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Abstract This work is devoted to some recent develop-
ments in the Higher Order Approximation introduced to the
Meshless Finite Difference Method (MFDM), and its appli-
cation to the solution of boundary value problems in me-
chanics. In the MFDM, approximation of the sought func-
tion is described in terms of nodes rather than by means
of any imposed structure like elements, regular meshes etc.
Therefore, the MFDM, using arbitrarily irregular clouds of
nodes using the Moving Weighted Least Squares (MWLS)
approximation falls into the category of the Meshless Meth-
ods (MM). The MFDM, dating to early seventies, is one of
the oldest and possibly the most developed one. In this pa-
per considered are some techniques which lead to improve-
ment of the MFDM solution’s quality. The main objective
of this paper is the presentation and overview of new ideas
and the development of the Higher Order solution approach
in the MFDM provided by correction terms, preceded by a
brief information about the current state-of-the art of this
method. The main concept of the Higher Order Approxi-
mation (HOA) used here, is based on consideration of ad-
ditional terms in the local Taylor expansion of the sought
function. It shall be demonstrated that such a move may
essentially improve, in many ways, efficiency and solution
quality of the Higher Order MFDM. The Higher Order cor-
rection terms may be applied in many aspects of the MFDM
solution approach. Among them one may distinguish the a-
posteriori error estimation as well as adaptive solution pro-
cess with multigrid strategy. Moreover, in the present work
considered are: computational implementation of the Higher
Order MFDM algorithms, examination of the above men-
tioned aspects using 1D and 2D benchmark tests, as well
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as an application of the Higher Order MFDM solution ap-
proach to selected boundary value problems in mechanics.

1 Introduction

This work is devoted to some recent developments in the
Higher Order Approximation introduced to the Meshless
Finite Difference Method (MFDM, [64]), and its applica-
tion to solution of boundary value problems in mechanics.
The MFDM is one of the basic discrete solution approaches
to analysis of the boundary value problems of mechanics. It
belongs to the wide group of methods called nowadays the
Meshless Methods (MM [4, 7, 16, 21–23, 44, 51, 64]). The
MM are more and more developed contemporary tools for
analysis of boundary value problems. In the meshless meth-
ods, approximation of the sought function is described rather
in terms of nodes than by means of any imposed structure
like elements, regular meshes etc. Therefore, the MFDM,
using arbitrarily irregular clouds of nodes and Moving
Weighted Least Squares (MWLS [33–35, 41, 42, 46, 91])
approximation falls into the category of the MM, being in
fact one of the oldest [27, 45–49, 61] and, possibly the most
developed one of them. The recent state of the art in the re-
search on the MFDM, as well as several possible directions
of its development are briefly presented in Sect. 2.

In the present work, considered are techniques which lead
to improvement of the MFDM solution quality. This may be
done, in the simplest case, by introducing more dense, reg-
ular or irregular, clouds of nodes. They may be generated
a-priori or found as the result of an h-adaptation process.
The other possibility is to raise the rank of the local approx-
imation of the sought function (p-approach). In the standard
MFDM, differential operators are replaced by finite differ-
ence ones, with a prescribed approximation order. There are
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several techniques that may be used for raising this order.
The standard one assumes introducing additional nodes (or
degrees of freedom) into a simple MFD star, and raising or-
der of function approximation [12, 24]. These aspects are
discussed in Sect. 3 in more detailed manner. The concept
of the Higher Order Approximation (HOA [64, 65, 70, 74,
75, 77–79, 81–83, 85]), used in this work, is based on con-
sideration of additional terms in the Taylor expansion of the
sought function. Those terms may consist of HO derivatives
as well as their jump terms, and/or singularities. They are
used here as correction terms to the standard meshless FD
operator. Correction terms allow for using of the same stan-
dard order MFD operator, and modifying only the right hand
side of the MFD equations. It is worth stressing that the final
MFD solution does not depend on the quality of the MFD
operator, it suffers only from a truncation error of the Taylor
series expansion.

Main objectives of this overview paper are brief presen-
tation of the current state-of-the-art of the MFDM as well as
development of the original idea of Higher Order correction
terms approach. The Higher Order correction terms may be
applied in many aspects of the MFDM solution approach.
The following ones may be worth mentioning:

• improvement of the meshless approximation inside the
domain,

• improvement of the meshless approximation on the do-
main boundary,

• increase of solution precision and convergence rate,
• improvement of the a-posteriori error (solution and resid-

ual) estimation, given in both local and global formula-
tions,

• improvement of the quality of results obtained by means
of the residual error based generation criterion of new
nodes in the adaptation process, and,

• improvement of the multigrid solution approach (speed,
convergence, results quality), allowing for effective mesh-
less analysis on a set of regular or irregular meshes.

In addition to the abovementioned various applications of
the Higher Order correction terms to development of the
MFDM algorithms, this paper considers also the following
aspects:

• software development by means of computer implemen-
tation of the Higher Order MFDM algorithms,

• examination of the those algorithms by means of a variety
of 1D and 2D benchmark tests, and

• application of the MFDM to analysis of some boundary
value problems in mechanics.

The author presented the Higher Order MFDM solution ap-
proach at several stages of its development on numerous
prestigious worldwide Conferences on Computation Me-
chanics. Now, a series of papers is planned, presenting the

most important aspects of the proposed approach. In this
very first paper, the attention is rather focused upon an
overview of the general idea of using the Higher Order
terms, and its possible applications in the MFDM solution
algorithm together with some illustrative results, rather than
upon detailed studies of its nature. More detailed material
devoted to mathematical foundations, various specific as-
pects of the algorithm and its application in mechanics is
supposed to appear in subsequent papers, following this one.

2 Meshless Finite Difference Method (MFDM)

A characteristic feature of the FEM [99] is that it divides
a continuum domain into the set of discrete elements, with
nodes at their vertices. The individual elements are con-
nected together by a topological map, constituting structured
mesh. This causes problems with insertion and removal or
shifting of arbitrary nodes. Additionally, the approximation
may be spanned over various types of the elements, which
complicates division and unification of elements, needed
e.g. in problems with moving boundary. Remedy is to use
approximation built in terms of nodes only which makes in-
sertion, removal, and shifting of nodes much easier. There-
fore, it would be computationally effective to discretize a
continuum domain only by a cloud of nodal points, or par-
ticles, without mesh structure constraints imposed. This as-
sumption holds in a wide group of methods, called nowa-
days the meshless ones (MM). This characteristic feature
of all meshless methods [4, 7, 16, 21–23, 44, 51, 64] is
formulated by Idehlson and Belytschko [7], “meshless are
these methods, in which the local approximation of the un-
known function is built only in terms of nodes”. Thus mesh-
less methods use unstructured clouds of nodes, that may
be distributed totally arbitrarily, without any structure im-
posed a-priori, like domain division into elements or mesh
regularity, or any mapping restrictions. In such context, the
MFDM presents nowadays the oldest (at least since 1972),
and therefore, possibly the most developed as well as effec-
tive meshless method. For illustration purpose, a compari-
son of the FEM and MM concepts of domain discretization,
mentioned above, for a 2D problem, is shown in Fig. 1. The
discretization was designed [7] for the FEM analysis, though
here MM analogy is also shown.

In the meshless methods, the local approximation is pre-
scribed in terms of nodes and is generated by various ways
like the Moving Weighted Least Squares (MWLS) approx-
imation [33–35, 41, 42, 46, 91] or interpolation by kernel
estimates or partition of unity [4, 7, 51, 52, 60]. Generally,
the name “meshless” methods is used then, though weak in-
terrelation between meshless methods developed so far re-
sults in no or not sufficient advantages taken from the ear-
lier research already done A large number of rediscoveries
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Fig. 1 Comparison between the concepts of the FEM and MM

happens then. Sometimes old-known methods come again
but under the different names. Already several attempts have
been made [18, 44, 51, 64, 71] to classify the existing mesh-
less methods. Various classification criteria have been used,
most often a local approximation type.

The meshless methods have numerous useful features,
which make them effective and versatile tool in many appli-
cations. Among them, one may mention the following ones
[7, 64]:

1. They exhibit no difficulties while dealing with large de-
formations, since the connectivity among nodes is gen-
erated as part of the computation and can be changed or
modified with time,

2. Simplification of analysis involving moving boundary
(crack development, elastic-plastic boundary, contact of
deformable bodies, fluid free surfaces, etc.), since the
nodes refinement mechanism is applied with much ease,

3. Effective control of the solution precision, because nodes
may be easily added (h-adaptivity) in areas, where nodes
refinement is needed,

4. Dealing with enrichment of fine scale solutions, e.g. with
discontinuities and/or singularities introduced, into the
coarse scale,

5. No difficulties in combination with other discrete meth-
ods,

6. Accurate discrete representation of geometric object,
linked more effectively with a CAD systems, since it is
not necessary to generate an element mesh.

2.1 Boundary Value Problem Formulation

The MFDM may deal with boundary value problems posed
in every formulation [64], in which the differential operator
value at each required point may be replaced by a relevant
difference operator involving a combination of searched un-
knowns. Using difference operators and an appropriate dis-

crete approach, like collocation, Petrov-Galerkin, and func-
tional minimisation, simultaneous MFDM equations may be
generated for any boundary value problem analysed. Sev-
eral types of boundary value problem formulation are briefly
presented here including the local (strong) formulation, as
well as some global (weak) and global-local ones. The local
formulation is given as a set of differential equations, and
appropriate boundary conditions. In the considered domain
Ω ⊂ �n with boundary ∂Ω a function u(P ) is sought at
each point P , satisfying equations

Lu = f for P ∈ Ω (1)

Gu = g for P ∈ ∂Ω (2)

where L and G are given differential operators, inside the
domain and on its boundary respectively, while f , g are
known functions of the point P . Global (weak) formulations
may be posed either in the form of a functional optimisation
(mainly for the self-coupled problems), or more generally,
as variational principles (e.g. the principle of virtual work).
The first case considers minimisation of a functional given
in the general form

I (u) = 1

2
B(u,u) − L(u) (3)

satisfying boundary conditions (2). In the second, more gen-
eral case, the variational principle in the general Petrov-
Galerkin form is considered

B(u, v) = L(v) for v ∈ Vadm (4)

where u = u(P ) is a searched trial function, and v = v(P )

is a test function from the admissible space Vadm.
Below presented are standard formulations of the exem-

plary second order 2D b.v. problem. The local formulation:
find such function u(x, y) ∈ C2(Ω) : �2 ⊃ Ω → � that

⎧
⎪⎨

⎪⎩

u′′
xx + u′′

yy = f in Ω

u = ū on ∂ΩD

∂u
∂n

= ĝ on ∂ΩN

(5)

The variational symmetric (Galerkin) formulation: find
such (trial) function u ∈ H 1

0 —fulfilling the heterogeneous
Dirichlet conditions (u = ū on ∂ΩD) that for any (test) func-
tion v ∈ H 1

0 —fulfilling the homogeneous Dirichlet condi-
tions (v = 0 on ∂ΩD), satisfied is the principle

−
∫

Ω

u′
xv

′x + u′
yv

′
y dΩ =

∫

Ω

vf dΩ −
∫

∂ΩN

vg d∂Ω (6)

Various global/local formulations may be also considered.
Recently, in many applications of mechanics, Meshless Lo-
cal Petrov-Galerkin (MLPG) formulations [4, 5, 58] become
more and more popular. They use the old concept of the
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Petrov-Galerkin approach, in which the test function (v)
may be different from the trial function (u) but its support
is limited to subdomains only rather than to the whole do-
main Ω at once. Thus the numerical integration of (4) is
reduced only to the subdomains usually with a simple, reg-
ular shape, e.g. circle or rectangle. The whole domain may
be divided then into a finite number of subdomains Ωi , usu-
ally each one assigned to relevant node Pi , i = 1,2, . . . ,N .
The most interesting seems to be the MLPG5 formulation, in
which the test function is the Heaviside step function within
each subdomains assigned to each node. In the case of the
variational principle (4), the weighting factor is v(P ) �= 0, if
P ∈ Ωi , otherwise v(P ) = 0. Consequently an integral form
is satisfied rather locally than in the whole domain. The 2D
model problem (5) may be posed in the following MLPG5
form: find such (trial) function u′ ∈ H 1

0 , fulfilling all bound-
ary conditions from (5), that the variational principle
∫

∂Ωi

(u′
xnx + u′

yny)d∂Ω =
∫

Ωi

f dΩ (7)

holds at the subsequent subdomains Ωi prescribed to each
node Pi , i = 1,2, . . . ,N . Here, n = [nx ny] is the vector
normal to appropriate subdomain boundary ∂Ωi .

2.2 Basic MFDM Solution Approach

The basic MFDM solution approach consists of several
steps, which are listed below, and will be briefly discussed
in the following sections:

• formulation of boundary value problems for MFDM anal-
ysis,

• domain discretization,
• cloud of nodes generation and modification,

– domain partition using cloud of all generated nodes
(e.g. Voronoi tessellation and Delaunay triangulation in
2D),

– cloud of nodes topology determination,
• optimal MFD star selection and classification,
• local approximation of function (Moving Weighted Least

Squares—MWLS),
• generation of the difference operators,
• numerical integration (for global formulations only),
• meshless discretization of boundary conditions,
• generation and solution of the difference equations,
• postprocessing by the MWLS.

