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Abstract In this paper recent developments for mesolevel
modeling of failure in composite laminates are reviewed.
The complexity of failure processes in composite laminates
presses the need for reliable computational tools that can
predict strength and damage tolerance. In mesolevel model-
ing, where individual layers are modeled separately but in-
dividual fibers are not, different failure processes are distin-
guished such as delamination, fiber failure and matrix fail-
ure. This paper deals with the question how these different
processes should be treated for efficient and realistic com-
putational modeling of failure. The development that is cen-
tral in this review is the use of the extended finite element
method (XFEM) for matrix cracks. Much attention is also
paid to algorithmic aspects of implicit analysis of complex
failure mechanisms, particularly but not exclusively in rela-
tion to XFEM. Furthermore, the remaining limitations and
challenges for mesolevel analysis of composite failure are
discussed.

Keywords Mesolevel modeling of failure in composite
laminates: constitutive · Kinematic and algorithmic aspects

1 Introduction

Composite laminates are attractive engineering materials for
their high strength and stiffness with low weight. They are
increasingly applied in the aircraft, automotive and wind tur-
bine industry and they have potential for use in slender struc-
tures in civil and building engineering. Different composite
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designs exist such as woven, braided and non-crimp fabric,
but the relatively traditional laminate made of unidirectional
plies remains a dominant form. Yet, limitations in the under-
standing and modeling of the behavior of these composite
laminates slows down their rise in engineering practice.

The advantageous properties of composite laminates
stem partially from the same feature as the challenges in
understanding and predicting their behavior, namely from
the multiscale nature of the material (see Fig. 1). The com-
posite is made of stiff and strong fibers (e.g. glass, carbon
or aramide) and a thermoset or thermoplastic resin mate-
rial, the matrix. In laminates, the fibers are straight and long
and have a fixed orientation within each layer or ply. The
laminate is then formed by stacking a number of plies with
different fiber orientations, such that a material is obtained
with directional properties that suit the application. Because
it are the fibers that are stiff and strong, the design is op-
timal when the load is carried by the fibers. The function
of the matrix material is merely to keep the fibers in place
and as such to eliminate the poor resistance to bending of
individual fibers and fiber bundles.

Optimal use of composites is held back because reliable
prediction of their damage tolerance and strength is still
challenging. As a consequence, the safety of a certain com-
posite structure under given load conditions can only be en-
sured with many expensive and laborious tests or with high
safety factors. For example, the number of tests on compo-
nents and structural parts that is required to achieve safety
certification of a typical large composite airframe is of the
order 10,000 [1]. If more reliable computational analysis
were possible, real-life tests could partially be replaced with
simulations, or virtual tests. Moreover, efficient computa-
tional tools could aid the material researcher in improving
the material and give the engineer more freedom to optimize
the design. Here, reliability and efficiency are two goals for
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Fig. 1 Three levels of
observation for composite
laminates

Fig. 2 Schematic
representation of the different
failure processes in tensile
failure of a laminate with a
circular hole

the developer of numerical methods that are typically at odds
with one another. It is a huge challenge to formulate compu-
tational models with which reliable results can be obtained
quickly.

The main complicating aspect for laminate failure analy-
sis is that different processes may occur during failure (see
e.g. Fig. 2). Plasticity and cracking of the matrix material
may occur, as well as fracture of fibers in tension or kinking
of fibers in compression, possibly accompanied by debond-
ing in the fiber-matrix interface. Matrix failure is classi-
fied as delamination when it occurs between the plies or as
matrix cracking or ply splitting when the crack is oriented
through the thickness of the ply. Here, the term ‘transverse
matrix cracking’ is generally used for cracks oriented per-
pendicular to the load direction and ‘splitting’ for cracks
in load direction. Reliable failure analysis of a composite
structure must include a representation of each of the possi-
ble processes as well as their interaction. For most purposes,
prediction of the onset of failure processes is not sufficient,
because initial local failure does not necessarily lead to loss
of integrity of the structure. Especially after matrix failure,
the load bearing capacity of the composite is not immedi-
ately exhausted, since stress can be redistributed over the
fibers. Therefore, failure analysis has to be ‘progressive’,
i.e. the progression of failure through the material should
be simulated.

Laminate analysis can be performed on three different
scales (see Fig. 1). On the microlevel, the composite ma-
terial is considered in most detail with distinction of in-
dividual fibers and the matrix material. On the mesolevel,

each ply is homogenized to an orthotropic material in which
the fiber direction is implicitly present in the ply properties.
On the macrolevel, a single equivalent material is used, for
which the laminate properties are obtained with through-
thickness homogenization, e.g. with classical lamination
theory [2]. Macrolevel computational analysis of failure has
been done by Williams et al. [3]. However, the idea of
through-thickness homogenization only stays valid in fail-
ure analysis when cracks cut the laminate through the thick-
ness; delamination is naturally excluded from macrolevel
analysis which limits the applicability of this approach. Mi-
crolevel computational analysis of failure, on the other hand,
has been done by González and LLorca for both fiber fail-
ure [4] and transverse failure [5, 6]. Microlevel simulations
are important for understanding the mechanical behavior of
composites during failure, but limitations with respect to
computational costs are soon met. Nevertheless, the need to
incorporate the microlevel failure mechanisms in a multi-
scale framework is often stressed [1, 7–10], where the idea
is to couple models from different scales, such that detailed
analysis is performed locally to provide information for a
global coarse-scale analysis. To meet this need, sequential
multiscale models for composite materials have been pro-
posed in recent years by different authors [11–14], involv-
ing a priori homogenization of lower scale results to gener-
ate input for higher scale simulations. The ideal, however,
would be to have fully-coupled multiscale failure analysis
with concurrent simulations on different scales. For this,
great care is needed to formulate the right microscale model
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and coupling to avoid pathological behavior that is partic-
ular for failure analysis [15]. A promising framework for
multiscale failure analysis has recently been developed by
Nguyen et al. [16], but this has not yet been applied to
composites. Moreover, because computational costs associ-
ated with multiscale analysis remain tremendous, tools for
monoscale analysis will remain useful.

In this paper, the focus is on mesolevel analysis. The ben-
efit of the mesolevel is that the relevant failure processes can
all be described, but the challenge is to represent the mi-
cromechanical behavior realistically in the mesolevel ideal-
ization. This challenge will receive attention in this paper
both in the discourse on recent methods and in the discus-
sion of their limitations. Before the paper goes into detail
about the computational modeling of failure in laminates,
Sect. 2 contains an overview of some of the basic concepts
and notations that are used from both fields on which the
discussed research builds: numerical methods on the one
hand and composite materials on the other. Subsequently,
in Sect. 3 computational modeling of delamination is dis-
cussed. In Sect. 4 the possibility to model ply failure with
a continuum approach is explored and discarded. An alter-
native approach is presented in the more lengthy Sect. 5
where a discrete representation of matrix cracks is central.
The formulation of a discrete model for matrix cracks is
discussed, as well as the way this interacts with formula-
tions for the other failure processes. Next to assessment of
different kinematic and constitutive models for the different
failure processes, this paper deals with the algorithmic treat-
ment of those models in implicit analysis. The competition
and interaction between the different failure processes and
the brittleness of composite laminates endanger the stability
of the iterative procedure with which the solution for each
time step is found. The meticulous algorithmic treatment
that is necessary for implicit analysis of cases with complex
failure mechanisms is exemplified in detail in Sect. 6. Nu-
merical results obtained with the finite element framework
for failure analysis described in Sects. 5 and 6, are presented
and discussed in Sect. 7.

2 Preliminaries

In this section the basic concepts and notations used in the
paper are briefly introduced: the nonlinear finite element
method, computational failure analysis, mechanics of com-
posite laminates and failure theories for composites.

2.1 The Nonlinear Finite Element Method

Models for progressive failure in composites are gener-
ally embedded in the framework of the finite element
method [17, 18]. The main emphasis in this paper lies on

methods for implicitly solving the quasi-static equilibrium
equation, which means that momentum balance is solved ne-
glecting inertia terms. Many of the material models can also
be used for explicit finite element analysis, but optimality
for implicit analysis is primary here.

The fundamental unknown in the considered finite ele-
ment techniques is the displacement field. In each time step
the displacement field that satisfies equilibrium as well as
the essential boundary conditions, is approximated by solv-
ing the discretized weak form of the momentum balance or
equilibrium equation, which is written as a set of equations

fint = fext (1)

where the external force vector fext represents external load-
ing, and the internal force vector fint is a function of the dis-
placement field.

In Eq. (1), the order of the problem has been reduced by
discretizing the displacement field with a finite set of de-
grees of freedom and an equally sized set of shape func-
tions. The shape functions are defined such that the de-
grees of freedom can be interpreted as nodal displacements.
The nodes are defined in a mesh which divides the prob-
lem domain into elements. With the shape function matrix
N and nodal displacement vector a, the displacement field
uT = {ux,uy,uz} is expressed element-wise as:

u(x) = N(x)a (2)

with

N =
⎡
⎣

N1 0 0 . . . Nn 0 0
0 N1 0 . . . 0 Nn 0
0 0 N1 . . . 0 0 Nn

⎤
⎦ (3)

aT = {a1x, a1y, a1z . . . , anx, any, anz} (4)

where n is the number of nodes of the element, N1 . . .Nn are
the shape functions defined over the element domain and aij

is the displacement of node i in direction j .
The strain field is defined with the strain nodal displace-

ment matrix B as

ε = B(x)a (5)

with B(x) = LN(x) and

LT =
⎡
⎢⎣

∂
∂x

0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0

⎤
⎥⎦ (6)

Stress σ is a function of strain ε,

σ = σ (ε) (7)
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which can be nonlinear and history dependent. This rela-
tion, the constitutive law, describes the material behavior.
The simplest constitutive law is Hooke’s law:

σ = Deε (8)

where De is the (constant) elasticity matrix, related to the
Young’s modulus and Poisson’s ratio.

With Eqs. (5) and (7), the stress field can be computed
from the (history of) the nodal displacements. The left hand
side of the equilibrium equation (1) is evaluated from the
stress field in a loop over the elements:

fint =
∑

e

Me

∫
Ωe

BT σ dΩ (9)

where Ωe is the element domain and Me maps the element
vector to the corresponding entries in the global vector. The
fact that the B matrix from Eq. (5) reappears in Eq. (9)
is related to the Galerkin approximation method [17]. To
keep the notation compact, the assembly of element inte-
grals [∑e Me

∫
Ωe

. . .] is from here on written as an integral
over the global domain [∫

Ω
. . .].

When fint(a) is nonlinear, the set of equations in (1) can-
not be solved for a directly. The solution is then found itera-
tively with the Newton-Raphson procedure. In this iterative
procedure a linearized system is solved in each iteration to
approach the solution of the true system. The solution vector
is updated in iteration j by solving

aj = aj−1 + K−1
j−1

(
fext − fint(aj−1)

)
(10)

where Kj−1 is the global tangent matrix evaluated at aj−1:

Kj−1 = ∂fint

∂a

∣∣∣∣
a=aj−1

(11)

The update is repeated until the desired level of accuracy is
obtained. After that, the next time step is entered.

The global tangent matrix K is evaluated in a loop over
the elements. For the relations above, it takes the form of

K =
∫

Ω

BT DB dΩ (12)

where D, the material tangent, is a linearization of the con-
stitutive law:

D = ∂σ

∂ε
(13)

The integrals in Eqs. (9) and (12) which are both defined
over the element domain are evaluated numerically in a loop
over integration points.

2.2 Computational Failure Analysis

In this section, some of the key concepts in computational
modeling of failure of materials are reviewed. Different
methods for the modeling of cracks can be divided into two
categories: the continuum approach and the discontinuous
approach. In the continuum approach, the crack is smeared
over a band with finite width. This is conceptually appeal-
ing, because the intact material is already modeled as a con-
tinuum, and it is convenient if the failure of the material can
be represented in the same model. However, the discontinu-
ous approach, in which the crack is modeled as a jump in the
continuum, does justice to the elementary notion that a crack
is not just a weaker kind of material but rather a new interior
boundary. Both will be briefly discussed here, as well as the
necessary material parameters for failure analysis.

2.2.1 Continuum Approach

Continuum models fit directly into the finite element frame-
work presented in Sect. 2.1, as they are implemented in the
relation between stress and strain, Eq. (7).

Plasticity The continuum nonlinear material law with
most history in finite element modeling is based on the the-
ory of plasticity [19]. This theory has its root in metals anal-
ysis, and is built on the idea that deformation can be decom-
posed in an elastic part and a permanent or plastic part. The
basic form of the constitutive law with plasticity is

σ = De(ε − εp) (14)

Typically, the plastic strain εp is unknown and computed
such that the stress satisfies a certain criterion. This makes
Eq. (14) an implicit set of equations which in most cases has
to be solved iteratively with the so-called return mapping al-
gorithms [20]. For modeling of failure, the stress criterion
can be formulated such that the stress must vanish upon in-
creasing plastic strain.

Damage A more straightforward option is offered by the
continuum damage theory [21]. Here, the basic idea is that
the stiffness of the material decreases as a consequence of
the reduction of the effective cross section when micro-
cracks appear. The simplest formulation, assuming isotropic
stiffness degradation is written as

σ = (1 − ω)Deε (15)

where ω is the damage variable, which grows from 0 to 1
during failure. Generally, the stiffness degradation is com-
puted explicitly from the strain, which grants continuum
damage the advantage over plasticity of implementational
simplicity and algorithmic robustness.
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Fig. 3 Schematic
representation of continuum
models for failure

Fig. 4 Line interface element
with displacement jump �u�

Practically, the main difference between plasticity and
damage is in the unloading of the material. In the case of
plasticity, constant εp gives unloading with the initial stiff-
ness, while in the case of damage, constant ω gives secant
unloading (see Fig. 3).

Regularization Continuum models for failure suffer from
severe mesh-dependency. In softening, the nonlinear behav-
ior tends to localize in a single row of elements. The amount
of energy that is dissipated in the crack that is smeared over
this band depends on the size of the elements, vanishing to
nonsensical zero dissipation in the limit of very fine dis-
cretization.

This can be mitigated with the crack band method, in
which the local stress strain behavior depends on the ele-
ment size as first proposed by Bažant and Oh [22]. How-
ever, this does not solve the mesh sensitivity problem com-
pletely; element shape and orientation still influence the so-
lution. More advanced localization limiters such as non-
local [23] and gradient models [24–26], which introduce an
internal length scale are to be preferred for reliable accurate
representation of softening material behavior. These meth-
ods however, require a very fine mesh in the failure zone
and considerable implementation effort. Another option is
to introduce a rate dependent term [27], which has physical
meaning for high rate problems, but can also be used artifi-
cially with quasi-static problems to resolve the mesh depen-
dency problem.

2.2.2 Discontinuous Approach

The alternative to smearing a crack over the continuum is
to insert a discontinuity in the displacement field. Although

this is a more intuitive approach to failure, since displace-
ments really are discontinuous over a crack, it requires more
fundamental changes to the finite element formulation. One
way or the other, the kinematical formulation has to be
adapted to accommodate the discontinuity. To control the
amount of energy that is dissipated in the crack as it prop-
agates and to remove the singularity from the stress field at
the crack tip, cohesive forces are applied on the crack sur-
face, following early work by Barenblatt [28]. This means
that a second constitutive law is introduced besides the con-
stitutive law for the continuum. This ‘cohesive law’ relates
the cohesive traction t to the size of the displacement jump
over the crack �u�:

t = t
(

�u�
)

(16)

The cohesive law can, just like the continuum models, be
based on plasticity and/or damage. However, it does not re-
quire special regularization because it is acting on a surface
instead of in a volume.

Interface Elements The most straightforward discontinu-
ous approach is to have the discontinuity between the el-
ements. Duplicate nodes are used along the crack path to
describe a jump in the displacement field (see Fig. 4). The
cohesive forces can be defined on a node to node (lumped)
basis [29, 30], or in a continuous interface element [31, 32].
These two are connected through the fact that the often used
nodal (Newton-Cotes) integration scheme in the continuous
interface element renders it essentially similar to the lumped
elements. In fact, it has been shown by Schellekens and
De Borst [33] that a nodal integration scheme leads to bet-
ter performance for interface elements, and the same thing
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Fig. 5 A discontinuity running
through the elements with
XFEM. The enriched (or
doubled) nodes are indicated
with a circle

has been shown for lumped versus continuous interface ele-
ments by Rots [34].

The interface element consists of two surfaces which are
connected to adjacent solid elements. Initially the two sur-
faces coincide, but they may be driven apart mechanically.
The displacement jump is defined as the difference between
the displacement fields of the two surfaces, which are in turn
defined with standard finite element interpolation functions
from Eq. (2):

�u� = ¯̄N
{

atop

abottom

}
(17)

with

¯̄N = [N −N
]

(18)

The contribution of the interface element to the internal
force vector is then defined as an integral over the interface
surface Γi :

fint =
∫

Γi

¯̄NT t dΓ (19)

and the contribution to the global tangent matrix likewise as

K =
∫

Γi

¯̄NT T ¯̄N dΓ (20)

where

T = ∂t
∂�u�

(21)

Partition of Unity Finite Element Method An increasingly
popular class of methods for modeling of cracks is based
on enrichment of the solution basis with discontinuous
functions, referred to as the Partition-of-Unity Finite Ele-
ment Method (PUFEM) [35], the eXtended Finite Element
Method (XFEM) [36] or the Generalized Finite Element
Method (GFEM) [37]. Melenk and Babuška [35] introduced
PUFEM as an easy way to include information about the
problem being solved to the finite element basis. Exploiting
the partition of unity property of the finite element shape
functions, any function can be added to the basis in order
to improve its approximability. This includes the possibility
to add a discontinuous function for the modeling of cracks,
which has been done first by Belytschko and Black [38]

and Moës et al. [39]. In this way, a discontinuity is running
through the elements (see Fig. 5), which obviously offers
more flexibility for the crack path than interface elements.
In the original publications, asymptotic functions are used
for enrichment around the crack tip to approximate the sin-
gular stress field. Alternatively, it is possible to add cohesive
tractions on the crack surface, as proposed by Wells and
Sluys [40] and Moës and Belytschko [36]. In this case the
crack tip singularity is removed from the stress field.

In this method, the displacement field is defined as the
sum of two independent fields, one of which is multiplied
with the Heaviside step function H:

u = Na + HNã (22)

where ã are additional degrees of freedom defined only on
the nodes of those elements that contain the crack and H is
equal to 1 on one side of the crack and equal to 0 on the
other side. The displacement jump is defined on the cracked
surface Γc as

�u� = Nã, x ∈ Γc (23)

Hansbo’s Version of XFEM An alternative method has
been proposed by Hansbo and Hansbo [41], in which two
overlapping elements are introduced with independent dis-
placement fields which are partially active. Cohesive trac-
tions were applied in this method by Mergheim et al. [42],
after which Song et al. [43] proved it to be equivalent to
PUFEM with Heaviside function and coined the term ‘phan-
tom node method’. Because of this equivalence, the term
XFEM has grown to be used for crack modeling with both
PUFEM and Hansbo’s method.

