Recently model order reduction opened new possibilities.
First, proper orthogonal decompositions (POD) allows ex-
tracting the most significant characteristic of the solution,
that can be then applied for solving models slightly different
to the ones that served to defined the reduced approximation
bases. There is an extensive literature. The interested read-
ers can reefer to [2, 5, 15, 20, 36, 58, 60–63, 67, 74] and the
numerous references therein. The extraction of the reduced
basis is the tricky point when using POD-based model order
reduction, as well its adaptivity when addressing scenarios
far from the ones considered when constructing the reduced
basis [72, 73]. Another issue lies in the error control, and its
connection with verification and validation.

The calculation of the reduced basis is not unique. There
are many alternatives. Some ones introduce some improve-
ments on the POD methodology, as is the case of the
Goal Oriented Model Constrained Optimization approach
(see [19] and the references therein) or the modal identi-
fication method (see [33] and the references therein). The
Branch Eigenmodes Reduction Method combined with the
amalgam method is another appealing constructor of re-
duced bases [77].

Another family of model reduction techniques lies in the
used of reduced basis constructed by combining a greedy
algorithm and a priori error indicator. It needs for some
amount off-line work but then the reduced basis can be used
on-line for solving different models with a perfect control
of the solution accuracy because the availability of error
bounds. When the error is inadmissible, the reduced basis
can be enriched by invoking again the same greedy algo-
rithm. The interested readers can refer to [56, 57, 71, 76]
and the references therein. The main drawback of such an
approach is the amount of data that must be computed,
stored and then manipulated.

Separated representations were introduced in the 80s by
Pierre Ladeveze that proposed a space-time separated rep-
resentation of transient solutions involved in strongly non-
linear models, defining a non-incremental integration pro-
cedure. The interested reader can refer to the numerous
Ladeveze’s works [44–49, 59, 68]. Later, separated repre-
sentations were employed in the context of stochastic mod-
elling [64] as well as for solving multidimensional mod-
els suffering the so-called curse of dimensionality, some of
them never solved before [1]. The techniques making use of
separated representations computed on the fly were called
Proper Generalized Decompositions—PGD—.

PGD constitutes an efficient multidimensional solver that
allows introducing model parameters (boundary conditions,

initial conditions, geometrical parameters, material and pro-
cess parameters . . . ) as extra-coordinates. Then by solving
only once and off-line the resulting multidimensional model
we have access to the parametric solution that can be viewed
as a sort of handbook or vademecum than can be then used
on-line.

In what follows, we are describing within the PGD ap-
proach the way of introducing extra-coordinates of different
nature. Later, we will prove the potentiality of such an ap-
proach for the efficient solution of a variety of problems.

2.1 PGD at a Glance

Consider a problem defined in a space of dimension d for
the unknown field u(x1, . . . , xd). Here, the coordinates xi

denote any usual coordinate (scalar or vectorial) related to
physical space, time, or conformation space in microscopic
descriptions [1, 4], for example, but they could also include,
as we illustrate later, problem parameters such as boundary
conditions or material parameters. We seek a solution for
(x1, . . . , xd) ∈ Ω1 × · · · × Ωd .

The PGD yields an approximate solution in the separated
form:

u(x1, . . . , xd) ≈
N∑

i=1

X1
i (x1) · · ·Xd

i (xd) =
N∑

i=1

d∏

j=1

X
j
i (xj )

(1)

The PGD approximation is thus a sum of N functional
products involving each a number d of functions X

j
i (xj )

that are unknown a priori. It is constructed by successive
enrichment, whereby each functional product is determined
in sequence. At a particular enrichment step n+ 1, the func-
tions X

j
i (xj ) are known for i ≤ n from the previous steps,

and one must compute the new product involving the d un-
known functions X

j

n+1(xj ). This is achieved by invoking the
weak form of the problem under consideration. The result-
ing problem is non-linear, which implies that iterations are
needed at each enrichment step. A low-dimensional prob-
lem can thus be defined in Ωj for each of the d functions

X
j

n+1(xj ).
If M nodes are used to discretize each coordinate, the

total number of PGD unknowns is N · M · d instead of the
Md degrees of freedom involved in standard mesh-based
discretizations. We will come back later to the issues related
to the convergence and optimality of the separated represen-
tations.

2.2 Parametric Solution-Based Vademecum

In the case of a field depending on the physical space
x ∈ Ωx ⊂ R3, the time t ∈ It ⊂ R and Q parameters
p1, . . . , pQ, pj ∈ Ωpj , j = 1, . . . ,Q, the solution is sought
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under the separated form

u
(
x, t,p1, . . . , pQ

) ≈
N∑

i=1

Xi(x) · Ti(t) ·
Q∏

j=1

P
j
i

(
pj

)
(2)

As soon as this solution is available, after solving the
multidimensional model within the PGD framework, we can
have access to any possible solution. In fact the representa-
tion (2) implies an approximation of each function. Thus the
space functions Xi(x) could be approximated for example
by using a finite element interpolation that implies knowing
the value of each space function Xi(x) at the Mx nodes xk

(k = 1, . . . , Mx ) of the mesh used for approximating them,
i.e. Xi(xk). The functions Ti(t) depending on time will be
expressed from the values of those functions at Mt time in-
stants tl (l = 1, . . . , Mt ), i.e. Ti(tl). Finally, the functions
depending on the different parameters P

j
i (pj ) will be ex-

pressed from the values of those functions at Mpj values

of each parameter p
j
r (r = 1, . . . , Mpj ), i.e. P

j
i (p

j
r ). Thus,

the solution consists of N vectors of size Mx that contain
the discrete representation of functions Xi(x), N vectors of
size Mt that contain the discrete representation of functions
Ti(t) and N vectors of size Mpj that contain the discrete

representation of functions P
j
i (pj ), j = 1, . . . ,Q.

If we imagine that Mx = Mt = Mp1 = · · · = MpQ =
M, then the solution representation involves N · (Q + 2)

vectors of size M, that is N · (Q + 2) · M values instead of
the M2+Q involved by an equivalent mesh. If for a while we
imagine Q = 10, M = 100 and N = 10 the separated rep-
resentation will involve 104 values instead of 1020 involved
in a hypothetical equivalent mesh.

Thus, the PGD solver allowing the construction of the
separated representation (2) can be viewed as a solver that
constructs on the fly a compressed representation of the
model solution. In the case of 2D models, involving two
generic coordinates c1 and c2 and symmetric and positive
definite differential operators, the separated representation
constructed by the PGD solver reads:

u(c1, c2) ≈
N∑

i=1

C1
i (c1) · C2

i (c2) (3)

where the number of modes N corresponds to the one in-
volved by the best separated representation of the model
solution u(c1, c2) obtained by applying on it a singular
value decomposition—SVD—. In higher dimensions, the
higher-order SVD counterpart, the so-called High Order
SVD (HOSVD) is no more optimal. In any case the PGD
constructor can be viewed as a sort of “a priori” HOSVD.
Some mathematical results can be found in [7, 53] and the
review [26] and the references therein.

When the differential operator involved in the model is
non symmetric, the separated representation obtained by ap-
plying any of the nowadays available PGD solvers is sub-
optimal, that is, the number of terms in the finite sum N is
higher that the number of modes that the SVD (in 2D) or its
higher order counterpart would require when performing an
“a posteriori” decomposition of the model solution.

In any case, even when PGD calculates suboptimal sepa-
rated representations, at least it allows calculating solutions
of highly multidimensional models that cannot be solved by
using more experienced mesh-based discretizations. Thus
the possibility of solving a problem, even when its solution
representation involves sometimes more terms than strictly
needed, is in any case a real success. Moreover, in general
the solution of models involving many parameters as extra-
coordinates is performed only once and off-line, and then it
is particularized on-line. In these cases the optimality issue
is not crucial. However, when the solution involves too many
terms, with respect to an hypothetical optimal representa-
tion, i.e. N � Nopt , one can proceed to an “a posteriori”
data compression, in order to alleviate as much as possible
post-processing, that is vital when real time responses are
envisaged. For this purpose, we assume that the suboptimal
solution, calculated from the differential model by applying
a PGD solver, reads

u(x1, . . . , xd) ≈
N∑

i=1

d∏

j=1

X
j
i (xj ) (4)

and we look for an enhanced representation uenh(x1, . . . , xd)

uenh(x1, . . . , xd) ≈
Ñ∑

i=1

d∏

j=1

X̃
j
i (xj ) (5)

that verifies

uenh(x1, . . . , xd) = u(x1, . . . , ud) (6)

whose integral counterpart writes
∫

Ω1×···×Ωd

u∗

· (uenh(x1, . . . , xd) − u(x1, . . . , uD)
)
dx1 · · ·dxd = 0 (7)

that is solved by invoking again the PGD solver.
uenh(x1, . . . , xd) results a more compact representation,

i.e. Ñ ≤ N , sometimes Ñ � N . The problem (4)–(7) is
equivalent to the application of a HOSVD on the subopti-
mal solution (4). This post-compression allows substantial
storage savings, an important factor when using deployed
devices, and also significant CPU time savings when ma-
nipulating data in post-processing tasks. In real time appli-
cations this post-compression can be decisive.
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Until now, we presented the PGD as en efficient solver,
however it can be also viewed as a model reduction strategy
when computing only the most relevant terms of the sepa-
rated representation. In that case an error is introduced, but
because the few number of terms retained, storage and data
post-processing can be efficiently performed.