Full MFDM automation of the all above listed steps is possi-
ble, using also the symbolic programming [20]. Presentation
of the above steps will be briefly described.

2.3 Nodes Generation and Cloud of Nodes Topology
Determination

The MFDM solution approach needs generation of clouds
of nodes (arbitrarily distributed points), considered later

on as an irregular grid (unstructured mesh), that has ba-
sically no restrictions. Any arbitrary nodes generator built
e.g. for the Finite Element Method analysis could be used
here. However, it is convenient to use generator taking
advantage of the features specific to the MFDM analysis
[43, 46, 64, 72, 87]. Therefore, nodes xi = (xi, yi), i =
1,2, . . . ,N are generated here using mostly the Liszka type
nodes generator, based on the nodes density control. Even
though totally irregular clouds of nodes may be generated in
this way, the use of zones with regular mesh and smooth
transition between them are in practice the most advan-
tageous. Irregular cloud of points generator proposed by
Liszka [46] takes full advantage of the domain shape. For the
purpose of generation of well-conditioned difference stars
(otherwise called stencils), regularity in subdomains as well
as smooth transition from dense to coarse clouds zones [72]
may be assumed. The Liszka generator is based on the no-
tion of the local nodes density ρi , which may be defined as

ρ−1
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p = px = log2
ri

rmin
in 1D

{
px + 0.5 if px = py

inf(px,py) otherwise
in 2D

{
px + 0.5 log2 3 if px = py = pz

inf(px,py,pz) otherwise
in 3D

(8)

Here ri is a characteristic local modulus characterising cloud
of nodes, and rmin is the modulus of the most dense regu-
lar square background mesh. From that mesh, the nodes are
chosen according to a prescribed local nodes density ρ̄−1 ≡
ρ̄−1(x, y) ≡ infρ−1(x, y), being an infimum of all local
densities, given a-priori. Nodes are generated (“sieved”) out
of the background mesh using criterion

ρ−1 ≥ ρ̄−1 (9)

Generated nodes are not bounded by any type of struc-
ture, like element or mesh regularity. However, it is conve-
nient to determine afterwards the topology information of
the already generated cloud of nodes. In the case of the 2D
domain (Fig. 2), the topology is determined e.g. by the

• Voronoi tessellation (the optimal domain partition into
nodal subdomains assigned to each node), and list of
Voronoi neighbours,

• Delaunay triangulation (the optimal domain partition into
triangular elements), and list of triangles involving each
node,

• neighbourhood of nodes and subdomains (triangles)
based on the above information.

Without restrictions imposed on the nodes structure, any
node can be easily shifted or removed. Also a new node
may be inserted with only small local modifications of the
cloud of nodes topology. Voronoi tessellation and Delaunay
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Fig. 2 Domain partitioning, Voronoi tessellation and Delaunay trian-
gulation

Fig. 3 Nodes density for the 2D arbitrary irregular cloud of nodes

triangulation of the cloud of generated nodes, followed by
their full topology determination, is very useful for further
analysis of the boundary value problems (e.g. to MFD star
selection, numerical integration, postprocessing). It is worth
stressing that these procedures are very fast nowadays.

Voronoi partition allows for defining nodes density at any
arbitrary point P of the irregular cloud of nodes [64]. Two
situations may be distinguish

• Point P is a node of an irregular cloud of nodes. Then
density of node P is the log2 of square root of inverse of
the Voronoi polygon area (in 2D, Fig. 3) assigned to that
node i (Ωi)

ρ−1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log2

(
kli
lmin

)
, li—Voronoi line segment in 1D

log2

(
kΩi

Ωmin

) 1
2
, Ωi—Voronoi polygon in 2D

log2

(
kVi

Vmin

) 1
3
, Vi—Voronoi polyhedron in 3D

(10)

Here k is a correction factor, depending on the node
location (interior, boundary line, edge, vertex) and space

dimension (α-arc angle, s-arc length, R-arc radius)

k =
{

1 for internal node

2 for boundary node
in 1D

k =

⎧
⎪⎨

⎪⎩

1 for internal node

2 for boundary node
2πR

s
= 2π

α
for vertix node

in 2D (11)

k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for internal node

2 for boundary node
2πR

s
= 2π

α
for edge node

4πR2

S
= 4π

ω
for vertix node

in 3D

• Point P is an arbitrary point of the cloud of nodes. The
nodes density at such point P is determined then by
means of the approximation of the nodes densities ρi ,
already defined using (10), of the neighbouring nodes.
Such approximation may be done by means of the FEM
or MWLS approach

ρ(x, y) =
ρiΦi∑

i

(x, y) (12)

where Φi(x, y) are relevant shape functions.

2.4 MFD Star Selection and Classification

A group of nodes used together as a base for a local MFD
approximation is called the MFD star (or stencil). Thus the
MFD stars play a similar role in the MFDM as the elements
in the FEM, i.e. if they are used for spanning a local approx-
imation of the searched function. When dealing with irreg-
ular clouds of nodes, both the MFD stars and the formulas
usually differ from node to node. However, the same star
configuration may be common for some nodes considered
as central ones. The most important feature of any star se-
lection criteria is to avoid singular and ill-conditioned MFD
stars. It is worth stressing here, that not only the distance
from the central node counts, but also nodes distribution
in each star. That is why the oldest MFD stars generation
criterion, based only on the distance between the nodes, is
not recommended. Both the MFD star selection at any arbi-
trary node, and stars classification in a domain considered
are based on the topology information. Various (selection)
criteria may be formulated. The best two of them, namely
the “cross”, and the “Voronoi neighbours” criteria of star se-
lection are discussed in [64] in a more detailed way. They
are briefly discussed below.

In the 2D “cross” criterion, domain is divided into the
four zones. Moreover, each of four semi-axes is assigned to
one of these zones. A specified number of nodes (usually 2),
closest to the central node (point) is taken from every zone
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Fig. 4 Star selection by the “cross” criterion

separately, so that the number of nodes in the MFD star is
constant and the method is easy to automation. However,
result of this criterion may depend on orientation of the co-
ordinate system. What is more, the star reciprocity may not
hold each time, namely if a node “i” belongs to the star of
node “j”, the reverse situation does not always hold.

In more complex “Voronoi neighbours” criterion, se-
lected to the MFD star are those nodes which are the Voronoi
neighbours. That means e.g. in 2D domain that those poly-
gons have common side (strong neighbours) or common
vertex (weak neighbours). As opposed to the first “cross”
criterion, this one is objective and guarantees reciprocity:
if a node “i” belongs to the star of node “j”, then the re-
verse situation also takes place. This criterion gives also the
well known FD stars for regular rectangular and triangu-
lar meshes, whereas the “cross” criterion provides such re-
sults only for the rectangular meshes. On the other hand, the
Voronoi neighbours criterion does not assure the same num-
ber of nodes in every star. Moreover, the number of nodes is
variable and may be not sufficient in order to built full MFD
operator of the specified order. The number of nodes (or
rather the number of degrees of freedom) may be completed
then by means of the several techniques in order to keep
the chosen approximation order. Recommended is rather to
introduce additional (generalised) degrees of freedom (e.g.
values of the first derivatives) in existing nodes, than to pro-
vide additional nodes using only the distance criterion. For
the boundary nodes, values of normal and/or tangent deriva-
tives may be applied as the additional degrees of freedom.

In Fig. 4 and Fig. 5 presented are the 2D examples [64]
of nodes classification using the “cross” criterion” (Fig. 4)
and “Voronoi neighbours” criterion (Fig. 5) for the second
order differential operator (e.g. Laplace ∇2).

Classification of the MFD stars is also introduced, based
on the notion of “equivalence class” of stars configurations

Fig. 5 Star selection by the “Voronoi neighbours” criterion

[64]. For each class the FDM formulas are generated only
once then.

2.5 MWLS Approximation and MFD Schemes Generation

The Moving Weighted Least Squares approximation
[33–35, 41, 42, 46, 64, 91], spanned over local MFD stars,
is widely used in the MFDM in order to generate the MFD
formulae as well as in the postprocessing. Consider any
of the formulations of boundary value problem outlined in
Sect. 2.1. Let us assume a n-th order differential operator
L in 2D domain. For each MFD star consisting of arbitrar-
ily distributed nodes, the complete set of derivatives up to
the assumed p-th (p ≥ n) order is sought. When the MFD
formulae are generated, a currently considered point x is
represented either by a node xi = (xi, yi), i = 1,2, . . . ,N

(for the local formulation (1)) or by an integration point,
when using a global formulation, e.g. (4). The MFD star at
point x consists of r star nodes xj , j = 1,2, . . . , r . Local
approximation û of the sought function u(x) may be written
in two equivalent notations. The approximation, applied in
the MFDM, is mainly based on the Taylor series expansion
of the unknown function at the central point (i) of a MFD
star (in 2D)

u(x, y) = û(x, y) + e = ptDu(L) + e (13)

where

pt · Du(L) =
p∑

j=0

1

j !
(

h
∂

∂x
+ k

∂

∂y

)j

u(x, y)|(xi ,yi )

h = x − xi, k = y − yi (14)
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Fig. 6 Local approximation in 1D

Depending on the space dimension one has

pt

(1×m)

=

⎧
⎪⎪⎨

⎪⎪⎩

1, h, 1
2h2, . . . , 1

p!h
p

1, h, k, . . . , 1
p!k

p

1, h, k, l, . . . , 1
p! l

p

Du(L)

(m×1)
=

⎧
⎪⎨

⎪⎩

u,u′, u′′, . . . , u(p) in 1D

u, ∂u
∂x

, ∂u
∂y

, . . . , u
(p)
yy...y in 2D

u, ∂u
∂x

, ∂u
∂y

, ∂u
∂z

, . . . , u
(p)
zz...z in 3D

(15)

where p denotes the local approximation order, m—the
number of unknown approximation coefficients (e.g. m =
(p + 1) (p + 2) /2 for 2D domain), p—vector of the local
interpolants (15), and Du(L)—vector of all low order deriva-
tives up to the p-th one. Superscript (L) is assigned to each
quantity corresponding to the standard solution, i.e. when
using the low approximation order p. The local approxi-
mation u(x̄, x) (x̄—temporarily fixed approximation loca-
tion) and global approximation u(x̄, x̄) in 1D are presented
in Fig. 6.

It is worth stressing that the other meshless methods
[4, 7, 44, 51] use in some cases the equivalent incremental
form of polynomial approximation

u(x, y) ≈ û(x, y)

= b0 + b1(x − xi)

+ b2(y − yi) + · · · + bm(y − yi)
p

= pt · b (16)

However, the MFDM notation, appearing in (13), (14),
(15) seems to be more convenient, because it also offers di-
rect information about approximation error e, caused by a
truncated part of the Taylor series, as well as it provides a
simple interpretation of the approximation coefficients con-
sidered as the local function derivatives (as opposed to so
called consistent or global derivatives). Of course, both for-
mulations are equivalent and finally yield the same results.
Interpolation conditions imposed at all nodes of the MFD
star, and r > m requirement lead to an over-determined set
of algebraic equations

û(xi, yi) = ui, for i = 1,2, . . . , r

→ PDu(L) = q (17)

Here P(r×m) denotes the matrix of local interpolants (15)
(m ≤ r), and q(r×1)—vector of the nodal values of a sought
function u(x, y). Minimisation of the weighted error func-
tional

I = (PDu(L) − q)tW2(PDu(L) − q) (18)

yields

∂I

∂Du(L)
= 0 → Du(L) = M · q

M
(m×r)

= (PtW2P)−1PtW2 (19)

namely the complete set of the derivatives Du(L) up to the
p-th order, expressed in terms of the MFD formulae matrix
M providing the required MWLS approximation û. Similar
results may be obtain when using notation (16)

I = (Pb − q)tW(Pb − q) (20)

∂I

∂b
= 0 → b = A−1Bq, A = PtWP

B = PtW, û = ptA−1Bq (21)

In formulas (18) and (19), W(r×r) = diag(ω1,ω2, . . . ,ωr)

is a diagonal weight matrix. One may apply here singular
weight functions which provide interpolation û(xi) = ui at
the central node of each MFD star.

ωj = 1

ρ
p+1
j

, ρj =
√

k2
j + h2

j , j = 1,2, . . . , r (22)

Singularity assures, in this way, the delta Kronecker
property wi(xj ) = δij , and consequently enforces interpo-
lation û(xi) = ui at the central node of each MFD star. Both
singular and not singular concepts may be represented by
the Karmowski weighting function [30], already defined in
the second power

w2
j =

(

ρ2
j + g4

g2 + ρ2
j

)−p−1

ρj =
√

k2
j + h2

j , j = 1,2, . . . , r (23)

designed for smoothing the experimental and numerical
data. As long as the smoothing parameter g is non-zero, the
delta Kronecker property is not satisfied.

