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Abstract We consider a phase field model for the formula-
tion and solution of topology optimization problems in the
minimum compliance case. In this model, the optimal topol-
ogy is obtained as the steady state of the phase transition
described by the generalized Cahn–Hilliard equation which
naturally embeds the volume constraint on the amount of
material available for distribution in the design domain. We
reformulate the model as a coupled system and we highlight
the dependency of the optimal topologies on dimensionless
parameters. We consider Isogeometric Analysis for the spa-
tial approximation which facilitates encapsulating the exact-
ness of the representation of the design domain in the topol-
ogy optimization and is particularly suitable for the analysis
of phase field problems. We demonstrate the validity of the
approach and numerical approximation by solving two and
three-dimensional topology optimization problems.

1 Introduction

In engineering it is often desired to apply some optimiza-
tion techniques to the design of a structure, component or
device. Other than sizing [9, 112] and shape optimization
techniques [55, 74, 101], a significant contribution is given
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by topology optimization [10, 11, 13, 15, 89, 90], which rep-
resents the fundamental form of optimization; indeed, topol-
ogy optimization aims at finding the optimal distribution of
a material in a design domain such that an objective func-
tional is minimized under certain constraints. The minimum
compliance case represents the most common topology opti-
mization problem, for which the goal is to generate the glob-
ally stiffest structure by distributing only a limited amount
of material in the design domain [11, 13]; additionally, an-
other interesting problem consists in generating the lightest
structure under stress constraints, see among the others e.g.
[24, 38, 80]. Historically, topology optimization has been
used principally for structural static problems based on a
linear elastic model, but many other cases have also been
successfully considered. For example, this is the case for ap-
plications in fluid dynamics [1], heat conduction [48], vibra-
tion [61], multiphysics [98] and bioengineering [115]; also
topology optimization has been used for shell structures [69,
89] and with different material models as in [93] for elasto-
plastic structures.

In most cases, topology optimization problems are de-
fined in simplified geometries, typically rectangles, repre-
senting the design domain, i.e. the admissible domain that
the design can occupy. Even if it is a reasonable starting
point to assume the design domain as large as possible to
avoid the introduction of spatial constraints on the optimal
design, in some cases it would be interesting, if not neces-
sary, to perform topology optimization for a part or compo-
nent of a structure for which an initial design already exists.
This is the case for example when the design domain is ob-
tained as part of a multi step optimization procedure or is
defined as a lower-dimensional manifold, like for plates and
shells [68, 69]. In such cases, since it is common practice in
engineering to represent geometries with Computer Aided
Design (CAD) technologies, which are based on NURBS
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[85] or, more recently, T-splines [94], it is desirable to in-
clude the exact representation of the design domain in the
topology optimization procedure. However, in current prac-
tice, the numerical approximation scheme used for topology
optimization, typically the Finite Element Method (e.g. [33,
57, 87]), requires the approximation of the design domain
and disconnects the analysis, and hence, the optimization
from its geometrical representation.

In general, the capability to embed the CAD geometric
representation in the analysis and optimization provides not
only accuracy advantages, but also has the potential to con-
siderably improve the efficiency of the overall design proce-
dure. The importance of establishing a suitable link between
the optimization and the CAD representation is recognized
and discussed in [16] for shape optimization, in particular
for shells structures; the authors propose a procedure com-
bining design modeling, structural analysis and optimiza-
tion, for which these tasks are coordinated by means of a
program system named Computer Aided Research Analysis
Tool [17] made available to the designer. In [89] shape op-
timization problems are solved by considering the position
of the control points of B-spline [85] as design variables to-
gether with adaptive refinement strategies; a similar proce-
dure is extended to topology optimization problems, com-
bining repeated optimization steps with B-spline approxi-
mations of the optimal topologies and adaptive refinement.
In [74] the relation between CAD and shape parametrization
is discussed for shape optimization, especially for fluid dy-
namics; additionally, in [114] manipulation of the splines is
used to generate optimal geometries. Also, in [66] topology
optimization problems have been solved by using control
points of B-spline curves as design variables in an approach
combing shape optimization and hole nucleation.

Isogeometric Analysis, a generalization of Finite Ele-
ment Analysis for which basis functions are defined by
NURBS or T-splines [35, 58], provides the possibility to
embed the exact CAD representation of the design do-
main in topology optimization, in addition to exhibiting sev-
eral other advantages [8, 34, 41, 50]. Isogeometric Analy-
sis has already been introduced successfully and discussed
for shape optimization in [30, 53, 75, 110] and we believe
that it also represents a potentially effective numerical ap-
proximation method for topology optimization problems.
Recently, Isogeometric Analysis has been used in [96] to
solve design optimization problems to generate optimal two-
dimensional structures by means of a procedure based on
trimmed curves; this concept is further extended in [95] for
topology optimization problems. In this manner the final op-
timal structure is represented by NURBS and T-splines and
directly linked to the CAD representation without the need
of additional postprocessing of the topology optimization
result. However, even if this represents a great advantage
and ideal situation, the topology optimization results ap-
pear to be strongly dependent on the specific approach used

to generate the trimmed curves and surfaces. Additionally,
B-spline bases are considered in [64] for two-dimensional
topology optimization problems.

In general, despite the fact that Isogeometric Analysis al-
lows for the exact representation of the initial (CAD) design
domain, the representation of the optimal design is still im-
plicit, in a similar manner for topology optimization strate-
gies with conventional Finite Element methods. For this rea-
son, a comprehensive design optimization procedure based
on Isogeometric Analysis should be used to provide an op-
timized structure starting from an initial design domain and
passing through topology optimization and geometry gen-
eration of such optimal design. Eventually, the optimal ge-
ometry could be further improved by means of shape opti-
mization, while maintaining the centrality of the geometry
in the overall optimization procedure by means of Isogeo-
metric Analysis.

In its original formulation, topology optimization is a dis-
tributed and discrete valued problem [13], for which only
areas of material and void are allowed without intermedi-
ate states. However, this formulation leads to many difficul-
ties both from the analysis and the numerical points of view,
and it requires efficient discrete optimizers, see e.g. [104].
The most popular approach to overcome this difficulty is
based on the material distribution concept, for which the
design variable corresponds to a density function smoothly
representing the distribution of the material in the design
domain, with intermediate values between the pure mate-
rial and void states allowed. In this framework a possible
approach is the homogenization method [3], for which the
macroscopic properties of the material are deduced from the
microscopic properties of the porous material represented
by the density function; the first numerical approximation
for an homogenized material was presented in [11]. How-
ever, in this approach solutions appear to have an elevated
number of microscopic holes and microstructures which are
undesired from a manufacturability point of view, when pure
material and void states are required. In order to obtain these
kinds of optimal topologies, the intermediate states can be
penalized by choosing suitable interpolation schemes for the
dependency of macroscopic material properties on the den-
sity function; in the case of isotropic materials, the Solid
Isotropic Material Penalization (SIMP) model is the most
successfully used [12, 13, 72, 91]. Typically, topology op-
timization problems in this approach are solved with suit-
able constrained optimization techniques and with low-order
Finite Element approximation for the density function, of-
ten piecewise constant over the elements. However, addi-
tional stabilization and filtering techniques need to be intro-
duced at the level of the numerical approximation in order
to remove or reduce the well-known mesh dependency and
checkerboard phenomena [13, 62] which affect the topol-
ogy optimization results. Different techniques have been
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considered to solve topology optimization problems, among
these are Evolutionary Structural Optimization (ESO) [116]
and Bidirectional ESO methods [118], heuristic procedures
based on the identification of regions of material with high
and low contributions to the stiffness of the structure; also,
other optimization strategies based on the removal of mate-
rial by the evaluation of topological derivatives have been
adopted [76]. However, in general, among the drawbacks of
these formulations there is the strong dependence of the op-
timal solution on the particular optimizer utilized and its set-
tings.

Recently, the use of the level set method [79] has been
proposed to solve topology optimization problems [4, 5, 37,
113]. In this approach, the introduction of a level set func-
tion, which is associated with the density function, avoids
directly tracking the boundaries between the material and
the void; the optimal solution is then obtained as the evolu-
tion in time of the level set function, for which an optimizer
is no longer needed. However, topological changes are uni-
directional, in the sense that holes can only be removed in
the design domain and inner front creation requires addi-
tional numerical techniques [81, 117]; also, similar to other
level set methods, repeated reinitializations of the level set
function are required while numerically solving the prob-
lem.

An alternative approach to topology optimization is pro-
vided by the multiphase formulation, where the distribu-
tion of two phases, representing the material and void, in-
side the design domain is described by a smooth function
which coincides with the material density function. The ge-
ometrical information associated with the optimal topology
is then deduced from the sharp interfaces between the two
phases, which are represented by thin layers. The definition
of topology optimization problems in a multiphase approach
has recently been introduced for design dependent loads in
[21] (and [22]), for problems with stress constraints in [24]
and for the minimum compliance case in [111, 119]; fur-
ther extensions are also considered in [107]. The concept at
the basis of this approach is that the objective functional is
penalized by means of a functional approximating the to-
tal variation of the material density function, which, in the
sharp-interface limit, measures the perimeter of the inter-
faces between the material and void. The relaxed functional
is composed of two terms controlling the thickness of the in-
terfaces and the decomposition of the pure phases, which are
typical of multiphase problems [6, 26, 42]. In particular, the
introduction of the interface term allows the definition of a
well-posed topology optimization problem [24], and it even-
tually provides optimal solutions at the discrete level not
affected by mesh dependency and checkerboard phenom-
ena. However, we observe that in the multiphase approach
the optimal value of the penalized objective functional does
not correspond in general with the minimum of the compli-
ance, which is the real target of the optimization. Rather, a

balance between the compliance and the relaxed functional
representing the perimeter of the interfaces is reached at the
optimum. Still the problem is formulated as an optimization
one, for which the optimal topology depends in general on
the optimizer used.

Further, the topology optimization problem in the multi-
phase approach can be transformed into a phase field prob-
lem for which the optimal topology is obtained as the steady
state of the phase transition; at the basis of this formulation
there is the reinterpretation of the penalized objective func-
tional introduced for the multiphase approach as a total free
energy. Traditional phase field models are represented by
the Cahn–Hilliard [26–28] and Cahn–Allen [6] equations,
which have been introduced in metallurgy to describe phase
segregation in binary alloy systems. More recently, phase
field approaches have been successfully considered to pro-
vide mathematical models for problems in different disci-
plines; for example, there are models for crack propagation
[19, 71], also with Cahn–Hilliard equation [102], image seg-
mentation [109] and cancer and tumor growth [43, 77]. The
role of the phase field approach for topology optimization
consists in obtaining separated phases, material and void,
divided by thin and sharp interfaces for which the distribu-
tion of the material in the design domain is determined by
the optimization considerations. In this sense, this resembles
the case of the Cahn–Hilliard equation with elastic misfit,
for which the distribution of the phases partially takes into
account the elastic properties of the materials; see e.g. [45].
In topology optimization, this effect has to assume a leading
role, and the distribution of the material depends on the ob-
jective function of the topology optimization problem. Phase
field models for topology optimization have been considered
firstly in [111, 119, 120] for the minimum compliance case,
also for multimaterials problems; a nonlinear fourth-order
generalized Cahn–Hilliard equation is derived and success-
fully solved for two and three-dimensional problems by us-
ing a multigrid algorithm [119, 120] and with an approach
which partially decouples the phase and elasticity equations.
The mass conservation property of the Cahn–Hilliard equa-
tion is conveniently used to naturally take into account the
mass/volume constraint associated with the minimum com-
pliance problem. More recently, a similar approach based
on the Cahn–Allen equation has been proposed in [107]
for shape and topology optimization, even if without the
capability to introduce topological changes. In [31, 44] a
model based on the diffusion-reaction equation, with analo-
gies with the Cahn–Allen equation, is introduced for mini-
mum compliance problems with an augmented Lagrangian
approach to take into account the mass/volume constraint.

Phase field models show many similarities with the level
set approach, however, they allow to naturally include hole
nucleation in the formulation and avoid reinitializations of
level set functions while numerically solving the problem.
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In this work we formulate the topology optimization
problem for the minimum compliance case by using a phase
field approach following [120], since we feel that this kind
of formulation provides several advantages. Namely, it has
the ability to naturally deal with topological changes, to pro-
vide geometrical information, and to completely describe
the topology optimization problem at the continuous level,
without the necessity of introducing any ad hoc numerical
techniques at the discretization stage; also, since the prob-
lem of optimization is converted to a phase transition prob-
lem, the need to use an optimizer, and hence the dependence
of the solution on its settings, is eliminated and replaced
with the choice of a suitable time approximation scheme.
We rederive the generalized Cahn–Hilliard equation starting
from the multiphase approach on the basis of energy consid-
erations, following the usual procedure for the derivation of
phase field models, and we highlight the parametric depen-
dency of the problem introduced by the penalization of the
objective functional. Also, we rewrite the phase field model
as a coupled system of phase and elasticity equations, we
provide its dimensionless form, and we characterize it in
terms of dimensionless parameters. We discuss the choice
of the parameters used to penalize the objective functional
and the mesh dependence of the optimal solution, and we
extend the continuation method [21, 24, 76], an optimiza-
tion strategy based on the sequential solution of optimiza-
tion subproblems, to the phase field case.

For the numerical solution of the topology optimization
problem in the phase field approach we consider Isogeomet-
ric Analysis for the spatial approximation, since we believe
that it provides several benefits for the solution of this kind
of problem in analogy with [50, 51] for phase field problems.
Firstly, Isogeometric Analysis encapsulates the CAD rep-
resentation of the design domain in the topology optimiza-
tion while providing geometric flexibility; also, it ensures
robustness, high-order accuracy, and the capability to eas-
ily use compactly supported high-order basis functions for
the approximation of the nonlinear fourth-order generalized
Cahn–Hilliard equation, whose numerical solution necessi-
tates spatially C1-continuous functions. In addition, the use
of Isogeometric Analysis for topology optimization prob-
lems allows to properly represent the sharp interfaces be-
tween the material and void, and it appears to be resistant
to checkerboard and other instability phenomena, even in
the multiphase approach. For the time approximation we use
the generalized-α method [32] together with a time-adaptive
scheme that allows a very efficient solution of the problem,
which, in analogy to other phase field models, exhibits fast
and intermittent variations in time.

In general, in the phase field approach, Michell type
structures [70] are obtained at the early stages and during
the phase transition, while the number of holes in the topol-
ogy tend to reduce as the steady state is approaching. More

complicated topologies can eventually be obtained by reduc-
ing the relaxation parameter controlling the thickness of the
interfaces even if this requires computational meshes suffi-
ciently fine to correctly capture the sharp interfaces. As gen-
eral consideration, we can conclude that the use of smooth,
high-order continuous basis functions, as in Isoegometric
Analysis, allows for the proper representation of the inter-
faces, but necessitates finer meshes than for standard low-
order Finite Element approximations; for this reason, we be-
lieve that the choice of a suitable material interpolation func-
tion may mitigate this effect. In addition, we observe that
the topologies obtained at the steady state do not necessar-
ily correspond to the minimum value of the compliance, but
rather to the minimum value of the penalized objective func-
tional defined in the multiphase approach. Indeed, while the
penalized objective functional monotonically converges to a
(local) minimum at the steady state, the evolution in time
of the compliance of the system is not monotone and some
(local) minima may be obtained at intermediate time steps.
However, in the phase field approach, we define a procedure
allowing to identify both the optimal topologies correspond-
ing to the minimum values of the penalized objective func-
tional and the compliance simply by tracking the evolution
of the compliance during the phase transition to the steady
state. Then, we select the optimal topological design as the
one corresponding to the minimum value of the compliance
achieved during the phase transition for any suitable choice
of the relaxation parameters. Nevertheless, different config-
urations obtained during the phase transition can be selected
for further investigation on the basis of the values assumed
by the compliance.

We show the effectiveness of the proposed procedure by
solving two and three-dimensional topology optimization
problems in design domains defined by NURBS geometries.
We discuss the influence of the relaxation parameters on the
optimal solution and discuss the mesh dependency in rela-
tion with the choice of such parameters. In particular, we be-
lieve that the mesh dependency effect may be mitigated and
eventually eliminated when solving a topology optimization
problem in a multiphase or phase field approach.

This work is organized as follows. In Sect. 2 the SIMP
and multiphase approaches for topology optimization in the
minimum compliance case are recalled. In Sect. 3 the deriva-
tion of the standard Cahn–Hilliard phase field model is re-
called in anticipation of the presentation in Sect. 4 of the
phase field model for topology optimization. In Sect. 4 the
generalized Cahn–Hilliard equation is derived, the coupled
system presented, and a dimensional analysis performed in
order to highlight the dependency of the problem on dimen-
sionless parameters. In Sect. 5 we present the numerical ap-
proximation scheme based on Isogeometric Analysis and the
generalized-α method with time adaptivity. In Sect. 6 we
discuss the dependency of the optimal solution on the ini-
tial distribution of material and the choice of the parameters
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upon which solutions depend; also, we present the continu-
ation method in the context of the phase field approach and
we discuss the selection of the optimal topological design. In
Sect. 7 we provide and discuss numerical results for two and
three-dimensional topology optimization problems. Finally,
conclusions are presented in Sect. 8.