In any case, as soon as a suboptimal or an enhanced sep-
arated representation is available, it can be viewed as a com-
putational handbook, a metamodel, containing an unimagin-
able amount of information. For example, if the solution (2)
applies for a model involving 10 parameters, all them con-
sidered as extra-coordinates, i.e. Q = 10, and 10 discrete
values are considered for describing each parametric depen-
dency, i.e. M1 = · · · = M10 = 10 the solution (2) contains
the information associated to 1010 possible scenarios. Ob-
taining an equivalent amount of information would require
the solution of 1010 transient 3D problems. Now, from this
extremely rich metamodel, one could obtain the solution for
any possible scenario u(x, t,p1, . . . , p10) from the paramet-
ric solution (2).

3 Parametric PGD-Based Vademecums: Going Beyond
the Nowadays Computational Limits

In this section we revisit the computational issues enumer-
ated in the first section from the perspective of parametric
PGD based vademecums described in the previous section.
For this purpose, we are selecting some scenarios, that prove
the potentiality of the proposed approach. We first expose
the main ideas though simple academic examples based on
the solution of the heat equation, and then we address in the
next section more complex situations.

3.1 Material Parameters as Extra-Coordinates

In this section, we illustrate the PGD by considering the fol-
lowing parametric heat transfer equation:

∂u

∂t
− k · Δu − f = 0 (8)

with homogeneous initial and boundary conditions. The en-
forcement of non-homogeneous initial and boundary condi-
tions was deeply treated in [34] and [23].

Here (x, t, k) ∈ Ω × It × Ik , with Ω ⊂ R3, It ⊂ R and
Ik ⊂ R. For the sake of simplicity and without loss of gen-
erality the source term f is assumed constant. The conduc-
tivity k is viewed as a new coordinate defined in the interval
Ik . Thus, instead of solving the thermal model for differ-
ent discrete values of the conductivity parameter, we wish
to solve at once a more general problem, the price to pay
being an increase of the problem dimensionality. However,
as the complexity of the PGD scales only linearly (and not

exponentially) with the space dimension, consideration of
the conductivity as a new coordinate still allows one to effi-
ciently obtain an accurate solution.

The weighted residual form related to Eq. (8) reads:
∫

Ω×It×Ik

u∗ ·
(

∂u

∂t
− k · Δu − f

)
dx · dt · dk = 0 (9)

for all test functions u∗ selected in an appropriate functional
space.

The PGD solution is sought in the form:

u(x, t, k) ≈
N∑

i=1

Xi(x) · Ti(t) · Ki(k) (10)

At enrichment step n of the PGD algorithm, the following
approximation is already known:

un−1(x, t, k) =
n−1∑

i=1

Xi(x) · Ti(t) · Ki(k) (11)

We wish to compute the next functional product Xn(x) ·
Tn(t) · Kn(k), which we write as R(x) · S(t) · W(k) for no-
tational simplicity.

Thus, the solution at enrichment step n reads

un = un−1 + R(x) · S(t) · W(k) (12)

We propose the simplest choice for the test functions u∗
used in Eq. (9):

u∗ = R∗(x) · S(t) · W(k) + R(x) · S∗(t) · W(k)

+ R(x) · S(t) · W ∗(k) (13)

With the trial and test functions given by Eqs. (12)
and (13) respectively, Eq. (9) is a non-linear problem that
must be solved by means of a suitable iterative scheme. In
our earlier papers [1] and [3], we used Newton’s method.
Simpler linearization strategies can also be applied, how-
ever. The simplest one is an alternated directions fixed-
point algorithm, which was found remarkably robust in the
present context. Each iteration consists of three steps that are
repeated until reaching convergence, that is, until reaching
the fixed point. The first step assumes S(t) and W(k) known
from the previous iteration and compute an update for R(x)

(in this case the test function reduces to R∗(x) ·S(t) ·W(k)).
In order to perform this step, the weak form is integrated

in It × Ik because all the functions involving the time t and
the conductivity k are at the present step assumed known.
When the integral involves a separated form the integration
is very cheap. To understand it we consider the integral of a
generic function:
∫

It×Ik

F (x, t, k)dt · dk (14)
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For computing the integral numerically one should com-
pute an integral in It × Ik for each value of x. Even when
considering a discrete number of points xk , the integration
complexity scales with the number of points xk .

On the contrary, when the integral concerns a function
that can be expressed in a separated form, the integral re-
duces to:
∫

It×Ik

F (x, t, k)dt · dk

=
∫

It×Ik

M∑

j=1

Fx
j (x) · F t

j (t) · Fk
j (k) dt · dk

=
M∑

j=1

Fx
j (x) ·

(∫

It

F t
j (t) dt

)
·
(∫

Ik

F k
j (k) dk

)
(15)

that implies 2 · M one-dimensional integrals.
Now, from the just-updated R(x) and the previously-used

W(k), we can update S(t) (with u∗ = R(x) · S∗(t) · W(k)).
Finally, from the just-computed R(x) and S(t), we update
W(k) (with u∗ = R(x) · S(t) · W ∗(k)). Again, the separa-
bility of the functions to be integrated becomes a key point
from the computational point of view.

This iterative procedure continues until reaching conver-
gence. The converged functions R(x), S(t) and W(k) yield
the new functional product at the current enrichment step:
Xn(x) = R(x), Tn(t) = S(t) and Kn(k) = W(k). The ex-
plicit form of these operations was described in many of our
former works [23]. For the sake of completeness they are
given in the annex.

There are other constructors of the separated representa-
tion more efficient when applying to non-symmetric differ-
ential operators, as the one based on the residual minimiza-
tion, among many others [24]. The issue related to the opti-
mality of the separated representations obtained by applying
standard strategies will be addressed in the next section. The
enrichment is stopped as soon as the equation residual or any
other error estimator based on a quantity of interest [8, 50]
is small enough.

We have seen that at each enrichment step the construc-
tion of the new functional product in Eq. (10) requires non-
linear iterations. If mi denotes the number of iterations
needed at enrichment step i, the total number of iterations
involved in the construction of the PGD approximation is
m = ∑N

i=1 mi . In the above example, the entire procedure
thus involves the solution of m three-dimensional problems
for the functions Xi(x), m one-dimensional problems for the
functions Ti(t) and m algebraic systems for the functions
Ki(k). We can conclude that the complexity of the PGD
procedure to compute the approximation (10) is of some
tens of 3D steady-state problems (the cost related to the 1D
and algebraic problems being negligible with respect to the

3D problems). In a classical approach, one must solve for
each particular value of the parameter k a 3D problem at
each time step. In usual applications, this often implies the
computation of several millions of 3D solutions. Clearly, the
CPU time savings by applying the PGD can be of several or-
ders of magnitude.

3.2 Boundary Conditions as Extra-Coordinates

For the sake of simplicity we first consider the steady state
heat equation

∇ · (K · ∇u(x)
) + f (x) = 0 (16)

with x ∈ Ω ⊂ R3, subjected to the boundary conditions:
{

u(x ∈ Γd) = ug

(−K · ∇u)|x∈Γn · n = qg · n = qg

(17)

with K the conductivity tensor and n the outwards unit vec-
tor defined in the domain boundary Γn, with ∂Ω ≡ Γ =
Γd ∪ Γn and Γd ∩ Γn = ∅.

3.2.1 Neumann Boundary Condition as Extra-Coordinate

First, imagine that we are interested in knowing the model

solution for Mq values of the heat flux q1
g, . . . , q

Mq
g pre-

scribed on the domain boundary Γn, i.e. u(x;qi
g), i =

1, . . . , Mq . The space approximation is assumed given by
a standard finite element interpolation defined from Mx

nodes. As discussed previously one possibility lies in the
solution of the thermal model for the different values of the
prescribed flux, from which one could define a metamodel.
Thus, we must calculate the solution of Mq 3D steady state
heat problems and then store these solutions that involve
Mx · Mq data.

Another possibility consists of considering the prescribed
heat flux qg as an extra-coordinate defined in the interval

Iq = [q−
g , q+

g ] (with eventually q−
g = q1

g and q+
g = q

Mq
g )

and then solving only once the resulting 4D heat equation
for calculating the general parametric solution u(x, q). For
this purpose the solution is sought in the separated form

u(x, qg) ≈
N∑

i=1

Xi(x) · Qi(qg) (18)

In order to enforce the prescribed Dirichlet boundary
condition u(x ∈ Γd) = ug the simplest procedure consists of
choosing the first functional couple X1(x) · Q1(qg) in order
to ensure that u1(x ∈ Γd, qg) = X1(x ∈ Γd) · Q1(qg) = ug .
Thus, the remaining terms of the finite sum Xi(x), i > 1,
will be subjected to homogeneous essential boundary con-
ditions, i.e. Xi(x ∈ Γd) = 0, i > 1. Alternative possibilities
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for addressing Dirichlet boundary conditions consist of us-
ing penalty or Lagrange multiplier formulations. Other pos-
sibilities were considered in [34].