An advantage of Hansbo’s method over PUFEM is that
it is more simple to implement, because the method does
not require any changes to be made in the elements adjacent
to the cracked elements. Moreover, in dynamic methods,
Hansbo’s method allows for straightforward lumping of the
mass matrix in contrast with PUFEM. However, there is no
similar extension to enrichment with asymptotic functions
to approximate the singular stress field around the crack
tip. Therefore, for modeling of cohesive cracking Hansbo’s
method is to be preferred, while for modeling of crack prop-
agation in a fracture mechanics approach, PUFEM is the bet-
ter alternative.
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Fig. 6 Connectivity and active
parts of two overlapping
elements in Hansbo’s method

Hansbo’s version of XFEM is illustrated in Fig. 6. An
element with original nodes n1 . . . n4 is crossed by a crack
at Γc , dividing the element domain into two complemen-
tary sub-domains, ΩA and ΩB . Phantom nodes (labeled
ñ1 . . . ñ4) are added on top of the existing nodes. The ex-
isting element is replaced by two new elements, referred to
as element A and element B . The connectivity of the over-
lapping elements in the illustration is

nodesA = [ñ1, ñ2, n3, n4]
nodesB = [n1, n2, ñ3, ñ4]

(24)

The elements do not share nodes, and therefore have inde-
pendent displacement fields. Both elements are only par-
tially active: the active part of element A is ΩA and the
active part of element B is ΩB . This is represented numeri-
cally in the definition of the displacement field: the displace-
ment of a point with coordinates x is computed with the stan-
dard finite element shape functions N(x) and the nodal dis-
placement values from either of the overlapping elements,
depending on the location of the point:

u(x) =
{

N(x)uA, x ∈ ΩA

N(x)uB, x ∈ ΩB

(25)

The displacement jump over the crack is defined as the dif-
ference between the displacement fields of the two elements.

�u�(x) = N(x)(uA − uB), x ∈ Γc (26)

When this definition of the displacement field is combined
with constitutive laws for the bulk stress and the cohesive
traction, it follows from standard variational principles that
the contribution to the internal force vector on the degrees of
freedom corresponding with element A and B are defined as

fint
A =

∫
ΩA

BT σ dΩ +
∫

Γc

Nt dΓ (27)

and

fint
B =

∫
ΩB

BT σ dΩ −
∫

Γc

Nt dΓ (28)

Because fint
A is coupled to uB (and fint

B to uA) via t(�u�) and
Eq. (26), the linearization also involves cross terms and the
total contribution to the global tangent matrix is

K =
[

KA 0
0 KB

]
+
[

K�u� −K�u�

−K�u� K�u�

]
(29)

with

KI =
∫

ΩI

BT DB dΩ, I = A,B (30)

K�u� =
∫

Γc

NT TN dΓ (31)

Because the law for the normal component is typically
different from that for the shear component(s), transfor-
mations from the global coordinate frame to an orthonor-
mal frame that is aligned with the crack (see Fig. 6) and
back are wrapped around the evaluation of the constitu-
tive law. The displacement jump in local {n, s, t}-frame is
related to the displacement jump in global {x, y, z}-frame
with

�ū� = R�u� (32)

where, with t-axis parallel to the z-axis, the transformation
matrix R is given as

R =
⎡
⎣

− sinφ cosφ 0
cosφ sinφ 0

0 0 1

⎤
⎦ (33)

Similarly, it holds

t̄ = Rt (34)

and (with R−1 = RT )

T = RT T̄R (35)

In the remainder of this document, cohesive laws are pre-
sented in the local frame, omitting the overbars for no-
tational simplicity and omitting the transformations for
brevity.
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2.2.3 Material Parameters

Whether the description of choice is a continuum model
with a stress-strain relation, or a discontinuous model with a
traction-separation relation, in either case a constitutive law
is needed to characterize the fracture behavior of the ma-
terial. In formulating the constitutive law, a choice has to
be made for the fundamental parameters. Ideally, the model
contains only parameters that can be obtained from sim-
ple experiments and that are objective material constants.
A common choice is to use strength and fracture energy
(or ‘fracture toughness’). The strength of the material is the
maximum stress the material can sustain, which is the peak
level of the stress in Fig. 3, while the fracture energy is
the amount of energy that is required to form a unit area
of new crack surface, which is related to the area under
the curves in Fig. 3. In a traction-separation law, the frac-
ture energy is equal to the area under the curve, but in a
stress-strain relation, the area under the curve is of the di-
mension energy per volume and has to be multiplied with
the width of the failure zone in order to obtain the fracture
energy.

In fracture mechanics, distinction is made between
mode I (opening), mode II (sliding) and mode III (tearing),
each of which is associated with a distinct value for the frac-
ture energy [44]. In computational practice, it can be hard
to distinguish between mode II and mode III and therefore
often only two modes are considered for the fracture energy:
opening (mode I) and shearing (mode II/III). For strength,
there can also be different values related to different loading
directions. When uniaxial strength and pure mode fracture
energy are determined, more assumptions and/or parame-
ters are needed to interpolate for general stress state. In gen-
eral stress space, strength becomes an envelope around the
admissible stress states. And for general mixed mode frac-
ture, the fracture energy becomes a function of the mode
ratio.

In an idealized homogeneous material, strength and frac-
ture energy can be related to fundamental bond forces on
the nanolevel. In a heterogeneous material, however, the
strength is dominated by irregularities in the microstruc-
ture. The failure load measured in a simple experiment
is governed by stress concentrations due to stiffness in-
homogeneity and/or triggered by spatial variation of the
strength due to the presence of weak spots. Therefore
size effects may play a role [45, 46]. Similarly, the frac-
ture energy in a heterogeneous material is supposed to
lump everything that is happening in the fracture process
zone. The validity of the assumption that strength and
fracture energy are fundamental material parameters for
composites will be discussed at several points in this pa-
per.

2.3 Mechanics of Composite Materials

2.3.1 Elasticity

The starting point for the constitutive modeling of composite
laminates is a law for the elastic behavior of the elementary
ply. Considering the fact that the ply is stiff in fiber direction
and compliant in other directions, the transversely isotropic
version of Hooke’s law is used, which is defined as

σ̄ = D̄eε̄ (36)

with

[
D̄e]−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− ν12
E1

− ν12
E1

0 0 0

− ν12
E1

1
E2

− ν23
E2

0 0 0

− ν12
E1

− ν23
E2

1
E2

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

where E1 and E2 are the Young’s moduli of the ply in fiber
direction and transverse direction respectively, ν21 and ν23

are the longitudinal and transverse Poisson’s ratios, and G12

is the longitudinal shear modulus. Under the assumption of
transverse isotropy, the transverse shear modulus G23 is a
dependent quantity, defined as:

G23 = E2

2(1 + ν23)
(38)

The overbars in Eq. (36) are used to indicate that the
measures are expressed in the local material frame. In
this frame, the 1-axis is aligned with the fiber direc-
tion in the ply, as illustrated in Fig. 7. In computational
analysis transformations are required to relate stress and
strain quantities in the global coordinate frame (e.g. σ =
{σx,σy, σz, τyz, τzx, τxy}) to those in the local coordinate
frame (e.g. σ̄ = {σ1, σ2, σ3, τ23, τ31, τ12}) [47]. Here too,
overbars and transformations are omitted in the remainder
for brevity.

2.3.2 Residual Stress

An important aspect of laminate analysis is the residual
stress due to fabrication. The difference in thermal proper-

Fig. 7 Global and local
coordinate frames
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ties of fiber and matrix causes the thermal expansion behav-
ior of the ply to be orthotropic. When the laminate is cooled
during fabrication, the plies tend to shrink in transverse di-
rection, but, since the plies are connected, this contraction
is constrained. The transverse tensile stress that is caused by
the mismatch in thermal properties can be significant with
respect to the transverse tensile strength of the ply. There-
fore it is important to take these residual stresses into ac-
count. The linear elastic constitutive law after a temperature
change is

σ = Deεmech (39)

where the total strain is decomposed into a mechanical part
and a thermal part:

εmech = ε − εth (40)

with

εth = {α1�T,α2�T,α2�T,0,0,0}T (41)

where �T is the magnitude of the change in temperature
and α1 and α2 are the coefficients of thermal expansion in
fiber direction and transverse direction, respectively.

2.4 Failure Theories for Composite Materials

The ply is the elementary building block for the mesolevel
approach to laminates. Therefore, mesolevel failure analysis
requires criteria for predicting failure of the ply. The con-
cept of strength is not as clearly defined for a homogenized
composite as it is for a homogeneous material. Therefore,
the composite nature of the ply complicates the formulation
of a stress based criterion for onset of failure. Unidirectional
strength properties are measured for the characterization of
the material in its principal directions, but in failure analy-
sis, these have to be interpolated in order to get a general
failure criterion (or set of criteria) to be able to evaluate any
three dimensional stress state for failure. Early work in the
development of an orthotropic failure envelope was done by
Hill [19], Tsai [48] and Hoffman [49], who formulated cri-
teria that consist of a single relation for the interaction of
the different stress components in the material frame. For
composite materials, the most popular version of these in-
teractive criteria is the one formulated by Tsai and Wu [50].
The transversely isotropic version of the Tsai-Wu criterion
can be written as:

1

2
σ · Pσ + σ · p − 1 = 0 (42)

with

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
F1tF1c

− 1√
F1tF1cF2tF2c

− 1√
F1tF1cF2tF2c

0 0 0

− 1√
F1tF1cF2tF2c

2
F2tF2c

− 1
F2tF2c

0 0 0

− 1√
F1tF1cF2tF2c

− 1
F2tF2c

2
F2tF2c

0 0 0

0 0 0 1
F 2

23
0 0

0 0 0 0 1
F 2

12
0

0 0 0 0 0 1
F 2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
F1t

− 1
F1c

1
F2t

− 1
F2c

1
F2t

− 1
F2c

0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)

where F1t and F1c are the tensile and compressive strength
in longitudinal direction, F2t and F2c the tensile and com-
pressive strength in transverse direction and F23 and F12 the
transverse and longitudinal shear strength.

However, a single interactive criterion does not suffi-
ciently reflect the level of complexity that is inherent to com-
posite materials. A smooth failure envelope does not match
the fact that, due to the inhomogeneity of the material, dis-
crete switches from one type of failure to another are in-
volved when the load direction is gradually changed. There-
fore, failure-mode-based theories have been proposed, with
a number of independent criteria corresponding to an equal
number of failure modes. The first failure theories that dis-
tinguished between fiber failure and matrix failure were de-
veloped by Hashin [7, 51]:

– Fiber tension:

σ1

F1t
= 1 (44)

– Fiber compression:

− σ1

F1c
= 1 (45)

– Matrix tension:
√

(σ2 + σ3)2

F 2
2t

+ τ 2
23 − σ2σ3

F 2
23

+ τ 2
31 + τ 2

12

F 2
12

= 1 (46)

– Matrix compression:
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√√√√
[(

F2c

2F23

)2

− 1

]
σ2 + σ3

F2c
+ (σ2 + σ3)2

4F 2
23

+ τ 2
23 − σ2σ3

F 2
23

+ τ 2
31 + τ 2

12

F 2
12

= 1 (47)

The World Wide Failure Exercise organized by Hinton
et al. (see [52, 53] and references therein) has been an at-
tempt to decide which failure theory is most appropriate.
Although clear difference in predictions of different mod-
els were reported, there was no uniform conclusion in favor
of a single approach. A trade-off between accuracy of the
criterion and the number of material parameters or assump-
tions involved will remain present, considering the fact that
“a criterion is only as good as the data available” [54]. An-
other problem with the failure criterion approach is that it is
based on homogeneous stress, while, as soon as failure has
started somewhere in the specimen, stress is not homoge-
neous anymore. Size effects do play a role, which blurs the
meaning of the concept of strength.

Furthermore, there is a statistical size effect that is of
importance for the phenomenon of fiber failure. The uni-
directional ply strength in fiber direction is best described
with a weakest link theory and a statistical distribution of
the strength [46]. Numerous models have been developed to
predict the ply strength in fiber direction as a function of the
specimen size (see e.g. [55–57]). However, such models are
not readily available for progressive failure analysis because
they tend not to predict the location of failure, which is nec-
essary information to continue the analysis beyond the first
failure event. A Weibull criterion can be used to predict brit-
tle fiber failure (Hallett et al. [58]), but when it is applied to
cases with progressive fiber failure, as has been done by Li
et al. [59], it is necessary to assume that failure occurs at the
location where stress is the highest, which contradicts the
Weibull assumption that failure may occur anywhere.

Another complicating factor is that ply failure can be
influenced by the presence of neighboring plies when the
ply is embedded in a laminate. The neighboring plies have
a constraining effect on the failure which makes it uncer-
tain to what extent the failure can be characterized accu-
rately with properties measured for the isolated ply. A well-
known example of this is the increase in transverse strength
upon decreasing ply thickness, a phenomenon first reported
by Parvizi et al. [60] and comprehensively reviewed by
Nairn [61]. Theories exist to predict the in situ strength see
e.g. Camanho et al. [62]. An open issue here is that the use of
in situ strength parameters is more obvious for ply discount
methods [63] than for progressive failure analysis where on-
set of failure is followed by softening or decohesion. In the
latter case, the fracture energy is already present in the post-
peak response, and onset of failure is not the same as ap-
pearance of (visible) cracks. However, when crack growth

is brittle, i.e. cracks grow in a snapback, the post peak re-
sponse becomes more of a numerical artifact needed for
well-posedness and robustness. In that case, the use of in
situ strengths is also appropriate with softening or decohe-
sion.

In reaction to the World Wide Failure Exercise, Dávila
et al. [64] developed another set of failure criteria. These cri-
teria, referred to as LaRC03, were designed for plane stress.
In a later publication by Pinho et al. [65], the set of crite-
ria were completed for full three-dimensional stress states,
referred to as LaRC04. They are considerably more elabo-
rate than the criteria by Hashin, but the LaRC criteria do
not require additional material parameters. They differ from
Hashin’s on the following points. Firstly, for all matrix fail-
ure mechanisms, in situ strength values are used. Secondly,
for matrix compression, they are based on Mohr-Coulomb
friction following Puck and Schürmann [66]. Thirdly, for
fiber compression, an initial misalignment of the fibers is as-
sumed, and three different failure scenarios related to differ-
ent stress states around the misaligned fibers result in three
different criteria: one for kink-band formation, one for ma-
trix failure under biaxial compression and one for matrix
tensile failure.

As an alternative to explicit failure criteria, a microme-
chanical approach can be adopted to obtain a failure en-
velope. González et al. [5, 6] performed micromechanical
simulations on a representative volume element to get the
ply strength for different loading conditions. The idea is
that this requires less assumptions and material parame-
ters: only the simpler constituents need to be character-
ized, while the behavior of the composite is virtually deter-
mined.

However, even when an accurate general failure criterion
for the elementary ply can be formulated or virtually ob-
tained, a ply failure criterion is not sufficient for the predic-
tion of laminate failure. One could use it to assess laminate
failure in a First Ply Failure approach [67], equating failure
of a single ply to failure of the laminate, but in general, local
failure of a ply does not necessarily lead to global laminate
failure. Redistribution of stress may be possible such that the
structure can be loaded beyond the load level at which first
local failure occurs. In that case, in order to predict the load
bearing capacity of a structure or structural part under spe-
cific load conditions, progressive failure analysis is required.
That is, the failure criteria must be extended with a theory on
what happens after failure. Furthermore, the failure process
of delamination has to be included to do complete laminate
analysis.
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3 Delamination Modeling

The two most popular computational methods for the anal-
ysis of delamination are the Virtual Crack Closure Tech-
nique (VCCT) [68, 69] and interface elements with a co-
hesive law [32, 70]. Disadvantages of the former are that it
cannot deal with initiation and that the crack front has to co-
incide with element boundaries in a regular mesh. For these
reasons, cohesive elements are gaining popularity, particu-
larly for progressive failure analysis with non-self-similar
crack growth and interaction with other failure processes.

In mesolevel modeling of laminates, each ply is modeled
independently, which means that the boundaries between the
plies always coincide with an element boundary. Interface
elements can therefore be inserted easily by doubling the
nodes on the existing element boundary. Moreover, they of-
fer an efficient method to get realistic values for the inter-
facial tractions. Alternatively, a fine discretization through
the thickness would be needed to model delamination in a
continuum sense [71] or with XFEM [72, 73], because the
through thickness variations in the stress field must then be
computed accurately for correct initiation and propagation
of cracks. Therefore, interface elements are the method of
choice for mesolevel delamination modeling.

3.1 Cohesive Law

Modeling of delamination with interface elements was first
done by Schellekens and De Borst [32] and Allix and Lade-
vèze [70]. Schellekens and De Borst developed a plasticity
formulation which was further pursued by Hashagen and De
Borst [74]. However, robustness and ease of implementation
renders damage formulations favorable.

Delamination fracture tends to be a mixed-mode phe-
nomenon, because the direction of crack propagation is
given by the topology of the interface, while the orienta-
tion of the loading is variable. A simple bilinear softening
law for mixed-mode failure with constant fracture tough-
ness was proposed by Mi et al. [75]. However, it is impor-
tant to take into account that the fracture toughness, which
is a key parameter in the cohesive law, is not a material
constant [76–78]. Camanho et al. [79] developed a cohe-
sive law in which the fracture toughness is a phenomeno-
logical function of mode mixity as formulated by Benzeg-
gagh and Kenane [80]. This cohesive law was improved for
thermodynamical consistency by Turon et al. [81]. Alterna-
tive formulations have been proposed among others by Allix
and Corigliano [82], Yang and Cox [83], Högberg [84] and
Jiang et al. [85]. Below, the cohesive law as formulated by
Turon [81] is outlined.

Starting point is the phenomenological relation between
fracture energy and mode ratio by Benzeggagh and Kenane

[80]:

Gc = GIc + (GIIc − GIc)

(
GII

G

)η

(48)

where Gc is the fracture energy as a function of the mode
ratio GII/G with material parameters GIc, GIIc and η. In
case of three-dimensional analysis, mode II and mode III
are taken together (in fact, it is hard to distinguish between
the two in interface elements, since there is no well-defined
crack front and consequently no well-defined tangent vector
to the crack front). Then there is a decomposition of dis-
placement and traction vectors into a normal part (mode I)
and a shear part (mode II/III). When the normal to the inter-
face plane is aligned with the global z-axis, decomposition
between normal and shear displacement jump is straightfor-
ward:

�u�n = �u�3 (49)

�u�sh =
√

�u�2
1 + �u�2

2 (50)

Before the evaluation of the cohesive law, the values of the
displacement jump for onset and propagation of pure mode
opening are calculated from the material parameters:

�u�0
n = Fn

K
, �u�f

n = 2GIc

Fn
(51)

�u�0
sh = Fsh

K
, �u�f

sh = 2GIIc

Fsh
(52)

where K is the initial dummy stiffness, Fn and Fsh are the
normal and shear strength of the interface and GIc and GIIc

are the mode I and mode II fracture toughness.
Then the current displacement jump is used to compute

an equivalent opening displacement:

�u�eq =
√〈

�u�n
〉2 + �u�2

sh (53)

and the mode ratio B:

B = �u�2
sh

�u�2
sh + 〈�u�n〉2

(54)

Normal relative displacements only contribute when posi-
tive, hence the use of the Macauley operator, which is de-
fined as 〈x〉 = max(x,0). It can be shown that B is related
to the mode ratio in Eq. (48) as B = GII/G, when it is as-
sumed that B is constant inside the cohesive zone.