2 Topology Optimization in the Minimum Compliance
Case

In this section we introduce the topology optimization prob-
lem in the minimum compliance case by using the bi-
nary original material-void formulation; then, we rewrite
the problem with the SIMP and the multiphase approaches,
which represent the basis for the definition of the phase tran-
sition model of Sect. 4. Standard notation is used through
this work to denote the Sobolev spaces of functions with
Lebesgue measurable derivatives and norms; see e.g. [2].

2.1 The Material-Void Binary Problem

We start by indicating with x a generic point in a given de-
sign domain Ω ⊂ R

d of dimension d = 2,3. In this design
domain, we assume that at any point x ∈ Ω there is the pres-
ence of either material or void; i.e., for any subset Ωmat ⊆
Ω , there is a characteristic function χmat = χmat (x), with
χmat : Ω → R and χmat ∈ L∞(Ω), such that:

χmat :=
{

1 if x ∈ Ωmat ,

0 if x ∈ Ω\Ωmat .
(1)

By convention, χmat = 1 indicates the presence of the mate-
rial, while χmat = 0 corresponds to regions of Ω where the
material is absent, which we will refer to as void. We adopt
a formulation based on the linear elastic theory for small
displacements with an isotropic material [57], whose prop-
erties are fully described by the symmetric elastic tensor C0

which depends on the Young’s modulus E0, the Poisson ra-
tio ν0 and the dimension d of the problem (for d = 2, both
the plane-stress and plane-strain cases can be considered).

The formulation of the continuum topology optimization
problem follows from the introduction of the elastic tensor
Cmat , which is written in terms of the characteristic function
χmat as:

Cmat = χmatC0. (2)

By introducing the displacement u and the associated strain
tensor ε(u), we define the stress tensor σ̃mat (u) as:

σ̃mat (u) := Cmatε(u). (3)

We observe that σ̃mat (u) is symmetric and linearly depen-
dent on the displacement u; the superscript “∼” indicates
the dependency on the independent variable u.

Fig. 1 Representation of a two-dimensional design domain Ω , bound-
aries ΓD , ΓN , surface force h and body force f

The associated elastic problem in strong form consists in
finding, for a given material distribution Ωmat , the displace-
ment u such that:

− ∇ · σ̃mat (u) = f in Ω,

u = 0 on ΓD,

σ̃mat (u)n̂ = h on ΓN,

Ωmat given,

(4)

where ΓD ⊂ ∂Ω is the Dirichlet partition of the design
domain boundary ∂Ω where the displacement is imposed,
while ΓN := ∂Ω\ΓD is the part of the boundary where the
surface force h is applied, with n̂ the outward directed unit
vector normal to ∂Ω ; for the sake of simplicity we assume a
null displacement on ΓD . Also, f is the body force acting in
the domain Ω which we consider independent of the char-
acteristic function χmat . A sketch is presented in Fig. 1 for
a two-dimensional design domain.

Toward the weak form of the elastic problem (4), we in-
troduce the function spaces V := {v ∈ [H 1(Ω)]d : v|ΓD

= 0}
and Hmat := {φ ∈ L∞(Ω)}; moreover, we define the resid-
ual Rmat,u(u)(v) ∈ R such that:

Rmat,u(u)(v) :=
∫

Ω

σ̃mat (u) : ε(v) dΩ

−
∫

Ω

f · vdΩ −
∮

ΓN

h · vdΓN, (5)

where we assume that all the Lebesgue integrals are well de-
fined (this hypothesis holds true for χmat ∈ Hmat , u, v ∈ V ,
h ∈ [L2(ΓN)]d−1 and f ∈ [L2(Ω)]d ). Then, the elastic prob-
lem (4) in weak form reads, for a given material distribution
Ωmat :

find u ∈ V : Rmat,u(u)(v) = 0

∀v ∈ V , χmat ∈ Hmat . (6)

We observe that the displacement u ∈ V solving Eqs. (4)
and (6) depends on the prescribed Ωmat , for which u =
u(χmat ). In this manner the stress tensor of Eq. (3) asso-
ciated to the solution of Eq. (6) reads:

σmat := σ̃mat

(
u(χmat )

) = Cmatε
(
u(χmat )

)
. (7)
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We introduce the compliance energy of the system (6), say
Jmat,E , as:

JE,mat :=
∫

Ω

ψE,mat dΩ, (8)

where ψE,mat is the strain energy function:

ψE,mat := ψ̃E,mat

(
u(χmat )

)
, (9)

with:

ψ̃E,mat (u) := σ̃mat (u) : ε(u). (10)

We observe that the standard definition of the strain energy
involves a factor of 1/2 which is neglected to maintain con-
sistency with the typical formulation of the topology opti-
mization framework. Also, we notice that following from
Eqs. (6) and (8),

JE,mat ≡
∫

Ω

f · u(χmat ) dΩ +
∮

ΓN

h · u(χmat ) dΓN .

In order to introduce the topology optimization problem
in the minimum compliance case, we recall that only a lim-
ited amount of material can be used, which means that only
a limited area/volume of Ω , say Vmat < |Ω|, can be covered
by the material, with Vmat defined as:

Vmat :=
∫

Ω

χmat dΩ. (11)

In this sense, the topology optimization problem is con-
strained and the space of admissible controls, say Hmat,ad ⊂
Hmat , in which we look for the optimal material distribution
Ω∗

mat is defined as1

Hmat,ad :=
{
χmat ∈ Hmat :

∫
Ω

χmat dΩ = Vmat

}
.

Then, the problem of topology optimization in the minimum
compliance case corresponds to

findχ∗
mat ∈ Hmat,ad : χ∗

mat = argmin(JE,mat ), (12)

where JE,mat is the compliance energy (8) of the elastic sys-
tem (6).

1In the standard definition of topology optimization problems in the
minimum compliance case, the area/volume constraint is an inequality
one,

∫
Ω

χmat dΩ ≤ Vmat ; see e.g. [13]. However, typically, the opti-
mal design Ω∗

mat is such that V ∗
mat := ∫

Ω
χ∗

mat dΩ ≡ Vmat in order to
maximize the stiffness of the structure.

2.2 The SIMP Approach

The standard approach to topology optimization consists in
replacing the distributed, discrete valued, binary problem of
Sect. 2.1 with a problem formulated in terms of a smooth
material density function. With this aim, we introduce the
material density function ρ = ρ(x) to represent the distribu-
tion of a given material at any generic point x of the design
domain Ω . By convention, ρ = 1 indicates the presence of
the material, while ρ = 0 corresponds to the void; interme-
diate states of ρ between 0 and 1 are allowed and indicate
regions of “soft” material (ersatz material approach). Also,
we require that 0 ≤ ρ ≤ 1, since values outside this range
do not correspond to meaningful representations of the ma-
terial distribution. De facto, the function ρ is a relaxation of
the characteristic function χmat (1) and, in practice, the for-
mulation of the topology optimization problem in terms of
the material density function ρ mimics the formulation for
the discrete material-void binary problem (12).

The SIMP approach is based on the concept that the prop-
erties of the material depend on the density function ρ for
which the elastic tensor C(ρ) is a function of ρ; in particu-
lar, we can write:

C(ρ) = g(ρ)C0, (13)

with g(ρ) a suitable function introducing the homogeniza-
tion of the elastic properties depending on the distribution of
the material in Ω . The function g(ρ) assumes a crucial role
in the definition of the SIMP method, since the quality of the
topology optimization results strongly depend on it; we will
return on this point later. It follows that the stress tensor is
dependent on ρ as:

σ̃ (ρ,u) := C(ρ)ε(u). (14)

Similarly to Eq. (3), the stress tensor σ̃ (ρ,u) is symmetric
and linearly dependent on u and the superscript “∼” is used
to indicate the dependency on both ρ and u as independent
variables.

By recalling Eq. (4) and Fig. 1, the elastic problem in
strong form consists in finding the displacement u, for a
given material density function ρ, such that:

− ∇ · σ̃ (ρ,u) = f in Ω,

u = 0 on ΓD,

σ̃ (ρ,u)n̂ = h on ΓN,

ρ given.

(15)

We introduce the function space H := {φ ∈ L∞(Ω) : g(φ) ∈
L∞(Ω)} in addition to the space V for the displacement u,
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and the residual Ru(u;ρ)(v) ∈ R:

Ru(u;ρ)(v) :=
∫

Ω

σ̃ (ρ,u) : ε(v) dΩ

−
∫

Ω

f · vdΩ −
∮

ΓN

h · vdΓN. (16)

The elastic problem (15) in weak form reads, for a given
material distribution ρ ∈ H:

find u ∈ V : Ru(u;ρ)(v) = 0 ∀v ∈ V , ρ ∈ H. (17)

The displacement u ∈ V which solves Eqs. (15) and (17)
depends on the prescribed material distribution function ρ

such that u = u(ρ); as consequence, we define:

σ(ρ) := σ̃
(
ρ,u(ρ)

) = C(ρ)ε
(
u(ρ)

)
. (18)

By mimicing Sect. 2.1, we define the compliance energy of
the system (17), say JE(ρ), as:

JE(ρ) :=
∫

Ω

ψE(ρ)dΩ, (19)

with the strain energy function ψE(ρ):

ψE(ρ) := ψ̃E

(
ρ,u(ρ)

)
(20)

and

ψ̃E(ρ,u) := σ̃ (ρ,u) : ε(u). (21)

We observe that Eq. (19) can equivalently be written as
JE(ρ) = J̃E(ρ,u(ρ)), where from Eq. (21):

J̃E(ρ,u) :=
∫

Ω

ψ̃E(ρ,u) dΩ. (22)

In view of the definition of the topology optimization
problem, we define the area/volume covered by the material
as:

V :=
∫

Ω

ρ dΩ. (23)

In addition, we define the space of admissible controls, say
Had ⊂ H, in which we look for the optimal solution ρ∗ as
Had := {φ ∈ H : 0 ≤ φ ≤ 1 and

∫
Ω

φ dΩ = V }. Then, the
problem of topology optimization in the minimum compli-
ance case in the material density formulation reads:

findρ∗ ∈ Had : ρ∗ = argmin
(
JE(ρ)

)
(24)

with JE(ρ) the compliance energy (19) of the elastic sys-
tem (17).

We recall that the elastic properties of the material are
introduced in the topology optimization problem by means
of the interpolation function g(ρ) of Eq. (13). In general,

the topology optimization procedure allows “soft” regions
of material in the design domain, since ρ can assume inter-
mediate values between 0 (void) and 1 (material). However,
these situations, even if consistent with the mathematical
formulation, are in general not desired as output of the op-
timization problem. Indeed, the goal is to distribute a given
material with its full elastic properties for which the desired
values of ρ are possibly only 0 (void) and 1 (material). In
order to reduce or avoid these situations, the function g(ρ)

of Eq. (13) plays a crucial role. In the material interpola-
tion formulation, this function is typically chosen such that
intermediate distributions of material correspond to a mate-
rial with poor stiffness properties; in this manner, due to the
area/volume constraint, the material is located to minimize
the compliance energy of the system. A typical choice for
g(ρ) is based on the SIMP model, for which:

g(ρ) = ρP , (25)

with P ≥ max{ 2
1−ν0

, 4
1+ν0

} if d = 2 or P ≥ max{15 1−ν0
7−5ν0

,

3
2

1−ν0
1−2ν0

} if d = 3; the condition on the power P is to guaran-
tee that the interpolation model represents a material model
[12, 13, 72]. Typically, since materials with ν0 = 1/3 are of-
ten considered, the power is chosen such that P ≥ 3 for both
d = 2,3; also this value is reasonable even when a minimum
value for ρ, say ρmin > 0, is introduced. We observe that
other choices of g(ρ) can be made, among these are rational
functions [103] and B-splines [82], which can be useful for
vibration problems; see [13] for a wider discussion.

The continuous topology optimization problem (24) does
not admit, in general, the existence of optimal solutions as
pointed out and discussed in [13, 63]; moreover, the unique-
ness of the solution is also an issue, since multiple minima
can be detected due to the non-convex nature of the prob-
lem. However, even if in general ill-posed [63, 67, 100],
the topology optimization problem is discretized and then
solved numerically. Typically, see e.g. [12, 13, 103], low or-
der Finite Element approximations are used to approximate
the density function ρ, even if other choices are possible
(see [48] for a Finite Volume Method). Then, the problem
is solved by means of a suitable optimization method; in
this sense, the Method of Moving Asymptotes (MMA) rep-
resents one of the most effective optimizers for the solution
of topology optimization problems [105, 106]. The fact that
the continuous problem is ill-posed reflects on the numer-
ical solution, even if the discrete problem admits the exis-
tence of optimal solutions. This is revealed by the so called
mesh dependency effect, for which different optimal solu-
tions are obtained with different discretizations of the prob-
lem, specifically for different Finite Element meshes. There
are several techniques to mitigate or even eliminate this ef-
fect, which are introduced as global or local constraints; the
most used ones are [13, 100]: local constraints on the den-
sity gradient [84], local density and sensitivity filters [20, 84,
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97, 99], global control of the minimum length scale [52, 86],
and perimeter control or limitation, for which a global con-
straint (upper bound) in terms of the total variation TV(ρ)

of the material density function

TV(ρ) :=
∫

Ω

|∇ρ|dΩ ≤ PL, (26)

with PL > 0, is imposed [83].2 As pointed out in [7, 54],
the total variation of the material density function represents
the proper relaxation of the perimeter for designs that in-
terpolate between material and void; moreover, the TV(ρ)

converges, in the limit, to the perimeter of designs as the
width of the interface between the material and void tends
to zero. The imposition of a perimeter constraint limits the
number of holes that a solution could exhibit. In practice, the
constraint (26) is introduced to make the topology optimiza-
tion problem well posed, as shown in [7] for the continuous
case. An alternative approach to the inequality constraint on
the perimeter has been proposed in [54] and consists in per-
turbing the objective functional (19) with a smooth penalty
term for the perimeter PL.

Another undesired, but common, feature that optimal
topologies can exhibit is the so called checkerboard phe-
nomenon, which indicates a numerical solution with pat-
terns of alternate 0–1 values (void-material) [13, 100]. As
discussed in [62], this represents a form of numerical insta-
bility associated with the approximation of the topology op-
timization problem, which is a nonlinear mixed variational
problem in the independent density and displacement vari-
ables. Similarly to the case of linear mixed problems [23],
stability issues could arise at the discrete level even if the
continuous problem is well posed. Even if a comprehensive
analysis of the stability properties has not been performed
due to the nonlinear nature of the problem, it has been shown
in [62] for some particular topology optimization problems,
that using suitable pairs of Finite Element spaces for the den-
sity and displacement variables eliminates the checkerboard
issues.3 In general, as pointed out in [13], any of the nu-
merical techniques introduced to limit the mesh dependency
effect could be effectively used to avoid this phenomenon.

As a final remark, we observe that in order to properly
solve the topology optimization problem (24) in the SIMP
approach, it is necessary to introduce additional numerical
techniques, which in general depend on the discretization
chosen, with respect to the original continuous formulation

2For the pure material-void (0–1) designs of Sect. 2.1, the
total variation TVmat is defined as TVmat = TV(χmat ) :=
supg∈[C1

0 (Ω)]d , ‖g‖L∞≤1

∫
Ω

χmat∇ · gdΩ , where [C1
0 (Ω)]d is the

vector space of C1-continuous functions with compact support
over Ω . In this case, TVmat coincides with the perimeter of Ωmat .
3Other possibilities are the introduction of an augmented Lagrangian
functional or the postprocessing filtering of the numerical solution.

of the problem; also a suitable constrained optimizer needs
to be used.

2.3 The Multiphase Approach

In order to introduce the topology optimization problem in
the multiphase approach, we recall that the distribution of
the phases, material and void, inside the design domain Ω

is represented by the material density function ρ. Also, we
define the parameters μ = (γ,λ) ∈ D, with γ and λ posi-
tive and the parameter set D ⊂ R

2, in order to introduce a
parametrization on the topology optimization problem.