In order to use the approximation (18) we start by con-
sidering the weak form related to Eq. (16), that writes: Find
u(x) ∈ H 1(Ω), verifying u(x ∈ Γd) = ug , such that

∫

Ω

∇u∗ · (K · ∇u)dx =
∫

Γn

u∗ · (K · ∇u) · ndx

+
∫

Ω

u∗ · f (x) dx (19)

is verified ∀u∗ ∈ H 1(Ω), with u∗(x ∈ Γd) = 0.
By introducing the Neumann condition given in (17)

into (19) it results

∫

Ω

∇u∗ · (K · ∇u)dx = −
∫

Γn

u∗ · qg dx +
∫

Ω

u∗ · f (x) dx

(20)

For using the approximation (18) we must consider the
extended-weak form defined in the domain Ω × Iq

∫

Ω×Iq

∇u∗ · (K · ∇u)dx · dqg

= −
∫

Γn×Iq

u∗ · qg dx · dqg

+
∫

Ω×Iq

u∗ · f (x) dx · dqg (21)

that assuming at iteration n:

⎧
⎪⎪⎨

⎪⎪⎩

un(x, qg) = ∑n−1
i=1 Xi(x) · Qi(qg) + Xn(x) · Qn(qg)

= un−1(x, qg) + Xn(x) · Qn(qg)

u∗ = X∗(x) · Qn(qg) + Xn(x) · Q∗(qg)

(22)

with un−1(x, qg) known, we can compute the new couple
of unknown functions Xn(x) and Qn(qg) by applying the
alternated directions fixed point algorithm just summarized
and described in the annex for a generic parametric problem,
that is assumed to reach the fixed point with a prescribed
precision in mn iterations.

If we assume that the solution needs N terms in the fi-
nite sum, the solution will involve N · (Mx + Mq) data.
If we define m = ∑N

i=1 mi the separated representation so-
lution need the solution of m 3D problems for calculating
functions Xi(x), i = 1, . . . ,N , and m 1D problems for cal-
culating the functions Qi(qg), i = 1, . . . ,N . The comput-
ing cost related to the solution of the 1D problems can be

neglected with respect to the one associated with the so-
lution of the 3D problems. Thus, if m < Mq , PGD will
proceed faster than the solution of the model for the dif-
ferent values of the parameter qi

g , i = 1, . . . , Mq . From the
point of view of the data storage, PGD is superior as soon as
N · (Mx + Mq) < Mx · Mq .

When considering only one parameter as extra-coordinate
the superiority of PGD with respect to standard procedures
is not crucial, but as discussed previously, when the number
of extra-coordinates increases the benefit in using the PGD
is impressive.

3.2.2 Dirichlet Boundary Condition as Extra-Coordinate

In this section we consider that we are interested in consider-
ing the solution of model (16) for any value of ug in (17) in a
certain interval Iu = [u−

g , u+
g ]. For this purpose we consider

the function ϕ(x) continuous in Ω such that Δϕ ∈ L2(Ω)

and ϕ(x ∈ Γd) = 1. Thus, we can define the change of vari-
able [34]

u(x) = v(x) + ug · ϕ(x) (23)

that allows rewriting Eqs. (16) and (17) as:

∇ · (K · ∇v(x)
) + ug · ∇ · (K · ∇ϕ(x)

) + f (x) = 0 (24)

subjected to the boundary conditions:
{

v(x ∈ Γd) = 0

(−K · ∇v)|x∈Γn · n = ug · (K · ∇ϕ)|x∈Γn · n + qg

(25)

that results in the weak form
∫

Ω

∇v∗ · (K · ∇v)dx

= −
∫

Ω

∇v∗ · ug · (K · ∇ϕ)dx +
∫

Ω

v∗ · f (x) dx

−
∫

Γn

v∗ · qg dx −
∫

Γn

v∗ · ug · (K · ∇ϕ) · ndx (26)

that in fact only requires C 0 continuity of the function ϕ(x).
We can now introduce ug as extra-coordinate, searching

the solution in the separated form:

v(x, ug) ≈
N∑

i=1

Xi(x) · Ui(ug) (27)

that needs for the extended weak-form
∫

Ω×Iu

∇v∗ · (K · ∇v)dx · dug

= −
∫

Ω×Iu

∇v∗ · ug · (K · ∇ϕ) dx · dug
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+
∫

Ω×Iu

v∗ · f (x) dx · dug

−
∫

Γn×Iu

v∗ · qg dx · dug

−
∫

Γn×Iu

v∗ · ug · (K · ∇ϕ) · ndx · dug (28)

on which the alternated directions fixed point algorithm ap-
plies again to calculate the parametric solution (27).

3.2.3 Mixed Boundary Conditions as Extra-Coordinates

From the extended weak form
∫

Ω×Iu×Iq

∇v∗ · (K · ∇v)dx · dug · dqg

= −
∫

Ω×Iu×Iq

∇v∗ · ug · (K · ∇ϕ)dx · dug · dqg

+
∫

Ω×Iu×Iq

v∗ · f (x) dx · dug · dqg

−
∫

Γn×Iu×Iq

v∗ · qg dx · dug · dqg

−
∫

Γn×Iu×Iq

v∗ · ug · (K · ∇ϕ) · ndx · dug · dqg (29)

one could compute a parametric solution involving Dirichlet
and Neumann boundary conditions as extra-coordinates, i.e.
v(x, ug, qg) according to:

v(x, ug, qg) ≈
N∑

i=1

Xi(x) · Ui(ug) · Qi(qg) (30)

3.2.4 Non Constant Neumann Boundary Conditions

We consider that in Eq. (17) qg = qg(x), with x ∈ Γn. First
we assume that qg(x) can be approximated on Γn from:

qg(x) ≈
Sq∑

k=1

Qk
g · ξk(x) (31)

where x ∈ Γn and Qk
g represents the prescribed nodal fluxes,

i.e. Qk
g = gg(xk) at the nodal positions xk ∈ Γn.

Now, introducing the approximation (31) into the weak
form (20) it results

∫

Ω

∇u∗ · (K · ∇u)dx = −
∫

Γn

u∗ ·
( Sq∑

k=1

Qk
g · ξk(x)

)
dx

+
∫

Ω

u∗ · f (x) dx (32)

If the nodal fluxes Qk
g , k = 1, . . . , Sq , can take values

into the intervals I k
Q and we are interested to calculating the

general parametric solution u(x,Q1
g, . . . ,Q

Sq
g ), it suffices to

consider the extended weak form related to Eq. (32)
∫

Ω×I 1
Q×···×I Sq

Q

∇u∗ · (K · ∇u)dx · dQ1
g · · ·dQ

Sq
g

= −
∫

Γn×I 1
Q×···×I Sq

Q

u∗

·
( Sq∑

k=1

Qk
g · ξk(x)

)
dx · dQ1

g · · ·dQ
Sq
g

+
∫

Ω×I 1
Q×···×I Sq

Q

u∗ · f (x) dx · dQ1
g · · ·dQ

Sq
g (33)

and the solution separated representation

u
(
x,Q1

g, . . . ,Q
Sq
g

) ≈
N∑

i=1

Xi(x) ·
Sq∏

j=1

G
j
i

(
Q

j
g

)
(34)

Then, from Eqs. (33) and (34) we can compute the
parametric solution. In this case the use of the separated
representation is compulsory because the curse of dimen-
sionality that model (33) implies when Sq increases. Stan-
dard discretization strategies fail for solving the multi-
dimensional model (33) and the sampling of the paramet-
ric space becomes inefficient when its dimensionality in-
creases.

3.2.5 Non Constant Dirichlet Boundary Conditions

In this section we consider the solution of model (16) for
ug in Eq. (17) depending on the space, i.e. ug(x), x ∈ Γd . If
ug(x) can be approximated on Γd from

ug(x) ≈
Su∑

k=1

Uk
g · ηk(x) (35)

where Uk
g represents the prescribed nodal temperatures, i.e.

Uk
g = ug(xk) at the nodal positions xk ∈ Γd taking values in

the intervals I k
U .

To compute the parametric solution u(x,U1
g , . . . ,U

Su
g )

we first define the functions ϕk(x) continuous in Ω and veri-
fying Δϕk(x) ∈ L2(Ω), such that ϕk(x ∈ Γd) = ηk(x). Thus,
we can define the change of variable

u(x) = v(x) +
Su∑

i=1

Uk
g · ϕk(x) (36)

that leads to the weak form
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∫

Ω

∇v∗ · (K · ∇v)dx

= −
∫

Ω

∇v∗ ·
(

Su∑

k=1

Uk
g · (K · ∇ϕk)

)
dx

+
∫

Ω

v∗ · f (x) dx

−
∫

Γn

v∗ · qg dx

−
∫

Γn

v∗ ·
(

Su∑

k=1

Uk
g · (K · ∇ϕk) · n

)
dx (37)

We can consider now the separated form of the paramet-
ric solution

u
(
x,U1

g , . . . ,USu
g

) ≈
N∑

i=1

Xi(x) ·
Su∏

j=1

F
j
i

(
U

j
g

)
(38)

that will be constructed using some standard procedure (al-
ternated directions fixed point or residual minimization)
from the extended weak form:

∫

Ω×I 1
U ×···×I Su

U

∇v∗ · (K · ∇v)dx · dU1
g · · ·dUSu

g

= −
∫

Ω×I 1
U ×···×I Su

U

∇v∗

·
(

Su∑

i=1

Uk
g · (K · ∇ϕk)

)
dx · dU1

g · · ·dUSu
g

+
∫

Ω×I 1
U ×···×I Su

U

v∗ · f (x) dx · dU1
g · · ·dUSu

g

−
∫

Γn×I 1
U ×···×I Su

U

v∗ · qg dx · dU1
g · · ·dUSu

g

−
∫

Γn×I 1
U ×···×I Su

U

v∗

·
(

Su∑

i=1

Uk
g · (K · ∇ϕk) · n

)
dx · dU1

g · · ·dUSu
g (39)