For the exemplary 2D model problem, formulated locally
(5) or globally (6) in the previous sections, the basic approx-
imation order p = 2 for (5) or p = 1 for (6) may be assumed.
Star generation (performed at every node (xi, yi) in case of
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Fig. 7 MFD star with
generalised degrees of freedom

(5) and at every Gauss point in case of (6)) is followed by the

local MWLS approximation (14) and finite difference for-

mulas (19) determination. For instance, the matrix and scalar

quantities, computed for p = 2 are as follows (j = 1, . . . , r)

P =
⎡

⎢
⎣

1 h1 k1
1
2h2

1 h1k1
1
2k2

1
...

...
...

...
...

...

1 hr kr
1
2h2

r hrkr
1
2k2

r

⎤

⎥
⎦

W =

⎡

⎢
⎢
⎢
⎣

ω1 0 . . . 0
0 ω2 . . . 0
...

...
. . .

...

0 0 . . . ωr

⎤

⎥
⎥
⎥
⎦

(24)

hj = xj − xi

kj = yj − yi

ωj =
(√

k2
j + h2

j

)−3

Du(L) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u

u′
x

u′
y

u′′
xx

u′′
xy

u′′
yy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M1,1 M1,2 . . . M1,r

M2,1 M2,2 . . . M2,r

M3,1 M3,2 . . . M3,r

M4,1 M4,2 . . . M4,r

M5,1 M5,2 . . . M5,r

M6,1 M6,2 . . . M6,r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)

q =

⎡

⎢
⎢
⎢
⎣

u1

u2
...

ur

⎤

⎥
⎥
⎥
⎦

Afterwards, a discrete value of any differential operator may

be obtained by means of composition of appropriate Du(L)

derivatives

Du
(L)
k ≈

r∑

j=1

Mk,juj , k = 1, . . . ,6 (26)

One may consider various extensions of the MWLS ap-
proximation including

• generalised degrees of freedom (like in the finite element
method), including e.g. derivatives, various operator val-
ues, . . . [36, 64],

• singularities and discontinuities of the function and/or its
derivatives [7, 36],

• functions of complex variables,
• equality and inequality constraints (global-local approxi-

mation [30]),
• Higher Order approximation e.g. by means of the correc-

tion terms, such approach will be described in the follow-
ing sections [55–57, 64, 65, 70, 74–83],

• generation of the multipoint formulas [12, 26, 68–70].

MWLS approximation, which has been presented above,
may be generalised by assuming larger set of nodal parame-
ters [36, 64, 67]. There are several reasons for that like rais-
ing approximation quality or need for matching the exact
boundary conditions. For illustration purpose, consider the
situation presented in Fig. 7, where beside the function val-
ues, given are values of the derivatives as well as value of
the Laplace operator.

By minimisation of the error functional

I =
∑

j (i)

(uj (i) − ûj (i))
2w2

j

+
∑

j (i)

∑

s

(L
(s)
j uj (i) − L

(s)
j ûj (i))

2w2
sj (27)

with the respect to values of the nodal derivatives Du and
use the modified weighting functions

wsj = 1

ρ
p+1−s
i

, ρj =
√

k2
j + h2

j , j = 1,2, . . . , r (28)

where sdenoted the derivative order of the particular degree
of freedom (s = 0 for function value, s = 1 for the first
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Fig. 8 2D integration in
MFDM

derivative, s = 2 for the second order operator, etc.), one
gets the set of local MFD derivatives Du depending on the
generalised degrees of freedom.

The MWLS approximation may be successfully applied
also in the case, when the Higher Order multipoint formula
is generated [12, 26, 68–70]. In the specific multipoint case
[12], the MFD operator is based on the MFD star nodes val-
ues, as in the standard approach, and on the right hand side
values of the differential equation (1). In the general multi-
point case [12, 26, 68–70] sought are dependencies between
the function values and their subsequent derivatives up to the
required order.

The MWLS approximation technique may be a very ef-
fective and powerful tool, useful for generating MFD formu-
las, as well as for numerical and experimental data smooth-
ing. However, these results are quite sensitive to proper
choice of some parameters involved in the MWLS approx-
imation approach [67]. Among those parameters, one may
distinguish

• number and distribution of nodes in the MFD star,
• the order of the local approximation p,
• the type of a weighting function w and its parameters;

there are many other possibilities beside two examples of
weights presented above (22)–(23),

• type of function derivatives, which may be calculated ei-
ther locally (19), or differentiating the consistent, global
approximation, built point-by-point upon the local one
(13),

• use of generalised degrees of freedom, shortly discussed
above,

• use of boundary conditions, imposed on the approxima-
tion.

The other important features are space dimension and
types of clouds of nodes (regular meshes, irregular grids—
mapped from regular, arbitrarily irregular clouds). Improper
choice of the above given factors may cause significant
worsening of the obtained results.

2.6 Numerical Integration in the MFDM

Numerical integration plays an important role in the MFDM,
and may have significant influence on the final results [64]
when applied to boundary value problems posed in the
global or mixed global-local formulations. Integration may
be also required in the postprocessing of nodal results, e.g.
when energy norm of the solution error has to be evaluated
over a chosen subdomain. The type and values of integration
parameters depend on the purpose of integration.

There are at least four basic ways of numerical integra-
tion in the MFDM [64]

(i) Subdivision of the domain Ω into subdomains Ωi , i =
1,2, . . . , n assigned to each node, and integration over
these subdomains (Fig. 8a). This may be performed by
means of the Voronoi tessellation and integration over
Voronoi polygons (in 2D) Ωi or Voronoi polyhedrons
Vi (in 3D).

(ii) Subdivision of the domain Ω into triangular elements
(in 2D) or tetrahedrons (in 3D) with nodes located
at their vertices, and integration over these elements
(Fig. 8b). The Delaunay triangulation (in 2D) seems to
be the best choice here. Integration is performed using
the same quadratures as in the finite element analysis,
while values of the integrands at Gaussian points are
found by means of the MWLS approximation.

(iii) Introduction of an independent background mesh and
subdivision of the domain Ω into subdomains (trian-
gles, squares, . . .) in a way independent on existing
nodes, and integration over these subdomains (Fig. 8c).

(iv) Integration over the local subdomains defined by the
finite local supports (circles, ellipsis, rectangles, . . .) of
the weighting factors wj , j = 1, . . . , r (Fig. 8d). Such
approach that is typical for the other meshless methods
[4, 7], could be also used in the MFDM.

The first way follows the traditional FDM approach (in-
tegration around the nodes, which is the most accurate one
for the even order differential operators), while the second
one follows the typical FEM approach (integration between
the nodes, which is the most accurate one for the odd order
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differential operators). This is possible because the differ-
ence between the MFDM and the FEM concerns, first of all,
the way and range of approximation, while the integration
domain may be the same in both cases. The way (iv) of inte-
gration is applied in many contemporary meshless methods
[4, 7].

2.7 Generation of the MFD Operators and MFD Equations

The following strategy of generation of the MFD operators
is adopted [64]. As opposed to the classic difference ap-
proach, where operators are developed directly in the final
form required, in the MFDM the operators are generated
first for the complete set of derivatives Du needed (zero-th,
first, second, . . . up to p-th order) [64]. Each point, chosen
for generation of derivatives Du, may represent either an
arbitrary point (e.g. Gaussian) or a node in the considered
domain. The local MWLS approximation, based on the de-
velopment of the searched function into the Taylor series, is
spanned over an appropriate MFD star with a sufficient num-
ber of r nodes. Evaluation of the derivatives Du is based on
the formulas (19). Having found the MFD operators for all
derivatives, one may compose any MFD operator required
either for a MFD equation, boundary conditions or for an
integrand (for the global MFD formulations).

The way of MFD equations generation depends on the
type of b.v.p. formulation considered. One may apply stan-
dard collocation technique in the case of local formulations
(1) whereas a functional aggregation followed by its min-
imisation are needed for (3). In the case of the variational
principle (4), only aggregation is required in order to form
the final MFD equations.

Consider an example of the locally posed boundary value
problem (5). The discrete equations are generated at each
node (xi, yi) as it is required in case of the collocation tech-
nique (fulfilment of the difference equation node by node)

r∑

j=1

(
M4,j + M6,j

)
uj(i) = f (xi, yi) , i = 1, . . . ,N (29)

M4,j and M6,j are the appropriate coefficients of the differ-

ence formulas matrix M, for the ∂2

∂x2 and ∂2

∂y2 derivatives of
the function u (constituting the 4th and 6th rows of the ma-
trix M). These derivatives occur in the differential equation
inside the domain in the considered local formulation (5).

In the case of the global Galerkin formulation (6), the
variational principle is satisfied in the whole domain Ω at
once, though using its a-priori partition into appropriate in-
tegration cells, e.g. into triangles Tk , k = 1, . . . , t , where,
similarly as in the FEM, the test function v is interpolated

−
t∑

k=1

Jk

NG∑

l=1

wl

(
r∑

j=1

M
(u)
2,j uj (l)

3∑

j=1

M
(v)
2,j vj (l)

+
r∑

j=1

M
(u)
3,j uj (l)

3∑

j=1

M
(v)
3,j vj (l)

)

=
t∑

k=1

Jk

NG∑

l=1

wl

(

f (xl, yl)

3∑

j=1

M
(v)
1,j vj (l)

)

(30)

In the above discrete form of the principle (6), all derivatives
( ∂
∂x

and ∂
∂y

) of both trial and test functions were approxi-
mated at Gauss points (xl, yl) using appropriate difference
formulas (coefficients M2,j and M3,j for the partial deriva-
tives of the first order). It is worth stressing that the num-
ber of nodes in the MFD stars may be different for test and
trial functions. Here, the trial function u is approximated us-
ing r star nodes (usually greater than it is required from the
derivative order), whereas the test function is simply inter-
polated on the integration element (triangle Tk) using only
its 3 nodal values, closest to the integration point (xl, yl)

(all vertices of triangle Tk). Moreover, the test function v

which occurs in the right hand side of the variational prin-
ciple (6) is also approximated at Gauss points (coefficients
M1,j corresponding to the function values). Symbols J , NG,
wi denote here quantities involved in the Gaussian integra-
tion procedure, namely J (Jacobian) is the determinant of
the transformation matrix J (e.g. area of triangle), NG—
number of Gauss points, and wl , l = 1, . . . ,NG are integra-
tion weights. The final discrete equations are generated from
(30) after aggregation technique, taking advantage from the
arbitrary selection of the test function v. The fulfilment of
the Neumann boundary conditions requires additional inte-
gration followed by an aggregation over the domain bound-
ary ∂ΩN .

2.8 MFDM Discretization of Boundary Conditions

The quality of the MFD solutions usually essentially de-
pends on the quality of discretization of the boundary con-
ditions. Several approaches may be applied here (Fig. 9).

(i) A MFD star (for the boundary node or Gauss point lo-
cated on the boundary), may use only internal nodes
(Fig. 9a), however approximation is of poor quality
then.

(ii) Use of the so called fictitious nodes, located outside
the domain (Fig. 9b). This approach, typically used in
the classic FDM, introduces additional unknowns to the
system of algebraic equations. Using relevant boundary
formulas, one may express them in terms of the internal
nodes values only by means of appropriate boundary
conditions. In this way, one gets slightly better approx-
imation than in the case (i) because the central node is
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Fig. 9 Discretization of the boundary conditions in the MFDM

closer to the “centre of gravity” of the MFD star. This
approach is not recommended, however, in the hyper-
bolic problems (e.g. in dynamic mechanics), due to the
fact, that the nodes located outside the domain artifi-
cially increase the total mass of the discretized system
influencing its lowest frequencies.

(iii) Instead of introducing new nodes outside the domain,
one may introduce additional, generalised degrees of
freedom (Fig. 9c), corresponding to given boundary
conditions (like in the FEM), e.g. u′|i = ∂u

∂n
|i .

(iv) Higher Order approximation, that may be provided by
several ways including correction terms of the MFD
operators, and general multipoint approach [69]. This
problem will be discussed here in more detailed way.

2.9 Solution of Simultaneous FD Equations (Linear and
Non-linear)

In the MFDM analysis of locally formulated boundary value
problems, one deals with the Simultaneous Algebraic Equa-
tions (SAE). Non-linear equations appear, when the original
boundary value problem analysed is of non-linear nature.

In the case of linear boundary value problems, appro-
priate system of equations may be of non-symmetric (for
local b.v. formulation) or symmetric form (for global for-
mulations, with proper discretization of the boundary con-
ditions). In the last case they might be solved by means of
procedures similar to those for the Finite Element discretiza-
tion. The non-symmetric MFDM equations may use effec-
tive solvers developed e.g. for the Computational Fluid Me-
chanics. However, the best approach seems to be develop-
ment of solvers specific to the MFDM, taking advantage of
this method’s nature. Especially, the multigrid adaptive so-
lution approach seems to be effective [8, 24, 43, 64, 72, 80,
87] then.