Subsequently, the onset criterion and propagation crite-
rion related to the current mode ratio (see Fig. 8) are com-
puted with:

�u�0
eq =
√(

�u�0
n

)2 + ((�u�0
sh

)2 − (�u�0
n

)2)
Bη (55)
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Fig. 8 Visualization of mixed-mode cohesive law; the triangle in the
foreground is the area under the traction-separation curve for a constant
mode ratio

�u�f
eq = �u�0

n �u�f
n + (�u�0

sh �u�f
sh − �u�0

n �u�f
n)B

η

�u�0
eq

(56)

The damage variable ωd is defined such that the traction-
separation law is bilinear for any fixed mode ratio:

ωd = max
t≤τ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 �u�eq ≤ �u�0
eq

�u�f
eq(�u�eq−�u�0

eq)

�u�eq(�u�f
eq−�u�0

eq)
�u�0

eq < �u�eq < �u�f
eq

1 �u�eq ≥ �u�f
eq

(57)

Finally, the traction t is computed with isotropic damage as

ti = δijK

(
1 − ωd

[
1 + δ3j

〈−�u�3〉
�u�3

])
�u�j (58)

where δij is the Kronecker delta and the part between square
brackets is included to cancel the damage for the normal
traction component when the normal displacement jump is
negative. That way, interpenetration of opposite crack faces
is prevented through a penalty approach with K as penalty
parameter.

The consistent tangent is defined as [86]:

Tij = ∂ti

∂�u�j

= (1 − ωd)K + ∂ti

∂ωd

∂ωd

∂�u�j

(59)

with

∂ti

∂ωd
= −K

[
1 + δ3i

〈−�u�3〉
�u�3

]
�u�i (60)
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∂�u�f
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(61)

Fig. 9 Evolution of traction and displacement jump components in a
single integration point for mixed-mode bending test with GII/G = 0.5
(see van der Meer and Sluys [88] for details)

3.2 Open Issues

In later work, Turon et al. [87] have shown that the en-
ergy dissipation does not follow the assumed Benzeggagh-
Kenane relation under all circumstances. This is due to the
fact that in mixed-mode cracking the mode ratio varies over
the length of the cohesive zone, see Fig. 9, which is in con-
trast with model assumption of a constant mode ratio as vi-
sualized in Fig. 8. Turon et al. [87] have shown that proper
behavior is obtained when the strength parameters are in ac-
cordance with the following relation:

Fsh = Fn

√
GIIc

GIc
(62)

Alternatively, it is possible to adopt an orthotropic relation
for the penalty stiffness, such that

Ksh = Kt
GIcF

2
sh

GIIcF 2
n

(63)

The latter choice is somewhat more laborious because the
orthotropic stiffness relation must be accommodated in the
implementation, but theoretically more appealing because
the penalty stiffness is already a numerical artifact, as op-
posed to the strength parameters which have physical mean-
ing. Nevertheless, applying Eq. (62) can also be defended
arguing that the shear strength is not unambiguously defined
and that the exact magnitude of strength parameters has only
limited influence on the results in many delamination cases
(provided that the ratio is such that Eq. (62) is satisfied).

Notwithstanding this improvement by Turon et al.,
Goutianos and Sørensen [89] have shown that a theoreti-
cal path-dependency exists for all truss-like cohesive laws
that have a mode-dependent fracture toughness. With truss-
like they mean that the ratio in traction components is fixed
to the ratio in opening displacements, as it is in Eq. (58).
Gutianos and Sørensen have shown that the dissipation for
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such cohesive laws depends on the complete opening history
rather than on the mode ratio only. Although there might
be something physical to this path-dependency, it should
be regarded a flaw as long as the basic assumption that
the fracture toughness only depends on mode ratios (see
Eq. (48)) has not been revised explicitly. Notably, the co-
hesive law by Yang and Cox [83] does not suffer from this
path-dependency, because it works with fixed pure mode be-
havior and a mixed-mode cut-off criterion rather than with
isotropic damage.

Next to this issue with a discrepancy between theory and
results of cohesive laws, there are some physical phenomena
that are not included the theory behind the laws. Like most
cohesive laws, the one outlined in Sect. 3.1 makes use of a
penalty approach to prevent interpenetration and allow for
compressive forces to be transmitted through the interface.
What is not taken into account, however, is the possibility
of a significant increase in strength and mode II fracture en-
ergy in the presence of compressive stress. This issue has
been addressed by Li et al. [90] but is still ignored in most
formulations.

Even in the absence of compressive stress, the fracture
toughness is not always constant for a given mode ratio.
Wisnom has observed a size effect in the fracture toughness
[91] and several authors have reported a dependence on the
relative fiber orientations of the neighboring plies [92–94].
Davidson et al. [95] have given further evidence that dif-
ferent cases with the same mode ratios do not necessarily
display the same fracture toughness. Part of this can be at-
tributed to the fact that delamination is not necessarily the
only dissipative process in a characterization test with which
the fracture toughness is measured. In reality, there may
be interaction between delamination and transverse damage.
A formulation in which constitutive coupling between ma-
trix cracking and delamination exists is the mesomodel by
Ladevèze et al. [96]. How much constitutive coupling is re-
alistic has not been characterized properly and is indeed very
hard to quantify. This should be distinguished from mechan-
ical coupling, for instance when delamination is triggered by
the presence of matrix cracks. Such mechanical interaction
between different failure processes can be captured well and
will be given attention in the Sect. 5.3.

3.3 Element Size Requirement

One drawback of cohesive methods is that the cohesive zone
has a given length and that robust and accurate simulations
require the elements to be several times smaller than this co-
hesive zone. In (quasi-)infinite continua, the length of the
cohesive zone is related to the fracture energy, stiffness and
strength, but for delamination cracks in thin laminates, the
thickness is an additional influence [83, 97, 98]. The length
of the cohesive zone may vary for different loading condi-
tions, generally the cohesive zone is longer for mode II than

for mode I, but the length of the cohesive zone in typical
laminates is of the order of 1 mm. Since elements must be
several times smaller than the cohesive zone length, typical
element sizes of around 0.2–0.3 mm are commonly required
for robustness and accuracy. This element size requirement
seriously limits the specimen dimensions that can be simu-
lated within reasonable computation time.

An engineering solution to this limitation has been pro-
posed by Turon et al. [99], viz. to increase the length of the
cohesive zone in the simulation artificially by reducing the
interface strength. This method can push the limits of model
dimensions that can be analyzed within acceptable com-
putation times considerably but it should be handled with
care because the solution may be influenced [97, 100]. Lim-
ited alleviation of the mesh-requirements can furthermore be
achieved by adapting the integration scheme as proposed by
Yang et al. [101].

Another direction to improve the performance of large in-
terface elements is to locally enrich the displacement field.
Improvement was already reported by Crisfield and Alfano
[102] with a relatively simple hierarchical enrichment. Guia-
matsia et al. [103] enriched the displacement field with the
analytical solution of a beam on elastic foundation. This was
based on the assumption that it is underrepresentation of the
variation of the stress ahead of the crack tip which needs
to be addressed. However, the real challenge is to enrich
the kinematics such that deformation of an element con-
taining the crack tip can be represented accurately, result-
ing in a smooth response for a smooth progression of the
crack tip through the element. Such an enrichment scheme
has been proposed by Samimi et al. [104], who added a hat-
enrichment where the location of the peak of the enrichment
is an additional degree of freedom. However, this strategy
has only been shown to work in 2D with line interfaces;
generalization to cases with plane interfaces is not obvious,
although a step in that direction has been made by Samimi
et al. [105].

The most significant gain in element size has been re-
ported by van der Meer et al. [106] in an approach where
the cohesive zone is eliminated altogether. The front is de-
scribed mesh-independently with the level set method and
crack growth is handled with fracture mechanics. However,
this method has not yet reached such level of maturity that
it can be combined with descriptions for other failure pro-
cesses in laminates. Currently, the element size requirement
related to cohesive methods with interface elements remains
problematic for progressive failure analysis of laminates.

4 Continuum Methods for Ply Failure and Their
Limitation

Next to a model for interply delamination, a model for in-
traply failure is needed to do progressive failure analysis of
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Fig. 10 Micromechanical
representation of matrix failure
oriented in fiber direction (a)
and matrix failure in a band
crossed by fibers (b). The
difference in averaged
stress-strain response is
illustrated schematically (c)

laminates. In Sect. 2.4, failure criteria for the ply have been
introduced. A complicating aspect is that different failure
processes may occur in the ply. For each of the failure pro-
cesses, there must be a representation of what happens after
the strength related with this particular failure mechanism
has been reached at local level. The most simple approach
to progressive failure analysis is the ply discount method,
where the stiffness of a ply is suddenly reduced after the
failure criterion is violated. This has been applied to matrix
failure by Laš and Zemčik [107] and Liu et al. [108]. These
models, however, give mesh-dependent results: the amount
of energy that is dissipated when a crack is formed vanishes
upon mesh refinement.

In order to obtain a unique response, models with a con-
tinuous constitutive relation must be used. For orthotropic

materials, several examples are available for extension of
a failure criterion with a plasticity law [109–112]. But in
the context of composite materials, continuum damage for-
mulations are more popular, because these are more eas-
ily coupled to the failure-mode-based criteria, with different
stiffness degradation laws for the different failure processes.
After pioneering work by Ladevèze and Le Dantec [113]
and Matzenmiller et al. [114], several different formulations
have been proposed in which distinction is made between
fiber failure and matrix failure [115–122].

The basic relation for continuum damage models for the
unidirectional ply is as follows:

σ = C−1ε (64)

with

C =

⎡
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(65)

where ωf and ωm2 . . .ωm6 are the damage variables related
to fiber failure and matrix failure, respectively. The evolu-
tion of the damaged variables is strain-driven and related to
failure criteria, with coupling between the different matrix
damage variables.

Although this works well in some cases, there is a pathol-
ogy in the continuum approach to the modeling of compos-
ites, which can be understood from simple micromechan-
ical considerations. When looking at the micromechanical
failure process, the orientation of a band with matrix fail-
ure influences the softening behavior of the composite ma-
terial. A band with shear failure that is oriented in fiber di-
rection can develop into a macrocrack running between the
fibers, which is a relatively brittle mechanism, while a band
with matrix shear failure in any other direction is crossed by

fibers, and the corresponding failure mechanism is therefore
more ductile (see Fig. 10). In continuum models, however,
this distinction cannot be made. In the homogenized con-
tinuum, both mechanisms are represented with a softening
shear band with the same local stress-strain relation.

This pathology of continuum models with respect to ma-
trix crack simulation is illustrated with the example of a uni-
axial tensile test on a 10◦ unidirectional laminate. This is
a standard test for the determination of the in-plane shear
strength [123, 124]. The test is performed on a specimen
with the shape of a parallelogram, where the oblique ends
are used to remove stress concentrations from the bound-
aries. Experiments show brittle matrix failure; in a sudden
event, the specimen breaks, with the crack running in fiber
direction. The case has been simulated by van der Meer and
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Fig. 11 Off-axis tensile test:
geometry and experimentally
observed crack path (top) and
load-displacement relation and
final deformed mesh with
regularized continuum damage
model (bottom) [125]

Fig. 12 Crack propagation in a
homogeneous orthotropic
medium and in a fiber-matrix
material

Sluys [125] with a continuum damage model of the type of
Eq. (65) as well as with a softening plasticity model for or-
thotropic materials, both regularized with a rate-dependent
term. With both models, the same erroneous response was
obtained.

The results obtained with the continuum damage model
are shown in Fig. 11: the load-displacement diagram for two
different meshes and the final deformation. The influence of
the element size on the load-displacement behavior is neg-
ligible, which is related to the fact that the band with local-
ized strain is wider than the elements, due to the viscosity
term. The deformed mesh, which is taken from the coarse
mesh analyses, clearly shows a failure pattern that is differ-
ent from that observed in experiments; the failure band is
not aligned with the fibers.

Notably, there is a significant displacement perpendicu-
lar to the load direction. The deformation in the localization
area is such that the strain in fiber direction ε1 remains rela-
tively small. In the damage model, this is a consequence of
the distinction that is made between fiber failure and matrix
failure. Because of this, the model gives locally correct be-
havior, where a stress state for which the transverse strength
is exceeded never gives rise to large strains in fiber direction.
However, although the local behavior is correct, the global
behavior is not. The fact that ε1 remains small, is not suffi-
cient to ensure that matrix failure develops in fiber direction.
The cause for this behavior lies in the fact that the direc-
tion of failure propagation in the model is governed by the
stress concentration rather than by the fiber direction. This is
a consequence of the homogenization which is fundamental
to continuum models. In a homogenized model the smeared

crack will always propagate there where the stress is high-
est, whereas in the real material the very fact that the mate-
rial is inhomogeneous causes the crack to grow differently,
as shown in Fig. 12.

With this example, the consequences of the limitation of
the continuum approach are clearly visible. The microme-
chanical cause for cracks to grow in fiber direction, is not
present in continuum models, at least not as long as the
model is a local model. This can be considered a special
case of violation of the principle of separation of scales.
In Sect. 1, the microscale has been introduced as the level
where individual fibers and the matrix material are distinc-
tively present, while on the mesoscale, the material is ho-
mogenized. As such, an individual matrix crack is a typ-
ical microscale phenomenon. When it is brought to the
mesoscale through homogenization it is no longer individ-
ually represented. In reality, however, an individual matrix
crack may grow very large, and play a role on a higher scale.
After homogenization in the micro-meso transition, this in-
formation is lost.

It is unlikely that failure mechanisms, in which large
cracks in fiber direction play a role in different plies with
different fiber orientations, can be predicted using state-of-
the-art continuum models for ply failure, irrespective of the
failure criteria and damage evolution laws that are applied.
However, for other failure mechanisms, the continuum de-
scription serves well, e.g. when failure in all plies is local-
ized in a single plane [121, 126, 127]. In some cases the
matrix crack will emerge correctly, such as the split near
a circular hole as reported by Cox and Yang [1]. In other
cases, a good match in peak load values may even be found,
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such as reported by Abisset et al. [128] with very good pre-
dicted failure load levels in a series of complex test cases.
But, as far as localized matrix failure in a single ply is con-
cerned, the predictive quality of continuum models should
be doubted. Unphysical failure mechanisms are introduced
in the system and these may lead to erroneous results.

5 A Strategy Around Discrete Modeling of Matrix
Cracks

On the mesolevel, where matrix and fibers are not modeled
separately, it is necessary to enforce the orientation of the
matrix cracks in order to describe the mechanisms realis-
tically, as argued in the previous section. This calls for a
discrete representation of individual cracks with a discontin-
uous approach. This can be achieved by inserting interface
elements through the thickness of the ply at a priori selected
locations. This strategy, first employed by Wisnom and
Chang [129], gives good interaction with interface elements
for delamination. Similar work has been done by De Moura
and Gonçalves [130] and Yang and Cox [83]. Wisnom, Hal-
lett and coworkers have further applied this on different
notched and unnotched geometries with considerable suc-
cess [58, 59, 85, 131, 132]. However, this strategy requires
additional meshing effort and is less predictive because the
possible crack locations have to be predefined. Therefore
a mesh-independent representation of discontinuities with
XFEM (see Sect. 2.2) is to be preferred for the simula-
tion of matrix cracking. Techniques for mesh-independent
representation of discontinuities have been applied in the
context of matrix cracking by Iarve et al. [133–136], Yang
et al. [137–139] and van der Meer et al. [86, 88, 140, 141].

Iarve et al. make use of PUFEM with smooth enrich-
ment function instead of the standard Heaviside enrichment.
The model was first applied to matrix cracking by in uni-
directional composites by Iarve [133] and then to laminates
by Mollenhauer et al. [134]. In these references, the matrix
cracks were still inserted a-priori without progressive dam-
age modeling, but it was already shown that this representa-
tion of matrix cracks allows for accurate stress fields in dam-
aged composites by comparing numerical results with im-
ages obtained with moiré interferometry. Progressive crack-
ing and the interaction with delamination was added in a
later publication [135], where cohesive cracks were inserted
over the width of the specimen after the strength was vi-
olated in one point. Unnotched specimens with different
layups were analyzed and results were compared with exper-
imental observations from Crossman and Wang [142] and
Johson and Chang [143]. A statistical strength distribution
was used to obtain a random crack pattern and the number
of cracks was limited to a maximum number per ply. A con-
tinuum damage model for fiber failure has been added by

Mollenhauer et al. [136], based on the formulation of Maimí
et al. [117, 118]. Results are compared overheight compact
tension test results from Li et al. [144].

The formulation by Yang et al. is based on Hansbo’s ver-
sion of XFEM, which they refer to as A-FEM. It was first
introduced by Ling et al. [137] and applied to matrix crack-
ing in laminates by Zhou et al. [138] and Fang et al. [139].
Zhou et al. [138] used the model to investigate the interac-
tion and competition between matrix cracking and delam-
ination and their sensitivity to the ratios between different
material parameters. Fiber failure has been added by Fang
et al. [139] as a sudden stiffness reduction after violation of
a maximum strain criterion. Results obtained with the model
are compared with experiments on double edge notched ten-
sion specimens by Hallett et al. [145] and again a good cor-
relation in terms of damage progression and global response
has been demonstrated [139].

The formulation by van der Meer et al. is also based on
Hansbo’s method and introduced in Ref. [88]. Numerical as-
pects of the interaction between XFEM for matrix cracks
and interface elements for delamination were investigated
by van der Meer and Sluys [86] and a continuum damage
model was added for fiber failure in a later publication [140].
There, results were validated against experiments by Spear-
ing and Beaumont [146]. Further validation on experiments
by Green et al. [147] and Li et al. [144] was presented in
Ref. [141]. In the remainder of this paper, the main choices
and findings by van der Meer et al. are discussed in more de-
tail, providing an overview of the main issues for building a
model around an XFEM representation of matrix cracks (in
this section), as well as a detailed look under the hood of the
algorithmic framework used (in Sect. 6) and a demonstration
of the possibilities of the approach (in Sect. 7).