3.3 Initial Conditions as Extra-Coordinates

We consider in this section the transient heat equation in a
homogeneous and isotropic medium

ρ · Cp · ∂u

∂t
= k · Δu + f (40)

t ∈ It = (0,Θ] ⊂ R, x ∈ Ω ⊂ R3 and f = cte. The initial
and boundary conditions read:

⎧
⎪⎨

⎪⎩

u(x ∈ Γd) = ug

(−k · ∇u)|x∈Γn · n = qg

u(x, t = 0) = u0(x)

(41)

The associated weak form reads:
∫

Ω

u∗ · ρ · Cp · ∂u

∂t
dx +

∫

Ω

∇u∗ · k · ∇u dx

= −
∫

Γn

u∗ · qg dx +
∫

Ω

u∗ · f (x) dx (42)

that includes explicitly the natural (Neumann) boundary
conditions. To prescribe both the initial and the essential
(Dirichlet) boundary conditions we proceed to define the
following functions:

û0(x) =
{

u0(x), x ∈ Ω

0, x ∈ Γ
(43)

Υ (t) =
{

1, t > 0

0, t = 0
(44)

and ϕ(x) continuous in Ω , verifying Δϕ ∈ L2(Ω) and the
essential boundary conditions

ϕ(x ∈ Γd) = ug (45)

We could define the function Σ(x, t) expressed in the
separated form

Σ(x, t) = û0(x) + ϕ(x) · Υ (t) (46)

that verifies the initial and essential boundary conditions.
However, functions û0 and Υ (t) are not regular enough to be
employed in the weak form of the problem. A direct regular-
ization consists in defining these functions at the nodal po-
sitions and then define interpolations with the required reg-
ularity. Thus, the discrete counterpart of functions û0 and
Υ (t) are given by:

û0(xk) =
{

u0(xk), xk ∈ Ω

0, xk ∈ Γ
(47)

and

Υ (tl) =
{

1, tl > 0

0, tl = 0
(48)

with k = 1, . . . ,1, . . . , Mx ; l = 1, . . . , Mt . Now, standard
interpolation is applied to the define functions û0(x) and
Υ (t) everywhere from theirs nodal values expressed by
Eqs. (47) and (48).
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By applying now the change of variable:

u(x, t) = v(x, t) + Σ(x, t) = v(x, t) + û0(x) + ϕ(x) · Υ (t)

(49)

the weak form (57) results:

∫

Ω

v∗ · ρ · Cp · ∂v

∂t
dx +

∫

Ω

∇v∗ · k · ∇v dx

= −
∫

Ω

v∗ · ρ · Cp · ϕ · ∂Υ

∂t
dx

−
∫

Ω

∇v∗ · k · ∇û0 dx

−
∫

Γn

v∗ · k · ∇û0 · ndx

−
∫

Γn

v∗ · qg dx −
∫

Ω

∇v∗ · k · Υ · ∇ϕ dx

−
∫

Γn

v∗ · k · Υ · ∇ϕ · n dx +
∫

Ω

v∗ · f (x) dx (50)

If the initial condition is approximated by

û0(x) ≈
S0∑

k=1

Uk
0 · ηk(x) (51)

after introducing it into the weak form (50) we obtain:

∫

Ω

v∗ · ρ · Cp · ∂v

∂t
dx +

∫

Ω

∇v∗ · k · ∇v dx

= −
∫

Ω

v∗ · ρ · Cp · ϕ · ∂Υ

∂t
dx

−
∫

Ω

∇v∗ · k ·
(

S0∑

k=1

Uk
0 · ∇ηk(x)

)
dx

−
∫

Γn

v∗ · k ·
(

S0∑

k=1

Uk
0 · ηk(x) · n

)
dx

−
∫

Γn

v∗ · qg dx −
∫

Ω

∇v∗ · k · Υ · ∇ϕ dx

−
∫

Γn

v∗ · k · Υ · ∇ϕ · ndx +
∫

Ω

v∗ · f (x) dx (52)

that allows us looking for a parametric solution v(x,U1
0 ,

. . . ,U
S0
0 ), with U

j

0 ∈ I j

0 = [(Uj

0 )−, (U
j

0 )+]

u
(
x,U1

0 , . . . ,U
S0
0

) ≈
N∑

i=1

Xi(x) ·
S0∏

j=1

U j
i

(
U

j

0

)
(53)

from the extended weak form
∫

Ω×I 1
0 ×···×I S0

0

v∗ · ρ · Cp · ∂v

∂t
dx · dU1

0 · · ·dU
S0
0

+
∫

Ω×I 1
0 ×···×I S0

0

∇v∗ · k · ∇v dx · dU1
0 · · ·dU

S0
0

= −
∫

Ω×I 1
0 ×···×I S0

0

v∗ · ρ · Cp · ϕ · ∂Υ

∂t
dx · dU1

0 · · ·dU
S0
0

−
∫

Ω×I 1
0 ×···×I S0

0

∇v∗ · k

·
(

S0∑

k=1

Uk
0 · ∇ηk(x)

)
dx · dU1

0 · · ·dU
S0
0

−
∫

Γn×I 1
0 ×···×I S0

0

v∗ · k

·
(

S0∑

k=1

Uk
0 · ηk(x) · n

)
dx · dU1

0 · · ·dU
S0
0

−
∫

Γn×I 1
0 ×···×I S0

0

v∗ · qg dx · dU1
0 · · ·dU

S0
0

−
∫

Ω×I 1
0 ×···×I S0

0

∇v∗ · k · Υ · ∇ϕ dx · dU1
0 · · ·dU

S0
0

−
∫

Γn×I 1
0 ×···×I S0

0

v∗ · k · Υ · ∇ϕ · ndx · dU1
0 · · ·dU

S0
0

+
∫

Ω×I 1
0 ×···×I S0

0

v∗ · f (x) dx · dU1
0 · · ·dU

S0
0 (54)

3.4 Geometrical Parameters as Extra-Coordinates

For the sake of clarity and without loss of generality we are
addressing in this section the transient one-dimensional heat
equation

∂u

∂t
= α · ∂2u

∂x2
+ f (55)

with t ∈ It = (0,Θ] ⊂ R, x ∈ Ω = (0,L) ⊂ R, f = cte

and u(x = 0, t) = u(x = L, t) = u(x, t = 0) = 0.
The associated space-time weak form reads:

∫

Ω×It

u∗ · ∂u

∂t
dx · dt = −α ·

∫

Ω×It

∂u∗

∂x
· ∂u

∂x
dx · dt

+
∫

Ω×It

u∗ · f dx · dt (56)

If we are interested in computing the solution u(x, t) in
many domains of length L ∈ [L−,L+] and for many time
intervals of length Θ = [Θ−,Θ+], more than solving the
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model for many possible choices in order to define a meta-
model, it is preferable to compute the parametric solution
u(x, t,L,Θ).

This parametric solution is sought in the separated form

u(x, t,L,Θ) ≈
N∑

i=1

Xi(x) · Ti(t) · Li (L) · Ti (Θ) (57)

However, Eq. (56) does not involve an explicit depen-
dence on the extra-coordinates L and Θ , both defining the
domain of integration. In order to explicit this dependence,
we consider the coordinates transformation
{

t = τ · Θ, τ ∈ [0,1]
x = λ · L, λ ∈ [0,1] (58)

In this case the weak form (56) reads:
∫

[0,1]2
u∗ · ∂u

∂τ
· Ldλ · dτ

= −α ·
∫

[0,1]2

∂u∗

∂λ
· ∂u

∂λ
· Θ

L
dλ · dτ

+
∫

[0,1]2
u∗ · f · L · Θ dλ · dτ (59)

that allows calculating the parametric solution derived from
(57) after applying the change of coordinates

u(λ, τ,L,Θ) ≈
N∑

i=1

X̃i(λ) · T̃i (τ ) · Li (L) · Ti (Θ) (60)

4 Accounting for Non-linearities

The treatment of non-linear models, compulsory for ob-
taining the handbook related to parametric non-linear mod-
els usually encountered in industrial applications, was ad-
dressed in some of our former works [6, 70] where standard
linearization procedures where extended to the PGD frame-
work. We start here by considering such procedures in order
to point out their inherent limitations before considering al-
ternative approaches.

We consider the same model that we considered in the
just referred woks:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t

− k · Δu = −u2 + f (x, t) in Ω × (0, Tmax]
u(x, t) = 0 on ∂Ω × (0, Tmax]
u(x,0) = 0 in Ω

(61)

where Ω ⊂ R
d, d ≥ 1, Tmax > 0 and k > 0 is the diffusion

coefficient. To build-up the approximated solution of (61)

by using a separated representation, we considered two ap-
proaches: (i) an incremental linearization and (ii) a Newton
linearization, both described below.

We write the solution of problem (61) in the separated
form

u(x, t) ≈
N∑

i=1

Xi(x) · Ti(t)

We suppose that at iteration n, with n < N , the n first
modes (Xi, Ti), i = 1, . . . , n, are already known and that at
present iteration we search the new enrichment functional
product R(x) · S(t) such that the updated approximation
writes

un+1(x, t) = un(x, t) + R(x) · S(t)

=
n∑

i=1

Xi(x) · Ti(t) + R(x) · S(t) (62)

The alternating directions scheme proceed by calculat-
ing R(x) from the temporal function S(t) just computed,
and then, updating R(x) from the just computed S(t) as we
described in the previous sections. The iteration procedure
should continue until reaching convergence.