2.10 Postprocessing

The MWLS approximation is a powerful tool for postpro-
cessing because it may provide values of a considered func-
tion, and its derivatives at every required point [33, 34, 45,
48, 49, 64]. Approximation is based on discrete data (values
of functions, their derivatives or other generalised degrees of

freedom). Approximated results may be directly obtained, at
each point of interest, using the approach defined by formu-
las (13)–(15), and (19). Thus the same MWLS approach is
used as the one applied to the generation of the meshless dif-
ference operators discussed above. Though precise enough,
that MWLS approach is time consuming, because solution
of the local equations system is needed at each point where
such approximation is required. Precision of the MWLS re-
sults significantly depends on the right choice of the set of
parameters involved. They may essentially change the qual-
ity of the standard MWLS approximation [67].

2.11 Extensions of the Basic MFDM Approach

The basic solution MFDM approach [48, 64], outlined
above, has been extended in many ways so far, and is still
under development. Among many of its extensions, one may
mention the following here

1. MFDM oriented node generator [46, 48, 64, 87],
2. A-posteriori error analysis [10, 14, 15, 33, 36, 64, 76, 78,

79, 83],
3. Mesh refinement and adaptive (multigrid) solution ap-

proach [14, 36, 43, 54, 64, 72, 78, 80, 83, 87],
4. generalised MWLS approximation [3, 46, 64, 67, 70],
5. Higher Order approximation solution approach [26, 55,

57, 64, 65, 68, 70, 74, 83],
6. MFDM on the differential manifold [38–40, 62, 93, 95,

96],
7. MFDM/FEM combinations and unification [34, 36, 38,

49],
8. Experimental and numerical data smoothing [30, 73],
9. Hybrid experimental/theoretical/numerical approach

[30, 73],
10. Software development [36–38, 45, 46, 67, 87],
11. Testing and engineering applications [30, 36, 38, 73].

Many problems still need to be defined and solved, some
of them are under current research nowadays. Among them
one may distinguish

1. Solid mathematical bases of the MFDM, including such
problems as solution existence, solution and residuum
convergence, stability of the MFD schemes, etc. [13, 64],

2. Various Petrov-Galerkin formulations and their dis-
cretization using MFDM [4, 5, 71, 85],

3. Study on the influence of the numerous parameters on the
quality of the MWLS approximation [67],

4. Further development of the Higher Order approximation,
based on
(a) Correction terms [55–57, 64, 65, 70, 74–83],
(b) Multipoint approach [12, 26, 68–70],

5. Improved, solution and residual error estimation, based
on the new, higher order reference solution of high qual-
ity [77–83],
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6. Analysis of the multigrid, full adaptive solution ap-
proach, based on the nodes generator, oriented on the 2D
and 3D large non-linear boundary value problems [80],

7. Acceleration of the SAE solution [84, 88],
8. Comparison and coupling of the MFDM with the other

meshless methods [98],
9. Combination of the MFDM with other discrete methods,

especially with the Boundary Element Method (BEM),
FEM [36–38], and Artificial Intelligence (AI) methods
[73],

10. Various engineering applications [38, 73].

Some of these aspects will be considered in the present
work. The starting point is the Higher Order approximation,
provided by the correction terms. This is the base of the re-
search considered in this paper.

3 Higher Order Approximation

Several possible approaches may be used to increase the pre-
cision and stability of the method, as well as may shorten the
solution time. In the simplest case, the MFD solution qual-
ity may be raised by introducing more dense (regular or ir-
regular) clouds of nodes. They may be generated a-priori or
found as a result of an h-adaptation process. The other possi-
ble way is to raise the order of the local approximation of the
sought function (p-approach). This may be performed by
adding new nodes into the MFD operator (Hackbush [24])
or by introducing additional degrees of freedom into the old
nodes [29, 36, 64, 67] as well as to apply the multipoint tech-
nique [12, 26, 68–70]. The approximation order may be also
raised by considering additional terms in the Taylor series
expansion of the standard MFD operator Lui

Lui = Lui − Δ
(L)
i − Ri

= fi − Δ
(L)
i − Ri, Pi ∈ Ω (31)

Here L is a MFD operator, corresponding to the differential
operator L, and Ri is the truncated part of the Taylor series.
The correction term

Δ
(L)
i = Δ(u

(p+1)
i , . . . , u

(2p)
i ;J (0)

i , . . . , J
(2p)
i ;

S
(0)
i , . . . , S

(2p)
i ) (32)

includes (higher order) derivatives of the s-th order, where
p < s ≤ 2p. It may also contain [7] discontinuities J (k) and
singularities S(k) of the function, and/or its k-th derivatives
up to the 2p order. Singularities may be either known a-
priori or could be treated as additional unknowns. Higher or-
der derivatives may be calculated by composition of appro-
priate lower order formulae, and use of the low order MFD
solution (without correction) inside the domain. However,

special treatment of the domain boundary neighbourhood is
needed.

In general, correction terms may serve the following pur-
poses:

• the MFD approximation improvement inside the domain,
• the MFD approximation improvement on the boundary,
• generation of high quality reference solutions used e.g. in

the error analysis,
• a-posteriori estimation of the solution, and residual errors,

both in the local and global forms,
• modification of new nodes generation criteria in the adap-

tation process,
• improved Higher Order multigrid solution approach,
• MFD discretization of boundary value problems given in

any formulation, and
• data smoothing, based on the Higher Order MWLS ap-

proximation technique.

The idea of higher order terms in the MWLS approximation
is based on correction of the local approximation by provid-
ing higher order derivatives Du(H) up to the order p + s.
Usually s = p is assumed, and derivatives are calculated in
the most accurate way then. One has

u(x) = pt · Du(L) + (p(H))t · Du(H) (33)

pH)

[m′×1] = [ 1
(p+1)!h

p+1 . . . 1
(2p)!k

2p], Du
(H)

[m′×1] =
[u(p+1)

xx...x . . . u
(2p)
yy...y]t and m′—number of additional terms

(m′ = 3p(p+1)
2 for 2D domain). Minimization of the mod-

ified error functional (18) yields the following improved
values (19) of the low order derivatives

Du(L) = M · q − Δ(L)

→ Δ
(L)
(m×1) = M · P(H) · Du(H) (34)

where Δ(L) is the vector of correction terms. Derivatives
Du(H) of the order higher than p may be calculated inside
the domain using formulae composition, e.g. uIII = (u′)′′ or
uIII = (u′′)′, uIV = (u′′)′′.

Consider an example of the local MWLS approximation
with p = 2. In the case of s = p, m′ = 9 additional Higher
Order terms have to be generated. Referring to the formulas
defined in (24) and (25), one need to complete the approxi-
mation base with

P(H)

[r×9]
=

⎡

⎢
⎢
⎢
⎢
⎣

1
6h3

1
1
2h2

1k1 . . . 1
24k4

1
1
6h3

2
1
2h2

2k2 . . . 1
24k4

2
...

...
. . .

...
1
6h3

r
1
2h2

r kr . . . 1
24k4

r

⎤

⎥
⎥
⎥
⎥
⎦

,

Du(H)

[9×1]
=

⎡

⎢
⎢
⎢
⎣

u′′′
xxx

u′′′
xxy

...

u′′′′
yyyy

⎤

⎥
⎥
⎥
⎦

, Δ(L)[6×1] =

⎡

⎢
⎢
⎢
⎣

Δ1

Δ2
. . .

Δ6

⎤

⎥
⎥
⎥
⎦

(35)
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Afterwards, the low order derivatives Du(L) approximation
(26) may be corrected by taking into account the Δ(L) terms
(34). In this way one obtains

Du
(L)
k ≈

r∑

j=1

Mk,juj − Δ
(L)
k , k = 1, . . . ,6 (36)

while the Higher Order derivatives Du(H) may be computed
by k + m = q + z composition

Du
(H)
k = D(L)

q

(
Du(L)

z − Δ(L)
z

)

≈
r∑

j=1

Mq,j

(
r∑

l=1

Mz,lul(i) − Δ(L)
z

)

, k = 1, . . . ,9

(37)

at every node (xi, yi) or any other arbitrary point of the do-
main.

Two step solution procedure is applied, when using
Higher Order approximation terms in the solution process.
In both steps the basic MFD operator does not change. At
first the standard procedure is applied yielding solution u(L)

of low approximation order. In the second step the correc-
tion terms are evaluated in order to modify the right hand
side of the MFD equations. In this way, the final Higher Or-
der MFD solution u(H) does not depend on the quality of the
MFD operator considered. It depends only on the truncation
error of the Taylor series used.

Here, and in the following sections, the superscript (L) is
referred to a quantity related to the low order approxima-
tion, while (H) to the higher order one, and (T )—to the true
solution. The MFD equations for the formulations (1)–(4)
including Higher Order terms are:
{

Lui = fi

Lbuj = gj

→ u
(L)
i

→
{

Lui = fi − Δ
(L)
i

Lbuj = gj − Δ
(b)
j

→ u
(H)
i (38)

for the local formulation (1), and
∫

Ω

(Luu · Lvv − f · v) dΩ

≈ J ·
NG∑

i

ωi · [(Luui + {Δ(L)
i })Lvvi − fi · vi

]= 0

→ u
(L)
i ,

{
u

(H)
i

}
(39)

or the variational one (4). Here u
(L)
i , and u

(H)
i denote MFD

solutions based on the lower, p-th (no correction terms) and
higher, 2p-th order of approximation respectively (including

correction terms up to the order 2p for the MFD operators
inside the domain—Δ

(L)
i , and on its boundary—Δ

(b)
j ).

Higher Order discretization of the exemplary 2D model
problem (5) leads to the following modified form of discrete
nodal equations (29)

r∑

j=1

(
M4,j + M6,j

)
uj(i)

= f (xi, yi) +
(
Δ

(4)
i + Δ

(6)
i

)
, i = 1, . . . ,N (40)

Similar results may be obtained for Higher Order approxi-
mation of the discrete equations (30) obtained for the varia-
tional formulation

−
t∑

k=1

Jk

NG∑

l=1

wl

(
r∑

j=1

M
(u)
2,j uj (l)

3∑

j=1

M
(v)
2,j vj (l)

+
r∑

j=1

M
(u)
3,j uj (l)

3∑

j=1

M
(v)
3,j vj (l)

)

=
t∑

k=1

Jk

NG∑

l=1

wl

(

f (xl, yl)

3∑

j=1

M
(v)
1,j vj (l)

− Δ
(2)
l

3∑

j=1

M
(v)
2,j vj (l) − Δ

(3)
l

3∑

j=1

M
(v)
3,j vj (l)

)

(41)

The general approach for evaluating the higher order
derivatives inside the domain is appropriate formulae com-
position, and use of the low order solution. However, this
method does not provide good results in the case of bound-
ary derivatives, appearing in Δ

(L)
i = Δi (correction terms

for internal nodes) and Δ
(b)
j (correction terms for bound-

ary nodes). They may be divided into two groups, namely
the low order derivatives u

(1)
j , . . . , u

(p)
j and the higher order

ones u
(p+1)
j , . . . , u

(2p)
j .

1. Low order derivatives u
(1)
j , . . . , u

(p)
j may be calculated

using the MFD formulae, or—in the simple cases—the
boundary condition, or the differential equation from the
domain, but specified on its boundary;

2. The higher order derivatives u
(p+1)
j , . . . , u

(2p)
j in the

boundary nodes should be replaced by the ones at closest
internal nodes in the domain, by the means of the Taylor
series expansion, and then calculated as it was proposed
for internal derivatives.

Basic MFD operators, generated at the boundary nodes,
are usually of worse quality, when compared to the ones in-
side the domain. This effect may be caused by not sufficient
accuracy of the correction terms evaluation. The Higher Or-
der solution may need an additional smoothing procedure
then.



14 S. Milewski

The most primitive as well as time-consuming method,
and therefore, not considered here, is to apply an iterative
process

{
Lu

(k+1)
i = fi − Δ

(k)
i ,

Lbu
(k+1)
j = gj − (Δ

(b)
i )(k),

k = 0,1,2, . . . (42)

with starting values for correction Δ
(0)
i = (Δ

(b)
i )(0) = 0, and

to control the solution convergence

ε = ‖u(k+1) − u(k)‖
‖u(k+1)‖ < εadm (43)

where εadm denotes the admissible error threshold.
The proposed iterative procedure (42) is convergent in the

most cases, to the exact solution within the polynomial order
assumed in the MWLS approximation (here, 2n-th). How-
ever, it requires multiple solutions of the SLAE, though with
the same left side (coefficient matrix). Therefore, higher or-
der boundary derivatives need special treatment.