5.1 Fundamental Choices

With XFEM, initiation and growth of cracks can be sim-
ulated at arbitrary locations in the mesh. For this, generally
two criteria are needed, the first is to judge whether the crack
will grow and the second to determine in which direction the
crack will grow. From this point of view, application of these
methods to the simulation of matrix cracking in laminates is
a simplification, because the second criterion becomes triv-
ial: the direction of crack growth is always equal to the fiber
direction. A matrix crack grows by definition between the
fibers, and this can be numerically enforced by fixing the
direction of crack growth (φ in Fig. 6 is set equal to θ in
Fig. 7). As long as one layer of elements is used through
the thickness of the ply, it is naturally assumed that ma-
trix cracks always extend through the ply thickness. Because
of this, complications in describing three dimensional crack
paths (see e.g. [148]) are avoided. It is furthermore assumed
that the matrix crack orientation is always perpendicular to
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Fig. 13 Tractions in initially
rigid mixed mode cohesive law.
Each straight line corresponds
with a fixed ratio �u�n/�u�sh.
The traction is not uniquely
defined at �u� = 0

the plane of the laminate. Therefore the crack topology can
be described completely in the 2D midplane of the ply, even
when 3D solid elements are used. The downside of this as-
sumption is that the wedge effect that may occur in com-
pressive laminate failure due to inclined matrix cracks [66]
is not included. To date, XFEM for matrix cracking has only
been applied to tensile load cases, where the assumption that
cracks are perpendicular to the midplane is realistic.

For the simulation of propagating matrix cracks, the co-
hesive approach is chosen over the brittle version with crack
tip enhancement. In the first place because the cohesive trac-
tions and hence a fine mesh are needed anyway for delam-
ination. And secondly because it is not clear what the sin-
gular functions should look like for a crack tip in an or-
thotropic medium that is constrained by neighboring plies.
With this choice, Hansbo’s version of XFEM is from imple-
mentational point of view the most favorable choice.

For crack initiation and the insertion of new crack seg-
ments a stress-based criterion is used. The particular choice
for the criterion in the work presented here is not related
to a particular failure theory, but rather to the Benzeggagh-
Kenane-criterion (Eq. (48)) used in the cohesive law (see
Sect. 5.2). The stress is rotated to the material frame and then
evaluated with the following expression, taking into account
the fact that the local 2-axis is normal to the crack plane:

〈σ2〉2 + τ 2
sh

F 2
1t + (F 2

12 − F 2
1t)B

η
≤ 1 (66)

with

τ 2
sh = τ 2

12 + τ 2
23 (67)

B = τ 2
sh

〈σ2〉2 + τ 2
sh

(68)

This criterion is evaluated in all elements in which cracking
is allowed, taking into account the minimum crack spacing
as described in Sect. 5.4. When the criterion is violated, the
element is split in two and a cohesive segment is inserted
between the two (see Fig. 6).

5.2 Cohesive Law

In contrast with interface elements, XFEM requires an ini-
tially rigid cohesive law, because the cohesive segments are
introduced at nonzero stress level. In most texts on prop-
agating cohesive cracks in XFEM or related formulations,
decohesion is mode I driven, either by leaving out shear
tractions altogether [36, 43, 149], or by assuming constant
shear stiffness [42], or by assuming decreasing shear stiff-
ness where the decrease is driven by normal crack open-
ing only [40, 150]. This simplification is compatible with a
crack propagation procedure that is based on the direction of
maximum principal stress, because then mode I is the dom-
inant cracking mode. In the present case of matrix cracking,
however, the crack propagation direction is independent of
the stress field, and a complete mixed-mode formulation is
needed. Such formulations have not been developed in the
initial explorations of XFEM.

It is possible to define an initially-rigid mixed-mode dam-
age law that computes the traction vector from the displace-
ment jump (see e.g. Oliver [151] and Mergheim and Stein-
mann [152]). However, the traction is then not uniquely de-
fined for zero crack opening (see Fig. 13; all iso-lines for
the traction go through �u� = 0). In a uniaxial case it is ob-
vious that the traction should be equal to the strength. But
in a mixed mode formulation the strength is a surface in the
traction space and the initial traction can be any point on
that surface, each with a zero opening. The traction evalua-
tion itself remains feasible, because the crack opening after a
finite load increment will not be exactly equal to zero. How-
ever, the highly nonlinear nature of the traction-separation
law around the origin endangers the stability of the analy-
sis. Very small variations in nodal displacements give rise
to large changes in nodal forces and also, more critically,
to large changes in the tangent matrix, which leads to ill-
convergence.

However, more knowledge on the initial traction is avail-
able. Namely, that the cohesive traction acting on the crack
surface must be in equilibrium with the stress in the bulk
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Fig. 14 Pure mode I representation of shift in cohesive law to mimic initially rigid behavior

material next to the crack:

t = σn (69)

where σ is the stress tensor and n the normal vector of the
crack surface. Notably, since the crack is parallel to the fiber,
the vector σn contains the material stress components σ2,
τ12 and τ23. The value of σn upon crack initiation is known
and can be used for the evaluation of the initial traction
with two different concepts. The first has been introduced
by Moonen et al. [153] and includes the term σn from the
neighboring bulk material directly in the cohesive law. The
second concept, by Hille et al. [154], is to use a law with
a finite initial stiffness and then shift the origin of the law
such that the traction at zero opening matches the stress at
the moment the crack segment is introduced.

Van der Meer et al. have developed two cohesive formu-
lations for composites that each make use of one of these
concepts and that both start from the phenomenological
mixed mode law by Benzeggagh and Kenane [80]. The ver-
sion based on Moonen’s idea can be found in [88], and the
version based on Hille’s idea in [141]. Both implementa-
tions have been validated in simple mixed mode cases, but
the second was found to be more robust in complex cases.
The formulation of this cohesive law is obtained as follows.
Let Turon’s damage law from Sect. 3.1 be written as an op-
erator T which relates the evolution of the traction t to the
evolution of displacement jump �u�:

t(t) = T
(

�u�(t)
)

(70)

where t is used to indicate the history-dependence. The
shifted version uses exactly the same operator, but works
on a translated argument:

t(t) = T
(

�̃u�(t)
)

(71)

with

�̃u�(t) = �u�(t) + �u�0 (72)

where the translation �u�0 is computed from the bulk stress
at the location of the cohesive integration point at the instant
before the crack segment is introduced:

�u�0 = 1

K

⎧⎨
⎩

σ2

τ12

τ23

⎫⎬
⎭ (73)

Here, K is the initial elastic stiffness in the cohesive law
and {σ2 τ12 τ23}T is the traction on the crack surface com-
puted from the bulk stress at the moment of introduction of
the crack segment. This leads to the desired initially rigid
behavior, as illustrated in Fig. 14. Moreover, the traction-
separation relation is not singular as long as K is finite, and,
initially, for the undamaged cohesive integration point with
zero crack opening, the traction is in equilibrium with the
stress in the adjacent bulk material.

5.3 Interaction with Delamination

This section deals with the numerical representation of the
interaction between matrix cracks and delamination when
the former is modeled with the Hansbo’s method and the lat-
ter with interface elements. The investigations are performed
in a two-dimensional framework where each ply is modeled
with a single layer of plane stress elements, but the same
holds for a three-dimensional framework with one layer of
solid elements per ply.

When a discontinuity appears in the displacement field
of one of the planes that are connected with interface ele-
ments, this obviously affects the relative displacement field
between the planes. Using XFEM for the ply theoretically
requires that the interface elements connecting the plies are
adapted accordingly, as shown in Fig. 15. Each of the plane
displacement fields Nabottom and Natop in the definition of
the interface displacement jump in Eq. (17) may become
discontinuous as in Eq. (25). This should be taken into ac-
count in the evaluation of the interface displacement jump.
Practically, this would entail that upon introduction of phan-
tom nodes, the connectivity and integration scheme of the
interface elements is adapted accordingly, including transfer
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Fig. 15 Interface element with a crack through one of the connected plane stress elements. Theoretically, the interface element must be adapted
upon crack introduction

Fig. 16 Interaction between matrix cracking and delamination: sketch of real deformations (top) and numerical representation with unadapted
interface element and nodal integration (bottom)

of history variables. Moreover, the possibility that both con-
nected planes in a single interface element are cracked has
to be accounted for.

However, with Hansbo’s method, more than with tradi-
tional PUFEM, the nodal displacements related to the orig-
inal nodes of a cracked element remain meaningful, due to
the fact that those are always in the active part of the over-
lapping elements (see Fig. 6). When the interface elements
are not adapted upon cracking of the plies, the inconsistency
in the displacement field is limited to the interior of the ele-
ment. Since high accuracy in the displacement field at sub-
element level is generally not pursued in finite element anal-
ysis, the consequences of using such a nonconforming dis-
placement field may very well be acceptable. Moreover, the
significance of an error at sub element level will vanish upon
mesh refinement. At the nodes, the unadapted displacement
field is equal to the discontinuous field. The relative dis-
placement between each pair of original nodes remains the
real relative displacement of the corresponding pair of mate-
rial points. Therefore, if a nodal integration scheme is used
for the interface element, the displacement jump of the un-
adapted interface element evaluated at the integration points
is exact. Then, not-updating the interface element means not

much more than under-integration of the displacement jump
field.

A schematic representation of the mechanical process in
which matrix cracking and delamination interact is given
in the top row of Fig. 16. The material in two plies with
in-plane dimensions corresponding with a single quadrilat-
eral finite element is considered. First, a matrix crack ap-
pears in the transverse ply. Next, significant crack opening
demands that minor delamination takes place. Finally, the
delamination front propagates beyond the boundaries of the
element domain. The numerical representation of the inter-
action with an unadapted interface element and nodal inte-
gration is shown in the bottom row of Fig. 16. Integration
points in the interface element are indicated as springs. With
this simplified description, limited crack opening may occur
without any delamination. But major delamination will still
result in interface damage.

With unadapted interface elements minor delamination
is not captured. However, even if they would be adapted,
the complex micromechanical stress and displacement fields
that correspond with this state would not be represented ac-
curately. Furthermore, with unadapted elements, the final
amount of energy dissipated will be correct when major de-
lamination occurs on both sides of the splitting crack, and
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Fig. 17 Geometry of cross-ply
open hole laminate

Fig. 18 Deformed mesh from
open hole analysis just before
final failure; deformations are
magnified with a factor 20

will approach the correct value upon mesh-refinement when
major delamination occurs on only one side of the crack.
Therefore, van der Meer and Sluys [86] have proposed to
use unadapted interface elements for delamination in com-
bination with XFEM for matrix cracking. In the following
example, this choice is validated.

Open Hole Laminate Above, it has been argued that an er-
ror is introduced by not updating interface elements when
neighboring solid elements are cracked, but that this error
can be expected to vanish upon mesh refinement. Here, re-
sults are shown from an investigation into the magnitude of
this error with a mesh-refinement study for a case in which
interaction between matrix cracking and delamination is es-
sential [86]. A [±45]s-laminate with a circular hole under
tension is considered (see Fig. 17). The location of two
cracks per ply is predefined in order to keep the response
relatively simple.

Matrix cracks are growing from the hole to the long edge.
But these cracks alone are not sufficient to form a mecha-
nism, because of mutual constraint between the two plies.
The load is transferred via the interface, which causes de-
lamination to grow away from those cracks, until the area
between the cracks is completely delaminated. The failure
mechanism is illustrated in Fig. 18 where the deformation
short before final failure is shown. It can be observed that
failure is complete on one side of the hole, while delamina-
tion between the matrix cracks on the other side of the hole
is still developing. The asymmetry in the response is due to
the unstable nature of the delamination process and is trig-
gered in the simulations by asymmetry in the mesh.

Six different meshes are used and two different integra-
tion schemes for the interface elements. All meshes are gen-
erated with the same mesh generator [155], where the typical
element length is each time scaled throughout the domain
with a factor 1/

√
2, resulting in an increase in the number

of nodes with a factor of approximately two. The triangu-
lar interface elements are integrated with either a three point
Gauss scheme or a three point Newton-Cotes scheme. Load-
displacement diagrams for three different meshes are pre-
sented in Fig. 19. The dissipation-based arclength method
(see Sect. 6.1) allows for flawless tracking of the equilib-
rium path with two sharp snapbacks, each corresponding
with delamination on one side of the hole. It can be observed
that differences between the results for the different meshes
are limited. Especially with the two finer meshes, there is
very good agreement between the results. Fig. 20 shows
the trend in maximum load value upon mesh refinement for
both integration schemes. The results are practically equal
for all meshes with Newton-Cotes integration. The trend for
the peak load value with Gauss integration approaches the
mesh-objective value from analyses with Newton-Cotes in-
tegration.

Furthermore, in Fig. 21 the dissipation at the end of
all twelve analyses is visualized. Again, the results with
Newton-Cotes integration converge to a unique solution
very fast. The energy dissipation due to delamination in the
analyses with Gauss integration decreases upon mesh refine-
ment. The fact that more energy is dissipated before a mech-
anism is formed with Gauss integration can be well under-
stood considering that the unadapted interface elements are
bridging the matrix crack. Eventually, the interface is dam-
aged on both sides of the crack, because in the unadapted
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Fig. 19 Load-displacement relation for open hole laminate with limited number of cracks obtained with three different meshes and two different
integration schemes [86]

Fig. 20 Peak load for different meshes for open hole laminate with
limited number of cracks [86]

interface element relative displacements become large over
the whole element domain, while in the real discontinuous
displacement field significant relative displacements occur
on one side of the crack only. This is illustrated in Fig. 22,
showing the area with delamination damage and the location
of the matrix cracks. It can be observed that with Gauss in-
tegration the final delamination front lies outside of the area
bound by the splitting cracks, while with nodal integration,
the delamination front lies, on average, on the cracks as it
should.

It is concluded from this example that unadapted in-
terface elements can be used between elements that are
cracking with the phantom node method without reserva-
tion. When unadapted interface elements are used, a nodal
(Newton-Cotes) integration scheme is to be preferred be-
cause with such a scheme the displacement jump is exact in
all integration points and no artificial bridging is introduced.

5.4 Crack Spacing

In a mesolevel laminate model, the strains in different plies
are necessarily conforming until delamination takes place.

Matrix cracks that are introduced as a discontinuity in the
displacement field do not change this, except at sub-element
level. In other words, introduction of transverse cracks after
violation of the failure criterion does not necessarily lead to
localization of deformation and hence to unloading of the
surrounding material. This gives the stress-based laminate
analysis with matrix cracking an ill-posed character. In ab-
sence of delamination, the stress keeps increasing in every
uncracked element. Eventually, the matrix strength may be
exceeded throughout the domain. With a rigid interface, the
stress field may give rise to an infinite number of cohesive
cracks with infinitesimal crack spacing.

Physically, the ill-posedness of the mechanical problem
is reflected in the apparent randomness of the exact loca-
tion of matrix cracks. The exact location of subsequently ap-
pearing matrix microcracks and the distance between those
cracks depends on the microstructural fiber distribution and
on the complex three dimensional displacement field in the
neighborhood of existing cracks. The resolution of the me-
somodel is by definition not sufficiently fine to capture this.
However, this is not necessarily problematic, because in
mesolevel analysis one is not really interested in finding the
exact location of individual transverse cracks. It is rather the
presence of matrix cracks in a certain region and the de-
lamination that they promote that is important for mesolevel
analysis. A statistical strength distribution could alleviate
the ill-posedness in the analysis in the sense that a unique
location can be found where cracks should initiate first. But
if these first cracks do not cause significant delamination, in-
creasing strain may still lead to a theoretically infinite num-
ber of cracks, except when the full three-dimensional prob-
lem is solved with multiple elements over the ply thickness.

In the example in Sect. 5.3, the ill-posedness was re-
moved by predefining where matrix cracks are allowed. As
a consequence, the strength criterion, Eq. (66), was not ap-
plied consistently throughout the domain. There were areas
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Fig. 21 Energy dissipation for
different meshes for open hole
laminate with limited number of
cracks [86]

Fig. 22 Final matrix cracks and
delamination on one side of the
hole with Gauss integration
(left) and Newton-Cotes
integration (right) and
nn ≈ 2000 [86]

where the stress exceeded the strength but where the ma-
terial was nonetheless assumed to remain intact. However,
XFEM can deal with multiple parallel cracks, provided that
the number of these cracks is finite. Therefore a numeri-
cal crack spacing parameter has been introduced by van der
Meer and Sluys [86] to remove the ill-posedness while main-
taining as much as possible the predictive quality that cracks
may initiate wherever stress exceeds the strength. Because
the matrix cracks are straight, the normal distance between
a pair of cracks can be computed, which is used as a limiter
for crack initiation.

An additional advantage of using a predefined minimum
crack spacing is that this allows for the modeling of coalesc-
ing cracks. Since the cracks are straight, it can be anticipated
that two cracks will meet. Practically this means that crack
initiation at a location with zero normal distance to an exist-
ing crack is also allowed.

The crack propagation/initiation procedure is imple-
mented such, that whenever the matrix strength is exceeded
in an element, the projected distance from this element to ex-
isting cracks is checked. If that distance is smaller than the
predefined crack spacing, it is tried to move the point of ini-
tiation of the new crack inside the failing element such that
the two cracks will meet exactly. If that fails, crack initia-
tion in this element is aborted, and the same element will not
be checked for failure again. New crack segments are either
an extension of an existing crack, or the initiation of a new

crack with � ≥ �min or the initiation of a new crack that is
anticipated to meet an existing crack � = 0 (see Fig. 23).

It is not immediately clear how the value of �min should
be chosen. A lower bound is related to the fineness of the
mesh, practically because dealing with multiple cracks per
element is troublesome, and philosophically because the
fineness of the discretization indicates the desired resolution
of the approximation.

Open Hole Laminate The influence of the crack spacing
on the results has been investigated in Ref. [86] with em-
phasis on the question how the spacing parameter influences
the objectivity of the global response. Here, results from one
of the examples are shown. The [±45]s-laminate with circu-
lar hole from the previous section (see Fig. 17) is revisited,
but this time there are no predefined crack locations. Instead,
the number of cracks is limited by the spacing.

Peak load values for different values of the crack spac-
ing are displayed in Fig. 24. Two different plateaus where
the maximum load is roughly constant can be observed. The
cause for the drop in maximum load for (�x < 0.9 mm) is
found in subcritical delamination near the hole. In all com-
putations, the first cracks are initiated at the same location
along the hole, since the crack spacing does not influence the
solution before any cracks are present. The location of these
first cracks is at the point where the cross section is min-
imal. Then, as the load continues to increase, more cracks
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Fig. 23 Insertion of new crack segments after convergence

Fig. 24 Peak load value for open hole laminate for different values of
the crack spacing [86]

are initiated. In case the spacing is small enough to have
secondary parallel cracks that also touch the circular hole,
the small triangular areas that are enclosed by these cracks
delaminate before the maximum load is reached. The conse-
quence of this subcritical delamination is that the effective
cross-section is reduced and hence that the load carrying ca-
pacity drops.