– Incremental linearization
When using the simplest incremental linearization the

non-linear term u2 is calculated from the solution at the
previous enrichment iteration, that is, from un

u2 ≈
(

n∑

i=1

Xi(x) · Ti(t)

)2

(63)

– Newton linearization
From the solution at iteration n, un

un(x, t) =
n∑

i=1

Xi(x) · Ti(t) (64)

the solution at the next iteration can be written as un+1 =
un + ũ where ũ is the solution of the linearized problem

∂ũ

∂t
− k · Δũ + 2un ũ = −R

(
un

)
(65)

where the residual R(un) reads

R
(
un

) ≡
(

∂un

∂t
− k · Δun + (

un
)2 − f (x, t)

)
(66)

4.1 Discussion

Both procedures converge but no significant differences in
the number of required iterations were noticed. The con-
vergence rate and the computing time were similar. As dis-
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cussed in [55] even when the exact solution can be repre-
sented by a single functional product, i.e.

uex(x, t) = Xex(x) · T ex(t) (67)

the non linear solver produces a solution composed of many
sums

u(x, t) ≈
N∑

i=1

Xi(x) · Ti(t) (68)

with N > 1. The main reason is that the number of sums is in
this case subsidiary of the convergence rate of the non-linear
solver.

In [70] we analyzed other linearization schemes. When
we considered the improved fixed point, in which the non-
linear term is approximated at iteration q of the enrichment
step n, according to:

u2 ≈ (
un + R(q−1)(x) · S(q−1)(t)

)2 (69)

then we proved, in the case described above whose exact so-
lution consists of a single product, that the solver converges
after computing the first functional couple. In that sense the
solver is optimal but the computing time is similar to the
one required by using the standard fixed point or the New-
ton strategy previously described.

The main difficulty related to the use of standard lin-
earizations lies in the necessity of evaluating the non-linear
term. Because the necessity of arriving to a separated repre-
sentation of such term, one possibility consists in perform-
ing a polynomial expansion and then compute the differ-
ent powers of the solution at the previous step. However,
it is easy to understand that the power p of un involves
too many terms when p, n or the number of the coordi-
nates d involved in the model increase as can be noticed
from:

(
un(x1, . . . , xd)

)p =
(

n∑

i=1

F 1
i (x1) × · · · × Fd

i (xd)

)p

(70)

The issue related to the high powers could be allevi-
ated by introducing new variables vi such that v(2) = u · u,
v(3) = u3 = v(2) ·u, . . . that allows never compute more than
powers of degree 2.

However, in general the differential operators related to
the searched functional product involve the more and more
terms. Thus, when d , p or n increases the solution proce-
dure described in the previous sections become rapidly inef-
ficient.

In [55] we explored the asymptotic numerical method
that guarantees a constant number of terms to represent the
differential operator. It proceeds when addressing model (61)

by introducing the loading parameter λ affecting the non-
linear term

∂u

∂t
− k · Δu = −λ · u2 + f (x, t) (71)

We denote by u0 the solution related to λ = λ0 = 0 that
can be computed easily because it corresponds to the solu-
tion of the linear problem. The searched solution is the one
related to λ = 1. Now, we define an asymptotic expansion
of the unknown field u as well as of the loading parameter λ

by considering powers of the expansion parameter a:

{
u = u0 + a · u1 + a2 · u2 + · · ·
λ = λ0 + a · λ1 + a2 · λ2 + · · · (72)

The non linear term can be written as:

u2 = (
u2)

0 + a · (u2)
1 + a2 · (u2)

2 + · · · + ap · (u2)
p

+ · · ·
(73)

where (u2)p reads:

(
u2)

p
=

p∑

i=0

ui · up−i = 2 · u0 · up +
p−1∑

i=1

ui · up−i (74)

Introducing (72) and (74) into (61) and identifying the
different powers of a, it results a sequence of problems,
one at each order (power of a), all them having the same
differential operator, and whose right hand members de-
pend on the solutions computed at lower orders (see [55]
for additional details). Again, for higher powers, the intro-
duction of new variables avoids the computation of powers
higher than 2. Despite all these subtle advantages, in the gen-
eral multi-parametric case the computational complexity in-
creases too much, and moreover, these methods need to be
coupled with a continuation strategy when going beyond the
convergence disc of the expansion.

A promising alternative consists of interpolating the non-
linear term as proposed in [12], whose discrete counterpart,
the Discrete Empirical Interpolation Method—DEIM—was
given in [22], and then introducing such an interpolation
within the separated representation PGD constructor.

4.2 DEIM Based PGD for the Efficient Solution of
Non-linear Models

We consider the solution of

∂u

∂t
− k · Δu = L(u) + f (x, t) (75)

with homogeneous initial and boundary conditions and
where L(u) represents a nonlinear function of u.
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We first address the solution u0(x, t) of its linear coun-
terpart:

∂u0

∂t
− k · Δu0 = f (x, t) (76)

whose solution is found in a separated form by applying the
PGD. Thus, the solution of Eq. (76) writes:

u0(x, t) ≈
N0∑

i=1

X0
i (x) · T 0

i (t) (77)

that allows to define the reduced approximation basis B0 =
{X̃0

1 · T̃ 0
1 , . . . , X̃0

N0 · T̃ 0
N0} that contains the normalized func-

tions: X̃0
i = X0

i

‖X0
i ‖ and T̃ 0

i = T 0
i

‖T 0
i ‖ .

Now, we could define an interpolation of the nonlinear
function L(u) by using the basis B0. For this purpose we
consider N0 points (x0

j , t
0
j ), j = 1, . . . ,N0, and we enforce:

L
(
u0(x0

j , t
0
j

)) =
N0∑

i=1

ξ0
i · X̃0

i

(
x0
j

) · T̃ 0
i

(
t0
j

)
, j = 1, . . . ,N0

(78)

that represents a linear system of size N0 whose solution
allows calculating the coefficients ξ0

i .
As soon as these coefficients ξ0

i are known, the interpo-
lation of the nonlinear term is fully defined:

L0 ≡ L
(
u0(x, t)

) ≈
N0∑

i=1

ξ0
i · X̃0

i (x) · T̃ 0
i (t) (79)

that is introduced into the original nonlinear problem lead-
ing to the linear problem involving now u1(x, t)

∂u1

∂t
− k · Δu1 = L0(u) + f (x, t) (80)

Now for calculating the solution u1(x, t) many choices
exist, being the most direct ones, among many others:

– Restart the separated representation, i.e.:

u1(x, t) ≈
N1

s∑

i=1

X1
i (x) · T 1

i (t) (81)

– Reuse the solution u0:

u1(x, t) ≈ u0(x, t)+
Nr∑

i=1

X1
i (x) ·T 1

i (t) =
N1

r∑

i=1

X1
i (x) ·T 1

i (t)

(82)

– Reuse by projecting. In this case first we consider

u1,0(x, t) ≈
N0∑

i=1

ηi · X̃0
i (x) · T̃ 0

i (t) (83)

that introduced into (80) allows computing the coeffi-
cients ηi . Then the approximation is enriched by consid-
ering

u1(x, t) ≈
N0∑

i=1

ηi · X̃0
i (x) · T̃ 0

i (t) +
Np∑

i=1

X1
i (x) · T 1

i (t)

=
N1

p∑

i=1

X1
i (x) · T 1

i (t) (84)

We define both, N1 as the number of final approximation
functions, N1

s , N1
r or N1

p depending on the previous choice,

and the associated reduced approximation basis B1 = {X̃1
1 ·

T̃ 1
1 , . . . , X̃1

N1 · T̃ 1
N1}. Now the nonlinear term is interpolated

again from N1 points (x1
j , t

1
j ), j = 1, . . . ,N1:

L1 ≡ L
(
u1(x, t)

) ≈
N1∑

i=1

ξ1
i · X̃1

i (x) · T̃ 1
i (t) (85)

that is introduced into the original nonlinear problem lead-
ing to the linear problem involving now u2(x, t). The just
described procedure is repeated until reaching convergence.

The only point that deserves additional comments is the
one related to the choice of the interpolation points (xk

j , t
k
j ),

j = 1, . . . ,Nk at iteration k. At this iteration the reduced
approximation basis reads:

Bk = {
X̃k

1 · T̃ k
1 , . . . , X̃k

Nk · T̃ k
Nk

}
(86)

Following [12] and [22] we consider

(
xk

1, t
k
1

) = argmax
x,t

∣∣X̃k
1(x) · T̃ k

1 (t)
∣∣ (87)

then we compute d1 from

d1 · X̃k
1

(
xk

1

) · T̃ k
1

(
tk1

) = X̃k
2

(
xk

1

) · T̃ k
2

(
tk1

)
(88)

that allows defining rk
2 (x, t)

rk
2 (x, t) = X̃k

2(x) · T̃ k
2 (t) − d1 · X̃k

1(x) · T̃ k
1 (t) (89)

from which computing point (xk
2, t

k
2 ) according to:

(
xk

2, t
k
2

) = argmax
x,t

∣∣rk
2 (x, t)

∣∣ (90)

As by construction rk
2 (xk

1, t
k
1 ) = 0 we can ensure

(xk
2, t

k
2 ) �= (xk

1, t
k
1 ).
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The procedure is generalized for obtaining the other
points involved in the interpolation procedure. Thus for ob-
taining point (xk

j , t
k
j ), j ≤ k, we consider

rk
j (x, t) = X̃k

j (x) · T̃ k
j (t) −

j−1∑

i=1

di · X̃k
i (x) · T̃ k

i (t) (91)

whose maximum results the searched point (xk
j , t

k
j ), i.e.