The multiphase approach is based on the introduction of
a penalized objective functional J (ρ;μ), which depends on
the parameters μ ∈ D, by means of a suitable relaxation
of the total variation TV(ρ;λ) of the material density func-
tion (26). With this aim, we define the functional JTV(ρ;λ)

which represents the relaxation of TV(ρ) with respect to the
parameter λ as:

JTV(ρ;λ;E0) := E0

∫
Ω

ψTV(ρ;λ)dΩ, (27)

with E0 a suitable constant and the function ψTV(ρ;λ) de-
fined as:

ψTV(ρ;λ) := ψB(ρ) + λψI (ρ), (28)

where ψB(ρ) is a suitable bulk energy function and ψI (ρ)

is the interface energy function:

ψI (ρ) := 1

2
∇ρ · ∇ρ. (29)

In addition, by recalling Eqs. (19) and (20), we redefine:

JE(ρ;γ ) := γ

∫
Ω

ψE(ρ)dΩ. (30)

In this manner, the penalized objective functional J (ρ;μ)

reads:

J (ρ;μ) := JE(ρ;γ ) + JTV(ρ;λ;E0), (31)

with the constant E0 introduced to ensure that all the terms
in Eq. (31) have the dimension of an energy density.4

The introduction of the functional JTV(ρ;λ;E0) (27) al-
lows a relaxation of the total variation TV(ρ) constraint (26)
and it represents an approximation of the perimeter of
the material-void interfaces depending on the parameter λ.
The function ψTV(ρ;λ) (28) defining JTV(ρ;λ;E0) is ob-

4Eventually, the constant E0 could be included among the parameters
μ ∈ D; however, the parametric dependence of the penalized objective
functional J (ρ;μ) (31) would still be completely represented by only
two parameters by means of suitable scalings.
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tained as the sum of bulk and interfaces energies ψB(ρ)

and ψI (ρ). In particular, the bulk energy ψB(ρ) is a non-
convex smooth function chosen in the form of a double-
well in the pure phases ρ = 0 and ρ = 1, for example,
as ψB(ρ) = ρ2(1 − ρ)2 [24]; in this manner, the val-
ues assumed by ψB(ρ) for intermediate values of ρ are
larger than for the pure phases, which are preferred in
the optimization context. Also, further penalization terms
can be added to ψB(ρ) in proximity of the pure phases
ρ = 0 and 1 in order to remove the inequality constraints
0 ≤ ρ ≤ 1 from the formulation of the optimization prob-
lem; a possibility is to consider ψB(ρ) a logarithm-type
function with singularities in the pure phases. The in-
terface energy function ψI (ρ) represents a measure of
the perimeters of the level sets of the material density
function ρ [24] and introduces the capability of control-
ling the thickness of the interfaces through the parame-
ter λ.

Following the result in [73], it is possible to show that,
due to the properties of Γ -convergence (see e.g. [36]), ma-
terial distributions ρ ∈ Had minimizing JTV(ρ;λ;E0) for a
fixed value of the area/volume V converge, for λ → 0, to
characteristic functions χ in the binary form (1) which min-
imize the perimeter for the same area/volume constraint; see
also [24]. This result is particularly important in the context
of topology optimization since it allows for the possibility of
penalizing the compliance JE(ρ;γ ) by means of the relaxed
functional JTV(ρ;λ;E0) approximating the perimeter of the
interfaces between material and void with respect to the pa-
rameter λ. As a final remark, we observe that, even if the
bulk and interface energy functions, ψB(ρ) and ψI (ρ), can
be considered and investigated separately, it is their com-
bined action which allows for the introduction of the relaxed
perimeter constraint JTV(ρ;λ;E0).

However, since it is more convenient in practice to rep-
resent the penalized objective functional (31) explicitly in
terms of the strain, bulk, and interface energies, we will con-
sider the following formulation from here on. We rewrite
the penalized objective functional J (ρ;μ), dependent on the
parameters μ ∈ D, as:

J (ρ;μ) =
∫

Ω

ψ(ρ;μ) dΩ, (32)

with the function ψ(ρ;μ) defined as:

ψ(ρ;μ) := γψE(ρ) + E0
(
ψB(ρ) + λψI (ρ)

)
, (33)

or, equivalently from Eq. (28), ψ(ρ;μ) := γψE(ρ) +
E0ψTV(ρ;λ). Then, the objective functional J (ρ;μ) (32)
reads:

J (ρ;μ) = JE(ρ;γ ) + JB(ρ;E0) + JI (ρ;λ;E0), (34)

where JE(ρ;γ ) is given in Eq. (30) and

JB(ρ;E0) := E0

∫
Ω

ψB(ρ)dΩ, (35)

JI (ρ;λ;E0) := E0 λ

∫
Ω

ψI (ρ)dΩ. (36)

We observe that, from Eq. (27), we have equivalently
J (ρ;μ) = JE(ρ;γ )+JTV(ρ;λ;E0). Finally, we notice that
the objective functional (32) can be rewritten in terms of
the material density function ρ as J (ρ;μ) = J̃ (ρ,u(ρ);μ),
where:

J̃ (ρ,u;μ) :=
∫

Ω

ψ̃(ρ,u;μ) dΩ, (37)

with, following from Eq. (21):

ψ̃(ρ,u;μ) := γ ψ̃E(ρ,u) + E0
(
ψB(ρ) + λψI (ρ)

)
. (38)

Similarly to Eq. (34) we write:

J̃ (ρ,u;μ) = J̃E(ρ,u;γ ) + JB(ρ;E0) + J (ρ;λ;E0), (39)

with:

J̃E(ρ,u;γ ) := γ

∫
Ω

ψ̃E(ρ,u) dΩ. (40)

If we consider the penalized objective functional J (ρ;μ)

(32) with the bulk energy function ψB(ρ) embedding the
penalization terms for the inequality constrains 0 ≤ ρ ≤ 1,
we can take the space of admissible controls as Had = {φ ∈
H : ∫

Ω
φ dΩ = V }, where only the area/volume constraint

is explicitly imposed and H = {φ ∈ L∞(Ω) ∩ H 1(Ω) :
g(φ) ∈ L∞(Ω)}; the extra regularity of H with respect to
the SIMP approach is due to the presence of the interface
energy ψI (ρ) in the formulation. The topology optimization
problem in the multiphase approach corresponds to:

findρ∗ ∈ Had : ρ∗ = argmin
(
J (ρ;μ)

)
, (41)

for any given parameter μ ∈ D. We observe that the opti-
mal distribution of material in the design domain is ρ∗ =
ρ∗(x;μ) in the sense that it depends on the parametrization
introduced in the penalized objective functional (32).

The parameters μ = (γ,λ) ∈ D in Eq. (33) play a cru-
cial role in the optimization problem, since they regulate the
balance of the different terms contributing to the penalized
objective functional J (ρ;μ). For example, if γ is very large,
the optimization problem assumes a similar behavior to the
SIMP approach. Conversely, if γ = 0, then the optimal re-
sult ρ∗ is dominated by the bulk and interfaces terms only,
i.e. by the relaxation of the perimeter constraint associated
to JTV(ρ;λ;E0) (27). This last case corresponds to a pure
multiphase problem, where the total free energy of the sys-
tem is minimized [27, 42] (see Sect. 3 for the Cahn–Hilliard
equations).
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Remark 1 The material density function ρ∗ which mini-
mizes J (ρ;μ) for some given μ ∈ D in Eq. (41) does not
correspond, in general, to a (local) minimum of the com-
pliance JE(ρ) (19) which represented the original goal of
the optimization. Even if this is an expected result due to
the penalization of the objective functionals (31) and (34),
we aim at limiting this effect by suitably tuning the param-
eters μ = (γ,λ) ∈ D. As a general guideline, the parameter
γ should be chosen as large as possible, while λ as small as
possible.

Remark 2 A third positive parameter, say κ ∈ R, can be
added to the parameter vector μ ∈ D, such that μκ :=
(γ,λ, κ) ∈ Dκ , with Dκ ⊂ R

3. In this case, the penalized
objective functional (32) is redefined as:

Jκ(ρ;μκ ) :=
∫

Ω

ψκ(ρ;μκ) dΩ, (42)

with the function ψκ(ρ;μκ):

ψκ(ρ;μκ ) := γψE(ρ) + E0

(
1

k
ψB(ρ) + kλψI (ρ)

)
, (43)

or, equivalently, in terms of the relaxation of the total vari-
ation function ψTV(ρ;λ) (28) as: ψκ(ρ;μκ) = γψE(ρ) +
E0ψTV,κ (ρ;λ;κ) with ψTV,κ (ρ;λ;κ) := ( 1

k
ψB(ρ) +

kλψI (ρ)). Then, the formulation of the topology optimiza-
tion problem follows similarly to the previous case. The role
of κ is twofold. Firstly, it ensures that the penalized objec-
tive functional is convex for κ “sufficiently” large and the
topology optimization problem (41) is well-posed, as shown
in [24] for a minimum weight topology optimization prob-
lem with stress constraints in a relaxed approach. Secondly,
it ensures that the optimal topology converges to the pure
phases 0 and 1 for κ → 0 [24], according to the properties
of Γ -convergence [73] for functionals with interface terms
[21]. On this basis the parameter κ introduces the possibility
to solve the topology optimization problem (41) by means
of a continuation method [13, 21, 24, 76]. In this procedure,
the optimal topology ρ∗ is obtained as the last step of a se-
quence of minimizers of locally convex (or quasi-convex)
optimization problems parametrized for decreasing values
of κ and initialized with the optimal solution of the previous
step; this means that a non-convex topology optimization
problem without interface term, which corresponds to the
ideal formulation, is obtained as the limit for κ → 0.

Finally, we observe that the topology optimization prob-
lem in the multiphase approach is completely defined at the
continuous level and, eventually, for suitable choices of the
parameters, also well-posed. This is not the case of the SIMP
formulation, which is in general ill-posed at the continuous
level and it requires the introduction of additional numeri-
cal techniques at the discrete level. However, a non-convex

optimizer is still required to solve the topology optimization
problem in the multiphase context.

3 Phase Field Model: The Cahn–Hilliard Equation

In Sect. 2.3 we have considered the topology optimization
problem as a multiphase approach for which a penalized ob-
jective functional is minimized; the formulation is however
still set in an optimal control context, for which an optimiza-
tion problem needs to be solved to find ρ∗. However, the
penalized objective functional can be interpreted as a total
free energy and the topology optimization problem recast in
a phase transition setting. Indeed, in this case, the evolution
of the phases is such that an energy is minimized in time
with respect to the initial configuration. In this section we
provide the derivation of the standard Cahn–Hilliard phase
field model [26–29] and we highlight its properties in view
of the phase field model for topology optimization in Sect. 4.
For further details in the analysis of the Cahn–Hilliard equa-
tion we refer the interested reader to [25, 39, 40, 42, 92],
while e.g. to [39, 50, 108] for its numerical solution.

Let us consider a two phase problem, for which the phase
transition is described by the variable ρ = ρ(t,x), which
corresponds to the concentration of one of the phases in the
domain Ω (the other one is obtained as 1 − ρ in the 0–
1 binary representation). The total free energy (Ginzburg–
Landau free energy), which we indicate with F(ρ;λ) [27,
28, 42], is expressed in the case of interest as:

F(ρ;λ) :=
∫

Ω

ψF (ρ;λ)dΩ, (44)

with the total free energy function ψF (ρ;λ) defined as:

ψF (ρ;λ) := C0
(
ψB(ρ) + λψI (ρ)

)
, (45)

for a positive parameter λ ∈ D ⊂ R and the bulk and inter-
face energies given in Sect. 2.3; the parameter C0 is intro-
duced to ensure that the function ψF (ρ;λ) assumes the di-
mension of an energy density. Typically, a double-well log-
arithm or quartic function is chosen for ψB(ρ) [27, 40, 42,
108], even if other type of functions can be conveniently
used.

The definition of the phase transition model is based on
the concept of gradient flow gradF(ρ,λ) of the functional
F(ρ;λ) in the norm of a Hilbert space Z [29, 42], for which
the corresponding equation in strong form reads:

∂ρ

∂t
= −gradF(ρ;λ) in Ω, ∀t ∈ [0, T ), (46)

with ρ = ρ0 for t = 0 in Ω . Depending on the choice of
the function space Z , different phase transition models can
be obtained; if Z = {ϕ ∈ (H 1(Ω))′ : 〈ϕ,1〉 = 0} [42], the
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Cahn–Hilliard gradient flow and the corresponding equation
are obtained [26–28], otherwise, if Z = L2(Ω), the Cahn–
Allen equation is derived [6]. In particular, in the Cahn–
Hilliard case, the gradient flow gradF(ρ,λ) reads:

gradF(ρ;λ) = −∇ · (M(ρ)∇zF (ρ;λ)
)
, (47)

where M(ρ) ≥ 0 is a sufficiently regular function called the
mobility, which is typically a constant M0 or degenerate
M(ρ) = M0ρ(1 − ρ), and zF (ρ;λ) is the potential associ-
ated to the total free energy function ψF (ρ;λ); in the Cahn–
Allen case, the gradient flow would read gradF(ρ;λ) =
M(ρ)zF (ρ;λ). The potential zF (ρ;λ), which we introduce
for the sake of simplicity, depends specifically on the choice
made for the functional (44) and in this case is obtained
as the Gâteaux derivative in L2(Ω) of the total free en-
ergy (44):

(
zF (ρ;λ), φ

)
L2(Ω)

= 1

C0

dF

dρ
(ρ;λ)[φ] ∀φ ∈ H 1(Ω),

(48)

for some λ ∈ D; if further we assume that the boundary con-
dition ∇ρ · n̂ = 0 is imposed on ∂Ω , the potential zF (ρ;λ)

simply reads:

zF (ρ;λ) = zB(ρ) + λzI (ρ), (49)

where:

zB(ρ) := dψB

dρ
(ρ), (50)

zI (ρ) := −Δρ, (51)

for ρ sufficiently regular.
A standard formulation of the Cahn–Hilliard equation in

strong form is:

∂ρ

∂t
= ∇ · (M(ρ)∇zF (ρ;λ)

)
in Ω, ∀t ∈ [0, T ),

M(ρ)∇zF (ρ;λ) · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

∇ρ · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

ρ = ρ0, in Ω, t = 0,

(52)

for some λ ∈ D. We define the function space H := {φ ∈
H 2(Ω) : ∇φ · n̂ = 0}. Let us assume that ρ ∈ C1([0, T ); H)

and so ∂ρ
∂t

∈ C 0([0, T ); H). That is, ρ is a C1-continuous

mapping from the time interval [0, T ) into H and ∂ρ
∂t

is a
C0-continuous mapping from [0, T ) into H. Consequently,
for each t ∈ [0, T ), ρ ∈ H and ∂ρ

∂t
∈ H. From Eq. (52), for

each t ∈ [0, T ), the residual RCH (ρ;μ)(φ) ∈ R is given by:

RCH (ρ;λ)(φ) :=
∫

Ω

∂ρ

∂t
φ dΩ

+
∫

Ω

M(ρ)∇zF (ρ;λ) · ∇φ dΩ. (53)

Then, the Cahn–Hilliard equation in weak form reads:

findρ ∈ W : RCH (ρ;λ)(φ) = 0

∀φ ∈ H, ∀t ∈ [0, T ), (54)

with ρ = ρ0 in Ω, t = 0, for some λ ∈ D. The Cahn–
Hilliard equation (54) (or Eq. (52)) is endowed with the fol-
lowing properties:

– Its solution ρ exists and is unique for the case of constant
mobility as shown in [92] for problems in dimensions
d = 1,2,3 under suitable hypothesis for the bulk function
ψB(ρ) including its smoothness; existence of solutions is
discussed in [40] for the case of degenerate mobility.

– It is mass conservative in the sense that the area/volume
covered by the phases in Ω is constant in time; indeed,
by using the definition (23), we can easily deduce from
Eq. (54) for φ = 1 that:

dV

dt
= 0 ⇐⇒ V ≡

∫
Ω

ρ0 dΩ ∀t ∈ [0, T ). (55)

– The total free energy functional (44) is a Liapunov func-
tional; indeed, it is possible to show from Eq. (54) that:

dF

dt
(ρ;λ)

= −C0

∫
Ω

M(ρ)∇zF (ρ;λ) · ∇zF (ρ;λ)dΩ ≤ 0

∀t ∈ [0, T ). (56)

This implies that the phase transition occurs in such a
manner that the energy associated to the Cahn–Hilliard
equation is decreasing or at most conserved in time; this
property also holds true for the Cahn–Allen equation,
since in general:

dF

dt
(ρ;λ) = −C0

∥∥gradF(ρ;λ)
∥∥2

Z ≤ 0, (57)

in the norm induced by Z , see [42].
– Under suitable hypothesis on the function ψB(ρ) includ-

ing its analyticity, in [92] it is proved that, for a given ρ0,
the unique solution ρ converges to an equilibrium (steady
state) and ∂ρ

∂t
→ 0 for t → ∞ in the topology of the cor-

responding function spaces. This implies from Eqs. (46)
and (57) that the steady state solution is a critical one for
the total free energy F(ρ;λ) [39], with dF

dt
(ρ;λ) → 0 for
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t → ∞; it follows that F(ρ;λ) evolves to a local mini-
mum through the phase transition from the initial solution
ρ0.

– The total free energy F(ρ;λ) (44) represents a reformu-
lation of the relaxed total variation of the material density
function JTV(ρ;λ;E0) introduced in Eq. (27). As a con-
sequence, distributions of phases minimizing the total free
energy F(ρ;λ) are approximations of minimizers of the
perimeter for a fixed area/volume V .