The influence of the spacing on the final delaminated area
can be observed in Fig. 25, which depicts the final crack
pattern and delaminated area for four different values of the
crack spacing. Load-displacement diagrams are also shown.
There is no absolutely unique solution, but a strong similar-
ity between the results with different crack spacing values
can nevertheless be observed.

The fact that in this case the secondary cracks eventually
form the main opening macrocracks, makes predictive anal-
ysis of the failure mechanism particularly challenging. With
the approach with XFEM for matrix cracking and a crack
spacing parameter, this challenge can be met. The transi-
tion from the distributed phenomenon of a zone with par-
allel matrix cracks to the discrete phenomenon in which an
individual crack from this zone becomes dominant is cap-

tured automatically as a consequence of proper ply kine-
matics and sound interaction between matrix cracking and
delamination.

The influence of crack spacing on the final dissipation is
shown in Fig. 26. Here too, the influence of the presence
of subcritical damage is visible, particularly in the dissipa-
tion related to delamination. For the dissipation in the ma-
trix cracks, a completely unique response has not been ob-
tained. Nevertheless, the influence of crack spacing on dis-
sipation is limited, even when only dissipation due to ma-
trix cracking is considered. Not all cracks that are initiated
are fully opening. Therefore the amount of energy that is
dissipated in distributed matrix cracking is not linearly de-
pendent on the number of cracks. That the response is not
completely unique is in this case acceptable as a reflection
of the fact that there is randomness in the exact location of
matrix cracks. No data was obtained for crack spacing of
0.9 mm, because in that computation the secondary cracks
that only just missed the hole eventually caused difficulties
in the post peak analysis.

It is concluded from this example that the artificial crack
spacing parameter does not have a pathological influence on
the results. When the spacing is chosen sufficiently small to
describe the final delamination pattern, the predicted peak
load value is largely independent of the value that is used
for the spacing. The total dissipation, however, a quantity
strongly related to the post-peak response, remains more
sensitive to this value. The optimal value for the spacing pa-
rameter remains problem and mesh-dependent, but with this
approach it is possible to deal with both distributed matrix
cracking and discrete splitting, and to have a transition be-
tween the two, which is governed by the mechanics in the
interface as it should be.

5.5 Fiber Failure

In order to build a complete model for ply failure, the dis-
continuous model for matrix cracking must be combined
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Fig. 25 Load-displacement
diagrams along with final
delamination damage and
matrix cracks for different
values of the crack spacing [86]

Fig. 26 Energy dissipation for
open hole laminate for different
values of the crack spacing [86]
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with a model for fiber failure. Several considerations lead
to the preference of a continuum model over a discontinu-
ous approach here. Firstly, the compelling reason to use a
discontinuous representation for matrix cracks, namely that
the direction of crack propagation is governed by the mi-
crostructure rather than by the stress field, is not present in
this case. Moreover, in the case in which a band with fiber
failure grows in the direction of a matrix crack in an adjacent
ply, the discontinuous approach will have more difficulty in
predicting this orientation. Prior to failure there is a band of
elements in which stress is high. With a continuum model
this will automatically lead to failure in this band, while it is
not clear how this propagation direction should be extracted
from the stress field in case it is modeled as a propagating
discontinuity in the displacement field. Secondly, the contin-
uum description fits the physics well, because fiber failure is
a mechanism that results in a band in which material is dam-
aged. This is due to the fact that fibers do not fail in a smooth
plane, the process generally involves pull out of fibers from
a zone with extensive matrix failure.

The remaining disadvantage of the continuum approach
to failure is that regularization is needed. The method for
fiber failure proposed by Fang et al. [139] is not regu-
larized, while van der Meer et al. [140] and Mollenhauer
et al. [136] use the crack band method [22] for regularization
of their successive fiber failure models. This simple method,
in which the constitutive behavior depends on the element
size, leads to mesh-size independent results, although lim-
ited dependence on the orientation of the elements may still
be present. The formulation by van der Meer et al. [140] is
detailed below.

Because the fiber failure mechanism does not leave the
matrix intact, isotropic softening is assumed

σ = (1 − ωf)Deε (74)

The force that drives degradation, however, is orthotropic,
motivated by the obvious fact that fiber failure only occurs
due to loading in fiber direction. Puck and Schürmann [66]
argued that the difference between available formulations
is small as far as failure initiation is concerned. Therefore,
for simplicity, maximum strain and maximum stress crite-
ria are to be preferred. Of these, the maximum strain crite-
rion is most appropriate to drive the degradation, because
this largely rules out the influence of transverse strain on the
amount of energy dissipated due to fiber failure. The vari-
able κf is defined as the time maximum of the normalized
strain in fiber direction

κf = E1〈ε1〉
F1t

(75)

where E1 is the ply Young’s modulus in fiber direction, 〈ε1〉
is the positive strain in fiber direction and F1t is the ply

strength in fiber direction. Damage initiates when κf = 1 and
an exponential softening relation is used to compute ωf.

ωf = max
τ≤t

{
0 κf ≤ 1

1 − 1
κf

e−β(κf−1) κf > 1
(76)

where β is related to the fracture energy and the element size
as:

L∗ = 6

π

√
A√

3
(77)

For a realistic representation of crack bridging behavior as
observed by Pinho et al. [156], linear-exponential [117] or
bilinear [157] softening would be more realistic than the
simple exponential softening described here.

For the influence of fiber failure on the matrix cracking
process the assumption of isotropic softening is maintained.
That means, firstly, that the failure criterion for matrix crack-
ing is applied on the effective stress (Deε) instead of on the
nominal stress σ and, secondly, that after crack initiation
fiber damage is also applied to the cohesive traction in the
matrix cracks.

t = (1 − ωf)T
(

�ũ�
)

(78)

where T (�ũ�) is the traction as computed with the cohe-
sive law in Eq. (71). In each cohesive integration point, ωf is
computed from the bulk strain at that point, which is taken
as the average of the independent strains on both sides of the
crack.

5.6 Shear Nonlinearity

A final feature must be added to the constitutive model of the
ply, namely a representation of the nonlinear shear deforma-
tions in the matrix. Van der Meer et al. [140] have chosen for
the phenomenological model by Van Paepegem et al. [124,
158] which includes both damage and plasticity, so that it
can be fitted with respect to observed loading/unloading be-
havior with both stiffness degradation and permanent strain,
see Fig. 27(b). For failure analysis, a proper description of
the unloading behavior is of importance, also under mono-
tonic boundary conditions, because unloading of the bulk
material will occur around the failure zone.

The basic relation between shear stress and shear strain
with damage and plasticity is

τ12 = G12(1 − ω12)
(
γ12 − γ

p
12

)
(79)

Van Paepegem et al. [124] proposed exponential evolution
relations for ω12 and γ

p
12 in differential form. In order to
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Fig. 27 Schematic
representation of the nonlinear
continuum models

obtain behavior that is independent of the time step size, the
equations have been rewritten in [140] in closed form:

dγ
p
12

dγ12
= C1γ12 exp

(
C2γ

p
12

)

⇒ γ
p
12 = − ln(1 − C1C2γ

2
12/2)

C2
(80)

dω12

dγ12
= C3 exp(C4ω12)

⇒ ω12 = − ln(1 − C3C4γ12)

C4
(81)

Apart from the elimination of the differential formulation,
another change has been made in Eq. (81) with respect to
the original formulation. Namely that the evolution of D de-
pends on the total strain γ12 rather than on the elastic strain
γ e

12 = γ12 − γ
p
12. This adaptation disentangles the influence

of the four material parameters C1 . . .C4 on the stress strain
behavior and therefore simplifies the curve fitting exercise
in which these parameters are to be obtained.

In laminate analysis, matrix cracking will not be allowed
everywhere in the domain (see Sect. 5.4). As a consequence,
it cannot be excluded that the stress in the bulk material be-
tween two cracks will exceed the matrix strength. For this
reason, the model for shear nonlinearity, needs to remain
well-posed beyond the failure strain, even though it is un-
clear what is the physical meaning of this part. The model
by Van Paepegem et al. [124] starts to exhibit softening from
a certain threshold strain. This would violate the separa-
tion between matrix nonlinearity and matrix failure and is
therefore undesirable. This is solved by extending the phe-
nomenological curve with a perfectly plastic part beyond the
point where ∂τ12/∂γ12 = 0.

The interaction between shear nonlinearity and fiber
damage is straightforward because the two processes are
driven by independent strain components. Fiber damage
is applied to the total stress after shear nonlinearity, i.e.
Eq. (74) is generalized to

σ = (1 − ωf)D̂εe (82)

where D̂ is the orthotropic material stiffness matrix with
nonlinear shear component D̂66 = (1 − ω12)G12 and εe is
the elastic strain with γ e

12 = γ12 − γ
p
12.

In this model, there is no coupling between hardening
matrix damage ω12 and softening matrix damage in trans-
verse cracks (ωm) or in the interface (ωd). This can only be
justified if the microcracks that are represented by ω12 in the
continuum are not aligned with the microcracks represented
by ωm and ωd in the cohesive zones. For delamination this
is a likely assumption, but for transverse cracking some
kind of interaction would be realistic. Moreover, where pa-
rameter identification is concerned, in the measurement of
GIIc,m there is definitely some energy dissipation involved
that is due to the very same processes that are interpreted as
shear nonlinearity in other measurements. The sharp distinc-
tion between matrix damage in transverse cracks and matrix
damage due to in plane shear is debatable. This is a conse-
quence of the mesolevel approach. Two phenomena are dealt
with that are clearly distinct on the mesoscale but neverthe-
less connected on the microscale. To this date, this issue has
been left unresolved, for reasons of simplicity, but also be-
cause energy dissipation in matrix cracks is not the most
important property in the complete failure simulation.

6 Solution Algorithm for Simulations with Many
Cracks

In the previous section, a numerical framework for the sim-
ulation of composites has been introduced. However, care-
fully constructed kinematic and constitutive models are not
all that is needed for successful simulations. When the com-
putation crashes due to non-convergence before the virtual
specimen has failed, the model is of no use, and when the
computation time is very high this does not encourage its
use either. In order to obtain a model that is applicable to
complex cases, a well-designed solution procedure is indis-
pensable. Algorithmic details from a specific implementa-
tion are often left unpublished, because they are generally
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not considered pivotal, nor even always meritable. How-
ever, they are important. Robustness and efficiency are es-
sential for numerical methods in engineering. In this sec-
tion, detailed attention is therefore given to the algorith-
mic aspects of the computational framework developed in
Refs. [86, 88, 140, 141].

The central element of the solution algorithms for im-
plicit nonlinear finite element analysis is the Newton-
Raphson method (see Sect. 2.1). Theoretically, the Newton-
Raphson procedure offers quadratic convergence when lin-
earization is exact, under the assumptions that the procedure
is started within the radius of convergence and that the func-
tion for which a solution is sought is smooth [18]. On com-
plex problems, however, such favorable convergence prop-
erties are generally not realized, either because the radius of
convergence is smaller than practicable or because smooth-
ness is absent. In these cases, there is no guarantee that the
procedure converges at all. There are several possible fac-
tors that can endanger robustness of the Newton-Raphson
iterative procedure. These are listed below:

– Non-consistent linearization. Quadratic convergence re-
quires exact linearization, but in practice, especially with
complex constitutive relations, the chain rule for differ-
entiation is not always followed to the very last terms,
consciously or not. This may stay without consequences
in simple verification cases but it poses a serious threat to
convergence in complex cases.

– Non-differentiability of the local response. A subtle form
of non-smoothness is when there is discontinuity in the
derivative of nodal forces with respect to nodal displace-
ments. This may be caused by a kink in the constitutive
law, but also by switches between loading and unloading
behavior. Adaptive stepping is often a solution to solve
convergence difficulties in this case, either by decreasing
or by increasing the increment size.

– Discontinuities in the local response. More severe lack of
smoothness occurs when there is a discontinuity in the
relation between nodal forces and nodal displacements.
This is for instance the case when instant loss of stiffness
is assumed in a constitutive law, but also crack growth
with XFEM may lead to small sudden changes in nodal
force distribution. In the latter case, the effect vanishes
when elements are sufficiently small. This type of discon-
tinuity can nevertheless be very severe, because adaptive
stepping is not always effective.

– Snapback behavior. In quasi-static analysis, snapback be-
havior can exist in the equilibrium solution. The cause for
this can be physical (for composites: the unloading of stiff
fibers after fiber breakage or after delamination) but also
numerical (e.g. the use of relatively large elements with
cohesive methods). When no arclength-algorithm is avail-
able, a snapback becomes a load drop, i.e. a discontinuity

of the global response. The starting point of the Newton-
Raphson procedure for the step in which the load drops
may be outside of the radius of convergence beyond cure
with adaptive stepping.

– Bifurcations or near-bifurcations. For instance when dif-
ferent cracks or failure processes are competing and one
has to be halted while the other continues to develop, it
is possible that the iterative procedure oscillates between
different solution paths. A modified Newton-Raphson
strategy may be necessary: assuming secant instead of
softening behavior for both competing mechanisms will
help to find the one that is most critical.

Progressive failure simulations for composites have sev-
eral aspects that complicate the solution procedure. In this
section, the numerical algorithms used to cope with these
complications for the simulation of complex failure mecha-
nisms in Ref. [141] is outlined. Firstly sharp snapbacks are
encountered. When matrix failure occurs in fibrous materi-
als, two processes take place simultaneously: matrix mate-
rial damages (by definition), and fibers unload (as a possible
consequence). Because the fibers are very stiff and the ma-
trix failure process is not very ductile, the amount of elas-
tic energy released by the second process easily exceeds the
amount of energy necessary to drive the first. Hence, dam-
age grows in an unstable manner and snapback behavior is
observed in the equilibrium path. The dissipation-based ar-
clength method by Gutiérrez [159] has been found to be a
very powerful tool for following the equilibrium path when
many different failure processes are interacting and compet-
ing. The method is presented in Sect. 6.1, along with an ex-
tension of the formulation that is needed with the proposed
constitutive models. Secondly, the initiation and propagation
of cracks with XFEM must be given a place in the solution
procedure. This is a remeshing operation that is not suitable
for integration in the Newton-Raphson procedure. However,
due to the possibility of distributed cracking, many cracks
can be expected, which should be dealt with as efficiently
as possible. The strategy for crack propagation is presented
in Sect. 6.2. Thirdly, an adaptive time stepping strategy is
needed. In laminate fracture, different failure processes may
occur and interact. In some cases the different processes are
competing, in other cases they promote one another, but in
either case the system is highly nonlinear, with a varying
radius of convergence. Therefore, an adaptive strategy is
employed, which searches for an increment size for which
the Newton-Raphson procedure does converge. The adap-
tive strategy is presented in Sect. 6.3. Fourthly, the fiber fail-
ure model gives particular convergence problems which can-
not be solved with adaptive time stepping. Therefore, a mod-
ified Newton-Raphson scheme is used in some cases when
the fully linearized iterative procedure does not converge. In
Sect. 6.4 it is explained how and when this is done.
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6.1 Dissipation-Based Arclength Method

Gutiérrez [159] has developed the dissipation-based ar-
clength technique for complex failure problems. Unlike the
original arclength method [160], it is also stable for highly
localized behavior, and unlike the indirect displacement con-
trol method [161], which was introduced particularly for lo-
calized behavior, it is not necessary to specify in advance
where failure occurs. Like with other arclength methods,
a constraint equation is added to the system of equations,
but in the dissipation-based arclength method, the constraint
equation is based on the thermodynamical principle that
energy dissipation is non-negative in each finite time in-
crement. With this in mind, a forward marching strategy
along the equilibrium path is defined by prescribing a fi-
nite amount of energy to be dissipated in each time step. In
Fig. 28, it is illustrated how the equilibrium path is followed
incrementally with equal energy increments. The constraint
equation is defined in terms of global quantities, and there-
fore, there is no need to prescribe or track where the local-
ized deformation occurs.

6.1.1 Original Formulation

In the dissipation-based arclength method, the constraint
equation is formulated such that an increment in the en-
ergy dissipation is prescribed in each time step. For models
with secant unloading, the constraint equation is expressed

Fig. 28 Incremental solution of equilibrium path with a snap back
with the dissipation-based arclength method. The energy dissipation
per time step is prescribed

in terms of nodal quantities as:

1

2
f̂T (λ0�a − �λa0) = �E (83)

where f̂ is the unit load vector, λ is the load scale factor
(λf̂ = fext), a is the nodal displacement vector, and �E is
the prescribed amount of dissipated energy in the time step.
The subscript 0 is used to refer to a quantity at the beginning
of the time step, while � indicates an increment during the
time step.

In the left diagram of Fig. 29, the quantities from Eq. (83)
are illustrated for a single degree of freedom. Assuming the
path between the two points on the load-displacement curve
is straight, the area �E can be expressed as

�E = 1

2
(λ0�u − �λu0) (84)

which is strongly similar to the generalized form in Eq. (83).
However, it is obvious from the figure that this expression
depends on the assumption of secant unloading. In case per-
manent deformations are present (as in the right diagram of
Fig. 29) the constraint equation has to be adapted.

6.1.2 Damage/Plasticity Formulation

In the analysis of laminate failure, the assumption of secant
unloading does not hold for two reasons, firstly due to the
residual stress from the curing process (see Sect. 2.3), and
secondly due the permanent strain related to shear nonlin-
earity (see Sect. 5.6). An extension of the dissipation-based
arclength method for plasticity has been derived before by
Verhoosel et al. [162]. In that derivation, however, it is tac-
itly assumed that plasticity is the only dissipative mecha-
nism. Another constraint equation has been derived by van
der Meer et al. [140] that is generic for combined damage
and plasticity, including thermal strain as a specific case of
plasticity.

The presence of thermal strain and plasticity require an
additional vector assembly, rendering the constraint equa-
tion as

f̂T (λ0�a − �λa0) + �aT f∗0 = 2�E (85)

Fig. 29 Energy dissipation with
secant unloading (left, cf.
Eq. (83)) or permanent
deformations (right, cf. Eq. (96))
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with

f∗0 =
∫

Ω

BT

{
DT

0

(
εth + ε

p
0

)+ σ T
0

(
∂εp

∂ε

)

0

}
,dΩ (86)

where B is the strain nodal displacement matrix, D is the
consistent stiffness matrix, εth is the thermal strain from
Eq. (41) which is assumed to be constant during the anal-
ysis. The derivation of Eq. (85) starts, following Gutiérrez
[159] with expressing the dissipation rate Ė as the differ-
ence between the exerted power P and the rate of elastic
energy V̇ :

Ė = P − V̇ (87)

with

P = λȧT f̂ (88)

where f̂ is a unit load vector, λ is the load scale factor and ȧ
is the nodal displacement rate.