(
xk
j , t

k
j

) = argmax
x,t

∣∣rk
j (x, t)

∣∣ (92)

The coefficients d1, . . . , dj−1 must be chosen for ensur-
ing that (xk

j , t
k
j ) �= (xk

i , t
k
i ), ∀i < j ≤ k. For this purpose we

enforce that the residual rk
j (x, t) vanishes at each location

(xk
i , t

k
i ) with i < j , that is:

rk
j

(
xk
l , t

k
l

)

= 0 = X̃k
j

(
xk
l

) · T̃ k
j

(
tkl

) −
i=j−1∑

i=1

di · X̃k
i

(
xk
l

) · T̃ k
i

(
tkl

)
,

l = 1, . . . , j − 1 (93)

that constitutes a linear system whose solution results the
searched coefficients d1, . . . , dj−1.

4.3 DEIM-PGD Numerical Test

In this section we consider the one-dimensional model

∂u

∂t
− k · ∂2u

∂x2
= −u2 + f (x, t), (x, t) ∈ (0,1) × (0,1]

(94)

where the source term f (x, t) is chosen in order to ensure
that the exact solution writes

u(x, t) = x · t + x2 · t2 (95)

that represents a separated solution involving two terms.
With this choice the initial condition reads u(x, t = 0) =

0 whereas the boundary conditions are given by u(x =
0, t) = 0 and ∂u

∂x
(x = 1, t) = t + 2 · t2.

Using the notation introduced in the previous section
and the strategy that reuses the previous reduced bases (see
Eq. (82)), the convergence was reached after the construc-
tion of 5 reduced bases (k = 5) in which the nonlinear term
was interpolated. The final solution involved 40 (Nk = 40)
functional products Xk

i (x) · T k
i (t), i = 1, . . . ,40. Figures 1

and 2 depict the six first space and time modes respectively.
Then Fig. 3 compares the time evolution at different loca-
tions obtained with the DEIM based PGD and the exact solu-
tion. Finally Fig. 4 shows the space-time DEIM based PGD
solution. From these results we can conclude on the po-
tentiality of the proposed technology for solving non-linear
eventually multi-parametric models.

Fig. 1 Space modes: Xk
i (x), i = 1, . . . ,6
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Fig. 2 Time modes: T k
i (t), i = 1, . . . ,6

Fig. 3 DEIM based PGD solution versus the exact one

Fig. 4 Space-time
reconstructed DEIM based PGD
solution
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5 Vademecums for Industrial Applications

As just illustrated usual computational mechanics models
could be enriched by introducing several extra-coordinates.
Thus, adding some new coordinates to models initially non
high-dimensional, could lead to new, never before explored
insights in the physics as previously illustrated in the context
of a parametric thermal models.

Next, we review some of the most representative exam-
ples explored so far.

5.1 Geometrical and Material Parameters

Classical design strategies consider given parameters and
then solve the mechanical problem. A cost function is eval-
uated as soon as the solution is available. If the solution is
not good enough, parameters are updated by using an ap-
propriate optimization strategy and then the model is solved
again, and the process continues until reaching convergence.
The main drawback lies in the fact that numerous resolutions
are generally needed with the consequent impact in terms of
the computing time.

As explained before, if all the parameters involved in the
design process are considered as extra-coordinates (just like
space and time in standard models) a unique solution of the
resulting multidimensional model allows knowing the solu-
tion for any choice of the parameters considered as extra-
coordinates. The price to pay is the solution of a multidi-
mensional model. However, this solution is feasible by in-
voking the PGD solver and its inherent separated representa-
tion. This allows circumventing the curse of dimensionality.

This kind of parametric modelling was addressed
in [9, 11, 25, 70] where material parameters were intro-
duced as extra-coordinates. In [51], thermal conductivities,
macroscopic temperature and its time evolution were intro-
duced as extra-coordinates for computing linear and non-
linear homogenization.

In [17] we proved that the PGD method with separated
space coordinates is a very efficient way to compute 3D
elastic problems defined in degenerated domains (plate or
shells) with a numerical cost that scales like 2D. The key
point for such an approach is to use a separated represen-
tation for each quantity of the model as a sum of products
of functions of each coordinate or group of coordinates. In
he case of a plate the retained separated representation of a
generic function u(x, y, z) reads:

u(x, y, z) ≈
N∑

i=1

Xi(x, y) · Zi(z) (96)

In this work, we consider additional model parameters as
extra-coordinates. In addition to the 3 dimensions describing
the physical space, we add new coordinates related to the
Young’s modulus E, to the Poisson’s coefficient ν and to the

geometrical parameter e depicted in Fig. 5. Thus separated
representations write:

u(x, y, z,E, ν, e)

≈
N∑

i=1

Xi(x, y) · Zi(z) · Fi(E) · Hi(ν) · Gi(e) (97)

For and efficient solution of the mechanical model mak-
ing use of a separated representation we must ensure a sep-
arated representation of all the fields involved in the model.
However, there is a technical difficulty because the coor-
dinates e and z are not independent. In order to perform a
fully separated representation we could consider the follow-
ing transformation z → z′:
⎧
⎪⎪⎨

⎪⎪⎩

z′ = z
e

z ∈ [0, e]
z′ = 1 + z−e

h
z ∈ [e, e + h]

z′ = 2 + z−h−e
e

z ∈ [e + h, e + h + e]
(98)

Thus, finally z′ ∈ [0,3] and e ∈ Ωe , both being indepen-
dents, lead to a fully separated representation. The compo-
nents of the Jacobian matrix are 1

e
or 1

h
that facilitates the

change of variable in the resulting weak form related to the
elastic model.

In the numerical example here addressed we considered
ν ∈ [0,0.5], E ∈ [5,500] (GPa) and e ∈ [5,20] (mm) that al-
low to describe a large variety of isotropic material: plastics,
metals, alloys, . . . .

As soon the parametric solution is computed by solving
only once the resulting multidimensional model (defined in
this case in a space of dimension 6) we can particularize it
for different materials (by choosing appropriate values of E

or ν) or for different geometries (by choosing e). Figure 6

Fig. 5 Parametrized part

Fig. 6 Parts related to different choices of the model parameter e
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Fig. 7 Add-on developed for
the open source post-processing
code ParaView. The three sliders
on the bottom-right menu
control, respectively, the
Poisson coefficient, Young’s
modulus and thickness e

Fig. 8 Composite laminate analysis on a smartphone

illustrates the same part for two values of the parameter e,
while Fig. 7 shows the appearance of the application.

In [17], the anisotropy directions of plies involved in a
composite laminate were considered as extra-coordinates.
As soon as the separated representation of the parametric
solution was computed off-line, its on-line use only needs
to particularize such solution for a desired s et of parame-
ters. Obviously, this task can be performed very fast, many
times in real time, and by using light computing platforms,
as smartphones or tablets. Figure 8 illustrates a smartphone
application [17] in which the elastic solution of a two-plies
composite laminate was computed by introducing the fiber
orientation in each ply, θ1 and θ2, as extra-coordinates

uj (x, y, z, θ1, θ2)

≈
N∑

i=1

X
j
i (x, y) · Zj

i (z) · Θj,1
i (θ1) · Θj,2

i (θ2) (99)

Then one can visualize each component of the displace-
ment field, by particularizing the z-coordinate from the hor-

Fig. 9 Deformation envelope generated by all combinations of the re-
inforcement orientations of the top and bottom plies

izontal slider as well as the orientation of the reinforcement
in both plies from both vertical sliders. Obviously when the
laminate is equilibrated there is no noticeable deformations
and the plate remains plane, but as soon as we consider an
unbalanced laminate by acting on both vertical sliders, the
plate exhibits a residual distortion. By assuming a certain
uncertainty in the real orientation of such plies, one can eval-
uate the envelope of the resulting distorted structures due to
the thermomechanical coupling as depicted in Fig. 9.

5.2 Inverse Identification and Optimization

It is easy to understand that after performing this type of
calculations, in which parameters are considered advanta-
geously as new coordinates of the model, a posteriori inverse
identification or optimization can be easily handled. This
new PGD framework allows us to perform this type of calcu-
lations very efficiently, because in fact all possible solutions
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have been previously computed in the form of a separated,
high-dimensional solution so that they constitute a simple
post-processing of this general solution. Process optimiza-
tion was considered in [31], for instance. Shape optimization
was performed in [54] by considering all the geometrical pa-
rameters as extra-coordinates, leading to the model solution
in any of the geometries generated by the parameters con-
sidered as extra-coordinates.