4 Topology Optimization with the Phase Field Model

We derive now the phase field model for topology optimiza-
tion similarly to [120]. First, we provide the generalized
Cahn–Hilliard equation based on the multiphase approach
of Sect. 2.3; then, we reformulate the problem as a cou-
pled system with phase and displacements as independent
variables and, finally, we discuss the dimensionless problem
highlighting its dependence on dimensionless parameters.

4.1 The Generalized Cahn–Hilliard Equation

In Sect. 3 we derived the Cahn–Hilliard equation starting
from a total free energy functional. We have observed that
this phase field model is area/volume conservative and the
phase transition occurs in such a manner that the energy
of the system decreases in time. These two properties are
crucial to recast the multiphase approach for topology opti-
mization of Sect. 2.3 in a phase transition model, since an
area/volume constraint is set in the minimum compliance
case and a penalized objective functional needs to be mini-
mized.

The derivation of the generalized Cahn–Hilliard equation
for the topology optimization problem in the minimum com-
pliance case follows in similar manner to Sect. 3 by using the
penalized objective functional (32). In particular, we have
that:

∂ρ

∂t
= −gradJ (ρ;μ) in Ω, ∀t ∈ [0, T ), (58)

where ρ = ρ0 for t = 0 in Ω ,

gradJ (ρ;μ) = −∇ · (M(ρ)∇z(ρ;μ)
)
, (59)

and the potential z(ρ;μ) deduced from the Gâteaux deriva-
tive in L2(Ω) of the penalized objective functional (32):

(
z(ρ;μ), φ

)
L2(Ω)

= 1

E0

dJ

dρ
(ρ;μ)[φ] ∀φ ∈ H 1(Ω), (60)

for some μ ∈ D. If we assume that ∇ρ · n̂ = 0 on ∂Ω , we
have from Eq. (33) that:

z(ρ;μ) = γ

E0
zE(ρ) + zB(ρ) + λzI (ρ), (61)

where zB(ρ) and zI (ρ) are defined in Eqs. (50) and (51),
respectively, and:

zE(ρ) := dψE

dρ
(ρ). (62)

In order to evaluate zE(ρ), further elaborations are needed

since dψE

dρ
(ρ) = dψ̃E

dρ
(ρ,u(ρ)) from Eq. (20); in particular,

we have that:

zE(ρ) = ∂ψ̃E

∂ρ

(
ρ,u(ρ)

) + ∂ψ̃E

∂u

(
ρ,u(ρ)

)[du
dρ

(ρ)

]
. (63)

From Eq. (21) we deduce that:

∂ψ̃E

∂ρ
(ρ,u) = ∂σ̃

∂ρ
(ρ,u) : ε(u); (64)

similarly, by recalling that σ̃ (ρ,u) depends linearly on u
and the elastic tensor C(ρ) is symmetric, we have:

∂ψ̃E

∂u
(ρ,u)

[
du
dρ

]
=

[
σ̃

(
ρ,

du
dρ

)
: ε(u)

+ σ̃ (ρ,u) : ε
(

du
dρ

)]

= 2σ̃

(
ρ,

du
dρ

)
: ε(u). (65)

In order to evaluate the term σ̃ (ρ, du
dρ

), we need to differenti-
ate the weak form of the elasticity equation (17) with respect
to ρ; by assuming that the function du

dρ
∈ V , we obtain:

∫
Ω

σ̃

(
ρ,

du
dρ

)
: ε(v) dΩ

+
∫

Ω

∂σ̃

∂ρ
(ρ,u) : ε(v) dΩ = 0 ∀v ∈ V , (66)

and hence for v = u:

σ̃

(
ρ,

du
dρ

)
: ε(u) = −∂σ̃

∂ρ
(ρ,u) : ε(u) = −∂ψ̃E

∂ρ
(ρ,u).

(67)

By replacing the result (67) in Eq. (65), and then Eqs. (64)
and (65) in Eq. (63), we obtain:

zE(ρ) = z̃E

(
ρ,u(ρ)

)
, (68)

with:

z̃E(ρ,u) := −∂ψ̃E

∂ρ
(ρ,u). (69)

The potential (61) can also be written as:

z(ρ;μ) := z̃
(
ρ,u(ρ);μ)

, (70)
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where:

z̃(ρ,u;μ) := γ

E0
z̃E(ρ,u) + zB(ρ) + λzI (ρ), (71)

and equivalently:

z̃(ρ,u;μ) := − γ

E0

∂ψ̃E

∂ρ
(ρ,u) + dψB

dρ
(ρ) − λΔρ. (72)

It is now possible to introduce the strong form of the gen-
eralized Cahn–Hilliard equation for topology optimization
from Eq. (58), which reads:

∂ρ

∂t
= ∇ · (M(ρ)∇z(ρ;μ)

)
in Ω, ∀t ∈ [0, T ),

M(ρ)∇z(ρ;μ) · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

∇ρ · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

ρ = ρ0, in Ω, t = 0,

(73)

for some μ ∈ D. By recalling from Sect. 3 that ρ ∈ H for all
t ∈ [0, T ), with H := {φ ∈ H 2(Ω) : ∇φ · n̂ = 0}, we intro-
duce the residual Rρ(ρ;μ)(φ) ∈ R such that:

Rρ(ρ;μ)(φ) :=
∫

Ω

∂ρ

∂t
φ dΩ

+
∫

Ω

M(ρ)∇z(ρ;μ) · ∇φ dΩ. (74)

It follows that the weak form of the generalized Cahn–
Hilliard equation is:

findρ ∈ W : Rρ

(
ρ(t;μ);μ)

(φ) = 0

∀φ ∈ H,∀t ∈ [0, T ), (75)

with ρ = ρ0 in Ω, t = 0, for some μ ∈ D. We observe
that Eq. (75) is obtained with the natural boundary condi-
tion M(ρ)∇z(ρ;μ) · n̂ = 0 and the essential one ∇ρ · n̂ = 0
defined on the boundary ∂Ω ; due to its nature, the latter is
embedded in the space H.

Remark 3 The boundary condition ∇ρ · n̂ = 0 imposes a
geometric constraint on the optimal design since it requires
that the interfaces between the material and void intersect
the boundary ∂Ω only at right angles. This does not have
physical meaning in minimum compliance topology opti-
mization and it is introduced only to facilitate the reformu-
lation of the topology optimization problem from the multi-
phase approach into the phase field model (see in particular
Eqs. (60), (61) and (51)). If one wishes to avoid this, an alter-
native boundary condition may be incorporated in the phase
field model. We have not pursued this in this work.

The generalized Cahn–Hilliard equation (75) (or Eq. (73))
represents a model for topology optimization problems in

the minimum compliance case, for which the following
properties hold similarly to the Cahn–Hilliard equation:

– The unique solution ρ exists by extending the result of
[92] under suitable hypothesis on the bulk and strain en-
ergy functions ψB(ρ) and ψE(ρ), in the case of constant
mobility.

– The area/volume covered by the material in the design
domain Ω is constant during the phase transition; see
Eq. (55).

– The penalized objective functional J (ρ;μ) (32) is a Li-
apunov functional which evolves in time by decreasing
from the initial value corresponding to ρ0; indeed, from
Eq. (57) in analogy with Eq. (56), we have:

dJ

dt
(ρ;μ)

= −E0

∫
Ω

M(ρ)∇z(ρ;μ) · ∇z(ρ;μ) dΩ ≤ 0

∀t ∈ [0, T ). (76)

– If the functions ψB(ρ) and ψE(ρ) satisfy the hypothe-
sis made in [92] for the bulk energy of the Cahn–Hilliard
equation, the unique solution ρ converges to a steady
state which minimizes the penalized objective functional
J (ρ;μ) of the multiphase approach with respect to the
initial solution ρ0; in this manner, the optimization prob-
lem is converted to a time dependent one and its optimal
solution ρ∗ is obtained as ρ for t → ∞.

– The topology optimization problem is completely defined
in the formulation by choosing the data h, f, C0 and Ω ,
the function g(ρ) in Eq. (13), the mobility M(ρ), the ini-
tial condition ρ0 (which also introduces the area/volume
constraint V ) and the parameters μ ∈ D.

In the current work we do not provide a rigorous analysis
of the generalized Cahn–Hilliard equation for topology op-
timization problems. At this point, we only speculate on the
possibility that the bulk ψB(ρ) and especially the strain en-
ergy ψE(ρ) functions could satisfy the hypothesis made in
[92] for the existence and uniqueness of the solution ρ and
its convergence to a steady state, the minimizer of J (ρ;μ);
further limitations on the material interpolation model could
be eventually deduced to fit such hypothesis. However, we
observe that numerical tests exhibit the convergence of the
solution to a steady state for any given initial solution, for
which we feel that the validity of the considered phase field
model could be shown also from an analytical point of view.

Remark 4 As observed in Remark 1, the minimum value
of the penalized objective functional J (ρ;μ) does not coin-
cides in general with the minimum value of the compliance
JE(ρ) (19). For this reason, at the steady state of the phase
transition, only a (local) minimum of J (ρ;μ) is obtained,
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while the minimum value of JE(ρ) can be obtained at an
intermediate time t ∈ [0, T ).

4.2 The Coupled System

The generalized Cahn–Hilliard equation (75) (or Eq. (73)
in strong form) is written in terms of the phase variable
ρ. However, in order to solve the problem it is necessary
to evaluate the displacement u(ρ) by solving the elasticity
equation (17) for a given value of ρ. In practice, for each
t ∈ [0, T ), there is a corresponding displacement u ∈ V . For
this reason, it is convenient to consider the phase ρ and the
displacement u as two independent variables and rewrite the
generalized Cahn–Hilliard equation as a coupled system of
equations.

By recalling Eqs. (73), (71) and (15), the strong form of
the coupled system is:

∂ρ

∂t
= ∇ · (M(ρ)∇ z̃(ρ,u;μ)

)
in Ω, ∀t ∈ [0, T ),

−∇ · σ̃ (ρ,u) = f in Ω, ∀t ∈ [0, T ),

M(ρ)∇ z̃(ρ,u;μ) · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

∇ρ · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

u = 0 on ΓD, ∀t ∈ [0, T ),

σ̃ (ρ,u)n̂ = h on ΓN, ∀t ∈ [0, T ),

ρ = ρ0, in Ω, t = 0,

(77)

for some μ ∈ D. Also, for each t ∈ [0, T ), we define the
residual R̃ρ(ρ,u;μ)(φ) ∈ R from Eq. (74) by recalling the
potential z̃(ρ,u;μ) (71):

R̃ρ(ρ,u;μ)(φ) :=
∫

Ω

∂ρ

∂t
φ dΩ

+
∫

Ω

M(ρ)∇ z̃(ρ,u;μ) · ∇φ dΩ; (78)

similarly, from Eq. (16), for each t ∈ [0, T ), we redefine
R̃u(ρ,u;μ)(v) ∈ R to highlight the explicit dependency on
ρ and u as:

R̃u(ρ,u;μ)(v) :=
∫

Ω

σ̃ (ρ,u) : ε(v) dΩ

−
∫

Ω

f · vdΩ −
∮

ΓN

h · vdΓN. (79)

Then, the coupled system of generalized Cahn–Hilliard and
elasticity equations in weak form, which we will indicate as

TO(μ), reads:

TO(μ) findρ ∈ W , u ∈ V :
R̃ρ(ρ,u;μ)(φ) = 0 ∀φ ∈ H, ∀t ∈ [0, T ),

R̃u(ρ,u;μ)(v) = 0 ∀v ∈ V , ∀t ∈ [0, T ),

with ρ = ρ0 in Ω, t = 0,

(80)

for some μ ∈ D and the associated energy J̃ (ρ,u;μ) de-
fined in Eq. (37). We observe that the displacement u de-
pends on the time t ∈ [0, T ) implicitly trough the variation
of the phase ρ. Indeed, in the elasticity equation no time
derivatives appear, meaning that the displacement adapts in-
stantaneously to the variation of the phase.

The reformulation of the generalized Cahn–Hilliard
equation (75) (or Eq. (73)) into the coupled system TO(μ)

(80) provides an approach to analyze the problem in terms of
existence and uniqueness. Indeed, we notice that the coupled
system (80) shows many analogies with the Cahn–Hilliard
equation with elastic misfit, also known as the Cahn–Larchè
model [65], for which the phase transition is also driven by
elastic interactions of the material [45, 78]. In [45] the ex-
istence of a solution of such a system is proved as well as
its uniqueness for a specific choice of the elastic energy;
in [46] the corresponding discretized problem is analyzed.
However, we remark that the Cahn–Larché equations and
the coupled system TO(μ) (80) corresponding to the gen-
eralized Cahn–Hilliard equations are derived from different
concepts. Indeed, the first equations follow from thermo-
dynamical considerations and balance laws for the species
and the momentum with ρ and u as independent variables.
Conversely, the generalized Cahn–Hilliard equation is de-
veloped by considering the displacement variable as depen-
dent on the phase variable u(ρ) and only the balance of the
species is taken into account; the coupled system TO(μ)

only represents a reformulation of such an equation.

4.3 Dimensionless Form of the Coupled System

We now rewrite the coupled system (80) in dimensionless
form. With this aim, we introduce the dimensionless space
and time coordinates:

x�
i = xi/L0, i = 1, . . . , d, t� = t/T0 (81)

and the phase and displacement variables:

ρ� = ρ, u� = u/L0, (82)

where L0 and T0 are representative length and time scales,
while the superscript � indicates dimensionless variables.
Also, if we use E0 as the representative Young modulus,
we obtain:

ε�
(
u�

) = ε(u), σ̃ �
(
ρ�,u�

) = σ̃ (ρ,u)/E0, (83)
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and

z̃�
E

(
ρ�,u�

) = z̃E(ρ,u)/E0, ψ̃�
E

(
ρ�,u�

) = ψ̃E(ρ,u)/E0,

z�
B

(
ρ�

) = zB(ρ), ψ�
B

(
ρ�

) = ψB(ρ),

z�
I

(
ρ�

) = L2
0 zI (ρ), ψ�

I

(
ρ�

) = L2
0 ψI (ρ),

(84)

while defining the reference surface and body forces h0 and
f0, we have:

h� = h/h0, f� = f/f0; (85)

finally, the dimensionless mobility is:

M�
(
ρ�

) = M(ρ)/M0. (86)

Let us define the following dimensionless parameters which
we indicate with the vector D = (D1, . . . ,D5) such that:

D1 := L4
0

T0λM0
, D2 := L2

0

λ
, D3 := γ

L2
0

λ
,

D4 := E0

h0
, D5 := f0L0

h0
;

(87)

we observe that the parameter γ is dimensionless, while the
parameter λ assumes the same dimension as L2

0. Moreover,
we define the dimensionless potential:

z̃�
(
ρ�,u�;D

) := D3 z̃�
E

(
ρ�,u�

)+D2 z�
B

(
ρ�

)+z�
I

(
ρ�

)
, (88)

for which z̃�(ρ�,u�;D) = D2̃z(ρ,u;μ) and the dimension-
less energy function:

ψ̃�
(
ρ�,u�;D

) := D3 ψ̃�
E

(
ρ�,u�

) + D2 ψ�
B

(
ρ�

) + ψ�
I

(
ρ�

)
,

(89)

for which ψ̃�(ρ�,u�;D) = D2
E0

ψ̃(ρ,u;μ). With these, we

define from Eq. (78) the dimensionless residual R̃�
ρ(ρ�,u�;

D)(φ�) ∈ R ∀t ∈ [0, T ):

R̃�
ρ

(
ρ�,u�;D

)(
φ�

)
:= D1

∫
Ω�

∂ρ�

∂t�
φ� dΩ�

+
∫

Ω�

M�(ρ)∇�z̃�
(
ρ�,u�;D2,D3

) · ∇�φ� dΩ�, (90)

for which R̃�
ρ(ρ�,u�;D)(φ�) = L4−d

0
λM0

R̃ρ(ρ,u;μ)(φ); simi-

larly, from Eq. (79) we define R̃�
u(ρ�,u�;D)(v�) ∈ R ∀t ∈

[0, T ) as:

R̃�
u
(
ρ�,u�;D

)(
v�

) := D4

∫
Ω�

σ̃ �
(
ρ�,u�

) : ε�
(
v�

)
dΩ�

− D5

∫
Ω�

f� · v� dΩ�

−
∮

Γ �
N

h� · v� dΓ �
N, (91)

with R̃�
u(ρ�,u�;D)(u�) = 1

h0L
d
0
R̃u(ρ,u;μ)(v). It follows

that the dimensionless topology optimization problem in the
phase field approach reads:

TO�(D) findρ� ∈ W , u� ∈ V :
R̃�

ρ

(
ρ�,u�;D

)(
φ�

) = 0 ∀φ� ∈ H, ∀t� ∈ [
0, T �

)
R̃�

u
(
ρ�,u�;D

)(
v�

) = 0 ∀v� ∈ V , ∀t� ∈ [
0, T �

)
,

with ρ� = ρ�
0 in Ω�, t� = 0,

(92)

with ρ�
0 = ρ0 and T � = T/T0. The corresponding dimen-

sionless penalized objective functional (energy) follows
from Eq. (89) as:

J̃ �
(
ρ�,u�;D

) =
∫

Ω�

ψ̃�
(
ρ�,u�;D2,D3

)
dΩ�, (93)

with J̃ �(ρ�,u�;D) = 1
E0

L2−d
0
λ

J̃ (ρ,u;μ); the same scaling

occurs for J̃ �
E(ρ�,u�), J �

B(ρ�) and J �
I (ρ�).