The elastic energy V is defined as

V = 1

2

∫
Ω

(
ε − εp − εth)T σ dΩ + 1

2

∫
Γ

�u�T t dΓ (89)

where Ω is the bulk domain and Γ is the cohesive surface,
both in interface elements and in XFEM cracks. With the
kinematic relations ε = Ba and �u� = Za, this can be reor-
ganized to

V = 1

2
aT

(∫
Ω

BT σ dΩ +
∫

Γ

ZT t dΓ

)

− 1

2

∫
Ω

(
εp + εth)T σ dΩ (90)

The two integral terms between parentheses can be elimi-
nated, because they are equal to the internal force vector, and
hence, when equilibrium is satisfied, to the external force
vector. The elastic energy is therefore rewritten as

V = 1

2
λaT f̂ − 1

2

∫
Ω

(
εp + εth)T σ dΩ (91)

Note that the integral with the operator Z has been elimi-
nated without specifying whether this signifies the kinematic
relation in an interface element or in a pair of elements with
the phantom node method. However, secant unloading in the
cohesive zone has been assumed in Eq. (89).

With Eq. (91), assuming constant εth, the rate in elastic
energy is:

V̇ = 1

2

(
λ̇aT f̂ + λȧT f̂

)− 1

2

∫
Ω

(
ε̇p)T σ + σ̇ T

(
εp + εth)dΩ

(92)

After substitution of ε̇p = FBȧ and σ̇ p = DBȧ this can be
reorganized to

V̇ = 1

2

(
λ̇aT f̂ + λȧT f̂ − ȧT f∗

)
(93)

with

f∗ =
∫

Ω

BT FT σ + BT DT
(
εp + εth)dΩ (94)

where D is the consistent tangent matrix Dij = ∂σi/∂εj and
F is the gradient of plastic strain with respect to total strain
Fij = ∂ε

p
i /∂εj .

Substitution of (88) and (93) into Eq. (87) gives

Ė = 1

2

(
ȧT
(
λf̂ + f∗

)− λ̇aT f̂
)

(95)

With forward Euler integration, the constraint equation pre-
scribing that a finite amount of energy, �E, is dissipated
becomes:

1

2

(
λ0�aT f̂ − �λaT

0 f̂ + �aT f∗0
)= �E (96)

The first two terms are equal to the left hand side of the
original form in Eq. (83). The third therm is new and asks
for the assembly of an additional vector. Due to the forward
Euler integration, the vector f∗ has to be evaluated only at the
beginning of the time step. However, when the discretization
changes due to crack growth with XFEM, it has to be re-
evaluated.

6.2 Crack Growth

During the progressive failure process in laminates, many
matrix cracks can appear. When matrix cracks are mod-
eled with XFEM, this therefore requires a numerical frame-
work which can handle a big number of cracks to an extent
that is not known in other applications of XFEM. There-
fore, an in-depth exposition of the solution procedure used
in Refs. [86, 140, 141] is included here. This solution proce-
dure has specifically been designed to efficiently accommo-
date a large number of propagating cracks.

6.2.1 Position in Global Algorithm

In XFEM, crack growth is dealt with outside of the Newton-
Raphson loop. Doing it inside the loop would either imply
that the cracks may grow based on a non-equilibrium solu-
tion, which is physically unsound, or it would require that
crack growth is reversible inside the Newton-Raphson loop,
which would harm the robustness of the solution procedure.

Therefore, the stress field is checked for failure after
an equilibrium solution has been found. Together with the
adaptive stepping, this results in a solution algorithm for the
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Fig. 30 Solution algorithm for
a single time step

single time step with a threefold loop (see Fig. 30). The in-
nermost loop is the Newton-Raphson loop, which is stan-
dard for nonlinear finite element computations. In step {1},
the new solution vector is initialized to be equal to that from
the previous time step, and the boundary conditions are up-
dated. In step {2}, the residual vector, is updated for the cur-
rent displacement field, where the residual is the unbalance
in the weak form of the equilibrium equation, cf. Eq. (1):

r = fint(a) − fext (97)

In step {3}, the relative magnitude of this unbalance R is
computed, and it is checked whether this is small enough to
consider the current displacement field an equilibrium solu-
tion. The criterion for this is:

R = ‖r‖
‖r‖0

< Rmin (98)

Where ‖r‖0 is the norm of the residual vector from the first
iteration. As long as the criterion (98) is not satisfied, the
system is repeatedly linearized and solved with Eq. (10)
in step {5}, but not before it has been checked in step
{4} whether there is still hope that the Newton-Raphson
procedure will converge. If the residual becomes too high
(R > Rmax) or the number of iterations too large (n > nmax),
the procedure is canceled and restarted with a new increment
(see Sect. 6.3).

After an equilibrium solution has been found, the corre-
sponding stress field is checked for failure in step {6}. The
solution is acceptable if the failure criterion is not violated
in any of the elements where cracking is allowed. Then the
solution is stored (history is updated, output is written, etc.)
in step {8}. In contrast, when the failure criterion is violated,
new crack segments are inserted, either as growth of exist-
ing cracks or as initiation of new cracks. After this, equilib-
rium is no longer satisfied. There are three options for how to
continue: proceed to the next time step ({7} → {8}), restart

the current time step ({7} → {1}), or continue the Newton-
Raphson loop ({7} → {2}). The third option is to be pre-
ferred, which will be argued below.

As long as time steps are sufficiently small, it can still be
assumed that the solution before crack growth is close to the
real solution path, since with cohesive tractions the pertur-
bation of the equilibrium is small. Therefore, one might be
inclined to proceed to the next time step directly after crack
growth, like Wells and Sluys [40]. This would be most ef-
ficient, and the small loss in accuracy could be acceptable.
However, even the loss in accuracy is accepted regarding the
gain in efficiency, robustness requires otherwise. It is possi-
ble that the Newton-Raphson scheme does not converge af-
ter crack growth. Then the algorithm will not converge in the
next time step, whichever increment size is chosen. This will
lead to termination of the simulation unless a more compli-
cated adaptive scheme is implemented which can go back to
the beginning of the previous time step. Therefore, the op-
tion to go from step {7} directly to step {8} is discarded.
It is necessary to find equilibrium again before the solution
is committed. In that case, if no convergence is found after
crack growth, this crack growth can be canceled (in step {9})
to go back to the beginning of the same time step with a dif-
ferent increment (see Sect. 6.3). The next time step is en-
tered if and only if a solution has been found that satisfies
both equilibrium and the failure criterion.

In a given finite element implementation, it can be more
straightforward to restart the time step at {1} than to con-
tinue with the converged but not-accepted solution at {2}.
For efficiency, however, it is to be preferred to re-enter the
Newton-Raphson loop with the latest converged solution.
This displacement field, which satisfies equilibrium as well
as the constraints for this time step, gives a better estimate
for the final solution of the time step (see Fig. 31, a0

i is
closer to ai than ai−1). Using the latest converged solution
reduces the number of iterations needed to re-establish equi-
librium considerably. This is especially advantageous when
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Fig. 31 Illustration of the solution procedure for a single time step
with crack growth. First, we iterate from ai−1 to find a0

i which satisfies
equilibrium but violates the failure criterion. Then, cracks grow and we
continue the iterations until ai is found which satisfies both

Fig. 32 Algorithm for crack growth with possibly multiple new crack
segments before re-entering the Newton-Raphson loop (for the location
in the full procedure, see Fig. 30)

the crack growth loop is passed several times inside a single
time step.

6.2.2 Crack Growth Procedure

It is crucial for efficiency that it is possible to introduce
multiple new crack segments before the iteration loop is en-
tered again. The computation would become unnecessarily
lengthy if equilibrium would be sought for after every single
insertion of a new crack segment. The procedure for crack
growth in steps {6} and {7} is illustrated in more detail in
Fig. 32. First, the stress is checked in all integration points
in all elements where failure is allowed. The values from the
failure criterion evolution are sorted in descending order and
stored per ply. Then, crack segments are introduced element
by element, beginning with the element with the highest vi-
olation. After each initiation of a new crack, the set of ele-
ments in which cracking is allowed is updated, considering
the restrictions related to the crack spacing (see Sect. 5.3).
New segments are introduced until no more elements exist
in which the failure criterion is violated and in which crack-

ing is allowed or until a maximum number of new crack
segments per ply has been reached.

With the irreversibility of crack growth, this may in some
cases cause cracks to be initiated or extended too fast. It is
possible that crack growth in one place would reduce the
stress elsewhere if equilibrium were re-established, and that
further crack growth should therefore not take place, while
it does in the proposed strategy. But generally, this is not the
case because crack growth at one place rather tends to cause
stress to increase elsewhere. In fact, no significant influence
on the results has been found when the maximum number of
simultaneously inserted new crack segments was increased
from 1 to 200 per ply. At the same time, this increase did
effectuate a dramatic reduction of the computation costs in
cases with many cracks.

Finally, for convergence of the iterative procedure, it is
important that the new degrees of freedom are initialized
at values that are close to their unknown final values. With
Hansbo’s version of XFEM, a very good estimate can be
made by equating the displacements of a new phantom node
to those of the corresponding original node. This results in
a zero displacement jump in the new crack segment, and
therefore to a displacement field that is optimally close to
the last converged solution.

6.3 Adaptive Increment Strategy

Because laminate failure is constituted by a series of rel-
atively brittle failure events, it is a challenge to design a
loading strategy with which the capricious equilibrium path
can be followed. The dissipation-based arclength method is
a very powerful tool for this purpose. Nevertheless, there is
no guarantee that the solution will always be found. How-
ever, a single case of non-convergence should not lead to
termination of the computation, because it is very well pos-
sible that for another increment size, the analysis may be
continued. Therefore, a strategy that is adaptive with respect
to the increment size is necessary.

Furthermore, the dissipation-based arclength method
only works when energy is actually being dissipated. When
the system is completely elastic, the system of equations
with the additional constraint equation becomes singular.
Therefore a hybrid loading strategy is used which uses stan-
dard displacement increments in the initial stage and possi-
bly again in later stages when no damage occurs. In short,
both the size of the increment and its type (energy or dis-
placement) are variable during the analysis (see also Ver-
hoosel et al. [162]).

In Fig. 33, the algorithmic treatment of the possible in-
crement changes is illustrated. The step numbers correspond
with the numbering in the visualization of the global algo-
rithm in Fig. 30, although several new steps have been in-
serted that were left out before, viz. steps {10} to {13}. The
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Fig. 33 Detailed algorithm for
change in increment size or
switch of increment type
between two instances of the
Newton-Raphson procedure (cf.
Fig. 30)

dotted and dashed arrows correspond with the two loops
with the same line types in Fig. 30. The Newton-Raphson
loop, however, is collapsed into a single box. The algo-
rithm is presented in a different configuration with all arrows
pointing downward to emphasize the implementation struc-
ture where we always go from one instance of the Newton-
Raphson procedure via a possible change in the increment
to the next instance of the Newton-Raphson procedure. Fig-
ure 33 is about what happens between these two instances
of the iterative procedure.

During each instance of the Newton-Raphson procedure,
the increment is fixed. But after it has been left, be it
with convergence to step {6} or with non-convergence to
step {9}, adaptation of the increment is possible. Especially
in case of non-convergence many different actions may fol-
low. In steps {9a} to {9f}, six different changes to the incre-
ment are possible. They are tried in the presented order until
one of them succeeds. As soon as one succeeds, possible
crack growth during this time step is canceled in step {9g}
and the iterative procedure is restarted with the new incre-
ment. If none of the six changes can be applied, this means
that there are no options left for finding a proper increment
for this time step, and the computation is terminated. The
order of the steps {9a} to {9f} is such that infinite loops and
premature terminations are avoided.

The meaning of the steps {9a} to {9f} as well as of the
newly inserted steps {10} to {13} is explained below.

6.3.1 Change in Increment Size

The size of the increment can be changed following three
different rules, depending on the outcome of the Newton-
Raphson procedure and on the history of tried increments in
this time step.

{11} At the end of the time step, i.e. when an equilibrium
solution has been found that does not violate the fail-

ure criterion, the size of the increment is adapted ac-
cording to

increment ← 2−z · increment, z = (n − nopt)/4

(99)

where nopt is the optimum number of iterations. This
is done irrespective of the type of increments that is
used, energy or displacement. In case of crack growth,
the number of iterations used in this expression, n,
is the maximum number of iterations in a single cy-
cle of the Newton-Raphson procedure; the counter is
reset each time equilibrium is reached but its maxi-
mum value during the time step is used for the step
size adaptation. Lower and upper bounds are given for
both energy and displacement increments. If n = nopt

the increment size remains unchanged.
{9c} When convergence has not been reached, it often helps

to reduce the size of the increment. In step {9c}, this
is tried with a constant reduction factor c:

increment ← c · increment, c ∈ 〈0,1〉 (100)

The lower bounds that are enforced in step {11} are
again taken into account. When the increment size is
already below this lower bound, the reduction fails and
we proceed to step {9d}

{9e} In exceptional cases it happens that a very small incre-
ment does not lead to convergence, and that the diffi-
culties can be overcome by taking a larger increment.
Therefore, when small increments of both types have
been tried without success, it is tried to increase the
increment size. This is only done with the generally
more robust energy increments. The highest value that
has been tried in this time step is multiplied with 1/c.

increment ← 1

c
· increment, c ∈ 〈0,1〉 (101)
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The increase fails if the largest tried increment already
exceeds the upper bound �Emax.

6.3.2 Switch of Increment Type

The type of the increment (displacement or energy) can be
changed on different occasions. Obviously, compatibility of
the boundary conditions when switching from one type to
the other is important. This is not automatically ensured,
because the dissipation-based arclength method is based
on a scalable external force vector rather than on scalable
displacements. The additional unknown λ in the constraint
equation (96) is a scale factor for the load vector. It is only
compatible with displacement control when nonzero dis-
placements are prescribed on a single degree of freedom, in
which case the external force vector contains only one scal-
able value. But it is possible to obtain compatibility with
prescribed displacements on a group of nodes, namely by
adding node to node constraints for all the nodes of that
group and applying an external force on one of them.

The places where a switch from one type to the other can
be made are listed below:

{10} A switch to energy increments is possible after con-
vergence has been reached. This switch is intended to
be made at least once per analysis, because the anal-
ysis always starts with displacement increments. For
this purpose, the dissipated energy is computed after
convergence has been obtained with a displacement
increment. If this exceeds a threshold value

�E > �Ecrit (102)

the switch to arclength control is made. Notably, with
crack growth this can happen in the middle of the time
step.

{9a} It is possible that at the low point of a snapback, the
test specimen becomes completely or almost com-
pletely elastic. This state is reached with energy in-
crements, but can be left only with displacement in-
crements. In this case, it is a waste of resources to go
through a whole series of increment reductions before
the switch to displacement increments is made. Fortu-
nately, this state can be detected very efficiently in the
first iteration that is done with the arclength method.
In the first iteration with an energy increment, the
scaled residual is evaluated with an additional check.
If there is a large increase

R > Rcrit (103)

this is taken as an indication that the system is
(nearly) elastic, and the Newton-Raphson procedure
is aborted straight away with a message that is caught
in step {9a}. The switch to displacement increments

is made and a flag is set, indicating that this type
of switch has been made. This flag disallows any
switching back to energy increments until step {9f}
is reached.

{12} In highly nonlinear computations, sometimes very
small increments are necessary to find equilibrium.
Unfortunately, the combination of the dissipation-
based arclength method with very small increments
on the one hand and remeshing with XFEM on the
other can be problematic. The reason for this is that
upon remeshing, the stiffness of the numerical model
changes slightly. Typically, adding degrees of free-
dom makes the structure more compliant. Because the
remeshing occurs at a nonzero load level, this stiff-
ness reduction leads to spurious energy dissipation.
If the mesh is sufficiently fine, this change is negli-
gible for the global response. But for very small en-
ergy increments it is possible that the spurious dis-
sipation is larger than the prescribed value, in which
case the constraint equation can only be satisfied by
global unloading. A spurious snapback is the result.
This is bad for efficiency, because the model has to be
reloaded carefully, and it possibly endangers robust-
ness. Therefore, it can be useful to fix the displace-
ment increment after crack growth for the remainder
of the time step. This is especially the case when a
mesh is used that is relatively coarse. This switch is
made after crack propagation when the energy incre-
ment is smaller than �Ecrit.

{13} The switch to displacement control at step {12} has
to be made undone at the end of the time step. This
is done in step {13}. Notably, a jump in energy incre-
ment can be made, because the final amount of dis-
sipated energy from this time step (after crack growth
with fixed displacement) is used as the next increment.

{9b} When no convergence is reached after this temporary
switch to displacement control has been made, the
step is retried with the original energy increment, but
with a flag that the switch at {12} is not allowed for
the remainder of this time step.

{9d} A switch from one increment type to the other is tried
when reduction of the increment of the current type
in step {9c} fails. After a switch to displacement con-
trol, the increment is set to the initial value �u0; after
a switch to energy increments, it is set to the value
from the last successful Newton-Raphson procedure.
The switch to displacement control fails if the small-
est allowed displacement increment has already been
tried in this time step; the switch to energy increments
fails if both the smallest and the largest allowed values
have already been tried.

{9f} Finally, in exceptional cases it is possible that the
switch in step {9a} has been made for while it should
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Table 1 Algorithmic
parameters as used in the open
hole simulations in Sect. 7.1

Optimal number of iterations nopt 6 {11}

Maximum number of iterations nmax 10 {4}

Convergence criterion Rmin 10−6 {3}

Divergence criterion Rmax 104 {4}

Criterion for linear system Rcrit 10 {9a}

Increment reduction factor c 0.3 {9c}, {9e}

Critical energy dissipation �Ecrit 0.1 N mm {10}, {12}

Maximum energy increment �Emax 10 N mm {9e}, {11}

Minimum energy increment �Emin 10−4 N mm {9c}, {11}

Maximum displacement increment �u0 0.01 mm {9d}, {11}

Minimum displacement increment �umin 0.002 mm {9c}, {11}

not be. In case no displacement increment has been
found for which convergence could be attained after
this switch has been made, the search for a successful
increment is continued with energy increments. Obvi-
ously, the switch in {9a} is then disallowed for the re-
mainder of the time step. This step fails if it is passed
for a second time or if it is passed when the switch in
step {9a} has not been made.

If the complete series {9a}–{9f} fails, this means that all
possible increment sizes of both types have been tried. It is
then and only then that the computation is terminated due to
non-convergence.

Several tuning parameters have been introduced in this
section. Optimum values for all of these are to some extent
problem dependent, particularly those that are not dimen-
sionless. A good set of values that has been used for all open
hole test simulations in Sect. 7 and [141] is presented in Ta-
ble 1.

6.4 Modified Newton-Raphson Method

The continuum damage model for fiber failure introduced
in Sect. 5.5 with regularization according to the crack band
method gives particular convergence problems. Presumably
this is due to difficulties that the Newton-Raphson proce-
dure has in finding a single band of elements that is damag-
ing. This particular kind of ill-convergence manifests itself
in oscillatory iterations, for which it holds that

K(ai )
−1fint(ai−1) = −K(ai−1)fint(ai ) (104)

Unfortunately, when this behavior is encountered, step size
reduction is often ineffective.