Various approaches may be discussed and proposed, in
order to evaluate boundary derivatives k = 1,2, . . . ,2p in
the most accurate way. Their concept lies in combination of
the various MFD approximation techniques in the boundary
nodes, considered in the previous sections, with use of addi-
tional correction terms

u
(k)
i − Δi =

r∑

j=1

aj · uj − Δi

Δi = Δi(u
p+1
i , u

p+2
i , . . . , u

2p
i ) (44)

where r is the number of MFD star nodes. The MFD ap-
proximation (44) may be applied by

1. using only internal nodes; the approximation is of low
quality then,

u
(k)
i =

r∑

j=1

aj · uj − Δi (45)

2. using internal nodes with both the boundary conditions
and domain equation specified on the boundary

⎧
⎪⎪⎨

⎪⎪⎩

u
(k)
i =

r∑

j=1

aj · uj − Δi

Lui = fi, Lbui = gi, Pi ∈ ∂Ω

(46)

3. using internal nodes and generalised degrees of freedom

u
(k)
i =

r∑

j=1

aj · uj − Δi +
l1∑

j=1

bj · L(s)uj − Δ
(s)
i (47)

Fig. 10 Higher order discretization of the boundary conditions for the
2D boundary value problem

4. using the specific or general multipoint approach (intro-
duced in [12], and further developed in [26, 68–70]).

In the case of specific multipoint approach, one may
use the a-priori known values e.g. of the right hand side
function of the differential equations, in order to raise the
approximation rank and apply them in the FD multipoint
formula

r∑

j=1

aj · uj =
r∑

j=1

bj · fj (48)

In the general multipoint approach, approximation is
based on the subsequent derivatives values, which are
generated e.g. by the means of the MWLS approxima-
tion in order to provide additional relations

ui ÷ u
(k)
i (49)

defined in patch of stars for each node considered as the
central in the domain and on its boundary

5. using internal and r1 (r1 ≤ r) additional external ficti-
tious nodes,

ui =
l∑

j=1

aj · uj − Δi +
r1∑

k=1

bk · uf
k (50)

6. combinations of the above techniques.

The above proposed general approach will be presented
in more detailed way for 2D case. Considered is the second
order elliptic problem,

⎧
⎨

⎩

au + bu′
x + cu′

y + du′′
xx + eu′′

xy + ru′′
yy = f (x, y) in Ω

u + β
∂u

∂n
= g(x, y) on ∂Ω

(51)

in a curvilinear boundary shape domain (Fig. 10). After gen-
eration of the MFD formulae for the complete set of deriva-
tives, up to 2nd order, one obtains the MFD formula for the
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differential operator inside the domain

Lui =
m∑

j=0

γ
(L)
ij uj for i = 3,4, . . . , n (52)

and for the differential operator on the boundary (44), which
specific form depends on the strategy adopted (45)–(50)

Lbui = Lb(ui, uj ,L
(s)uj , gi, fi, . . .) − Δi

j = 1,2, . . . , l for i = 0,1,2, . . . (53)

The low order approximation (52) and (53) allows for ob-
taining the low order MFD solution

{
Lui = fi for i = 3,4, . . . , n

Lbui = gi for i = 0,1,2, . . .

⇒ u
(L)
i , for i = 0,1,2,3,4, . . . , n (54)

the Taylor series expansion applied to the relations (52) and
(53), yields the following form of the correction terms:

Lui = Lui + Δ
(L)
i + R

(L)
i = fi + Δ

(L)
i for i = 3,4, . . . , n

Lbui = Gui + Δ
(b)
i + R

(b)
i = gi + Δ

(b)
i for i = 0,1,2, . . .

(55)

where

Δ
(L)
i = Δ(uIII

i,xxx, . . . , u
IV
i,yyyy;J (0)

i , . . . , J
(2n)
i )

Δ
(b)
i = Δ(uII

i,x , u
II
i,y, u

II
i,xx, u

II
i,xy, u

II
i,yy, u

III
i,xxx, . . . , u

IV
i,yyyy)

(56)

and uIII
i,xxx, . . . , u

IV
i,yyyy—internal higher order derivatives,

evaluated by means of the formulae composition inside the
domain, e.g.

uIII
i,xxx =

(
uI

i,x

)II

,xx
,

uIII
i,xxy =

(
uI

i,y

)II

,xx
, . . . , uIV

i,yyyy =
(
uII

i,yy

)II

,yy

(57)

J
(0)
i , . . . , J

(2n)
i —jump terms of the subsequent derivatives

(these may be known a-priori, or constitute additional un-
knowns),

uII
i,x , u

II
i,y—low order derivatives on the boundary, evalu-

ated e.g. by means of the boundary condition and domain
equation specified on the boundary

⎧
⎪⎨

⎪⎩

Lu0 = au0 + bu′
0,x + cu′

0,y + du′′
0,xx + eu′′

0,xy + ru′′
0,yy

= f0

Lbu0 = u0 + β
∂u0
∂n

= u0 + β1u
′
0,x + β2u

′
0,y = g0

→
{

uII
0,x = · · ·

uII
0,y = · · · (58)

uII
i,xx, u

II
i,xy, u

II
i,yy—low order derivatives on the boundary,

evaluated using MFD formulae of high quality, e.g. gener-
alised HO MWLS approximation, most convenient here, e.g.

uII
0,xx =

mb∑

j=0

γ
(b)
0j uj − Δ

(b)
i + γ

(f )

0 f0 + γ
(g)

0 g0 (59)

uIII
i,xxx, . . . , u

IV
i,yyyy—higher order derivatives on the bound-

ary, evaluated by replacing them with the higher order inter-
nal ones, taken from expansion into the Taylor series, and
formulae composition, e.g.

uIII
0,xxx = uIII

3,xxx − huIV
3,xxxx − kuIV

3,xxyy (60)

Having evaluated the correction terms, one finally obtains an
improved HO MFD discretization of the domain and bound-
ary differential equations, that yields the HO MFD solution

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lui = fi + Δ
(L)
i (uIII

i,xxx, . . . , u
IV
i,yyyy;J (0)

i , . . . , J
(2n)
i )

for i = 3,4, . . . , n

Lbui = gi + Δ
(b)
i (u0, u1, u2, u3, u4, g, f,

uIII
i,xxx, . . . , u

IV
i,yyyy)

for i = 0,1,2, . . .

⇒ u
(H)
i (61)

Beside approximation in the boundary nodes, one has to
treat the boundary zones with a care, especially in the case
of curvilinear boundaries. Some approaches, designed for
the classical FDM with regular meshes, were based on the
notion of the boundary node [94]. It was not necessarily lo-
cated on the boundary itself, but its FD star has to involve
the points on boundary, with prescribed values, taken from
boundary conditions. Those values were used as a degrees
of freedom of a modified FD operator, instead of standard
nodal values. The most sophisticated approach, called the
Mikeladze method [94], used the second order interpolation
method at the boundary points.

However, this approach has only historical meaning
nowadays. Such a problem is being solved in the MFDM by
means of the arbitrarily irregular clouds of nodes, and the
MWLS approximation. The MFD stars consist of a num-
ber of nodes larger, than the assumed approximation order
requires.

There are three main approaches, in the MFDM, in order
to discretize the boundary zones with a prescribed accuracy

(i) use of a refined cloud of nodes, with the nodes density
raised in the required zones,

(ii) raising the order of the local approximation,
(iii) combination of (i) and (ii).
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One may consider clouds of nodes, with increased nodes
density in the specified subdomains. However, such refine-
ment may be done a-priori for the initial cloud of nodes. Ir-
regular cloud of nodes may be generated and modified using
e.g. a Liszka type nodes generator, prescribed nodes den-
sity requirement in the chosen locations, and an a-posteriori
residual error estimation. This problem will be considered
in the following sections.

Approximation order of the MFD operators in the bound-
ary neighbourhood may be raised using several techniques.
Most of them were discussed in details in this section.

4 A-Posteriori Error Estimation

One of the most important problems in the contemporary
numerical solution approach is error analysis including ef-
fective error estimation [2, 6, 10, 11, 14, 15, 33, 64, 76,
78, 79, 83, 100]. There are two general approaches in dis-
crete methods designed for estimation of the solution error.
The first one, a-priori estimation [2, 14, 94], is usually ap-
plied after the discretization (determination of the cloud of
n nodes, nodes topology, approximation order p, boundary
conditions, etc.) before the whole solution process starts. It
allows for estimation of the solution error, and for examina-
tion of its convergence rate. It is done by means of cloud of
nodes modulus h, and approximation order p only, as well
as basic mathematical foundations. Though it might be very
effective, in the MFDM it is practically applied to regular
meshes, and to simple linear differential operators. Advan-
tage may be taken then e.g. of the symmetry of the MFD op-
erators. This is why theoretical proofs of stability and con-
sistency of the FD solution refer generally to the classical
version of the FDM, based on regular meshes. Therefore, in
the present work, considered is different, more practical, and
more effective error estimation approach, called a-posteriori
one [2, 10, 15, 33, 64, 76, 78, 79, 83]. Opposite to the a-
priori error estimation, it is performed after the numerical
solution is obtained. Nowadays a-posteriori error analysis,
precise enough, and effective error estimation are one of the
most important tasks in the discrete analysis. In the MFDM
cloud of nodes refinement is based on estimation of the a-
posteriori residual error, while the solution convergence is
based on estimation of the a-posteriori solution error. In the
most common cases, solution error estimation needs a refer-
ence solution that may be used instead of the true analytical
solution, known only for a small group of benchmark prob-
lems. Thus a high quality numerical solution has to be found
in order to estimate the basic solution error in the most ac-
curate manner.

Various criteria of choosing the reference solution of the
both local and global nature are considered in the present
section. They may be briefly classified, as follows

Fig. 11 Local (at point Pi ) and global (over the subdomain Ωi ) error
estimation

• Local estimation (at any required point) of the solution
and residual errors

• Global estimation (over a chosen subdomain) of the so-
lution and residual errors. The following estimation types
may be mentioned here:
– Hierarchic estimators, based on the solutions obtained

with the finer discretization,
– Smoothing estimators, based on the solution deriva-

tives smoothing,
– Residual estimators, based on the residual error distri-

bution (explicit or implicit type),
– Interpolation estimators, based on the interpolation the-

ories.

The local estimation of the solution and residual errors, at
any required point of the domain or its boundary, is typical
for the MFDM, especially when the local formulation of the
boundary value problem is considered. However, the global
criteria applied so far in the FEM, but expressed in terms
of the MFDM also might be used here. A general review
of such a-posteriori error criteria may be found e.g. in [2,
10, 15, 33, 100]. The most commonly used in the FEM are
the global error estimators ‖e‖, expressed in the form of the
integral over the whole domain or over a selected finite ele-
ment. In the MFDM this approach may be transferred to e.g.
the Voronoi polygons Ωi or the Delaunay triangles (Fig. 11).
The global estimators give information whether the speci-
fied subdomain (or whole cloud of nodes) needs refinement
or raising the approximation order. In this section, a modifi-
cation and adaptation for the MFDM of the most commonly
used global estimators are proposed. Their main idea is to
use the Higher Order MFDM solution and/or its derivatives
as a reference, depending on the estimator type. Various tests
proved that the Higher Order MFDM solution is a much bet-
ter reference solution than anyone used so far in the FEM
[2, 10, 15, 33, 100]. Some of them are presented in this
section. Moreover, coupling of the Higher Order approach
with other discrete methods (meshless, FEM, Boundary El-
ement Method BEM) is also possible. It is performed in or-
der to apply the very high quality MFD reference solution
for a high quality error estimation. It is worth mentioning
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that beside the global estimators, in the FEM often used are
selective, goal-oriented estimators, giving the error informa-
tion of a specified quantity. Moreover, some estimation ap-
proaches additionally take into the consideration the locally
determined pollution error, caused by imprecision at other
distant points, that can not be negligible, especially for the
problems with discontinuities and/or singularities. However,
those problems will not be considered in the present work.

Error estimation in the MFDM is usually performed at
the specified points, rather than in the form of the integral
over a chosen subdomain. One may obtain the measurement
of the appropriate error type, and its estimation, by means of
the MFD representation at any required point of the domain,
and on its boundary. However, this approach is usually lim-
ited to the set of points in specially chosen locations. These
points are usually located somewhere between the nodes,
where the error values is expected to be the largest. In the
simplest cases, these may be e.g. points situated between
neighbouring nodes in 1D or centres of gravity of the De-
launay triangles in 2D. Therefore, it is especially convenient
to use features of Liszka’s type nodes generator, based on
a nodes density control [43, 45, 46, 64]. A set of adaptive
irregular clouds of nodes is generated then as long as the ad-
missible level of solution and/or residual errors is reached.
Nodes of those clouds may be inserted by means of the es-
timation of the solution and/or residual error. This error is
examined then at points belonging to the cloud one level
denser only, or one level coarser, if necessary.

The following solution strategy is proposed, based on the
error estimation

• solve the boundary value problem in the considered for-
mulation, obtain discrete MFD nodal solutions (low order
and Higher Order one)

• find appropriate error values at specified points of the do-
main, by means of approximation of the nodal solution.
These may be
– points belonging to the one level denser cloud of nodes,

or one level coarser one, when the adaptive solution
approach, and the Liszka nodes generator are applied,

– Gauss points, when the global error is required and nu-
merical integration is involved.