We notice that the topology optimization problem (92)
fully depends on the dimensionless parameters D and the
initial solution ρ�

0 , for which the principle of dimensional
similitude can be applied. Also, it is possible to reduce the
parametric dependence by setting D1 = 1 and hence choos-

ing the representative time scale as T0 = L4
0

λM0
; it follows that

the problem TO�(D) (92) depends on D = (D2, . . . ,D5).
We observe from Eq. (91) that the dimensionless param-

eters D4 and D5 of Eq. (87) only affect the linear elasticity
equation. The dimensionless parameters D2 and D3 are re-
sponsible for changing the optimal solution of TO�(D) once
the data are set; indeed they control the balance of the strain,
bulk and interfaces energies in the penalized objective func-
tional (93). From Eq. (89), we deduce that if D3 is very
large, then the phase field solution is dominated by the mini-
mum compliance term of the penalized objective functional.
Conversely, if D3 → 0, specifically if due to γ → 0, TO�(D)

solves the standard Cahn–Hilliard equation for the phase
problem with the displacement u� depending on the distri-
bution of ρ� in Ω�. Also, since from Eq. (87) D3 = γD2

and D2 ∼ 1/λ, with λ related to the control of the thickness
of the interfaces, we have that D2 and D3 � 1, when sharp
interfaces are required.
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Fig. 2 B-spline basis of degree 2 and knot vector Ξ = {{0}3
i=1,

0.2,0.4,0.6,0.8, {1}3
i=1}; the two external pairs of basis functions are

marked with squares and circles to indicate that the corresponding
control variables need to be equal to impose the boundary condition
∇ρ · n̂ = 0 on ∂Ω

Remark 5 For the sake of simplicity, we henceforth omit the
superscript � to indicate dimensionless quantities.

5 Numerical Approximation

In this section we discuss the numerical approximation of
the topology optimization problem TO(D) (92) by using a
similar approach to the one used in [50, 51] for phase field
problems. In particular, for the spatial approximation we
consider Isogeometric Analysis [35, 58], while for the tem-
poral approximation we use the generalized-α method [32]
with time adaptivity.

5.1 The Spatial Approximation

We consider design domains Ω described by a NURBS (or
B-spline basis) [85], for both the two and three-dimensional
cases. The use of Isogeometric Analysis for the spatial ap-
proximation of the PDEs allows us to encapsulate directly
the geometry representation in the analysis, by using the
same basis functions used to represent the geometry [35,
58]. In this manner, no geometrical approximations are in-
troduced in the analysis of the topology optimization prob-
lem TO(D) (92).

Isogeometric Analysis provides a way to easily achieve
high-order continuity in the approximated solution with-
out introducing extra degrees of freedom. In particular, for
the TO(D) problem, the use of globally C1(Ω)-continuous
basis functions is necessary to approximate the functional
space H of the phase variable ρ. Specifically, we consider
basis functions of degree p ≥ 2 defined by open knot vectors
with equally spaced internal knots repeated at most p − 1
times; in this manner we ensure that the basis functions
are globally C1(Ω)-continuous. We consider the same ba-
sis functions for the phase ρ and the displacement u.

We introduce the finite dimensional spaces Hh ⊂ H and
Vh ⊂ V , with the above mentioned properties, of dimensions
nh,ρ := dim(Hh) and nh,u := dim(Vh). Due to the proper-
ties of the NURBS basis, the essential boundary condition

∇ρ · n̂ = 0 is easily introduced in the space Hh by impos-
ing equality of two consecutive control values of ρ normal
to the boundary. We illustrate strong imposition of the es-
sential boundary condition in Fig. 2 for a one-dimensional
B-spline basis of degree 2. This also holds for NURBS and
for the multidimensional case. For each t ∈ [0, T ), ρh ∈ Hh

and uh ∈ Vh have the representations:

ρh(t,x) =
nbf∑
A=1

ρA(t)NA(x),

uh(t,x) =
nbf∑
A=1

uA(t)NA(x),

(94)

with NA(x) the NURBS basis and nbf the number of basis
functions; the corresponding test functions are:

φh(x) =
nbf∑
A=1

φANA(x),

vh(x) =
nbf∑
A=1

vANA(x).

(95)

Then the discrete TOh(D) coupled problem for any t ∈
[0, T ) is:

TOh(D) findρh ∈ Hh, uh ∈ Vh :
R̃ρ(ρh,uh;D)(φh) = 0 ∀φh ∈ Hh,

R̃u(ρh,uh;D)(vh) = 0 ∀vh ∈ Vh,

(96)

where the discrete initial condition ρ0,h is obtained as the
L2(Ω) projection of ρ0 in the space Hh. The total number of
degrees of freedom of TOh(D) is nh := nh,ρ +nh,u. Finally,
we introduce from Eq. (94) the vectors of control variables:

Ṗ(t) := {
ρ̇A(t)

}nbf

A=1, P(t) := {
ρA(t)

}nbf

A=1,

U(t) := {
uA(t)

}nbf

A=1,
(97)

and, from Eqs. (90) and (91), the discrete residuals:

Rρ

(
Ṗ(t),P(t),U(t)

) := {
R̃ρ(ρh,uh;D)(NA)

}nbf

A=1,

Ru
(
Ṗ(t),P(t),U(t)

) := {{
R̃u(ρh,uh;D)(NAêi )

}d

i=1

}nbf

A=1,

(98)

where êi , with i = 1, . . . , d , represent the orthonormal basis
of the space R

d ; for the sake of simplicity, we neglected
the explicit dependency of the discrete residuals on D in
Eq. (98).

5.2 The Time Approximation

The time approximation of the TO(D) problem (92) repre-
sents a challenge similar to that for the Cahn–Hilliard equa-
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tion due to the fourth-order term and significant nonlinear-
ities. We use the generalized-α method; see [32, 60] and
also [8, 50]. Moreover, since the solution of the topology
optimization problem is obtained as the steady state solution
of the coupled system (92), i.e. for t → ∞ (or T sufficiently
large), we need an adaptive time scheme that reduces the
time step size when necessary and increases it as the solu-
tion approaches the steady state. We employ the same proce-
dure proposed in [50] for the Cahn–Hilliard equation, which
is based on an accuracy criterion and reduces the computa-
tional costs of the simulation while maintaining an adequate
level of accuracy.

Very recently, a new second-order accurate, provably un-
conditionally stable, time integration algorithm for phase
field models has been developed in [49]. This would provide
a viable alternative to the generalized-α method.

5.2.1 Time Step Scheme

Let us subdivide the time interval [0, T ) by introducing the
discrete time vector {tn}nts

n=0, with Δtn := tn+1 − tn the width
of the time interval at the step tn, for which the control
variables (97) are Ṗn = Ṗ(tn), Pn = P(tn) and Un = U(tn).
Then, if we interpret the variables Ṗn+1 and Pn+1 as inde-
pendent, the generalized-α method for the TOh(D) problem
at time step tn+1 reads from Eq. (98):

find Ṗn+1, Pn+1, Ṗn+αm, Pn+αf
, Un+1 :

Rρ(Ṗn+αm,Pn+αf
,Un+1) = 0,

Ru(Ṗn+αm,Pn+αf
,Un+1) = 0,

Pn+1 = Pn + ΔtnṖn + δΔtn(Ṗn+1 − Ṗn),

Ṗn+αm = Ṗn + αm(Ṗn+1 − Ṗn),

Pn+αf
= Pn + αf (Pn+1 − Pn),

(99)

with Ṗn and Pn given; the parameters αm, αf and δ ∈ R,
chosen on the basis of stability and accuracy considerations,
define a specific generalized-α method. As described in [57,
60] we select αm, αf and δ as follows:

αm = 1

2

(
3 − ρ∞
1 + ρ∞

)
, αf = 1

1 + ρ∞
,

δ = 1

2
+ αm − αf ,

(100)

where ρ∞ ∈ [0,1] is the spectral radius of the amplification
matrix at Δt → ∞. See [57, 60] for further details.

The nonlinear system (99) is solved for each time step
tn+1, for n = 0, . . . , nts − 1, by means of a two stage
predictor-multicorrector algorithm, for which the control
variables at the time step tn+1 are obtained iteratively, where
Ṗn+1,(i), Pn+1,(i) and Un+1,(i), for i = 0,1, . . . , imax , are the

iterates and where i = 0 indicates the predictor. At the pre-
dictor stage the control variables are initialized as:

Ṗn+1,(0) = δ − 1

δ
Ṗn,

Pn+1,(0) = Pn, (101)

Un+1,(0) = Un.

At the multicorrector stage the following iteration steps are
repeated for i = 1, . . . , imax :

1. Update the control variables following the last two rela-
tions of Eq. (99):

Ṗn+αm,(i) = Ṗn + αm(Ṗn+1,(i−1) − Ṗn),

Pn+αf ,(i) = Pn + αf (Pn+1,(i−1) − Pn), (102)

Un+1,(i) = Un+1,(i−1).

2. Assemble the residuals:

Rρ,(i) := Rρ(Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)),

Ru,(i) := Ru(Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)).
(103)

3. If the following stopping criteria on the relative norms of
the residuals:

‖Rρ,(i)‖
‖Rρ,(0)‖ < tolR and

‖Ru,(i)‖
‖Ru,(0)‖ < tolR (104)

are satisfied for a prescribed tolerance tolR , set the con-
trol variables at time step tn+1 as Ṗn+1 = Ṗn+1,(i−1),
Pn+1 = Pn+1,(i−1) and Un+1 = Un+1,(i−1) and exit the
multicorrector stage; else proceed to step 4.

4. Define the consistent tangent matrices from Eq. (98):

Kρρ,(i) := Kρρ(Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)),

Kρu,(i) := Kρu(Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)),

Kuρ,(i) := Kuρ(Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)),

Kuu,(i) := Kuu(Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)),

(105)

where, by using Eq. (99), we have:

Kρρ(Ṗn+αm,Pn+αf
,Un+1)

:= ∂Rρ(Ṗn+αm,Pn+αf
,Un+1)

∂Ṗn+αm

∂Ṗn+αm

∂Pn+1

+ ∂Rρ(Ṗn+αm,Pn+αf
,Un+1)

∂Pn+αf

∂Pn+αf

∂Pn+1

= αm

δΔtn

∂Rρ(Ṗn+αm,Pn+αf
,Un+1)

∂Ṗn+αm
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+ αf

∂Rρ(Ṗn+αm,Pn+αf
,Un+1)

∂Pn+αf

,

Kρu(Ṗn+αm,Pn+αf
,Un+1)

:= ∂Rρ(Ṗn+αm,Pn+αf
,Un+1)

∂Un+1
, (106)

Kuρ(Ṗn+αm,Pn+αf
,Un+1)

:= ∂Ru(Ṗn+αm,Pn+αf
,Un+1)

∂Ṗn+αm

∂Ṗn+αm

∂Pn+1

+ ∂Ru(Ṗn+αm,Pn+αf
,Un+1)

∂Pn+αf

∂Pn+αf

∂Pn+1

= αm

δΔtn

∂Ru(Ṗn+αm,Pn+αf
,Un+1)

∂Ṗn+αm

+ αf

∂Ru(Ṗn+αm,Pn+αf
,Un+1)

∂Pn+αf

,

Kuu(Ṗn+αm,Pn+αf
,Un+1)

:= ∂Ru(Ṗn+αm,Pn+αf
,Un+1)

∂Un+1
.

5. Solve the following linear system in the variables ΔPn+1,(i)

and ΔUn+1,(i):

Kρρ,(i)ΔPn+1,(i) + Kρu,(i)ΔUn+1,(i) = −Rρ,(i)

Kuρ,(i)ΔPn+1,(i) + Kuu,(i)ΔUn+1,(i) = −Ru,(i),
(107)

6. Update the control variables:

Ṗn+1,(i) = Ṗn+1,(i−1) + 1

δΔtn
ΔPn+1,(i),

Pn+1,(i) = Pn+1,(i−1) + ΔPn+1,(i), (108)

Un+1,(i) = Un+1,(i−1) + ΔUn+1,(i).

and return to step 1.

5.2.2 Time Adaptivity

We consider an adaptive scheme similar to the one proposed
in [50], which is based on the comparison of the solutions
obtained with the generalized-α method and the backward
Euler method [88]. The backward Euler method can be ob-
tained by setting αm = αf = δ = 1 in the generalized-α
method.

The adaptive time scheme starts, for each time step tn+1,
n = 0, . . . , nts − 1, with the given control variables Ṗn, Pn

and Un, and a given time step Δtn, typically that used at the
previous time step. Then, in the adaptive algorithm the fol-
lowing steps are repeated for l = 1, . . . , lmax , starting with
Δtn,(0) = Δtn−1 (or, if n = 0, with Δtn,(0) = Δt0):

1. Compute the control variables Ṗn+1,(l−1), Pn+1,(l−1) and
Un+1,(l−1) with the generalized-α method of Sect. 5.2.1
for Δtn,(l−1).

2. Compute the control variables ṖBE
n+1,(l−1), PBE

n+1,(l−1) and

UBE
n+1,(l−1) by means of the backward Euler method for

Δtn,(l−1).
3. If the generalized-α or the backward Euler methods are

not converging (i.e. the predictor-multicorrector algo-
rithm of Sect. 5.2.1 is not convergent), reduce the time
step by means of a safety coefficient χNC ∈ (0,1), up-
date Δtn,(l) as:

Δtn,(l) = χNCΔtn,(l−1), (109)

and return to step 1; else proceed to step 4.
4. Evaluate the relative error associated to Δtn,(l−1):

en+1,(l−1) := ‖Pn+1,(l−1) − PBE
n+1,(l−1)‖

‖Pn+1,(l−1)‖

+ ‖Un+1,(l−1) − UBE
n+1,(l−1)‖

‖Un+1,(l−1)‖ . (110)

5. Update the time step size according to the following for-
mula:

Δtn,(l) = χn,(l−1)Δtn,(l−1), (111)

where:

χn,(l−1) := min

{
χA

(
tolA

en+1,(l−1)

)1/2

,1 + χGR

}
, (112)

with tolA a prescribed tolerance, χA ∈ (0,1) a suitable
safety coefficient and χGR > 0 the maximum growth rate
admitted.

6. If en+1,(l−1) ≥ tolA, return to step 1. Otherwise, up-
date the control variables Ṗn+1 = Ṗn+1,(l−1), Pn+1 =
Pn+1,(l−1), Un+1 = Un+1,(l−1) and the time step Δtn =
Δtn,(l), and exit the loop.

We observe that on the basis of the previous algorithm,
one of following three situations occurs after step 6:

• if en+1,(l−1) < χ2
AtolA, the time step size is increased, the

control variables of step 1 are considered valid and the
loop ends;

• if χ2
AtolA ≤ en+1,(l−1) < tolA, the time step size is re-

duced, the control variables of step 1 are still considered
valid and loop terminates;

• if en+1,(l−1) ≥ tolA, the time step size is reduced, the con-
trol variables of step 1 are invalid and the steps 1–6 are
repeated.

Since the steps 1 and 2 are computationally expensive, the
occurrence of the last case should be minimum; as pointed
out in [50], this is the case if good choices for the parameters
tolA and χA are made.
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6 Selection of Parameters and Optimal Design

In Sect. 4.3 we provided the dimensionless form of the
topology optimization problem (92), which we proposed to
solve numerically by means of Isogeometric Analysis and
the generalized-α method in Sect. 5. However, as already
pointed out, the solution of the TO(D) problem depends on
the dimensionless parameters D, which depend on parame-
ters μ ∈ D introduced in Sect. 2.3. In this section we address
the issue of the choice of the parameters μ ∈ D and the mesh
dependency effect, we select the interpolation function g(ρ)

(25) and the bulk energy ψB(ρ) (33), we describe the contin-
uation method which could be used for topology optimiza-
tion in the phase field approach, and we discuss the choice
of the initial solution ρ0. Finally, we discuss the strategy for
the identification and selection of the optimal topological
design.

6.1 The Choice of the Parameters μ ∈ D and Mesh
Dependency

The dimensionless parameters D (87) depend both on the
data of the problem and the parameters μ = (λ, γ ) ∈ D; in
particular, only the dimensionless parameters D2 and D3

and the representative time scale T0 are related to μ ∈ D,
since we set D1 = 1.

For the choice of the parameter λ we adopt similar con-
siderations to the ones made in [50, 51]. The Cahn–Hilliard
equation converges for λ → 0 (see Eq. (45)) to a thermo-
dynamically consistent sharp-interface model, for which the
representative length scale of the interface is related to

√
λ.