Therefore a modified Newton-Raphson procedure has
been implemented for this case, in which a partially se-
cant matrix is used for K instead of the fully linearized
K = ∂fint/∂a. Inside the Newton-Raphson loop a check for
oscillations in the residual norm is incorporated in step {3}.
When oscillations are encountered, it is tried to escape these

by using a not completely consistent tangent matrix. In a
select set of integration points, the secant stiffness is used.
For this purpose, the loading/unloading state of all material
points is compared in each iteration with that from the pre-
vious iteration. In every point where the state changes from
loading to unloading or vice versa, the secant stiffness is
used in the subsequent iterations. Generally, this leads to
an initial increase in the residual, but after several iterations
the residual starts decreasing and the procedure converges
slowly to the equilibrium solution. The maximum number
of iterations is increased. When the residual norm decreases
in 10 subsequent iterations, this is taken as an indication that
the radius of convergence of the Newton-Raphson procedure
has been reached. Then, the special strategy is terminated
and consistent linearization is used again, often resulting in
convergence in few additional iterations.

This is a rather crude and costly technique, but it some-
times works to get beyond a critical point in the equilibrium
path, which would otherwise only be passed after a long
series of increment changes, if at all. This partially secant
method is only performed when energy increments are ap-
plied.

7 Numerical Results on Complex Test Cases

In this section, results are shown from a validation exercise
for the numerical framework that has been described in the
previous two sections (see also Ref. [141]). The model with
XFEM for matrix cracking, interface elements for delamina-
tion, continuum damage for fiber failure, a damage/plasticity
model for shear nonlinearity and the dissipation-based ar-
clength method for robustness has been applied to simulate
several experiments that have been performed at the Univer-
sity of Bristol [144, 147].

7.1 Open Hole Tension

A large number of failure experiments have been performed
on open hole laminates by Green et al. [147]. Size effects
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Table 2 Material parameters
used in open hole and compact
tension analysis

Elasticity Matrix/Delamination Fiber failure Shear nonlinearity Thermal strain

E1 161 GPa F2t 60 (30) MPa F1t 3131 MPa C1 22 α1 0 ◦C−1

E2 11.38 GPa F12 90 (45) MPa GIc,f 130 N/mm C2 −22 α2 3 · 10−5 ◦C−1

G12 5.17 GPa GIc,m 0.2 (1) N/mm C3 35 �T −160 ◦C−1

ν21 0.32 GIIc,m 1 N/mm C4 −5

ν23 0.4 η 1

Fig. 34 Open hole tension test
(all dimensions in mm)

in laminate failure have been studied with series of quasi-
isotropic specimens involving different types of scaling. In-
plane scaling was analyzed as well as two types of thickness
scaling: ply-level scaling [45m/90m/−45m/0m]s with m ∈
[1,2,4,8], and sublaminate-level scaling [45/90/−45/0]ns

with n ∈ [1,2,4,8]. The ply-level scaled specimens were
fabricated by blocking multiple plies with the same fiber
orientation together, thus increasing the effective ply thick-
ness.

The material properties for the simulations (see Table 2)
are taken from Jiang et al. [85], except for those related to
shear nonlinearity, which are chosen to fit data reported by
Lafarie-Frenot and Touchard [163]. Strength parameters re-
lated to matrix cracking were replaced with in situ values
computed with the relations by Camanho et al. [62]. Al-
though much effort has been paid to build a robust and ef-
ficient framework, two material parameters are adapted in
order to secure robustness for feasible element sizes. For the
interface elements, the strength is reduced with a factor 2
as suggested by Turon et al. [99]. Furthermore, for the ma-
trix cracks, the fracture energy related to mode I failure is
increased to the value given for mode II failure, viz. from
0.2 to 1.0 N/mm. The influence of these changes has been
commented upon in the discussion of the results in [141].

The value for the ply strength in fiber direction F1t is not
uniquely defined, because the strength in unidirectional tests
depends on the size of the test specimen due to the impor-
tance of the statistical strength distribution [164]. The size of
the loaded volume influences the moment of onset of fiber
failure. In the analyzed cases, however, with a non-uniform
stress distribution and subcritical damage, the loaded vol-
ume is variable. The value of 3131 MPa is related to a loaded
volume of 1 mm3. Furthermore, the spacing between the
matrix cracks is set equal to 1.0 mm.

Fig. 35 Peak load values for ply-level scaling. Comparison between
numerical and experimental results for 2D and 3D analyses [141]

The geometry is shown in Fig. 34. The dimensions cor-
respond with the smallest specimens as tested by Green
et al. [147] which is the only in-plane size considered for
the simulations. In a square region around the hole, the ir-
regular mesh has a uniform density with typical length of
the element side of 0.2 mm. In the fine mesh region, matrix
cracking and delamination is allowed. Outside the region the
mesh is coarser and no cracking is allowed.

7.1.1 Ply-Level Scaling

Results for the ply-level scaled specimens are presented in
Fig. 35. Three different values of the maximum load level
are shown for each value of m, firstly results from plane
stress analysis, secondly results from three-dimensional
analysis with one layer of solid elements per ply, and thirdly
the averaged experimental values. For the cases in which the
delamination type failure occurs (see Green et al. [147]), the
plotted value corresponds with the maximum load value be-
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Fig. 36 Typical post peak damage for pullout failure (m = 1) and delamination failure (m = 2,4) [141]

fore the delamination in the [−45/0]-interface reaches the
boundary of the fine mesh region. Notably, the delamination
type failure mechanism cannot be simulated completely, be-
cause it involves delamination over the entire gauge length.
But the delamination that is growing from the crack in the
−45◦-ply causes a load drop and the beginning of this pro-
cess can still be captured well. Therefore, limiting the zone
in which delamination is allowed does not influence the peak
load values.

The load values are divided by the unnotched cross sec-
tion, to give a clear visualization of the size effect. Without
any size effect, the maximum load would scale linearly with
the thickness resulting in a constant maximum far field stress
and hence in a horizontal line. It is concluded from Fig. 35
that the size effect in strength with respect to ply thickness

scaling is captured well with the proposed framework, even
in two-dimensional analysis.

Not only are the peak load values close to those mea-
sured, the failure mechanisms in the four different computa-
tions also correspond with the observed failure mechanisms.
In Fig. 36 the delamination in the [−45/0]-interface and the
fiber damage in the 0◦-ply are shown for a post peak time
step for different values of the ply thickness. The results
from the analysis with m = 1 are typical for the pullout type
failure as described by Green et al. [147]: fiber failure in
the 0◦-ply and matrix cracking in the others, accommodated
by delamination. The results obtained with other values of
the ply thickness are typical for the delamination type fail-
ure: extensive delamination occurs in the [−45/0]-interface.
In the case with double ply thickness, a very small amount
of fiber failure is found and in the case with quadruple ply
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Fig. 37 Through-thickness discretization of [45/90/−45/0]s and
[45/90/−45/0]∞ laminates

Fig. 38 Peak load values for sublaminate-level scaling. Comparison
between numerical and experimental results, for different matrix crack
patterns [141]

thickness, no fiber failure occurs at all. Results with m = 8
are omitted here because they are very similar to those with
m = 4.

7.1.2 Sublaminate-Level Scaling

The thinnest laminate in the series with ply-level scaling
is the same as the thinnest in the series with sublaminate-
level scaling: [45/90/−45/0]ns with n = 1. The analysis
is repeated in 2D for n = 2, and also for the limit case of
[45/90/−45/0]∞. The latter is constructed with periodic
boundary conditions by connecting the top ply directly to
the bottom ply with interface elements (see Fig. 37). In this
way the limit case of many repeated sublaminates can be
approximated with limited computational costs.

The peak load values obtained with the proposed model
are compared with the experimental values in Fig. 38. In
this case, the size effect is not captured. The experimentally
observed decrease in strength for increasing laminate thick-
ness is not reproduced in the simulations. In all simulations
the failure is of the pullout type, which does correspond with
the experimental observations.

Possibly, statistical strength distribution plays a signif-
icant role in this size effect. Fiber failure is significant in
the pullout type failure and the volume of loaded fibers
scales linearly with the thickness. However, in light of re-
cent results, it is more likely that the observed size effect

Fig. 39 Influence of ply strength in fiber direction on laminate strength
(n = m = 1)

in the fracture toughness for fiber failure is defining for
the sublaminate-level scaling size effect. Chen et al. [165]
have presented much better results for the sublaminate level
scaling using thickness-dependent fracture toughness values
measured by Laffan et al. [166]. The double 0◦-ply in the
center of the laminate is assigned a higher value for the frac-
ture toughness (130 N/mm) than the other isolated 0◦-plies
(50 N/mm). As a consequence, the averaged fracture tough-
ness decreases for increasing number of sublaminates.

7.1.3 Fiber Strength

Considering the uncertainty of the ply strength in fiber di-
rection, it is interesting to check the influence of varying
this parameter on the results. Obviously, the fiber strength
does not influence the peak load values in cases where fiber
failure is not part of the global failure mechanism. For the
cases with pullout failure, however, the parameter is signif-
icant, although the failure mechanism also involves delami-
nation. In Fig. 39 the peak load value is shown for the case
of n = m = 1 with different values of F1t. A clear trend
is found with increasing global strength for increasing ply
strength. The mean experimental value and covariance are
shown with dashed lines. The influence of F1t on the effec-
tive laminate strength indicates a drawback of the proposed
framework, because, in fact, this is not a material constant
but rather depends on the size of the loaded volume [164].

7.1.4 Concluding Remarks

With the simulation of open hole experiments, it has been
shown that the proposed framework can be used for accu-
rate simulation of different failure mechanisms in laminates.
With the straight matrix cracks and interface elements, the
failure mechanisms involving matrix cracking and delam-
ination can be described well and as such modeled accu-
rately.

In all cases, the failure mechanisms in the computation
matched that in the experiment (pullout or delamination).
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Good quantitative agreement was furthermore obtained for
ply-thickness scaling. The correct representation of the fail-
ure mechanism allows for the prediction of size effects in
failure. However, the size effect with respect to sublaminate-
level failure has not been reproduced. This is probably due
to the size effect that exists in the fracture energy for fiber
failure which has not been taken into account in the simula-
tions.

7.2 Overheight Compact Tension

The overheight compact tension test has been developed
to allow the growth of damage in laminates in a stable
manner [167]. A series of overheight compact tension ex-
periments on samples with different laminate designs has
been performed by Li et al. [144]. Again, different fail-
ure mechanisms were obtained with ply-level scaling and
sublaminate-level scaling. In this case, the failure mecha-
nisms that involve extensive delamination are computation-
ally very demanding. The in-plane dimensions are larger
than for the open hole tests and the element size has to be
equally small throughout the delaminated area. The lami-
nates with sublaminate-level scaling however, failed without
significant delamination. Fiber breakage was observed along
the center line, not only in the 0◦-ply but also in the ±45◦-
plies. This failure mechanism is similar to the brittle failure
mechanism in the open hole test series [147]. In the com-
pact tension test, however, failure was progressive instead of
catastrophic. The failure progressed in small sudden jumps,
which were reflected in a series of load drops [144]. Because
the same carbon-epoxy material was used as for the open
hole experiments, while the failure mechanism was differ-
ent, it is a valuable validation step to simulate these with the
same set of parameters. However, the mechanism without
delamination is not found when the same reduced interface
strength parameters are used in the simulation. In the case
of the compact tension test, reducing the strength leads to
a switch from the fiber failure dominated mechanism to a
failure mechanism with significant delamination. This is an
example of the risk of the engineering solution to alleviate
mesh requirements by reducing the interface strength. The
results presented in this section are obtained with the origi-
nal values for the interface strength. In the absence of large
scale delamination this does not endanger numerical stabil-
ity.

The geometry of the test setup is shown in Fig. 40. In a
band of 8 mm wide reaching to 12 mm beyond the crack
tip the mesh is fine with typical element length of 0.14 mm,
and only there delamination and matrix cracking is allowed.
Outside this region, the plies are completely attached. The
sublaminate-level scaling is simplified with periodic bound-
ary conditions as illustrated in Fig. 37.

Fig. 40 Overheight compact tension test (all dimensions in mm) [141]

7.2.1 Failure Mechanism

The failure mechanism in the simulation is driven by fiber
failure in the ±45◦ and 0◦-plies and matrix cracking in
the 90◦-ply, as illustrated in Fig. 41. Minor delamination
only occurs in the narrow band with fiber failure ahead of
the notch. This is the same failure mechanism as was ob-
served experimentally. Matrix cracks are crucial to form the
sawtooth-shaped cracks in the ±45◦-plies, but the energy
required to form the matrix cracks is very small in compar-
ison to the fracture energy of fiber failure. Therefore, the
influence of the exact amount and location of the matrix
cracks on the global response can be expected to be negligi-
ble. From the crack patterns in Fig. 41, it is concluded that
limiting the size of the region with delamination and matrix
cracking does not influence the results significantly in this
case. Only in the 90◦-ply, the zone with distributed cracking
extends up to the boundary of the fine mesh region. The dis-
tributed cracking in that ply which is apparently truncated
does not interact with the main failure mechanism.

7.2.2 Load-Displacement Relation

Simulations have been performed for different values of
the crack spacing parameter. In Fig. 42, the obtained load-
displacement curves are shown. It can be observed that the
softening branch is in all cases not smooth, which is due to
unsteady propagation of the fiber failure through the irreg-
ular mesh. All results fall within a band with limited width.
There is a trend that the load level of the softening branch
increases when spacing � is increased, but this trend is not
monotonous. Considering the fact that fiber failure is the
main dissipative process and that the level of the softening
branch in compact tension tests is typically related to the
fracture energy, the variation is likely to be connected to the
changes in the effective fracture energy of the fiber failure
mechanism. Although the fracture energy is input as a ma-
terial constant, the actual dissipation in the numerical model
only matches this value if the assumption of failure in a sin-
gle band of elements perpendicular to the fiber direction is
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Fig. 41 Fiber damage and matrix cracking in the four different plies in overheight compact tension analysis with crack spacing 0.5 mm [141]

Fig. 42 Load displacement relations for overheight compact tension test: [45/90/−45/0]∞ simulations with different values for crack spacing
and [45/90/−45/0]2s experiments [141]

valid. The input value gives a lower bound, and the accu-
racy with which this value is approached is determined by
the extent to which the mechanism is formed efficiently.
This offers an explanation for the observed trend, because
with larger spacing, the chance that an optimal mechanism
can be formed is reduced. In Fig. 43, where the fiber failure
in the 0◦-ply is visualized for � = 0.9 mm, this can be ob-
served in several locations where fiber failure does not form
a mechanism in a single band of elements.

Load-displacement curves from the experiments are also
shown in Fig. 42. The maximum load in the simulations cor-
responds well with the load level at which the first signifi-

cant load drop occurred in the tests. However, in the experi-
mental curves, recovery of the load after load drops is visible
to an extent that does not occur in the simulations. In two of
the five tests, this eventually led to a maximum load that is
considerably higher than the values in the simulations.

7.2.3 Fiber Strength

Interestingly, the same influence of F1t is not present in the
compact tension test. Reducing the strength from 3131 MPa
to 2800 MPa does not give any clear influence on the results,
as can be observed in Fig. 44. The gray patch indicates the
results obtained with F1t = 3131 MPa, the colored lines are
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Fig. 43 Fiber damage and matrix cracking in 0◦-ply in analysis with
crack spacing 0.9 mm [141]

Fig. 44 Load-displacement curves with reduced strength in fiber di-
rection

obtained with F1t = 2800 MPa. The results fall within the
same band. Although fiber failure is the dominant process
in this failure mechanism, the ply strength in fiber direction
is not the most important parameter. It is worth noting that
even when fiber failure is dominating the response, the size
effect related to statistical fiber strength distribution is not
necessarily important.

7.2.4 Concluding Remarks

The simulations of the overheight compact tension test has
demonstrated that the numerical model can capture yet an-
other failure mechanism including fiber failure in off-axis
plies. The complex interaction between matrix cracks and
fiber failure in these plies is represented well, while the exact
choice for the numerical crack spacing parameter has little
effect on the global response. However, severe convergence
problems with the fiber failure model in the irregular mesh
have necessitated much use of the costly modified Newton-
Raphson scheme proposed in Sect. 6.4.

More results from simulations of the overheight compact
tension tests with a discrete representation of matrix cracks
have recently been reported been reported by Mollenhauer
et al. [136], providing excellent correlation in terms of dam-

age profiles and global load-displacement response for the
cases with more extensive delamination.

8 Conclusions and Discussion

In this paper, recent progress in mesolevel modeling of
composite laminates has been reviewed. The use of XFEM
for discrete modeling of arbitrarily located matrix cracks
is a large innovation toward realistic simulations of failure
mechanisms in composite laminates. This model for matrix
cracking can be combined with more conventional cohe-
sive models for delamination and continuum damage mod-
els for fiber failure to capture complete progressive failure
mechanisms. With the developments described in this pa-
per, predictive simulation of strength and damage tolerance
of composite structures has come within reach, at least for
tension-dominated load cases. It is emphasized that numer-
ical algorithms have to be designed with great care to allow
for robust analysis through the highly nonlinear and some-
times very brittle failure process. Consistent linearization,
arclength techniques and adaptive stepping are crucial.

In spite of substantial progress, several issues remain
open for further investigation.

– There is no good model for progressive fiber failure that
takes the statistical size effect into account. Fiber failure
is a complicated process, which may involve individual
fiber breakages at random locations which eventually join
up through extensive debonding or matrix cracking. This
cannot be simulated in a mesolevel framework where the
fiber microstructure is not explicitly present, but com-
plete microstructural analysis of this process is also out
of reach. Need for improvement at this point is acknowl-
edged by both Mollenhauer et al. [136] and van der Meer
et al. [141].

– Under compression matrix cracks are inclined which
leads to a particular catastrophic failure mechanism [66].
It is possible to use XFEM for inclined matrix cracks, but
significant additional implementation effort is required,
which has to date not been attempted.

– A number of questions surround the current practice of
delamination models. There is a proven path-dependence
of popular cohesive laws, pressure dependence and fric-
tion are often neglected, and there are further observations
that the assumed characterization of the fracture tough-
ness is not always realistic.

– Element size requirements limit the applicability of the
developed models. Computational costs get quickly out
of hand when moving beyond the size of small coupons
(∼10−1 m). Further simplifications or new algorithms
will be needed to perform large scale computations.

– An artificial crack spacing parameter is necessary for
well-defined analysis with discrete matrix cracks. Use of
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statistical strength distribution in combination with mesh-
refinement through the thickness of the ply may work to
get a realistic representation of the stress relaxation be-
hind matrix cracks, but this would excessively increase
computation costs.

– There is lack of understanding as to how in situ effects are
realistically represented in a numerical that includes soft-
ening or decohesion for matrix cracks. Theoretical mod-
els that predict the in situ strength are based on fracture
mechanics and therefore not consistent with the damage
mechanics framework for numerical models that involve
a gradual loss of integrity.