When a numerical solution is obtained at the nodes by
solving the appropriate system of equations, one may ap-
proximate discrete MFD solutions at any required point Pi

in the domain by means of the MWLS technique. If the exact
analytical solution is known, like in benchmark problems,
one may examine the true solution errors

e(LT ) = u(L) − u(T ) (62)

e(HT ) = u(H) − u(T ) (63)

The exact low order solution error (62) is usually not known.
However, it may be estimated as follows

e(LT ) ≈ e(LH) = u(L) − u(H) (64)

where the true solution u(T ) is replaced by the Higher Order
one u(H).

Let ū denotes an approximate smoothed solution based
on the nodal function values. The true residual error is de-
fined then as

r(T ) = Lū − f (65)

Here Lū denotes the exact differentiation of a continuous
approximate solution ū, based on the nodal values obtained
from the solution of difference equations. In the MFDM Lū

is evaluated by expansion of the unknown function ū into
the Taylor series at any arbitrary point Pi in the domain, and
the use of the MWLS approximation. The residual error may
be presented in one of the following forms then:

• low order estimation

r
(L)
i = Lu

(L)
i − fi (66)

• higher order estimation

r
(H)
i = Lu

(H)
i + Δ

(L)
i − fi (67)

• true residual error

r
(T )
i = Lu

(H)
i + Δ

(L)
i + Ri − fi (68)

depending on the approximation order used. Here Lui de-
notes a basic low order MFD operator, Δ

(L)
i —Higher Order

correction term considered, corresponding to the low order
difference operator L, and Ri—neglected truncation error.
It is worth stressing that improved Higher Order residuum
form (67) involves only the truncation error of the Taylor se-
ries, while the low order one (66) is additionally influenced
by the quality of the MFD operator itself.

The MFDM global error analysis has been worked out
starting from the approach earlier developed for the Finite
Element Method (FEM). The FEM most commonly uses
global integral estimators η of the solution error, based on
a variational principle (4). The integral is evaluated over the
chosen subdomain (element in the FEM, triangle or poly-
gon in the MFDM) or over the whole domain. Solution er-
ror estimation may be performed in several different ways.
The classification is made upon the choice of the reference
solution ū ≈ ut (x). Such choice determines the type of the
global error estimator. Some of the most commonly applied
error estimators are the following:

1. hierarchic estimators, with the reference solution pro-
vided by the discretization
(a) h-type, (with cloud of nodes refined from h to h

2 ),
(b) p-type, (with approximation order raised from p to

p + 1),
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(c) HO-type, (proposed here, with approximation order
raised from p to 2p),

2. smoothing estimators, based on the smoothing of the
derivatives of the solution,
(a) Zienkiewicz-Zhue (ZZ)-type, [100] (based on rough

and smoothed derivatives of the solution),
(b) HO-type, (proposed here, based on derivatives of the

solution, with the Higher Order correction),
3. residual estimators, based on the true residual error

(a) explicit type,
(b) implicit type,

4. interpolating estimators, based on the interpolation the-
ory, and not considered here.

η = ‖ē‖ =

⎧
⎪⎪⎨

⎪⎪⎩

√
B(ē, ē) =

√
1
Ω

∫

Ω
(Le)2 dΩ

for (b) and (c) (i)
√

1
Ω

∫

Ω
(ē)2 dΩ for a) and (c) (ii)

(69)

Hierarchic estimators use solutions ū(x) either with the
number of nodes resulting from doubled cloud of nodes den-
sity (h → h/2) or with the increased approximation order
(p → p + 1), where h and p denote local cloud of nodes
modulus and approximation order of the estimated solu-
tion. However, both approaches are much time consuming,
because they require each time analysis of a new discrete
model of the considered boundary value problem. It is worth
stressing that the Higher Order MFDM solution may be suc-
cessfully applied to the hierarchic type error estimators, de-
veloped for the FEM. In that case u = u(L), ū = u(H). This
means that, in the Higher Order correction terms approach,
the approximation order may be significantly raised (from p

to 2p), without the necessity of analysis of two completely
different discretizations of the boundary value problem. It
should be stressed here that this approach also holds for re-
sults obtained from other discrete methods, especially the
Higher Order estimation of the FEM solution.

Local distribution of the solution error (62), required for
integral error estimation, may be expressed in terms of ap-
propriate derivatives difference. Smoothed ū′(x), and the
rough (basic) u′(x) derivatives of the rough solution u(L)(x)

are applied in the well-known Zienkiewicz-Zhue error esti-
mator [100]. Higher order terms may be used here to esti-
mate values of the first derivative of u

e′ = (u′)(H) − (u′)(L) (70)

Residual estimators are the last commonly used type of the
global estimators mentioned here. They may be of explicit
or implicit character. The residual estimators are based on
true residual error (65). However, in the MFDM, one of the
approximate finite representations (66)–(67) is used. The ex-
plicit residual estimator uses the residual error (66) as a mea-
sure of the true solution error. The implicit residual estima-
tor needs additional solution of the modified boundary value

problem (4), with the right hand side assumed in the form of
the residual error.

Quality of the global estimators may be controlled by the
effectivity index [100],

i = 1 + |‖e‖ − η|
‖e‖ , η = ‖ē‖ (71)

and tested on chosen benchmark problems. Here ‖ē‖ de-
notes the error estimator, defined in the same way as in (69).

The main task of the estimators, both the local and the
global kind, is to provide information about the solution and
approximation quality. Such information may be also used
for nodes refinement in the h-adaptive solution approach.

5 Adaptive Multigrid Approach

Many types of adaptation techniques are applied nowadays
in the discrete methods. Among them one may distinguish

• mesh (or cloud of nodes) refinement (h-adaptation ap-
proach), which results in inserting and/or removal of
nodes,

• nodes relocation (r-adaptation approach), which results
in shifting nodes to the zones with the largest amount of
error,

• mesh (or cloud of nodes) refinement in the chosen subdo-
mains (s-adaptation approach),

• raising order of the local approximation (p-adaptation ap-
proach),

• combination of both h and p together (hp-adaptation
approach); usually an additional, mathematically based
strategy for optimal choice of the h and p adaptation pa-
rameters [11, 88, 89] is required then.

The optimal adaptation strategy should be chosen mainly
due to the method’s nature. In the FEM [2, 14, 99, 100],
much easier is to raise the interpolation order of the shape
functions (p-adaptation approach) than to add new nodes.
Mesh refinement, applied in the FEM (element subdivi-
sion), is possible and works effectively although it is much
more complex than in the meshless methods. Adaptation
of h-type results in the FEM in the significant change of
the whole element mesh, which might be computationally
complicated and time consuming for the mesh generator
used. In the meshless methods, however, one may insert, re-
move or shift nodes with much ease. Adding, removing or
shifting nodes involves only small topology changes in the
closest neighbourhood of the new/old node. Therefore, h-
adaptation strategy might be easily used also in the MFDM
[43, 64, 72, 75–79, 81, 87]. In the present section, an ex-
tension of adaptation criteria formulated in [64], together
with some new concepts will be discussed. Higher Order
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correction terms for MFD operators, among many other ap-
plications, may significantly improve estimation of the true
residual error obtained for MFDM solutions. Such estima-
tion may be applied in adaptation using an error based crite-
rion of new nodes (e.g. the Liszka type). Due to high quality
of the HO MFDM solutions, it is expected to work much
more effective than by means of the other criteria. A variety
of 1D and 2D benchmark examples were examined. Each
time, the set of strongly irregular clouds of nodes was gen-
erated, by means of the improved HO residual error criterion
and other smoothing techniques. The solution and residual
convergence on these clouds of nodes were measured using
several discrete error indicators, that seem to be much more
sensitive for the nodes irregularity than those integral ones,
commonly used in the FEM [2, 99].

Analysis of the a-posteriori error, especially the residual
error estimation (66)–(67) is widely used in the h-adaptive
nodes refinement technique. When the Liszka type nodes
generator is used, based on the nodes density control, the
MFD residuals are examined at points, which belong to one-
level-denser cloud only. The modified generation criterion,
based on improved residual error

‖r(H)
i ‖

‖fi‖ = ‖Lui + Δi − fi‖
‖fi‖ ≤ η (72)

is applied then. Here η is the assumed magnitude of the ad-
missible error level threshold. Cloud of nodes smoothness is
also examined. Wherever the smooth transition criterion

ηij =
√

Ωi −√Ωj

ρij

≤ ηadm

ρ2
ij = (xi − xj )

2 + (yi − yj )
2

(73)

(
√

Ωi,
√

Ωj —local cloud of nodes densities at the neigh-
bour nodes xi, xj , ηadm—admissible transition level) is vio-
lated, new nodes are added to keep criterion (73) satisfied.
Other refinement techniques are also possible if necessary,
e.g. shifting or eliminating nodes. New nodes are generated
until the admissible error level threshold is reached.

For arbitrarily irregular clouds several additional error in-
dicators have been proposed and examined. They constitute
the representative pair (h̄, ē) of a local cloud modulus, and a
local error level, either for the solution (62)–(64) or for the
residual (66)–(68). As it was shown in the previous works
[67–85], the best results are obtained for the following pairs
of the discrete error indicators

h̄ =
(

1

N

∑

i

h2
i

) 1
2

, ē =
(

1

N

∑

i

e2
i

) 1
2

(74)

h̄ = 1

N

∑

i

hi, ē = 1

N

∑

i

|ei | (75)

The simplest one (75) is in fact the centre of gravity of
the scattered data points (hi, ei). Thus in adaptation process
each cloud has its own representative pair of (h̄, ē). Distri-
bution of (h̄, ē) for a series of clouds provides estimation
of the convergence rate of the considered quantity, and tests
quality of the error indicators as well.

Both, residual error based, and nodes smoothness crite-
ria, may be applied in the MFDM solution approach, using
Higher Order correction terms. The MFD approximation is
provided by the appropriate correction terms of the MFD
operators. Mesh modification is based on the concept of the
generation criteria, followed the a-posteriori error analysis
and Liszka’s sieve method [46, 64]. The proposed solution
approach consists of the following steps

(i) choose the formulation of the boundary value prob-
lem, optimal for the analysed physics domain,

(ii) plan and generate the initial coarse cloud of nodes by
the Liszka’s method,

(iii) perform Voronoi tessellation and Delaunay triangula-
tion, generate the nodes topology information,

(iv) select the nodes to the MFD stars, e.g. using Voronoi
neighbours criterion,

(v) generate the MFD formulas, by means of the MWLS
approximation,

(vi) generate the MFD equations, in a way dependent on
the boundary value problem formulation considered,

(vii) impose the boundary conditions,
(viii) solve the appropriate SAE and obtain the low order

solution,
(ix) find the Higher Order corrections, for the MFD op-

erators from inside the domain and on its boundary,
by appropriate formulae composition and other tech-
niques, mentioned in previous sections,

(x) solve the modified SAE (only the right hand side of
the SLAE is modified) from the (viii) step and obtain
the Higher order solution,

(xi) find the potential locations of new nodes using one
lever denser cloud of nodes (add 1

2 in 2D problems or
1 in 1D ones) than the one applied to the actual cloud
of nodes,

(xii) examine the residual error criterion (72) at poten-
tial locations of new nodes. Insert new nodes at
points where this criterion is violated (admissible er-
ror norms are exceeded),

(xiii) examine the nodes smoothness by evaluating gradi-
ent of the nodes density change (73) at each node, and
insert new nodes where the smoothness criterion is vi-
olated,

(xiv) unless all appropriate error norms, admissible for the
final solutions are satisfied, return to the (iii) step of
this algorithm.

This way old nodes remain in their locations and new
nodes are added. However, one may also wish to remove the
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old nodes sometimes, e.g. when they are totally surrounded
by examined points with sufficiently low values of residual
error. However, only those nodes, belonging to the actual
cloud of nodes, that do not belong to one level coarser cloud
(− 1

2 step in 2D problems, or −1 in 1D ones), and are not
prescribed as fixed ones (e.g. in the corners), may be re-
moved according to the strategy worked out.

6 Higher Order Adaptive Multigrid Solution Approach

The MFDM approach yields simultaneous algebraic MFD
equations (SAE). In the case of linear boundary value prob-
lems, these are linear equations (SLAE). The SLAE may
have non-symmetric (for local b.v. formulation) or symmet-
ric nature (for global formulations). In the last case they
might be solved by means of similar procedures like those
for the FEM discretization [6, 14, 25, 99, 100]. On the other
hand, non-symmetric equations may use solvers developed
e.g. for the CFD [1]. However, in each case the best ap-
proach seems to be development of solvers specific for the
MFDM and taking advantage of this method nature. Espe-
cially, the multigrid adaptive solution approach seems to be
effective [8, 24, 43, 64, 72, 79–83, 87].

The most important problem, in the case of large SLAE,
is solution efficiency. Below is given a rough classifica-
tion of methods most commonly used for solving the SLAE
(Fig. 12). These are selected according to the solution time
needed. When the multigrid approach is applied, almost lin-
ear time dependency may be achieved, especially for the
bounded SLAE.

The general idea of multigrid analysis was proposed by
Brandt [8] and further developed by Hackbush [24]. New
concepts of basic multigrid procedures, especially the pro-
longation and restriction, were proposed, developed by Ork-
isz [64] and later applied in the MFDM [43, 64, 72, 87].
Solution algorithms, designed for solving boundary value
problems and extended for using the Higher Order approx-
imation (provided by correction terms) in the MFDM and,
were presented in [41, 79, 81, 82].