Similarly, for the generalized Cahn–Hilliard equation for
topology optimization, the value of λ should be sufficiently
small in order to provide realistic results with sharp inter-
faces between the material and the void. Moreover, λ is re-
sponsible for the number of holes appearing in the optimal
topology, since in general it is associated with the interface
energy ψI (ρ) of Eq. (29).

From a numerical point of view, we observe that the com-
putational mesh used for the spatial approximation should
be fine enough to capture the thin layers between the mate-
rial and void. For these reasons, following from the dimen-
sional considerations of Sect. 4.3, we assume that the thick-
ness of the interfaces depends on the computational mesh
and the parameter λ is chosen as [50]:

λ = λh2, (113)

where h is the characteristic length of the computational
mesh, defined as:

h := max
i=1,...,nel

V
1/d
i , (114)

with Vi the area/volume of the i-th element of the mesh
composed by nel elements. The parameter λ is dimension-
less and it is chosen by the user. Indeed, it is difficult to spec-
ify at this point what value λ should assume since it depends
in general on the data of the topology optimization problem;
for example, in [50] it is shown that for the Cahn–Hilliard
equation λ should depend on the area/volume V covered by
the material in Ω . According to this choice, the thickness of
the interfaces is roughly equal to

√
λ =

√
λh, with shaper in-

terfaces for finer meshes, which in turn allow more detailed
topologies to be obtained. On the other hand, the parame-
ter λ introduces a mesh dependency in the topology opti-
mization problem through D2, D3 and T0; this represents an
undesired issue in topology optimization since the optimal
distribution of the material in the design domain Ω changes
with the spatial approximation used. Moreover, in general,
the convexity of the discrete objective functional is altered
and different, and more local minima may appear by refining
the mesh. However, for “sufficiently” fine meshes with re-
spect to a fixed thickness of the interfaces

√
λ, the improved

resolution does not alter the convexity structure of the prob-
lem, but only allows for a more accurate representation of
the interfaces. For this reason, we believe that in the phase
field and multiphase approaches, the mesh dependency of
the optimal topology could be reduced and eventually elim-
inated by using a fixed value of h, say h0, for the evaluation
of the parameter λ for all the computational meshes having
h ≤ h0.

The choice of the parameter γ is important. A value of
γ that is too small will cause the objective functional to be
dominated by the interface and bulk energy terms (i.e. by
the relaxation of the total variation of the material density
function approximating the perimeter of the interfaces); if
γ is too large, divergence may occur. The role of γ is to
properly balance the strain energy function ψE(ρ) with re-
spect to the bulk and interface energy functions, ψB(ρ) and
ψI (ρ), in Eq. (33). However, it is difficult to determine a
priori a suitable value for γ by means of dimensional analy-
sis; this is due to the fact that the strain energy strongly de-
pends on data of the topology optimization problem, which
are not represented by the dimensionless parameters, such
as the shape of the design domain Ω and the direction of the
body and surface forces f and h. In [119, 120], the values
differ from one test case to another; in [24, 107] the choice
of γ appears to be arbitrary, while in [21] it is made by trial
and error. In order to ensure a proper balance of the strain
energy with respect to the other energies in (37), we propose
to decompose the dimensionless parameter γ as:

γ = γ γE, (115)
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where γ is a positive parameter chosen by the user and γE

is computed from Eqs. (87) and (89) as:

γE =
∫
Ω

(D2ψB(ρ0) + ψI (ρ0)) dΩ∫
Ω

D2ψ̃E(ρ0,u(ρ0)) dΩ
, (116)

with ρ0 the initial density, ψE(ρ0) = ψ̃E(ρ0,u(ρ0)) from
Eq. (84) and, in order to make γE independent of λ, from
Eqs. (87) and (113) we set

D2 := λD2 = L2
o

h2
. (117)

Finally, from Eqs. (113) and (116), we obtain from
Eq. (87) that the dimensionless parameters D2 and D3 are:

D2 = L2
0

λh2
, D3 = γ γED2 = γ γE

L2
0

λh2
, (118)

while T0 = L4
0

λh2M0
, since we have set D1 = 1.

At this point, the topology optimization problem TO(D)

still depends on the arbitrary choices made for the parame-
ters λ and γ . However, numerical tests reveal that these di-
mensionless parameters vary in a limited range of values for
different topology optimization problems; indeed, we typi-
cally select λ ∈ [0.5,6.0] and γ ∈ [0.5,4.0]. On the other
hand, these parameters allow the user to modify the out-
come of the topology optimization results. In particular, the
number of holes of the optimal topology can be increased or
decreased by decreasing or increasing λ, respectively.

6.2 The Choice of the Interpolation Function g(ρ) and the
Bulk Energy Function ψB(ρ)

As anticipated in Sect. 2.2 the interpolation function g(ρ) is
typically chosen as g(ρ) = ρP (see Eq. (25)), with P ≥ 3 for
an isotropic material with ν0 = 1/3. We consider a similar
interpolation rule which ensures that ρ exceeds a minimum
value ρmin and, to avoid numerical issues, the condition that
the first and second derivatives of such interpolation func-
tion are zero at the pure phases 0 and 1. In particular, we
consider:

g(ρ) = f (ρ)P , (119)

with f (ρ) the following C2-continuous function:

f (ρ) :=

⎧⎪⎨
⎪⎩

ρmin if ρ < ρ1,

ρmin + (1 − ρmin)b(ρ) if ρ1 ≤ ρ < ρ6,

1 if ρ ≥ ρ6,

(120)

and b(ρ) a C2-continuous third-degree B-spline in ρ ob-
tained with the open knot vector S = {{ρ1}4

i=1, ρ2, . . . , ρ5,

{ρ6}4
i=1} and the control points P = {0,0,0,0,1,1,1,1};

Fig. 3 Functions f (ρ) (—) and fSIMP (ρ) (- -) (top) and interpolation
functions g(ρ) (—) and gSIMP (ρ) (- -) (bottom)

see [85]. In Fig. 3 we compare the function f (ρ) with
the typical SIMP function, fSIMP (ρ), which is only C0-
continuous in [0,1], where:

fSIMP (ρ) :=
{

ρmin if ρ < ρmin,

ρ if ρ ≥ ρmin;
(121)

also, we compare the interpolation function g(ρ) (119)
with the SIMP function say gSIMP (ρ) = fSIMP (ρ)P for
P = 3; in particular, we choose ρmin = 0.1 and S =
{{0.055}4

i=1,0.065,0.075,0.925,0.935, {0.945}4
i=1}.

We remark that the choice of the interpolation function
g(ρ) plays a crucial role in the formulation of the topol-
ogy optimization problem in the multiphase and phase field
approaches. Indeed, the qualitative features of the optimal
design strongly depend on the variation of the elastic prop-
erties through the interfaces between the material and void.
For this reason, alternative and eventually more effective
choices of g(ρ) should be investigated.
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Fig. 4 Bulk energy function ψB(ρ)

For the bulk energy function ψB(ρ) we select the follow-
ing C∞-continuous function in ρ:

ψB(ρ) = ρ2(1 − ρ)2 + β1
[
10−β2ρ + 10β2(ρ−1)

]
, (122)

with β1, β2 ∈ R
+
0 . This choice allows naturally steep bounds

on the pure phases 0 and 1 but avoids any singularities. In
Fig. 4 we plot ψB(ρ) for ρ in [0,1] corresponding to the
values β1 = 0.5 and β2 = 50, which we will select for the
numerical tests.

6.3 The Continuation Method

In Remark 2 we introduced the parameter κ in view of the
use of the continuation method to solve topology optimiza-
tion problems in the multiphase approach as done for ex-
ample in [21, 24]. This procedure can be extended to the
case of the topology optimization problem in the phase field
approach by following the formulation outlined in Sect. 4
with the penalized objective functional Jκ(ρ;μk) (42). The
dimensionless parameters D1, D2 and D3 of Eq. (87) are
modified as:

Dκ,1 := 1

κ
D1, Dκ,2 := 1

κ2
D2, Dκ,3 := 1

κ
Dκ

3 ,

(123)

for which Dκ := (Dκ,1,Dκ,2,Dκ,3,D4,D5) and Dκ
3 can be

chosen as:

Dκ
3 := γκD2, (124)

for some γκ , similar to Eq. (118). The characteristic time
is Tκ,0 := 1

κ
T0, corresponding to the choice Dκ,1 = 1, while

the penalized objective functional scales with the quantity
1
E 0

L2−d
0
κλ

.
We propose the following procedure for the continuation

method:

1. set the data for the topology optimization problem;
2. choose an initial solution ρ0 such that

∫
Ω

ρ0 dΩ = V ;
3. select the parameters λ and γ of Eqs. (113) and (115),

respectively;

4. choose the computational mesh for the spatial approxi-
mation and compute h as in Eq. (118);

5. compute the parameter λ from Eq. (113) and the dimen-
sionless parameter D2 from Eq. (87);

6. select a discrete set K of values for the parameter κ ,
where K := {κm}Mm=1, with κ1 > · · · > κM > 0 and M

the number of continuation levels;
7. repeat the following operations for the m = 1, . . . ,M

continuation levels:
1. if m = 1 set ρ0,h,(1) = ρ0,h, otherwise, for m ≥ 2, set

ρ0,h,(m) = ρh,(m−1) for t = T , where ρh,(m−1) is the
steady state solution obtained at the continuation level
m − 1;

2. set κ = κm and compute the dimensionless parame-
ters Dκ,(m) from Eqs. (87), (123) and (124) for γκ =
γ γE,κ , where γE,κ is computed from Eq. (116) by re-
placing ρ0 with ρ0,h,(m);5 also compute Tκ,0,(m);

3. solve the TOh(Dκ,(m)) problem (96) by using Isoge-
ometric Analysis and the generalized-α method with
the adaptive scheme outlined in Sect. 5 to obtain the
steady state solution ρh,(m) for t = T .

The choice of the set K is arbitrary as well as are the choices
of the parameters λ and γ . As a general indication, if the
number of continuation levels M is too large, high compu-
tational cost is associated with the solution of the topology
optimization problem with this approach. On the other hand,
if M is too small or the ratios κm−1/κm � 1, then conver-
gence may not occur.

The use of the continuation method allows, for a proper
selection of the set K, to use smaller values for λ than typ-
ically used when the TOh(D) problem (96) is solved as a
single simulation; this is due to the property of the continu-
ation method to approach the optimal solution as a sequence
of intermediate optimal results.

6.4 The Choice of the Initial Solution ρ0

In the phase field approach the topology optimization prob-
lem allows one to obtain the optimal solution as the steady
state of the phase field model which minimizes a penalized
objective functional starting from an initial solution ρ0. In
the previous sections we only required that ρ0 satisfy the
area/volume constraint,

∫
Ω

ρ0 dΩ = V . It follows that, even
with this constraint satisfied, the choice of ρ0 is arbitrary.

Different strategies for the choice of ρ0 have been con-
sidered in the literature, since the initial distribution of the
material could largely influence the optimal topology in the
minimum compliance case depending on the approach used.
In general, the more ρ0 is similar to the optimal solution,

5This choice allows a proper balance between the strain energy func-
tion ψE and the bulk and interface energies ψB and ψI through all the
continuation levels.
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the more rapid will be the convergence of the topology op-
timization method; however, this situation prefigures an a
priori knowledge of the optimal solution. For the SIMP ap-
proach [13] the initial solution is chosen as ρ0 = ρV , with
ρV := V/|Ω|, even if ρ0 often is allowed to violate the
area/volume constraint, which is later restored during the
optimization procedure. In the level set approach [4, 37]
ρ0 is chosen as a 0–1 distribution of material with holes
such that the area/volume constraints is satisfied; the initial
number of holes affects the number of holes in the optimal
topology and plays a crucial role in the definition of the final
topology. However, it is shown in [117] by means of numer-
ical examples that when the capability of hole nucleation is
introduced in the level set method, the dependence of the op-
timal solution on the initial one is reduced. Initial solutions
in the 0–1 configurations are also chosen in [107] for topol-
ogy optimization problems formulated with the Cahn–Allen
equation, which shows a strong dependence of the optimal
solution on the initial one. For the phase field approach of
[119, 120] using the generalized Cahn–Hilliard equation, ρ0

is a random distribution around the average value ρV .
In this work, we typically choose ρ0 = ρV . However, the

continuation method of Sect. 6.2 can be effectively used to
provide a suitable initial solution ρ0 without any a priori
knowledge of the optimal solution.

6.5 The Identification of the Optimal Design

By recalling Remarks 1 and 4, we observe that the steady
state solution does not necessarily provide the minimum
value of the compliance JE(ρ) (19) which we aim at min-
imizing, but rather a minimum of the penalized objective
functional J (ρ;μ) (32). However, in the phase field ap-
proach of Sect. 4.1, one can eventually identify a time, say
t∗E < T , for which the minimum value of JE(ρ) is reached
by tracking and observing the behavior of the compliance
JE(ρ) during the phase transition; i.e. we define:

t∗E := argmin
(
JE

(
ρ(t)

))
for t ∈ [0, T ), (125)

with the associated material distribution ρ∗
E := ρ(t∗E) and

the minimum value of the compliance:

J ∗
E := JE

(
ρ∗

E

)
. (126)

As for the penalized functional J (ρ;μ), we notice that the
minimum compliance depends on the choice of the param-
eters μ ∈ D, for which ρ∗

E = ρ∗
E(μ) and t∗E = t∗E(μ). Pro-

vided that at t = t∗E the phases are fully separated, one can
identify the distribution of the material density function ρ∗

E

as the optimal topological design for some μ ∈ D rather than
ρ∗ as in Eq. (41) and Sect. 4.1.6 We remark that, due to the

6The same criterion for the selection of the optimal topological de-
sign can be eventually applied in the multiphase approach of Sect. 2.3.

non-monotone behavior of the compliance energy JE(ρ) in
time, it is necessary to let the phase transition evolve to the
steady state to prevent the selection of a local minimum of
JE(ρ). Also, we observe that, when the continuation method
of Sect. 6.3 is used, the minimum compliance J ∗

E is often
obtained at the steady state of the last continuation level.

Finally, the geometric information on the optimal topol-
ogy is obtained by means of the contour lines corresponding
to ρ∗

E = 0.5, or depending on the case, ρ∗ = 0.5, provided
that the separation of the phases in the pure ones has already
occurred.

7 Numerical Tests

In this section we solve and discuss numerical problems in
two and three-dimensions; we also highlight the features of
the proposed method by means of two-dimensional tests.
The numerical values considered for the numerical simula-
tions and the implementation aspects are also reported.

7.1 Numerical Values and Implementation Aspects

For all the simulations reported the following numerical val-
ues are considered:

• for the tensor C0 (see Eq. (13)), we choose E0 =
200 · 109 J/m and ν0 = 1/3 for the plane strain two-
dimensional problems and the three-dimensional prob-
lems;

• for the representative quantities of Sect. 4.3, we choose
L0 = 1 m, T0 such that D1 = 1, M0 = 1 m2/s, h0 = 200 ·
106 Pa (for which D4 = 1000) and f0 = 0 N/m3 (no body
force is considered for which D5 = 0);

• the interpolation g(ρ) and the bulk energy ψB(ρ) func-
tions are chosen as in Sect. 6.2 with P = 3 and the mobil-
ity is assumed constant, M(ρ) = M0.

For the numerical approximation we consider:

– for the Isogeometric spatial approximation of Sect. 5.1,
we choose a NURBS (or B-splines) basis of degree p = 2
and numerical integration is performed using 3 × 3 Gauss
quadrature (3 × 3 × 3 in three-dimensional problems);
this represents a very conservative approach. The study of
more efficient quadrature schemes for NURBS was initi-
ated in [59]; further investigations are ongoing;

– for the time step scheme of Sect. 5.2.1 we choose ρ∞ =
1/2 (for which αm = 5/6, αf = 2/3 and δ = 2/3 from
Eq. (100)), with the tolerance for the stopping crite-
rion (104) tolR = 10−4 and the maximum number of steps
set equal to imax = 7;

However, in this case, the effectivity of the procedure and the selected
optimal topology are largely sensitive to the optimization technique
used.
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– for the time adaptivity of Sect. 5.2.2 we select the ini-
tial time step Δt0 = 10−12 and the final time T = 102,
χNC = 0.5 in Eq. (109) to reduce the time step in case
of divergence of the generalized-α or backward Euler
methods, and χA = 0.85, χGR = 0.2 and tolA = 10−3 in
Eq. (112) for the time update and stopping criterion;

– the numerical solution of the spatial approximation is ob-
tained by using the Bézier extraction methods presented
in [18] (Bézier extraction provides a localized represen-
tation of the globally smooth basis that can be imple-
mented in shape function routines in existing finite ele-
ment codes);

– the problem is solved using a parallel C++ code based on
Trilinos [56] and MPI;

– the linear system (107) is solved with the “monolithic”
approach by means of the GMRES method precondi-
tioned by an Algebraic Multigrid strategy with Smoothed
Aggregation [47]; the dimension of the Krilov space is set
equal to 700–1,000 and the stopping criterion is based on
the relative residual with tolerance equal to 10−6.7

Remark 6 The solution of the linear system (107) is par-
ticularly challenging for fine meshes, especially for three-
dimensional problems; this is due to the nature of the block
matrices involved in the global matrix. Indeed, the matrix
Kρρ,(i) radically changes behavior as time evolves: when
Δt is small, far from the steady state, the mass matrix dom-
inates over the fourth-order stiffness matrix in Kρρ,(i) and
convergence occurs in a relatively small number of GM-
RES steps. On the contrary, when Δt is large, many more
steps are required. The block matrix Kuu,(i) represents the
stiffness matrix of the linear elastic problem, with elastic
properties depending on the distribution of the phase vari-
able ρ; see Eqs. (13) and (119). The properties of such a
matrix abruptly change when passing through the interfaces
and GMRES could suffer divergence issues when sharp in-
terfaces are generated, especially in the parallel setting. If
necessary, a way to partially overcome this inconvenience
consists of enforcing the development of the interfaces over
a sufficiently high number of mesh elements by suitably
tuning the parameter λ (113). Additionally, the off-diagonal
block matrices Kρu,(i) and Kuρ,(i) could further degrade the
conditioning properties by rendering the full matrix “less
symmetric.” We believe that an ad hoc preconditioner should
be developed to take into account all these features while

7When the norm of the residual associated to the solution of the lin-
ear system is below the 10−5 threshold, we progressively increase the
tolerance on the relative residual. This situation occurs for “large” Δt ,
which in turn occurs in proximity of the steady state solution, i.e. when
the solution of the problem at the previous time step yields a very small
residual in the linear system at the current time step. In this case, a fixed
tolerance on the relative residual would be too restrictive and would
lead to an unnecessary large number of GMRES iterations.