We consider the Laplace equation defined in the para-
metrized domain Ωr described from 12 control points P r

i ,
i = 1, . . . ,12, with coordinates

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P r
1 = (0,0)

P r
2 = (1,0)

P r
3 = (2,0)

P r
4 = (3,0)

P r
5 = (4,0)

P r
6 = (5,0)

P r
7 = (5,1)

P r
8 = (4,1)

P r
9 = (3,1)

P r
10 = (2,1)

P r
11 = (1,1)

P r
12 = (0,1)

(100)

Different polygonal domains Ω are obtained by moving
vertically points P r

i , i = 7, . . . ,12, being defined by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = (0,0)

P2 = (1,0)

P3 = (2,0)

P4 = (3,0)

P5 = (4,0)

P6 = (5,0)

P7 = (5,1 + θ1)

P8 = (4,1 + θ2)

P9 = (3,1 + θ3)

P10 = (2,1 + θ4)

P11 = (1,1 + θ5)

P12 = (0,1 + θ6)

(101)

with θi ∈ [−0.3,0.3], i = 1, . . . ,6.
The resulting separated representation of the solution in-

volves 70 terms

Fig. 10 Comparing u(x, θ1 = −0.3, θ2 = 0.3, θ3 = 0.3, θ4 =
−0.3, θ5 = 0.3, θ6 = 0.3) with the finite element solution u(x), x ∈ Ω ,
with Ω defined by θ1 = −0.3, θ2 = 0.3, θ3 = 0.3, θ4 = −0.3, θ5 = 0.3,
θ6 = 0.3

u(x, θ1, θ2, θ3, θ4, θ5, θ6)

≈
70∑

i=1

Fi(x) · Θ1i (θ1) · Θ2i (θ2) · Θ3i (θ3) · Θ4i (θ4)

· Θ5i (θ5) · Θ6i (θ6) (102)

Figure 10 compares the particularization of the gen-
eral solution (102) when considering the geometry de-
fined by (θ1, . . . , θ6) = (−0.3,0.3,0.3,−0.3,0.3,0.3), that
is u(x, θ1 = −0.3, θ2 = 0.3, θ3 = 0.3, θ4 = −0.3, θ5 = 0.3,

θ6 = 0.3) with the finite element solution in such a domain.
We can conclude that both solutions are in perfect agree-
ment. It is important to notice that as the interval in which
coordinates θi (i = 1, . . . ,6) are defined [−0.3,0.3] were
discretized by suing 13 nodes uniformly distributed, the
separated representation (102) represents the solution for
136 different geometries, that is, for 4,826,809 possible do-
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main geometries. Again, the analysis can be performed in
deployed devices like smartphones or tablets, in real time.

5.3 PGD Based Dynamic Data Driven Application
Systems

Inverse methods in the context of real-time simulations were
addressed in [35] and were coupled with control strategies
in [32] as a first step towards DDDAS (dynamic data-driven
application systems). Moreover, because the general para-
metric solution was pre-computed off-line, it can be used
on-line under real time constraints and using light comput-
ing platforms like smartphones [17, 32], that constitutes a
first step towards the use of this kind of representation in
augmented reality platforms.

Traditionally, Simulation-based Engineering Sciences
(SBES) relied on the use of static data inputs to perform the
simulations. These data could be parameters of the model(s)
or boundary conditions, outputs at different time instants,
etc., traditionally obtained through experiments. The word
static is intended here to mean that these data could not be
modified during the simulation.

A new paradigm in the field of Applied Sciences and En-
gineering has emerged in the last decade. Dynamic Data-
Driven Application Systems (DDDAS) constitute nowa-
days one of the most challenging applications of SBES. By
DDDAS we mean a set of techniques that allow the link-
age of simulation tools with measurement devices for real-
time control of simulations and applications. As defined by
the U.S. National Science Foundation, “DDDAS entails the
ability to dynamically incorporate additional data into an ex-
ecuting application, and in reverse, the ability of an applica-
tion to dynamically steer the measurement process” [75].

An important issue encountered in DDDAS, related to
process control and optimization, inverse analysis, etc., lies
in the necessity of solving many direct problems. Thus, for
example, process optimization implies the definition of a
cost function and the search of optimum process parame-
ters, which minimize the cost function. In most engineering
optimization problems the solution of the model is the most
expensive step. Real-time computations with zero-order op-
timization techniques can not be envisioned except for very
particular cases. The computation of sensitivity matrices and
adjoint approaches also hampers fast computations. More-
over, global minima are only ensured under severe condi-
tions, which are not (or cannot be) verified in problems of
engineering interest.

Multidimensionality offers an alternative getaway to
avoid too many direct solutions. In this section the main
ideas related to casting the model into a multidimensional
framework, followed by process optimization, are intro-
duced. For the sake of clarity in what follows we consider
the thermal model related to a material flowing into a heated

Fig. 11 Thermal process consisting of two heating devices located on
the die walls where the temperature is enforced to the values θ1 and θ2
respectively

die. Despite the apparent simplicity, the strategy here de-
scribed can be extended to address more complex scenarios.

For illustrative purposes we consider the 2D thermal pro-
cess sketched in Fig. 11. The material flows with a velocity
v inside a die Ω of length L and width H . The temperature
of the material at the die entrance is u0. The die is equipped
with two heating devices of lengths L1 and L2 respectively,
whose temperatures θ1 and θ2 respectively, can range within
an interval [θmin, θmax].

The die is equipped with two heating devices as depicted
in Fig. 11 whose temperatures constitute the process param-
eters to be optimized and, eventually, controlled. For the
sake of simplicity the internal heat generation Q is assumed
constant, as well as the velocity v and the inlet temperature
u0.

Different values of prescribed temperatures at both heat-
ing devices can be considered. The resulting 2D heat transfer
equation can be then solved. As noted earlier, optimization
or inverse identification will require many direct solutions
or, as named in the introduction, static data computations.
Obviously, when the number of the process parameters in-
volved in the model is increased, standard approaches fail
to compute optimal solutions in a reasonable time. Thus,
for a large number of process parameters, real-time compu-
tations are precluded and, moreover, performing “on-line”
optimization or inverse analysis is a challenging issue.

The method proposed in [32] consists on introducing
both process parameters, i.e. temperatures of the heating de-
vices, θ1 and θ2, as extra coordinates.

To circumvent the curse of dimensionality related to
the high dimensional space in which the temperature field
u(x, y, θ1, θ2) is defined—which we retain to be four-
dimensional for the ease of exposition—we consider a sep-
arated representation of that field:

u(x, y, θ1, θ2) ≈
N∑

i=1

Fi(x, y)Θ1
i (θ1)Θ

2
i (θ2) (103)

where all the functions involved in such separated represen-
tation are computed by applying the Proper Generalized De-
composition technique, described previously.
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Optimization procedures look for optimal parameters
minimizing an appropriate single or multi objective cost
function (sometimes subjected to many constraints). In this
work we consider a simple scenario, in which the cost func-
tion only involves the coldest thermal history of an imagi-
nary material particle traversing the die, it is expressed as:

C(θ1, θ2) = 1

2

(∫ L

0
u

(
x, H

2 , θ1, θ2

)
dx − β

)2

, (104)

where β denotes the optimal value of the thermal history
able to ensure a certain material transformation. Values
lower than β imply that the material has not received the
necessary amount of heat, whereas values higher than β im-
ply an unnecessary extra-heating.

Now, optimal process parameters θ
opt
1 and θ

opt
2 must

be calculated by minimizing the cost function. There ex-
ist many techniques for such minimization. The interested
reader can refer to any book on optimization. Many of them
proceed by evaluating the gradient of the cost function and
then moving on that direction. The gradient computation in-
volves the necessity of performing first derivatives of the
cost function with respect to the process parameters. Other
techniques involve the calculation of second derivatives. To
this end, one should calculate the derivatives of the problem
solution with respect to the optimization parameters.

It is important to note that separated representations of
the process parameters drastically simplifies this task be-
cause as the solution depends explicitly on the parameters
its derivation is straightforward, namely,

∂u

∂θ1
(x, y, θ1, θ2) ≈

N∑

i=1

Fi(x, y)
∂Θ1

i

∂θ1
(θ1)Θ

2
i (θ2),

and

∂u

∂θ2
(x, y, θ1, θ2) ≈

N∑

i=1

Fi(x, y)Θ1
i (θ1)

∂Θ2
i

∂θ2
(θ2)

Note that second derivatives are also similarly obtained. The
calculation of the solution derivatives is a tricky point when
proceeding from standard discretization techniques because
the parametric dependency of the solution is, in general, not
explicit.

In the simulations carried out in [17], the minimization
of the cost function was performed by using a Levenberg-
Marquardt algorithm, see [30] for further details.

By performing an inverse analysis it is also possible
to determine a hypothetical malfunctioning of the system,
along with the determination of the broken heater. This in-
verse identification can easily be done in real-time by min-
imizing a new cost function involving the distance of the
measurements to the optimal solution obtained before. The

Fig. 12 Implementation of the technique described before on an
iPhone. Simple formats such as the epub open format, that enables
javascript, suffices implement this technique

last step consists in the reconfiguration of the system, as-
suming that the broken heater cannot be replaced for a
while. Again, a minimization procedure of the cost func-
tion, Eq. (104), this time with one fixed temperature (that of
the broken heater) serves to this purpose. An implementa-
tion of this procedure on a smartphone can be done easily,
see Fig. 12.

5.4 Surgery Simulators

As mentioned before, surgical simulators must provide feed-
back response frequencies higher than 500 Hz. This means
that we must solve problems involving material and geomet-
rical nonlinearities close to one thousand times per second.
It is now clear that the use of model reduction seems to be an
appealing alternative for reaching such performances. How-
ever, techniques based on the use of POD, POD with inter-
polation (PODI), even combined with asymptotic numerical
methods to avoid the computation of the tangent stiffness
matrix [28, 54], exhibit serious difficulties to fulfil such re-
quirements as discussed in [60–63].

Here, parametric solutions are envisaged in which the ap-
plied load p and its point of application y are considered
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Fig. 13 Towards real time
surgical simulations based on
parametric PGD-based
vademecums

as extra-coordinates, allowing the off-line calculation of the
parametric solution:

uj (x,p,y) ≈
N∑

i=1

X
j
i (x) · P j

i (p) · Y j
i (y) (105)

Again, the obtained, off-line, solution is exploited in real
time even on smartphones and tablets, see Fig. 13 for an
Android implementation.