In the multigrid approach, one simultaneously deals with
a series of clouds of nodes varying from coarse to fine. They
may be given a-priori (non-adaptive multigrid solution ap-
proach) or obtained during an adaptive solution process,
based on a-posteriori error estimation (adaptive multigrid
solution approach). Usually, though not necessarily, each
finer cloud contains all nodes of the previous coarser ones.

In the standard MFDM solution approach, one has to
solve appropriate SLAE for every cloud separately. At first,
for the basic, low order solution, and then, after doing the
HO correction, for the Higher Order solution.

In the multigrid solution approach, the exact solution ob-
tained for a coarser cloud, is extended to a finer one by

Fig. 12 Comparison of the solution time needed for different SLAE
methods

means of the so called prolongation procedure. Conversely
residuum evaluated on a finer cloud is reduced to a coarse
cloud by the restriction procedure. Correction, evaluated on
the coarser cloud, using the same SLAE, as for the previ-
ously prolonged solution, is extended to the finer one, once
again by means of the prolongation procedure. Prolonged
correction yields, in the simplest case, the final solution, ex-
act for the finer cloud. Usually in more sophisticated cases,
additional smoothing approach is also required.

6.1 Prolongation

The prolongation procedure consists of three essential steps

1. Generation of points at potential locations of the new
nodes. There locations depend on the strategy adopted. In
the non-adaptive multigrid approach, they are determined
a-priori by the given series of clouds of nodes, from
coarse to fine. In the adaptive multigrid approach, con-
sidered are points located somewhere between the nodes.
The best strategy, worked out so far, is to assume loca-
tions of new nodes obtained by the Liszka’s type nodes
generator, based on an increase of the nodes density.

2. Examination of the local residuals at each selected point
without placing a new node there, and inserting nodes at
these points where the admissible threshold error value
is exceeded. Here, various additional strategies may be
also applied, e.g. further limitation of the choice by pre-
scribing the maximum percentage of new nodes in the
cloud etc. The residual estimates are evaluated by means
of the MFD operator, with additional correction terms,
providing the independence from the quality of the MFD
operator applied.

3. Generation of the prolongation formula. in the classic
multigrid approach, it may be found from smoothing the
nodal solution (Brandt [8], Hackbush [24]) from the old,
coarser cloud).

However, in the MFDM, a new approach was developed
in [43, 64] and will be used here. For the local formulation of
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boundary value problems, prolongation formula is derived
from collocation condition. The MFD operator is generated
then at every new node Pi finally accepted. Two situations
may be distinguished

• The MFD operator at the new node Pi , i ∈ INEW is built
including this node and m old nodes only (no other new
nodes are involved). From the collocation condition

m∑

j=0

L
(m+1)
i+j ui+j = fi, i ∈ INEW (76)

one finds the explicit prolongation formula [31, 46]

m∑

j=1

L
(m)
i+j ui+j + L

(m)
i ui = fi

→ ui = 1

L
(m)
i

(

fi −
m∑

j=1

L
(m)
i+j ui+j

)

→ uNEW
i =

∑

j

αiju
OLD
j + bi (77)

The prolongation formula (77) extends the solution ui+j ,
j = 1,2, . . . ,m found at the old nodes to a solution ui

required at the new node Pi , i ∈ INEW . Here αij and bi

are MFD coefficients resulting from the relation (76).
• The MFD operator at the new node Pi , i ∈ INEW is built

including this node, and additionally mc old nodes, and
mf new nodes. Following the collocation requirement

mc+mf +1
∑

j=0

L
(mc+mf +1)

i+j ui+j = fi, i ∈ INEW (78)

one obtains the implicit prolongation formula for the so-
lution on the finer cloud of nodes

mc∑

j=1

L
(mc+mf +1)

i+j uOLD
i+j +

mf∑

j=1

L
(mc+mf +1)

i+j uNEW
i+j

+ L
(mc+mf +1)

i uNEW
i = fi

→ uNEW
i = 1

L
(mc+mf +1)

i

(

fi −
mc∑

j=1

L
(mc+mf +1)

i+j uOLD
i+j

−
mf∑

j=1

L
(mc+mf +1)

i+j uNEW
i+j

)

(79)

In this case, when the MFD star consists of the larger
number of the old nodes (mf > 1), additional techniques,
e.g. smoothing, have to be applied. It is worth stressing
that the formula (79) is quite suitable for effective itera-
tive solution process.

Prolongation approach of the same type also holds for the
variational formulation of b.v. problems δΠ(uOLD, uNEW) =
0 as well. It may be introduced at each new node assuming
the local variations δuNEW �= 0 and δuOLD = 0. Such an ap-
proach could be used not only in the MFDM, but also in the
FEM.

6.2 Restriction

After the prolongation, the restriction is the second most im-
portant procedure in the multigrid solution approach. It will
be discussed here in a new original form proposed and de-
veloped in [43, 64].

On the most fine cloud of nodes, one evaluates residuals

r = Lu − f (80)

however, instead of solving SLAE Lu = f , on that cloud of
nodes evaluation of appropriate residuals for the subsequent
coarser clouds is done, using the following assumptions
[43, 64]:

• The “virtual work”

δW =
∫

Ω

rδudΩ (81)

done by residuals r (residual forces) on the virtual dis-
placements δu is the same for both the old and new clouds
of nodes.

• Virtual displacements of new nodes δuNEW are found
from the prolongation formula (77) determined above,
namely

δuNEW
i =

∑

j

αij δu
OLD
j (82)

One may evaluate appropriate MFD expressions of the vir-
tual work on the new cloud of nodes, (83)

δW ≈
∑

f

rNEW
f δuNEW

f ΩNEW
f +

∑

c

rOLD
c δuOLD

c ΩNEW
c

=
∑

f

rNEW
f

∑

s

αlsδu
OLD
s ΩNEW

f

+
∑

c

rOLD
c δuOLD

c ΩNEW
c

=
∑

c

⎛

⎝
∑

f

rNEW
f αf cΩ

NEW
f + rOLD

c ΩNEW
c

⎞

⎠ δuOLD
c

(83)

and on the old one (84)

δW ≈
∑

c

r̄OLD
c δuOLD

c Ω̄NEW
c (84)

where c ∈ IOLD, f ∈ INEW .
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Taking advantage of the linear independence of the vir-
tual displacements δuOLD

c from each other, one may obtain
the required relation between the residuals on the old cloud
of nodes r̄OLD

c and the residuals rNEW
c , rOLD

c determined on
the new cloud
(
r̄OLD
c Ω̄OLD

c

)
∂uOLD

c

=
(∑

f

rNEW
f αf cΩ

NEW
f + rOLD

c ΩNEW
c

)

∂uOLD
c (85)

r̄OLD
c = 1

Ω̄OLD
c

(∑

f

rNEW
f αf cΩ

NEW
f

+ rOLD
c ΩNEW

c

)

(86)

In the above formulas, given are

1. residuals rNEW
c , rOLD

c for new and old nodes of the new
cloud,

2. surface areas of the Voronoi polygons ΩNEW
c , Ω̄OLD

c ,

ΩNEW
f for both the new and old clouds,

3. residuals rNEW
f and rOLD

c for new and old nodes of the
new cloud.

6.3 Use of the Higher Order Correction Terms

In the standard MFD multigrid approach, raising order of
local approximation was possible due to use of the so called
HO MFD operators (Hackbush, [24]). They were built on
larger number of nodes, or, more general, on larger number
of degrees of freedom. The same multigrid solution algo-
rithm was used in order to reduce the appropriate residual
error, which appeared after applying such modified MFD
operator.

In the HO approximation approach, proposed here, one
does not need to generate new MFD operator. Instead of as-
suming new degrees of freedom, one has to consider appro-
priate correction terms of the same basic MFD operator, re-
sulting from the Taylor series expansion of the sought func-
tion. Those terms modify the right hand side of the MFD
residual defect, which may be reduced using the same pro-
longation and restriction procedures.

The approach involves two steps

1. First, residual error on the last fine cloud (with no HO
correction) is considered, namely

r(L) = Lū(L) − f (87)

where ū(L)—is the prolonged solution from the previous
clouds. When (87) is restricted to the basic cloud, it pro-
vides the appropriate correction Δu(L) of the prolonged
solution ū(L).

As the final result, one obtains the low order solution,
which is exact for the considered fine cloud

u(L) = ū(L) + Δu(L) (88)

2. Afterwards, when the low order solution u(L) (88) is ob-
tained and the correction terms Δ(L) = Δ(u(L)) are eval-
uated, considered is improved form of the residual error
(87), obtained by modification of its right hand side

r(H) = Lu(L) − Δ(L) − f (89)

After substituting to residuum (89) the formulas (87) and
(88), it may be simplified to the following form,

Δ(L) = 0 (90)

Here, the residual defect (90) comes directly from the HO
correction, resulting from raising the approximation order,
from p-th to 2p-th.

When the residual defect (90) is restricted to the basic
cloud, it provides the appropriate HO correction Δu(H) of
the low order solution (88). As the final result, one obtains
the HO solution, which is exact for the 2p-th polynomial

u(H) = u(L) + Δu(H) (91)

It is worth stressing, that the best quality Higher Order so-
lution is usually required, only for the last, finest cloud of
nodes. Therefore, an additional iterative solution smoothing
of the Higher Order solution, corresponding to the (90), is
not necessary on the intermediate clouds. For those clouds,
one needs to apply the 3/2 + 3/2 = 3 of the multigrid cycle.
In a particular case, the Higher Order solution is obtained
only for the last cloud of nodes.

6.4 Non-adaptive Multigrid Solution Approach with HO
Approximation

The above given concepts of the prolongation and restric-
tion procedure are integral parts of the multigrid analysis.
In the standard, non-adaptive, multigrid approach, one deals
with the set of regular of irregular clouds of nodes, given a-
priori. Usually, each new cloud contains all nodes of the old
ones. However, this assumption does not hold, if nodes are
removed from the subsequent clouds.

In the multigrid approach, the appropriate SLAE are
solved only for the first, usually the coarsest cloud. The so-
lution ū(L) is prolonged then step by step, to the last, finest
cloud. After evaluating residuals (87) for that cloud, they are
restricted to the first cloud, where the equivalent correction
term Δu(L) is calculated. The final corrected solution (88),
exact for the last cloud, is obtained when residuals for this
cloud reach zero.

When the low order solution (88) is found, appropriate
HO correction Δ(L) may be evaluated, resulting from ad-
ditional terms of the Taylor series expansion of the MFD
operator. The residual defect (90) is restricted again to the



Meshless Finite Difference Method with Higher Order Approximation—Applications in Mechanics 23

basic cloud of nodes, when the equivalent correction Δu(H)

is calculated. The final HO solution (91), exact for the as-
sumed approximation order, is obtained by means of correc-
tion prolongation.

The whole non-adaptive multigrid approach consists of
the following steps

1. determination of a set of clouds, regular (meshes) or ir-
regular ones,

2. generation of the nodes topology (in 2D: Voronoi poly-
gons, Delaunay triangles) for all clouds,

3. selection of MFD stars for all clouds,
4. generation of the MFD formulas for Du (complete

set of low order derivatives) and Lu by means of the
MWLS approximation for all clouds; use of these for-
mulae for composition of difference operator, corre-
sponding to the differential operators, appearing in the
boundary value problem formulation,

5. derivation of the Higher Order correction terms, Δ, cor-
responding to the Du and Lu for the last cloud only,

6. generation of the MFD equations, depending on the
problem formulation, for all clouds

7. imposing of the boundary conditions, for all clouds
8. solution of Lu(L) = f for the basic cloud, and obtaining

the low order solution u(L),
9. evaluation of the correction terms Δ, for the basic cloud,

10. solution of Lu(H) = f − Δ(L) equation for the basic
cloud, and obtaining the Higher Order solution u(H),

11. prolongation of the solution ū(L) through the interme-
diate clouds to the last cloud, e.g. in the case, when the
MFD star, used for prolongation, contains only one new
node

• prolongation formula for the new nodes in the new
cloud,

uNEW
i = − 1

mii

l∑

j = 0
j �= i

miju
OLD
j + 1

mii

fi

i = 0,1, . . . , nNEW (92)

12. prolongation formula for the old nodes (common
for two clouds).

uNEW
i = uOLD

i , i = 0,1, . . . , nOLD (93)

The above given explicit formulae hold only for the
simplest case, when each MFD star consists only one
new node. However, MFD star, built in such way, are of
worse quality than the ones using additional new nodes.
The problem becomes implicit one then and should be
treated in an iterative way.

The above formulas may be presented in the matrix
notation

uNEW+OLD = M · uOLD + f (94)

where M is the prolongation matrix

M
[(nNEW+nOLD)×nOLD]

= {Mij }

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0
m1(1) m2(1) m3(1) m4(1) . . . 0

0 1 0 0 . . . 0
m1(2) m2(2) m3(2) m4(2) . . . . . .