Fig. 5 Test 1. Design domain Ω , surface force h and displacement
constraints

solving the linear system in the “monolithic” approach; we
notice that this could be required even if the system (107) is
eventually solved with a “staggered” approach. This was not
pursued in the present work.

On the basis of the parameters above mentioned, a typi-
cal two-dimensional simulation with a mesh with 320 × 160
elements converges in about nts = 1,000–1,200 time steps;
time adaptivity converges in one iteration with few excep-
tions for a limited number of time steps (typically only 1–
10). In each time step the generalized-α method typically
converges in one to four Newton iterations (likewise for
the backward Euler method) and no, or a few, restarts with
forced reduction of the time step are required due to diver-
gence. For the same simulation, the solution of the linear
system (107) requires a number of GMRES iterations com-
prised between 7 and 500 depending on the time step Δt

and time t . In general, the smaller is the thickness of the
interface for a given mesh (related to the parameter λ of
Eq. (113)) and/or the larger the parameter γ of Eq. (115),
the slower is the convergence of the simulation to the steady
state solution; indeed, in these cases, we could incur a large
number of time steps and time step adaptions, and a large
number of Newton iterations in the generalized-α and back-
ward Euler methods and, consequently, slow convergence of
the GMRES linear solver.

7.2 Two-Dimensional Problems

We discuss two-dimensional topology optimization prob-
lems in order to highlight the features and properties of
the method. We consider design domains represented by B-
splines and NURBS bases.

7.2.1 Test 1

The topology optimization problem for Test 1 is repre-
sented in Fig. 5. We consider a rectangular design domain
Ω with zero displacement boundary conditions on the left
edge and the vertical traction h = −h0n̂ acting on the d2-
part of the right edge. We assume L = 2.00 m, H = 1.00 m,
d1 = 0.45 m and d2 = 0.10 m. The fraction of the volume of
Ω to be covered by the material is V/|Ω| = 0.35. The de-
sign domain Ω is represented with a B-spline basis with the
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Fig. 6 Test 1.1. Evolution of
the phase (material density)
variable ρ in time for mesh size
320 × 160 with λ = 6.0 and
γ = 1.0

control points such that there is a linear mapping between
the parametric domain and Ω .

For the numerical solution of the problem we consider a
mesh with 320 × 160 elements, for which the dimensionless
mesh size is h = 0.00625. Also, we select the parameters
λ = 6.0 and γ = 1.0 for the definition of the dimensionless
parameters D2 and D3 (see Eqs. (113), (115) and (118)); the
parameter γE = 1.247 · 104 is selected from Eq. (116). The
dimensionless parameters are D2 = 4.267 · 103 and D3 =
5.322 · 107, with the characteristic time T0 = 4.267 · 103.
We indicate this problem as Test 1.1. In Fig. 6 we present
the evolution of the phase (material density) variable ρ by
showing it at significant time steps; the initial solution is set
as ρ0 = ρV = V/|Ω|. The color scale is from blue to red for
values of ρ from 0 to 1. As we can deduce from Fig. 7(top),
the distribution of the material is driven at the initial steps
by the above-average values of the strain energy function
ψE ; in this case, the material is distributed around the ΓD

boundary and where the load h is applied. The phase sepa-
ration occurring in these areas of the design domain is due to
the generalized Cahn–Hilliard model which is mass/volume
conservative. At these stages we can observe distributions
of the material density function which are reminiscent of
Michell type structures, see e.g. [13, 70]. As time evolves,
the separation of the phases is mostly completed and the
structure tends to simplify; this is due to the fact that the
bulk, interface and strain energies (i.e., JB , JI and JE , re-
spectively) are all contributing to the minimization of the
objective functional J (see Eqs. (34) and (39)). The steady
state represents the optimal topology in terms of the objec-
tive functional J , which reaches its minimum with respect
to the initial value (for ρ = ρ0 at t = 0); it is also possi-
ble to see from Fig. 7(bottom) that the average value of the
strain energy function ψE is also much lower at the steady
state. However, the optimal topology at the steady state does
not necessarily represent the stiffest structure with the spec-
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Fig. 7 Test 1.1. Distribution of the strain energy function ψE (dimen-
sionless) in the design domain Ω (initial and at the steady state); loga-
rithm scale

Fig. 8 Test 1.1. Normalized energies J (black), JE (red), JB (blue)
and JI (green) vs. time t (top) and detail (bottom); the minimum value
of JE (J ∗

E ) is indicated by an × (Color figure online)

ified data as pointed out in Sect. 6.5; indeed, as is occurring
in this case, the minimum value of JE (J ∗

E) is obtained at
an intermediate step t∗E < T and before the steady state is
reached. This fact is highlighted in Fig. 8 where the behav-
ior of the objective functional J and the energies JE , JB

and JI is plotted vs. the dimensionless time t . The objec-
tive functional J is monotonically decreasing in time as ex-

Fig. 9 Test 1.1. Time step Δt vs. time t (dimensionless) as selected
by the adaptive time scheme (top) and detail (bottom)

pected since it is a Liapunov functional (see Eq. (76)), even
if this property does not hold for the energies JE , JB and
JI . The large drop of JB is due to the phase separation and
the evolution of JI to the creation of the interfaces and the
following simplification of the topology during the evolu-
tion in time. The strain energy JE is also subject to a large
and desired drop, even if its minimum value is reached at an
intermediate step and not at the steady state. The fact that
the steady state solution does not represent a fully optimal
design can also be deduced from Fig. 7(bottom) where the
distribution of the strain energy function ψE highlights areas
of the material which do not fully participate in carrying the
load. We obtain that the initial value of the objective func-
tional J decreases by 79.29 % at the steady state, while JE

decreases by 86.33 %; the minimum value of JE (J ∗
E) rep-

resenting the real goal of the topology optimization is ob-
tained at t = t∗E = 6.528 · 10−4 with a drop of 87.84 %; this
represents a significantly smaller value by 11.05 % with re-
spect to the one reached at the steady state. The topologies
of these configurations are radically different; consequently,
we can select the configuration for which JE is minimum as
the optimal topology from a design point of view. The ge-
ometrical information is extracted from the solution by the
contour lines corresponding to the value ρ = 0.5. In Fig. 9
we show the evolution of the time step Δtn vs. time t , which
is chosen adaptively according to the scheme presented in
Sect. 5.2.2. We observe the large change in the value of Δtn
from 10−12 to 18.8 occurring in a relatively small number of
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Fig. 10 Test 1.2. Phase
(material density) variable ρ for
mesh size 320 × 160 with
λ = 12.0 and γ = 1.0 (left) and
λ = 6.0 and γ = 0.2 (right);
solutions for minimum value of
JE (J ∗

E ) (top) and at the steady
state (bottom). The contour lines
represent the topologies
obtained in Test 1.1 for λ = 6.0
and γ = 1.0

time steps, 1,198 in this case; also, we observe how the in-
termittent nature of the phase field model is apparent in the
drop of the value of Δtn required at some times steps. As a
final consideration regarding the numerical scheme, we ob-
serve that the mass/volume constraint is adequately satisfied
during the evolution in time, since the relative error with re-
spect to the initial value of the volume fraction is practically
negligible and below the 4.90 · 10−6 % threshold for all the
time steps.

Finally, we discuss the results of the topology optimiza-
tion for different values of the parameters λ and γ with re-
spect to the ones previously selected; this test is referred to
as Test 1.2. The goal is to show that a large value of λ leads
to optimal topologies with large interfaces and eventually
to reduced minimizations of the strain energy JE . Similarly,
if the value of γ is too small, the phase transition leads to
solutions principally driven by the Cahn–Hilliard terms, the
reduction of JE would be limited in this case and the topol-
ogy would have few or no holes. Ideally, as discussed in
Sect. 6.1, one would select the smallest possible value of
λ and the largest of γ which would lead to the steady state
without the occurrence of divergence issues.8 In Fig. 10(left)
we present the topologies corresponding to the minimum
value of JE (top) and to the steady state (bottom) for the
parameters λ = 12.0 (twice that for Test 1.1) and γ = 1.0;
the contour lines for ρ = 0.5 of the solutions of Test 1.1 are
highlighted. We can observe larger interfaces with respect to
the previous case (about

√
2 larger) and, even if the configu-

ration at the steady state is very similar to the one of Test 1.1,

8Divergence issues are revealed in the current numerical setting by in-
creasing values in time of the Liapunov objective functional J or by
the recursive selection of excessively small values of the adaptive time
step Δtn.

the decrease in the values of J and JE is significantly dif-
ferent. Indeed, the drops of J and JE at the steady state are
74.71 % and 85.27 %, respectively (for Test 1.1 they were
79.29 % and 86.33 %); at its minimum (J ∗

E), the drop of
the strain energy JE is 86.61 %, a value larger by 10.12 %
with respect to the one obtained in Test 1.1. Even more sig-
nificant differences can be obtained for larger values of the
parameter λ. In Fig. 10(right) we highlight the topologies
obtained with the parameters λ = 6.0 and γ = 0.2 (1/5 of
Test 1.1); the configurations corresponding to the minimum
value of JE and at the steady state are presented together
with the contour lines for ρ = 0.5 corresponding to Test 1.1.
The thickness of the interfaces between the phases is the
same as in Test 1.1, even if the topologies exhibit significant
changes. Also, the relatively “small” value of γ leads to a
nonsymmetric solution at the steady state since the symmet-
ric configuration is unstable from the point of view of the
phase field problem (a bifurcation from a symmetric config-
uration occurs during the phase transition). The decrease of
J and JE at the steady state are 79.62 % and 80.21 %, re-
spectively, with the value of JE being 34.35 % larger than in
Test 1.1; similarly, the drop of JE at its minimum is 83.05 %,
39.39 % larger than in Test 1.1. Notice that in the limit case
γ = 0.0, the solution coincides with the Cahn–Hilliard one,
which in this case exhibits a topology with a vertical rectan-
gle.

7.2.2 Test 2

For Test 2, we consider a quarter ring with inner radius
RIN = 1.00 m and outer radius ROUT = 2.00 m as shown
in Fig. 11. The surface force h is applied at the top-left tip
of the design domain Ω along a boundary segment of length
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s = π/10 m; no displacement boundary conditions are ap-
plied at the bottom of Ω . The volume fraction of Ω to be
occupied by the material is set equal to V/|Ω| = 0.35. We

Fig. 11 Test 2. Design domain
Ω , surface force h and
displacement constraints

represent the design domain Ω by means of a NURBS basis
of degree 2 [85] for which, by using Isogeometric Analy-
sis, the exact representation of the geometry is maintained
through the analysis and the topology optimization proce-
dure.

We solve the topology optimization problem with a mesh
composed by 320 × 160 elements with the larger number
along the circumferential direction; the dimensionless mesh
dimension is h = 9.818 · 10−3. We select the parameters
λ = 5.0 and γ = 1.5, for which we have D2 = 2.075 · 103

and D3 = 2.275 · 107 with the computed γE = 7.309 · 103.
We indicate this test as Test 2.1. In Fig. 12 we present the
evolution in time of the material density starting from the
initial solution ρ0 = ρV = V/|Ω| toward the steady state;
intermediate significant solutions are presented, including
the one corresponding to the minimum value of JE (J ∗

E).

Fig. 12 Test 2.1. Evolution of
the phase (material density)
variable ρ in time for mesh size
320 × 160 with λ = 5.0 and
γ = 1.5
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Fig. 13 Test 2.1. Normalized energies J (black), JE (red), JB (blue)
and JI (green) vs. time t (top) and detail (bottom); the minimum value
of JE (J ∗

E ) is indicated by an × (Color figure online)

We observe that, even if such solution does not exhibit a
complete phase separation, useful topological information
can still be obtained and the configuration can be used for
further design investigation. In Fig. 13 we highlight the be-
havior of the objective functional J and the energies JE , JB

and JI vs. the time; a detailed view around the minimum
value of JE is also presented. The decrease of the value of J

is 75.56 % at the steady state, while for JE it is 84.35 %; at
its minimum, which occurs at t = t∗E = 5.420 ·10−5 (dimen-
sionless), the decrease of JE is 86.25 %, 12.12 % smaller
than at the steady state.

We now discuss the mesh dependency effect in Test 2.2.
With this aim, we solve the same problem discussed previ-
ously with different mesh sizes and values of the parameter
λ affecting the dimensionless parameters D2 and D3 (see
Eq. (87)). If the goal of the topology optimization is to ob-
tain sharp interfaces and detailed optimal topologies, fine
meshes need to be used since, from Eq. (113), the parame-
ter λ is selected as λ = λh2, with h indicative of the mesh
size. However, as already mentioned in Sect. 6.1, this intro-
duces a mesh dependency effect on the solution, since the
dimensionless parameters D2 and D3 vary with the mesh.
On the other hand, we believe that the mesh dependency
issue can be quickly reduced or eliminated in the phase
field approach by using a fixed value of h = h0 for all the
meshes having h ≤ h0. In Fig. 14(right) we show the op-
timal topologies obtained at the steady states for different

mesh sizes (80 × 40, 160 × 80 and 320 × 160) for λ = 5.0
and γ = 1.5; once h0 is set to be the representative dimen-
sionless size of the mesh 80 × 40 (h0 = 0.03927), we se-
lect h = h0, h0/2, h0/4 for the three meshes, respectively.
In this case, we observe that, not only does the thickness of
the interfaces change from one mesh to the other, but also
the optimal topologies significantly vary. Conversely, if we
assume a constant value of h = h0 for all the meshes, the
thickness of the interfaces between the phases and the opti-
mal topologies remain the same; see Fig. 14(left) where we
considered λ = 1.0 and γ = 2.0 to show shaper interfaces
(the same result of Fig. 14(top-right) would have been ob-
tained for all three meshes with λ = 5.0 and γ = 1.5). These
facts are better highlighted in Fig. 15 in terms of the behav-
ior of the objective functional J and strain energy JE for the
three meshes with and without a fixed value of h. As we can
observe in Fig. 15(top) the choice of a fixed h = h0 leads to
a good match between the energies for all the meshes, with
only minor differences; at the steady state the maximum dis-
crepancy on J with respect to the finer mesh is 0.03630 %,
and 0.4021 % for JE . On the contrary, the mesh dependency
effect is clearly visible in Fig. 15(bottom) with the mesh de-
pendent h = h0, h0/2, h0/4. Additionally, we observe that
the finer meshes allow a more significant reduction of the
objective functional J and strain energy JE with respect to
the coarse one, due to the ability to deal with sharper inter-
faces. In particular, the reduction of J at the steady state
is 51.56 %, 67.93 % and 75.56 % for the three meshes,
while for JE it is 77.73 %, 83.63 % and 84.35 %; at their
minimum the reductions of JE are 78.46 %, 83.79 % and
86.25 %, with the maximum stiffness obtained with the finer
mesh.