– Not much is known about what kind of coupling between
the different constitutive models is realistic. Particularly
for the matrix, different models for delamination, ma-
trix cracking and shear nonlinearity have been developed
over the years and material parameters for all of them are
obtained with different tests, while it is not known how
much of the energy dissipation related to shear nonlinear-
ity is related to the same microcracking that contributes
to the fracture energy for transverse matrix cracking.

On another level, a challenge that arises when higher fi-
delity methods for mesolevel failure simulations of compos-
ites become available is to reduce the expert-level required
to use these models in order to embed them in multiscale
programs for virtual testing of composites. For better char-
acterization, a link with lower scale models is desirable, and
at the same time, much interest exists to be able to predict
failure at a larger scale. Such multiscale programs require,
however, that the models at each individual scale are robust
and reliable for a wide spectrum of problems without re-
quired intervention of an expert user or developer.

Acknowledgements Financial support from the Technology Foun-
dation STW (under grant 06623) and the Ministry of Public Works and
Water Management, The Netherlands, is gratefully acknowledged.

References

1. Cox BN, Yang QD (2006) In quest of virtual tests for structural
composites. Science 314(5802):1102–1107

2. Reddy JN (2004) Mechanics of laminated composite plates and
shells: theory and analysis, 2nd edn. CRC, Boca Raton

3. Williams KV, Vaziri R, Poursartip A (2003) A physically based
continuum damage mechanics model for thin laminated compos-
ite structures. Int J Solids Struct 40(9):2267–2300

4. González C, LLorca J (2006) Multiscale modeling of fracture in
fiber-reinforced composites. Acta Mater 54(16):4171–4181

5. González C, LLorca J (2007) Mechanical behavior of unidirec-
tional fiber-reinforced polymers under transverse compression:
microscopic mechanisms and modelling. Compos Sci Technol
67(13):2795–2806

6. Totry E, González C, LLorca J (2008) Failure locus of fiber-
reinforced composites under shear transverse compression and
out-of-plane shear. Compos Sci Technol 68(3–4):829–839

7. Hashin Z (1980) Failure criteria for unidirectional fiber compos-
ites. J Appl Mech 47(2):329–334

8. Mayes JS, Hansen AC (2004) Composite laminate failure
analysis using multicontinuum theory. Compos Sci Technol
64(3):379–394

9. Renard J, Thionnet A (2006) Damage in composites: from physi-
cal mechanisms to modelling. Compos Sci Technol 66:642–646

10. Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multi-
scale methods for composites: a review. Arch Comput Methods
Eng 16(1):31–75

11. Trias D, Costa J, Fiedler B, Hobbiebrunken T, Hurtado JE (2006)
A two-scale method for matrix cracking probability in fibre-
reinforced composites based on a statistical representative vol-
ume element. Compos Sci Technol 66:1766–1777

12. Drago A, Pindera M-J (2007) Micro-macromechanical analysis
of heterogeneous materials: macroscopically homogeneous vs
periodic microstructures. Compos Sci Technol 67(6):1243–1263

13. Ernst G, Vogler M, Hühne C, Rolfes R (2010) Multiscale pro-
gressive failure analysis of textile composites. Compos Sci Tech-
nol 70(1):61–72

14. LLorca J, González C, Molina-Aldareguía JM, Segurado J,
Seltzer R, Sket F, Rodríguez R, Sádaba S, Muñoz R, Canal LP
(2011) Multiscale modeling of composite materials: a roadmap
towards virtual testing. Adv Mater 23(44):5130–5147

15. Gitman IM, Askes H, Sluys LJ (2007) Representative volume:
Existence and size determination. Eng Fract Mech 74(16):2518–
2534

16. Nguyen VP, Stroeven M, Sluys LJ (2012) Multiscale failure mod-
eling of concrete: micromechanical modeling, discontinuous ho-
mogenization and parallel computations. Comput Methods Appl
Mech Eng 201–204(1):139–156

17. Hughes TJR (1987) The finite element method: linear static
and dynamic finite element analysis. Prentice-Hall, Englewood
Cliffs

18. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite ele-
ments for continua and structures. Wiley, Chichester

19. Hill R (1950) The mathematical theory of plasticity. Oxford Uni-
versity Press, London

20. Simo JC, Hughes TJR (1998) Computational inelasticity.
Springer, New York

21. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials.
Cambridge University Press, Cambridge

22. Bažant ZP, Oh B (1983) Crack band theory for fracture of con-
crete. Mater Struct 16(3):155–177

23. Bažant ZP, Pijaudier-Cabot G (1989) Measurement of character-
istic length of non-local continuum. J Eng Mech 115(4):755–767

24. de Borst R, Mühlhaus H-B (1992) Gradient-dependent plasticity:
formulation and algorithmic aspects. Int J Numer Methods Eng
35(3):521–539

25. Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD
(1998) Gradient-enhanced damage modelling of concrete frac-
ture. Mech Cohes-Frict Mater 3(4):323–342

26. Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM
(2001) A critical comparison of nonlocal and gradient-enhanced
softening continua. Int J Solids Struct 38(44):7723–7746

27. Wang WM, Sluys LJ, de Borst R (1997) Viscoplasticity for in-
stabilities due to strain softening and strain-rate softening. Int J
Numer Methods Eng 40(20):3839–3864

28. Barenblatt IG (1962) The mathematical theory of equilibrium
cracks in brittle fracture. Adv Appl Mech 7:55–129

29. Ngo D, Scordelis AC (1967) Finite element analysis of rein-
forced concrete beams. ACI J Proc 64(3):152–163

30. Xie D, Waas AM (2006) Discrete cohesive zone model for
mixed-mode fracture using finite element analysis. Eng Fract
Mech 73(13):1783–1796

31. Goodman RE, Taylor RL, Brekke TL (1968) A model for the
mechanics of jointed rock. J Soil Mech Found Div 94:637–659



422 F.P. van der Meer

32. Schellekens JCJ, de Borst R (1994) Free edge delamination
in carbon-epoxy laminates: a novel numerical/experimental ap-
proach. Compos Struct 28(4):357–373

33. Schellekens JCJ, de Borst R (1993) On the numerical integration
of interface elements. Int J Numer Methods Eng 36(1):43–66

34. Rots JG (1988) Computational modeling of concrete fracture.
PhD thesis, Delft University of Technology

35. Melenk JM, Babuška I (1996) The partition of unity finite ele-
ment method: basic theory and applications. Comput Methods
Appl Mech Eng 139(1–4):289–314

36. Moës N, Belytschko T (2002) Extended finite element method
for cohesive crack growth. Eng Fract Mech 69(7):813–833

37. Strouboulis T, Babuška I, Copps K (2000) The design and anal-
ysis of the generalized finite element method. Comput Methods
Appl Mech Eng 181(1):43–69

38. Belytschko T, Black T (1999) Elastic crack growth in finite
elements with minimal remeshing. Int J Numer Methods Eng
45(5):601–620

39. Moës N, Dolbow J, Belytschko T (1999) A finite element method
for crack growth without remeshing. Int J Numer Methods Eng
46(1):131–150

40. Wells GN, Sluys LJ (2001) A new method for modelling co-
hesive cracks using finite elements. Int J Numer Methods Eng
50(12):2667–2682

41. Hansbo A, Hansbo P (2004) A finite element method for the sim-
ulation of strong and weak discontinuities in solid mechanics.
Comput Methods Appl Mech Eng 193(33–35):3523–3540

42. Mergheim J, Kuhl E, Steinmann P (2005) A finite element
method for the computational modelling of cohesive cracks. Int
J Numer Methods Eng 63(2):276–289

43. Song J-H, Areias PMA, Belytschko T (2006) A method for dy-
namic crack and shear band propagation with phantom nodes. Int
J Numer Methods Eng 67(6):868–893

44. Broberg KB (1999) Cracks and fracture. Academic Press, San
Diego

45. Bažant ZP, Planas J (1998) Fracture and size effect in concrete
and other quasibrittle materials. CRC Press, Boca Raton

46. Wisnom MR (1999) Size effects in the testing of fibre-composite
materials. Compos Sci Technol 58(13):1937–1957

47. Hyer MW (1998) Stress analysis of fiber-reinforced composite
materials. McGraw-Hill, Boston

48. Tsai SW (1965) Strength characteristics of composite materials.
NASA Contractor Report 224

49. Hoffman O (1967) The brittle strength of orthotropic materials.
J Compos Mater 1:200–206

50. Tsai SW, Wu EM (1971) A general theory of strength for
anisotropic materials. J Compos Mater 5(1):58–80

51. Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber
reinforced materials. J Compos Mater 7:448–464

52. Hinton MJ, Soden PD (1998) Predicting failure in composite
laminates: the background to the exercise. Compos Sci Technol
58(7):1001–1010

53. Soden PD, Kaddour AS, Hinton MJ (2004) Recommendations
for designers and researchers resulting from the world-wide fail-
ure exercise. Compos Sci Technol 64(3–4):589–604

54. Liu KS, Tsai SW (1998) A progressive quadratic failure criterion
for a laminate. Compos Sci Technol 58(7):1023–1032

55. Harlow DG, Phoenix SL (1978) The chain-of-bundles probabil-
ity model for the strength of fibrous materials I: analysis and con-
jectures. J Compos Mater 12(2):195–214

56. Okabe T, Takeda N (2002) Size effect on tensile strength of unidi-
rectional CFRP composites—experiments and simulation. Com-
pos Sci Technol 62(15):2053–2064

57. Koyanagi J, Hatta H, Kotani M, Kawada H (2009) A comprehen-
sive model for determining tensile strength of various unidirec-
tional composites. J Compos Mater 43(18):1901–1914

58. Hallett SR, Green BG, Jiang W-G, Wisnom MR (2009) An ex-
perimental and numerical investigation into the damage mech-
anisms in notched composites. Composites, Part A, Appl Sci
Manuf 40(5):613–624

59. Li X, Hallett SR, Wisnom MR (2009) Numerical simulation
of damage propagation in overheight compact tension tests. In:
Proceedings of international conference on composite materials
(ICCM-17), Edinburgh

60. Parvizi A, Garrett KW, Bailey JE (1978) Constrained cracking
in glass fibre-reinforced epoxy cross-ply laminates. J Mater Sci
13(1):195–201

61. Nairn JA (2000) Matrix microcracking in composites. In: Talreja
R, Månson J-AE (eds) Polymer matrix composites. Comprehen-
sive composite materials, vol 2. Elsevier, Amsterdam, pp 403–
432. Chap 13

62. Camanho PP, Dávila CG, Pinho ST, Iannucci L, Robinson P
(2006) Prediction of in situ strengths and matrix cracking in com-
posites under transverse tension and in-plane shear. Composites,
Part A, Appl Sci Manuf 37(2):165–176

63. Talreja R (1985) Transverse cracking and stiffness reduction in
composite laminates. J Compos Mater 19(4):355–375

64. Dávila CG, Camanho PP, Rose CA (2005) Failure criteria for
FRP laminates. J Compos Mater 39(4):323–345

65. Pinho ST, Dávila CG, Camanho PP, Iannucci L, Robinson
P (2005) Failure models and criteria for FRP under in-plane
or three-dimensional stress states including shear non-linearity.
NASA Technical Memorandum 213530

66. Puck A, Schürmann H (1998) Failure analysis of FRP laminates
by means of physically based phenomenological models. Com-
pos Sci Technol 58(7):1045–1067

67. Reddy JN, Pandey AK (1987) A first-ply failure analysis of com-
posite laminates. Comput Struct 25(3):371–393

68. Rybicki EF, Kanninen MF (1977) A finite element calculation of
stress intensity factors by a modified crack closure integral. Eng
Fract Mech 9(4):931–938

69. Krueger R (2004) Virtual crack closure technique: history, ap-
proach, and applications. Appl Mech Rev 57(2):109–143

70. Allix O, Ladevèze P (1992) Interlaminar interface modelling for
the prediction of delamination. Compos Struct 22(4):235–242

71. Maimí P, Mayugo JA, Camanho PP (2008) A three-dimensional
damage model for transversely isotropic composite laminates.
J Compos Mater 42(25):2717–2745

72. Wells GN, de Borst R, Sluys LJ (2002) A consistent geometri-
cally non-linear approach for delamination. Int J Numer Methods
Eng 54(9):1333–1355

73. Remmers JJC, Wells GN, de Borst R (2003) A solid-like shell el-
ement allowing for arbitrary delaminations. Int J Numer Methods
Eng 58(13):2013–2040

74. Hashagen F, de Borst R (2000) Numerical assessment of delam-
ination in fibre metal laminates. Comput Methods Appl Mech
Eng 185(2):141–159

75. Mi Y, Crisfield A, Hellweg H-B, Davies GAO (1998) Progres-
sive delamination using interface elements. J Compos Mater
32(14):1246–1272

76. Hibbs MF, Bradley WL (1987) Correlations between microme-
chanical failure processes and the delamination toughness of
graphite/epoxy systems. In: Fractography of modern engineering
materials: composites and metals (A88-16961 05-23). ASTM,
Philadelphia, pp 68–97

77. Evans AG, Rühle M, Dalgleish BJ, Charalambides PG (1990)
The fracture energy of bimaterial interfaces. Mater Sci Eng A
126(1–2):53–64

78. Tay TE (2003) Characterization and analysis of delamination
fracture in composites: an overview of developments from 1990
to 2001. Appl Mech Rev 56(1):1–32



Mesolevel Modeling of Failure in Composite Laminates: Constitutive, Kinematic and Algorithmic Aspects 423

79. Camanho PP, Dávila CG, de Moura MF (2003) Numerical simu-
lation of mixed-mode progressive delamination in composite ma-
terials. J Compos Mater 37(16):1415–1438

80. Benzeggagh ML, Kenane M (1996) Measurement of mixed-
mode delamination fracture toughness of unidirectional
glass/epoxy composites with mixed mode bending apparatus.
Compos Sci Technol 56(4):439–449

81. Turon A, Camanho PP, Costa J, Dávila CG (2006) A damage
model for the simulation of delamination in advanced composites
under variable-mode loading. Mech Mater 38(11):1072–1089

82. Allix O, Corigliano A (1996) Modeling and simulation of crack
propagation in mixed-modes interlaminar fracture specimens. Int
J Fract 77(2)

83. Yang QD, Cox BN (2005) Cohesive models for damage evolution
in laminated composites. Int J Fract 133(2):107–137

84. Högberg JL (2006) Mixed mode cohesive law. Int J Fract 141(3–
4):549–559

85. Jiang W-G, Hallett SR, Green BG, Wisnom MR (2007) A concise
interface constitutive law for analysis of delamination and split-
ting in composite materials and its application to scaled notched
tensile specimens. Int J Numer Methods Eng 69(9):1982–1995

86. van der Meer FP, Sluys LJ (2010) Mesh-independent modeling of
both distributed and discrete matrix cracking in interaction with
delamination. Eng Fract Mech 77(4):719–735

87. Turon A, Camanho PP, Costa J, Renart J (2010) Accurate simu-
lation of delamination growth under mixed-mode loading using
cohesive elements: definition of interlaminar strengths and elas-
tic stiffness. Compos Struct 92(8):1857–1864

88. van der Meer FP, Sluys LJ (2009) A phantom node formulation
with mixed mode cohesive law for splitting in laminates. Int J
Fract 158(2):107–124

89. Goutianos S, Sørensen BF (2011) Work or separation of truss-
like mixed mode cohesive laws. In: Lee W-I, et al (eds) Pro-
ceedings of 18th international conference on composite materi-
als, Jeju, Korea, Aug 2011

90. Li X, Hallett SR, Wisnom MR (2008) Predicting the effect
of through-thickness compressive stress on delamination us-
ing interface elements. Composites, Part A, Appl Sci Manuf
39(2):218–230

91. Wisnom MR (1992) On the increase in fracture energy with
thickness in delamination of unidirectional glass fibre-epoxy
with cut central plies. J Reinf Plast Compos 11(8):897–909

92. Allix O, Lévêque D, Perret L (1998) Identification and forecast
of delamination in composite laminates by an interlaminar inter-
face model. Compos Sci Technol 58(5):671–678

93. Andersons J, König M (2004) Dependence of fracture toughness
of composite laminates on interface ply orientations and delam-
ination growth direction. Compos Sci Technol 64(13–14):2139–
2152

94. Greenhalgh ES, Rogers C, Robinson P (2009) Fractographic ob-
servations on delamination growth and the subsequent migration
through the laminate. Compos Sci Technol 69(14):2345–2351

95. Davidson BD, Gharibian SJ, Yu L (2000) Evaluation of energy
release rate-based approaches for predicting delamination growth
in laminated composites. Int J Fract 105(4):343–365

96. Ladevèze P, Lubineau G (2002) An enhanced mesomodel
for laminates based on micromechanics. Compos Sci Technol
62:533–541

97. Harper PW, Hallett SR (2008) Cohesive zone length in numer-
ical simulations of composite delamination. Eng Fract Mech
75(16):4774–4792

98. Turon A, Costa J, Camanho PP, Maimí P (2008) Analytical and
numerical investigation of the length of the cohesive zone in
delaminated composite materials. In: Camanho PP, Pinho ST,
Dávila CG, Remmers JJC (eds) Mechanical response of com-
posites, computational methods in applied sciences. Springer,
Berlin, pp 77–97. Chap 4

99. Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineer-
ing solution for mesh size effects in the simulation of delamina-
tion using cohesive zone models. Eng Fract Mech 74(10):1665–
1682

100. Harper PW, Sun L, Hallett SR (2012) A study on the influence
of cohesive zone interface element strength parameters on mixed
mode behavior. Composites, Part A, Appl Sci Manuf 43(4):722–
734

101. Yang QD, Fang XJ, Shi JX, Lua J (2010) An improved cohesive
element for shell delamination analyses. Int J Numer Methods
Eng 83(5):611–641

102. Crisfield MA, Alfano G (2002) Adaptive hierarchical enrichment
for delamination fracture using a decohesive zone model. Int J
Numer Methods Eng 54(9):1369–1390

103. Guiamatsia I, Ankersen JK, Davies GAO, Iannucci L (2009) De-
cohesion finite element with enriched basis functions for delam-
ination. Compos Sci Technol 69(15–16):2616–2624

104. Samimi M, Van Dommelen JAW, Geers MGD (2009) An en-
riched cohesive zone model for delamination in brittle interfaces.
Int J Numer Methods Eng 80(5):609–630

105. Samimi M, Van Dommelen JAW, Geers MGD (2011) A three-
dimensional self-adaptive cohesive zone model for interfacial de-
lamination. Comput Methods Appl Mech Eng 200(49–52):3540–
3553

106. van der Meer FP, Moës N, Sluys LJ (2012) A level set model for
delamination—modeling crack growth without cohesive zone or
stress singularity. Eng Fract Mech 79:191–212
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