For a liver palpation simulation, for instance, model’s so-
lution was composed by a total of N = 167 functional pairs.
The third component (thus j = 3) of the first six spatial
modes X(x) is depicted in Fig. 14. The same is done in
Fig. 15 for functions Y, although in this case they are de-
fined only on the boundary of the domain, i.e., Γ̄ = ∂Ω .

In this case, an explicit linearization of the resulting sys-
tem of equations was employed, although other more so-
phisticated techniques could equally be employed.

Noteworthy, both X and Y sets of functions present a
structure similar to that generated by Proper Orthogonal De-
compositions methods, despite the fact that they are not, in
general, optimal. Note how the frequency content of each
pair of functions increases as we increase the number of the
function, k.

The solution provided by the method agrees well with
reference FE solutions obtained employing full-Newton-
Raphson iterative schemes (following the same tendency
than that shown for the beam bending problem). But, no-
tably, the computed solution can be stored in a so compact
form that an implementation of the method is possible on
handheld devices such as smartphones and tablets. For more
sophisticated requirements, such as those dictated by hap-
tic peripherals, a simple laptop (in our case a MacBook pro
running MAC OSX 10.7.4, equipped with 4 Gb RAM and
an Intel core i7 processor at 2.66 GHz) is enough to achieve
this performance, see Fig. 16.

5.5 Other Industrial Applications

In [27, 69] authors addressed an industrial application for
on-line simulation and material and process characterization
of automated tape placement for composite forming pro-
cesses. This application is at present running at the industrial
level in different platforms: laptop, tablets and smartphones.
Its application for training purposes is being explored, and
the first accomplishments were reported in [18].

6 Conclusions

In this paper we proved that models can be enriched by in-
troducing model parameters as extra-coordinates. Thus, one
can introduce boundary conditions, material or process pa-
rameters, initial conditions, geometrical parameters, . . . as
extra-coordinates in order to compute general parametric so-
lutions that define a sort of handbook or metamodels, much
more rich that the ones obtained by sampling the parametric
space. The price to be paid is the increase of the model di-
mensionality, but the separated representations involved in
the so called PGD method allows circumventing efficiently
this numerical illness. Moreover, the parametric solution is
calculated in a sort of compressed format allowing for cheap
storage and post-treatment. Thus, only one off-line heavy
solution is needed for computing the parametric solution
that constitutes the computational vademecum that is then
used on-line, sometimes in real time, in deployed devices as
tablets or smartphones.

This off-lie/on-line approach opens numerous possibili-
ties in the context of simulation based engineering for sim-
ulating, optimizing or controlling materials, processes and
systems.

Until now, the results obtained are very encouraging,
however a major difficulty persists: the one related to the so-
lution of parametric non-linear models involving multi-scale
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Fig. 14 Six first functions X(x), k = 1, . . . ,6, for the simulation of the liver
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Fig. 15 Six first functions Y(y), k = 1, . . . ,6, for the simulation of the liver. Note that, in this case, functions Y(y) are defined on the boundary of
the liver only



56 F. Chinesta et al.

Fig. 16 Implementation of the proposed technique on a PC

and multi-physics complex couplings. For this purpose dif-
ferent alternatives have been analyzed.

If the next future non-linear parametric models can be ad-
dressed with the same simplicity than the linear ones, para-
metric PGD based vademecums could open a new age for
the XXI century design, optimization and control of mate-
rials, processes and systems, revolutionizing the ICTs tech-
nologies.

Appendix: Alternating Directions Separated
Representation Constructor

A.1 Computing R(x) from S(t) and W(k)

We consider the extended weighted residual form of Eq. (8):

∫

Ω×It×Ik

u∗
(

∂u

∂t
− k · Δu − f

)
dx · dt · dk = 0 (106)

where the trial and test functions write respectively:

un(x, t, k) =
n−1∑

i=1

Xi(x) · Ti(t) · Ki(k) + R(x) · S(t) · W(k)

(107)

and, assuming S and W known from the previous iteration,

u∗(x, t, k) = R∗(x) · S(t) · W(k) (108)

Introducing (107) and (108) into (106) it results:
∫

Ω×It×Ik

R∗ · S · W

·
(

R · ∂S

∂t
· W − k · ΔR · S · W

)
dx · dt · dk

= −
∫

Ω×It×Ik

R∗ · S · W ·Rn−1 dx · dt · dk (109)

where Rn−1 defines the residual related to un−1(x, t, k):

Rn−1 =
n−1∑

i=1

Xi ·∂Ti

∂t
· Ki −

n−1∑

i=1

k · ΔXi · Ti · Ki − f (110)

Once all functions involving time and conductivity have
been determined, we can integrate Eq. (109) along its re-
spective domains It × Ik , and by taking into account the
following notations:

⎡

⎢⎢⎢⎢⎢⎢⎣

w1 = ∫
Ik

W 2 dk s1 = ∫
It

S2dt r1 = ∫
Ω

R2 dx

w2 = ∫
Ik

kW 2 dk s2 = ∫
It

S · dS
dt

dt r2 = ∫
Ω

R · ΔR dx

w3 = ∫
Ik

W dk s3 = ∫
It

S dt r3 = ∫
Ω

R dx

wi
4 = ∫

Ik
W · Ki dk si

4 = ∫
It

S · dTi

dt
dt ri

4 = ∫
Ω

R · ΔXi dx

wi
5 = ∫

Ik
kW · Ki dk si

5 = ∫
It

S · Ti dt ri
5 = ∫

Ω
R · Xi dx

⎤

⎥⎥⎥⎥⎥⎥⎦

(111)

Equation (109) is reduced to:
∫

Ω

R∗·(w1 · s2 · R − w2 · s1 · ΔR) dx

= −
∫

Ω

R∗·
(

n∑

i=1

wi
4 · si

4 · Xi

−
n∑

i=1

wi
5 · si

5 · ΔXi − w3 · s3 · f
)

dx (112)

Equation (112) defines an elliptic steady-state boundary
value problem that can be solved by using any discretization
technique operating on the weak form of the problem (finite
elements, finite volumes, . . . ). Another possibility consists
in coming back to the strong form of Eq. (112):

w1 · s2 · R − w2 · s1 · ΔR

= −
(

n∑

i=1

wi
4 · si

4 · Xi −
n∑

i=1

wi
5 · si

5 · ΔXi − w3 · s3 · f
)

(113)

that could be solved by using any classical collocation tech-
nique (finite differences, SPH, . . . ).

A.2 Computing S(t) from R(x) and W(k)

In the present case the test function is written as:

u∗(x, t, k) = S∗(t) · R(x) · W(k) (114)

Now, the weighted residual form becomes:
∫

Ω×It×Ik

S∗ · R · W

·
(

R · ∂S

∂t
· W − k · ΔR · S · W

)
dx · dt · dk

= −
∫

Ω×It×Ik

S∗ · R · W ·Rn−1 dx · dt · dk (115)
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that integrating in the space Ω × Ik and by taking into ac-
count the notation (111) results:
∫

It

S∗·(w1 · r1 · dS

dt
− w2 · r2 · S)dt

= −
∫

It

S∗·
(

n∑

i=1

wi
4 · ri

5 · dTi

dt

−
n∑

i=1

wi
5 · ri

4 · Ti − w3 · r3 · f
)

dt (116)

Equation (116) represents the weak form of the ODE defin-
ing the time evolution of the field S that can be solved by
using any stabilized discretization technique (SU, Discon-
tinuous Galerkin, . . . ). The strong form of Eq. (116) reads:

w1 · r1 · dS

dt
− w2 · r2 · S

= −
(

n∑

i=1

wi
4 · ri

5 · dTi

dt
−

n∑

i=1

wi
5 · ri

4 · Ti − w3 · r3 · f
)

(117)

Equation (117) can be solved by using backward finite
differences, or higher order Runge-Kutta schemes, among
many other possibilities.

A.3 Computing W(k) from R(x) and S(t)

In this part of the algorithm, the test function is written as:

u∗(x, t, k) = W ∗(k) · R(x) · S(t) (118)

Now, the weighted residual form becomes:
∫

Ω×It×Ik

W ∗ · R · S

·
(

R · ∂S

∂t
· W − k · ΔR · S · W

)
dx · dt · dk

= −
∫

Ω×It×Ik

W ∗ · R · S·Rn−1 dx · dt · dk (119)

Integrating Eq. (119) in Ω × It and considering the nota-
tions given by Eq. (111) leads to:
∫

Ik

W ∗·(r1 · s2 · W − r2 · s1 · k · W)dk

= −
∫

Ik

W ∗·
(

n∑

i=1

ri
5 · si

4 · Ki

−
n∑

i=1

ri
4 · si

5 · k · Ki − r3 · s3 · f
)

dk (120)

Equation (120) does not involve any differential operator.
The strong form of Eq. (120) is:

(r1 · s2 − r2 · s1 · k) · W

= −
(

n∑

i=1

(
ri

5 · si
4 − ri

4 · si
5 · k) · Ki − r3 · s3 · f

)
(121)

Equation (121) represents an algebraic equation because the
original model does not involve derivatives with respect to
the conductivity. Thus, despite the introduction of param-
eters as additional model coordinates, the computational
complexity remains essentially the same, however, the intro-
duction of extra-coordinates implies in general the increase
of the number of modes involved by the separated represen-
tation, and consequently the computing time.
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