Finally, we solve the topology optimization problem by
means of the continuation method described in Sect. 6.3;
the goal is to show that this approach can be conveniently
used to generate solutions with sharp interfaces even if a
coarse mesh is used. We refer to this problem as Test 2.3.
With this aim, we consider a mesh of size 80 × 40 (di-
mensionless h = 0.03927 from Eq. (114)) with a two-level
continuation procedure for which the parameters κ are cho-
sen as κ ∈ K = {4.0,1.0}; additionally, we select λ = 1.0
and γ = 4.0 (see Eqs. (113) and (115)). The resulting di-
mensionless parameters (123) are: Dκ,2 = 4.053 · 101 and
Dκ,3 = 4.742 · 106, with γE,κ = 7.313 · 103, for continu-
ation level 1, and Dκ,2 = 6.485 · 102 and Dκ,3 = 7.544 ·
107, with γE,κ = 2.907 · 104, for level 2. In Fig. 16 we
present the result of the topology optimization with the
two-level continuation method in which we highlight the
steady states as well as the solution at significant time steps
for levels 1 and 2; the optimal topology is represented by
the steady state of level 2. The evolution of the normal-
ized energy J in time t (dimensionless) is presented in
Fig. 17 for the two levels. The total and elastic energies de-
crease 72.16 % and 82.09 % for continuation level 1, and
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Fig. 14 Test 2.2. Steady states
of the phase (material density)
variable ρ for the mesh sizes
80 × 40, 160 × 80 and
320 × 160 with fixed h = h0
(λ = 1.0, γ = 2.0) (left) and
with mesh dependent h = h0,
h0/2 and h0/4 (λ = 5.0,
γ = 1.5) (right); h0 = 0.03925

27.68 % and 35.64 % for level 2; for the whole proce-

dure, the decrease of J and JE with respect to the values

corresponding to the initial solution ρ0 = ρV is 79.87 %

and 88.47 %, respectively. For comparison, we observe

that divergence issues appear for the topology optimiza-

tion of the current test without the continuation method for

λ = 1.0 and γ = 4.0 (the same values used for the con-

tinuation method with D2 = Dκ,2 for κ = 1.0). It follows

that in order to maintain the same thickness of the inter-

faces of the solution as for the continuation method, the

value of γ would need to be lowered (the value γ = 2.0

would suffice for the current mesh), even if the reduc-

tion of JE would be smaller than with the continuation

method.

7.2.3 Test 3

For this test case, we consider the topology optimization
problem depicted in Fig. 18. The surface forces, h, are
applied over segments of the boundary of length d3. We
enforce zero displacement condition on a segment of the
boundary on the left end of the bottom edge and we fix
the vertical displacement over a segment on the right end
of the bottom edge.9 We assume L = 4.00 m, H = 1.00 m,
d1 = 0.125 m, d2 = 0.9375 m, d3 = 0.125 m and d4 =
0.875 m; the volume fraction to be occupied by the mate-

9In the framework of Isogeometric analysis, we impose the displace-
ment constraints on the degrees of freedom corresponding to the con-
trol points on the Dirichlet boundary segments ΓD .
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Fig. 15 Test 2.2. Normalized energies J (black) and JE (red) vs. time
t for the mesh sizes 80 × 40 (– ·), 160 × 80 (– –) and 320 × 160 (—)
for fixed h = h0 (λ = 1.0, γ = 2.0) (top) and mesh dependent h = h0,
h0/2 and h0/4 (λ = 5.0, γ = 1.5) (bottom) (Color figure online)

Fig. 16 Test 2.3. Evolution of the phase (material density) variable
ρ in time t for mesh size 80 × 40 with the continuation method for
K = {4.0,1.0}, λ = 1.0 and γ = 4.0; continuation levels 1 (top) and 2
(bottom) with steady states (right)

Fig. 17 Test 2.3. Normalized energies J (black), JE (red), JB (blue)
and JI (green) vs. time t for the continuation method at levels 1 (top)
and 2 (bottom) (Color figure online)

Fig. 18 Test 3. Design domain Ω , surface force h and displacement
constraints

Fig. 19 Test 3. Distribution of the strain energy function ψE (dimen-
sionless) in the design domain Ω at t = 0 for ρ0 = ρV with mesh size
128 × 80; logarithm scale

rial is V/|Ω| = 0.40. The design domain Ω is represented
by means of a B-spline basis of degree 2 with a linear map-
ping.
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Fig. 20 Test 3.1. Evolution of the phase (material density) variable ρ

in time t with the continuation method for K = {8.0,1.0}, λ = 2.0 and
γ = 1.0; continuation levels 1 (top) and 2 (bottom) at the steady states

Fig. 21 Test 3.1. Normalized energies J (black), JE (red), JB (blue)
and JI (green) vs. time t for the continuation method at levels 1 (top)
and 2 (bottom) (Color figure online)

With this test problem, we discuss the solution of topol-
ogy optimization problems in the presence of local peak val-
ues of the strain energy function ψE inside the design do-
main. An example is highlighted in Fig. 19, where the dis-
tribution of ψE is shown for this test problem at the initial
step (ρ0 = ρV = V/|Ω|). In such cases, the phase separation
is rapid and locally driven by such peak values and conver-
gence may not occur if the values of the parameter γ are

Fig. 22 Test 3.2. Evolution of the phase (material density) variable ρ

in time t with λ = 6.0 and γ = 1.0; prescribed initial solution ρ0 with
“bubbles” (top) and steady state (bottom)

too “large” and/or those of the parameter λ are too “small.”
However, since the goal is to obtain a significant reduction
of the strain energy JE with sharp interfaces, the choice
of the parameters cannot be excessively limited by such is-
sues. In practice, “small” values of γ and “large” values of
λ should be chosen at the early stages of the phase transition
and modified during its evolution. However, we realize that
this procedure needs to be calibrated for each topology opti-
mization problem. In order to overcome this deficiency, we
propose two approaches. The first one consists in using the
continuation method, while the second one considers an ini-
tial phase (material) distribution ρ0 in which “bubbles” of
material are located ab initio in correspondence with peak
values of the strain energy function ψE . The mesh size cho-
sen for the simulations is 512 × 128 and h = 0.007813.
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Fig. 23 Test 3.2. Normalized energies J (black), JE (red), JB (blue)
and JI (green) vs. time t (top) and detail (bottom); the minimum value
of JE (J ∗

E ) is indicated by an × (Color figure online)

Fig. 24 Test 4. Design domain Ω , surface force h and displacement
constraints

In Fig. 20 we present the solution of the topology opti-
mization problem using the continuation method; the two
steady state solutions, corresponding to the values κ =
{8.0,1.0}, are presented. For this simulation, which we in-
dicate as Test 3.1, we choose λ = 2.0 and γ = 1.0. We ob-
tain the following dimensionless parameters from Eq. (123):
Dκ,2 = 1.280 · 102 and Dκ,3 = 1.074 · 107, with γE,κ =
1.049 · 104, for continuation level 1, and Dκ,2 = 8.192 · 103

and Dκ,3 = 1.989 · 108, with γE,κ = 2.428 · 104, for level 2.
In Fig. 21 we present the normalized energies vs. the di-
mensionless time t . The overall decrease of the total and
strain energies with respect to the initial solution ρ0 = ρV

is 81.31 % and 85.14 %, respectively (the decrease of J and

JE at the continuation level 1 is 72.49 % and 81.54 %, while
at level 2 it is 38.07 % and 19.48 %). The minimum value
of JE (J ∗

E) is obtained at the steady state of continuation
level 2.

In Fig. 22(bottom) we present the steady state of the
phase (material) variable obtained by solving the topology
optimization problem starting from the initial solution ρ0

depicted in Fig. 22(top); notice the “bubbles” of material
distributed in correspondence of the peak values of the strain
energy function ψE (see Fig. 19). This test is referred as
Test 3.2. The volume fraction of this case is V/|Ω| = 0.4067
due to the presence of the initial “bubbles”; also, we choose
λ = 6.00 and γ = 1.00. The dimensionless parameters of
Eq. (87) are D2 = 2.731 · 103 and D3 = 3.452 · 107 with
γE = 1.264 · 104. Distributions of ρ which are reminiscent
of Michell type structures are obtained at the early steps of
the phase transition. In Fig. 23 we present the behavior of
the normalized energies with respect the dimensionless time
t . The overall reductions of J and JE at the steady state are
77.58 % and 80.85 %, respectively. The maximum reduction
of JE (82.03 %) is obtained at t = 1.818 · 10−4; the corre-
sponding solution is shown in Fig. 22 together with another
significant topology obtained during the phase transition (at
t = 9.217 · 10−5 the reduction of JE is 81.74 %, 4.650 %
smaller than at the steady state), which can be selected for
further design and analysis investigation.

7.3 Three-Dimensional Problems

In this section, we solve topology optimization problems de-
fined in three-dimensional design domains Ω .

7.3.1 Test 4

We consider the topology optimization problem represented
in Fig. 24 in which the design domain Ω is a solid beam
of size H × H × L, the surface force h = −h0ŷ is applied
on a subdomain of the front face and zero displacements
are imposed on the back face (the plane z = 0). We assume
L = 4.00 m, H = 1.00 m, d = 0.375 m and s = 0.250 m; the
volume fraction to be occupied by the material is set equal
to V/|Ω| = 0.35. By using symmetry properties, only half
of the domain Ω (whose size is H/2 × H × L) is consid-
ered for the computations. The design domain is represented
by a B-splines basis of degree 2 composed of 10 × 20 × 80
elements. To enforce the symmetry of the solution with re-
spect to the plane y = H/2 and prevent the detection of a
nonsymmetric local minimum, we impose the same values
of the phase variable on the planes y = 0 and y = H .

We solve the problem by considering λ = 1.0 and
γ = 1.5 with the dimensionless size of the mesh h =
0.05 (Test 4.1); the computed parameter γE takes the value
γE = 2.040 · 104. The corresponding values of the di-
mensionless parameters are D2 = 4.000 · 102 and D3 =
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Fig. 25 Test 4.1. Evolution of
the phase (material density)
variable ρ in time t for mesh
size 10 × 20 × 80 with λ = 1.0
and γ = 1.5; the volume to be
occupied by the material (for
ρ ≥ 0.5) is displayed; the color
gray indicates ρ = 0.5

1.224 · 107 with the characteristic time T0 = 4.000 · 102.
In Fig. 25 we depict the phase variable ρ at significant
time steps (dimensionless), including the steady state so-
lution and the solution corresponding to the minimum value
of JE ; the regions of the design domain Ω occupied by
material, which are obtained for ρ ≥ 0.5, are highlighted.
The capability of the method to handle hole nucleation is
highlighted in Fig. 25 for the solutions at the time steps
t = 1.940 · 10−1 and t = 1.946 · 10−1, in which a hole (spe-
cific volume of the design domain with ρ < 0.5) is gener-
ated. In Fig. 26(top) we show the optimal configuration for
which the value of JE is minimum (J ∗

E); in Fig. 26(bottom)
the configuration at the steady state is shown for compari-
son. The evolution of the objective functional J and the en-
ergies JE , JB and JI vs. the dimensionless time are shown
in Fig. 27(top); in Fig. 27(bottom) a detail around J ∗

E is pre-
sented. At the steady state, the drops of the values of J and
JE with respect to the initial solution ρ0 = ρV are 75.78 %
and 87.38 %, respectively. The minimum compliance is ob-
tained at t = t∗E = 5.760 · 10−3 with an 88.66 % decrease;
at its minimum, the value of JE is 10.13 % smaller than
at the steady state. In general, all the topologies obtained in
the range t = 1.200 ·10−3–10−2 could be eventually consid-
ered for further analysis and design investigation since the
values of JE are close to the minimum J ∗

E (less than 2.00 %

difference) and the sensitivity of the results with respect to
the choice of the interpolation function g(ρ) (119) may be
significant.

For comparison, we solve the same problem with differ-
ent parameters λ and γ . For this test, which we indicate as
Test 4.2, we consider λ = 0.75 and γ = 2.0; the dimension-
less parameters are D2 = 5.333 · 102 and D3 = 2.176 · 107.
Due to the larger value of γ and the smaller value of λ, we
expect a more significant reduction of the strain energy JE

with slightly thinner interfaces. In Fig. 28 we present the op-
timal configuration corresponding to the minimum value of
JE (J ∗

E), which is 14.16 % less than the one obtained for
Test 4.1.

7.3.2 Test 5

This problem is defined in a design domain Ω represented
by an hemispherical thin shell as shown in Fig. 29. The
surface force h = −h0ŷ and the displacement constraints
are also shown. We assume R = 0.250 m, H = 1.00 m,
d = 0.0314 m (arc length), s = 0.200 m (arc length) and
thickness a = 0.0200 m; the inner radius of the shell is con-
stant and equal to H for all the planes through the axis ŷ.
The thin shell is described by a single NURBS patch with
basis of degree p = 2 [85]; by virtue of the symmetry prop-
erties, only a quarter of the shell is considered as the domain
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Fig. 26 Test 4.1. Optimal topologies corresponding to the minimum
value of JE (J ∗

E ) (top) and to the steady state (bottom) obtained for
λ = 1.0 and γ = 1.5

for the computations. The volume fraction to be occupied by
the material is V/|Ω| = 0.35.

The shell is modelled as a three-dimensional linear elas-
ticity problem. For the computations we consider a mesh
composed of 1282 × 1 elements. In this manner, since we
consider a basis of degree p = 2, the bending modes are
properly taken into account by the three-dimensional linear
elastic model [14]; indeed, three control points exist through
the thickness. An additional consequence of this choice is
that the distribution of the phase variable ρ is constant
throughout the thickness due to the conditions ∇ρ · n̂ = 0
on the opposite faces. In order to enforce the symmetry of
the solution in the quarter of the shell, we impose the same
values of the phase variable at the x = 0 and z = 0 planes.

We solve the topology optimization problem by means
of the continuation method with two levels; see Sect. 6.3.
In particular, we assume κ ∈ K = {5.0,1.0}, λ = 1.0 and
γ = 2.5; the dimensionless element size is chosen as
h = 0.01535. The resulting dimensionless parameters are:
Dκ,2 = 1.698 · 102, Dκ,3 = 9.770 · 105, γE,κ = 4.604 · 102

for continuation level 1, and Dκ,2 = 4.244 · 103, Dκ,3 =
1.404 · 107, γE,κ = 1.323 · 103 for level 2. In Fig. 30 we
present the evolution of the material density in time through-
out the two continuation levels. The final and optimal topol-
ogy is the steady state of the second continuation level. In
Fig. 31 we show the optimal configuration on the whole de-
sign domain obtained by placing the material where ρ ≥ 0.5.
In Fig. 32 we show the evolution of the objective functional

Fig. 27 Test 4.1. Normalized energies J (black), JE (red), JB (blue)
and JI (green) vs. time t (top) and detail (bottom); the minimum value
of JE (J ∗

E ) is indicated by an × (Color figure online)

Fig. 28 Test 4.2. Optimal topology corresponding to the minimum
value of JE (J ∗

E ) for λ = 0.75 and γ = 2.0

J and the energies JE , JB and JI vs. the dimensionless time
for both continuation levels. Specifically, we obtain drops of
71.83 % and 79.50 % for J and JE for level 1, and 27.17 %
and 28.83 % for level 2, respectively. The overall decreases
of J and JE throughout the whole continuation level proce-
dure are 79.48 % and 85.41 %, respectively; the minimum
compliance J ∗

E is obtained at the steady state of continuation
level 2.

8 Conclusions

In this work we solved minimum compliance topology op-
timization problems with a phase field model based on the
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Fig. 29 Test 5. Design domain
Ω , surface force h and
displacement constraints

Fig. 30 Test 5. Evolution of the
phase (material density) variable
ρ in time t for mesh size
1282 × 1 with the continuation
method for K = {5.0,1.0},
λ = 1.0 and γ = 2.5;
continuation levels 1 (top) and 2
(bottom) with steady states
(right)

generalized Cahn–Hilliard equation. With this approach, the
interfaces between the phases, material and void, are repre-
sented by sharp, but smooth, layers and the optimal solution
is obtained as the steady state of the phase transition prob-
lem, eliminating the need of an optimizer. The ability to deal
with topological changes and hole nucleation is naturally

embedded in the model as well as the constraint on the total
amount of material to be distributed in the design domain.
With this formulation, the topology optimization problem is
completely defined at the continuous level and the optimal
solution depends on dimensionless parameters specified by
the user. Additionally, the mesh dependency effect, which
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Fig. 31 Test 5. Optimal topology obtained at the steady state of con-
tinuation level 2

Fig. 32 Test 5. Normalized energies J (black), JE (red), JB (blue)
and JI (green) vs. time t for the continuation method at levels 1 (top)
and 2 (bottom) (Color figure online)

typically affects the optimal topologies, can be reduced and
eventually eliminated by a suitable choice of the parameters
controlling the thickness of the interfaces and the number
of holes in the topology. The continuation method, a multi-
level optimization strategy often used for the solution of the
topology optimization problems, is extended to the phase
field approach.

For the numerical approximation we used Isogeometric
Analysis, which is particularly suitable for phase field prob-
lems and allows exact CAD geometry to be used to de-

scribe the design domain and to also be used in the opti-
mization procedure. For the time approximation we used the
generalized-α method in combination with a time-adaptive
scheme which allowed to efficiently capture the fast and in-
termitted variations in time typically occurring in the phase
field model.

We solved both two and three-dimensional problems to
illustrate the validity of the approach, which we believe is a
promising one for topology optimization problems.
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