...
...

...
...

. . .
...

0 0 0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(95)

12. optional smoothing steps for intermediate clouds and
residual calculation on the last cloud

r(L) = Lū(L) − f (96)

13. residuum restriction to the basic cloud.
Restriction formula for the new nodes in the new

cloud

rOLD
i = 1

Ωi

·
(

Ωi · rNEW
i +

nNEW
∑

j=0

Ωj · rNEW
j · mij

)

i = 1,2, . . . , nOLD (97)

may be written in the following matrix notation

rOLD = R · rOLD+NEW (98)

where R is the restriction matrix

R
[nOLD×(nOLD+nNEW )]

= {Rij }

Rij = 1

Ωi

nNEW+OLD
∑

j=1

Mji · Ωj (99)

14. solution correction term Δu(L) calculation for the basic
cloud

L
(
Δu(L)

)
= r (100)

15. prolongation of the correction Δu(L) through the inter-
mediate clouds to the last cloud
(
Δu(L)

)NEW+OLD = M
(
Δu(L)

)OLD + r (101)

17. the final correction of the low order solution for the last
cloud,

u(L) = ū(L) + Δu(L) (102)

18. evaluation of the correction terms for the last cloud
19. optional smoothing steps, residual calculation

r(H) = Lu(L) − Δ(L) − f (103)
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Fig. 13 Non-adaptive multigrid
solution path for HO MFDM

20. repetition of the steps (xiii)–(xv) for the residuum r(H)

21. the final correction of the Higher Order solution for the
last cloud

u(H) = ū(H) + Δu(H) (104)

1. postprocessing of final results, on the last cloud.

The above given algorithm for the non-adaptive solu-
tion approach, may be illustrated in the following diagram
(Fig. 13). For the sake of simplicity, smoothing iteration
steps are omitted here, following the assumptions that pro-
longation formulas are found using MFD stars with one new
node only.

6.5 Adaptive Multigrid Solution Approach with HO
Approximation

As opposite to the non-adaptive multigrid solution approach
with the HO approximation considered above, adaptivity is
applied here [64]. Solution procedure is combined with si-
multaneous design of subsequent clouds of nodes. It is based
on the results of an a-posteriori error analysis, especially on
the improved estimation of the true residual error. Therefore,
sufficiently precise Higher Order solution is needed not only
on the finest cloud, but also on all intermediate ones. This
solution is applied then to Higher Order estimation of the
residual error at points being the candidates for insertion of
new nodes.

The following steps of the general solution approach are
needed then

1. design and generation of an initial (basic) coarse cloud,
2. generation of the cloud topology (Voronoi polygons,

Delaunay triangles in 2D), for the current cloud,
3. selection of MFD stars for this cloud
4. generation of the MFD formulas Du (complete set of

low order derivatives) by means of the MWLS approxi-
mation; use of these formulae for composition of Lu (a

difference operator, corresponding to differential oper-
ators, appearing in the boundary value problem formu-
lation),

5. derivation of the Higher Order correction terms, Δ, cor-
responding to the Du and Lu, for the current cloud,

6. generation of the MFD equations, for the current cloud,
depending on the problem formulation,

7. imposing of the boundary conditions for the current
cloud,

8. solution of Lu(L) = f for the basic cloud, and obtaining
the low order solution u(L), exact for that cloud,

9. evaluation of the correction terms Δ, for the basic cloud,
10. solution of Lu(H) = f − Δ(L) for the basic cloud, and

obtaining the Higher Order solution u(H), by means of
the HO solution smoothing,

11. one level denser cloud generation, with proposed local-
isation of new nodes,

12. generation of the MFD operators Lu and derivation of
the Δ terms at points being candidates for new nodes
insertion,

13. a-posteriori residual error evaluation r(H) = Lu(H) −
Δ(H) − f at points being candidates for new nodes in-
sertion, and acceptance of those, where residual error
exceeds its admissible value ‖r(H)‖ ≥ ηadm; additional
nodes generation criteria may be also applied and satis-
fied here,

14. solution ū(L) prolongation to the new cloud, in a way
depending of number on the new nodes in the MFD
star; simple explicit formula (78) may be used in the
case when the MFD star consists of one new node only;
smoothing iterations may be needed, if the MFD star
contains more than one new node (79),

15. optional smoothing steps and residual error calculation
r(L) = Lū(L) − f for the new cloud,

16. residuum r(L) restriction to the basic cloud,
17. solution correction calculation L(Δu(L)) = r(L) for the

basic cloud,
18. solution correction Δu(L) prolongation to the new

cloud,
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Fig. 14 Adaptive multigrid
solution path for HO MFDM

19. final correction of the low order solution u(L) for the
new cloud,

20. evaluation of the correction terms Δ(L) for the new
cloud,

21. optional smoothing steps and residual error calculation
r(H) = Lu(L) − Δ(L) − f ,

22. repetition of the steps (xvi)–(xviii) for the residuum
r(H),

23. final correction of the Higher Order solution u(H) for
the last cloud,

24. repetition of steps (xxi)–(xxiii) until convergence is
reached,

25. repetition of steps (xi) – (xxiv) until sufficient solution
precision ‖r(H)‖ ≥ ηadm is reached in the proposed new
nodes locations of the next cloud (corresponding to the
step (xiii)),

26. final postprocessing of the results performed on the last
cloud.

The above proposed solution steps may be also presented
in the form of the adaptive solution path (Fig. 14). Here,
for the sake of simplicity, smoothing iterations are omitted.
They may be needed, if the MFD star, used in prolonga-
tion procedure, contains more than one new node. However,
smoothing iterations may be performed simultaneously with
the HO iterations, improving the HO solution. The whole al-
gorithm of the multigrid adaptive solution approach with the
HO approximation is presented in the form of the flow chart
in Fig. 15.

7 Numerical Examples

A variety of benchmark tests of 1D and 2D boundary value
problems were solved so far using the higher order approx-
imation technique. Many aspects of the proposed approach
were tested. Mostly the following ones were investigated:

• application of the approach to the local solution and resid-
ual error estimation, when using higher order terms,

• application of the approach to the global estimation of the
solution error when using various types of global estima-
tors and higher order terms,

• application of the higher order estimators to an appropri-
ate adaptive cloud of nodes generation,

• examination of the error indicators, convergence rate and
solution quality improvement on those clouds,

• reduction of the calculation time, when using the HO
multigrid adaptive strategy, based upon a-posteriori error
estimation.

Finally, the MFDM solution approach with the Higher Order
terms was applied in analysis of selected engineering prob-
lems.

7.1 Introductory 1D Example

1D example shows the main idea of the proposed approach.
A simply supported beam under uniform loading is consid-
ered (Fig. 16). For the case of simplicity, the boundary value
problem is posed in the local formulation

w′′(x) = −M(x)

EJ
≡ f (x)

M(x) = 1

2
q x (2l − x) (105)

w(0) = w(2l) = 0

where M(x) denotes bending moment, EJ—bending stiff-
ness, 2l—beam length, and q—uniform load. The most
rough discretization with only 3 regularly spaced nodes is
used, (with modulus h = l). Therefore, only one unknown
function value w1 appears.

Standard (second order) difference operator is applied
wII

1 ≈ Lw1 = w0−2w1+w2
l2

. By collocation in the central
node, Lw1 = f1, and after providing boundary conditions
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Fig. 15 Flow chart of the
adaptive multigrid solution
approach with the HO
approximation

w0 = w2 = 0, one gets the difference solution, which is of
the low order (corresponds to the low order difference oper-
ator L).
{

Lw1 = f1

w0 = w2 = 0
⇒ w

(L)
1 = 1

4

ql4

EJ
(106)

Expansion of the function values of the difference operator
Lw1 into the Taylor series

Lw1 = 1

l2

⎧
⎪⎨

⎪⎩

w1 − lw′
1 + 1

2 l2w′′
1 − 1

6 l3w′′′
1 + 1

24 l4wIV
1 + · · ·

−2w1

w1 + lw′
1 + 1

2 l2w′′
1 + 1

6 l3w′′′
1 + 1

24 l4wIV
1 + · · ·

= w′′
1 + 1

12
l2wIV

1 + · · · = f1 − Δ1 − R1 (107)

yields the form of the considered correction terms Δ1

(derivatives up to the 4-th order) and the neglected trunca-
tion error R1. The value of the higher order derivative wIV

1
is calculated using formula composite, like

Δ1 = − 1

12
l2wIV

1 = − 1

12
l2 (w′′

1

)′′

= − 1

12
(w′′

0 − 2w′′
1 + w′′

2) (108)

and low order solution values

w′′
0 = f0 = 0, w′′

2 = f2 = 0,

w′′
1 ≈ Lw1 = −1

2

ql2

EJ

(109)
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Fig. 16 1D introductory
example—simply supported
beam under uniform load

The correction term Δ1 = − 1
12ql2 modifies the right hand

side of the difference equation (106) (Lw1 = f1 − Δ1),
whereas the difference operator L remains unchanged. So-
lution of this modified equation yields the higher order so-
lution
{

Lw1 = f1 − Δ1

w0 = w2 = 0
⇒ w

(H)
1 = 5

24

ql4

EJ
(110)

which is exact within the 4-th polynomial order. In fact, it
is the exact analytical solution as well, because in this case
the beam deflection is described by the polynomial of the 4-
th order (R1 = 0). Thus the exact solution is obtained using
only one node with the unknown value.

The above example, though very simple, reflects the main
concept and advantages of the Higher Order approach. The
whole procedure needs two steps only, with the same dif-
ference operator, but with modified right hand side. The fi-
nal Higher Order solution suffers from the truncation error
(here, R = 0), but does not depend on the quality of the dif-
ference operator used in the first step.

7.2 Beam Buckling Example

This benchmark was chosen mainly for

• Examination of the quality of the HO solution, in the
case when the analytical solution is described by a non-
polynomial function (here trigonometrical),

• Comparison of the true analytical errors of both the low
order and HO solutions,

• Examination of the convergence rates and solution con-
vergence improvement on the set of regular clouds.

Formulation of the boundary value problem, which can
be treated as eigenvalue problem of the differential equation

w′′(x) = −P (w(l) − w) , 0 ≤ x ≤ l

w(0) = 0, w′(0) = 0
(111)

The classic Euler problem was also solved using either
the low order or higher order approximation in order to ex-
amine the quality of those solutions, as compared to the ex-
act value of the Euler force

PE = 1

4

π2EJ

L2
≈ 2.467

EJ

L2
(112)

Considered was the coarse regular mesh with 2 nodes
only (spaced with h = L). Discretization of the natural con-
dition w′(0) = 0 was performed using a fictitious node f

Fig. 17 Cantilever beam subjected to buckling load P

and evaluation

w′
0 ≈ w1 − wf

2h
= 0 ⇒ wf = w1 (113)

Classical FD operator for the second derivative

w′′
i ≈ wi−1 − 2wi + wi+1

h2
(114)

was used for the internal nodes. For the mesh shown in
(Fig. 17) (one nodal unknown w1 = ?), the following FD
solutions (values of buckling forces) are obtained together,
with the appropriate exact relative error

ε =
∣
∣
∣
∣
P − PE

PE

∣
∣
∣
∣× 100% (115)

• Low order solution (mesh with 2 nodes, Fig. 17) PLO =
2EJ

L2 , εLO = 18.9%,
• Higher order solution (mesh with 2 nodes, Fig. 17) PHO =

2.40 EJ

L2 , εHO = 2.7%.

Precision of the higher order solution is over 6 times
better than the lower order one. Calculations for the set of
ten regular more and more dense meshes were performed,
showing that the quality of the low order solution on the
last mesh (with 11 nodes) is similar to the higher order one
on the second mesh with 3 nodes only (Fig. 18). Further-
more, the convergence rates, evaluated in the logarithmic
scale aLO = 1.94, and aHO = 4.03 yield solution conver-
gence improvement aHO

aLO
= 2.08, which means that the HO

error εHO decreases over 102 = 100 times faster, when com-
pared with the low order one εLO. The dashed line in Fig. 18
represents the true LO solution error level for mesh with 13
nodes. In this simple case, the same true HO error level may
be achieved for the mesh with 3 nodes only.

7.3 2D Boundary Value Test Problem

The boundary value problem described by the Poisson equa-
tion with the essential boundary conditions
{

∇2w = f (x, y) in Ω

w = w̄ on ∂Ω

Ω = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (116)
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Fig. 18 Convergence of the LO and HO FD solutions for the 1D buck-
ling problem

was analysed (w ∈ C2). The following exact solution was
considered [28]

w(x,y) = −x3 − y3 + exp

(

−
(

x − 0.5

0.2

)2

−
(

y − 0.5

0.2

)2)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1

→ f (x, y) = −6x − 6y + exp(x, y) (117)

shown in Fig. 19 with the right hand side function. The ap-
propriate variational weak (Galerkin) form was analysed as
well (w ∈ H 1

0 , ∀v ∈ H 1
0 )

−
∫

Ω

(
v′
xw

′
x + v′

yw
′
y

)
dΩ +

∫

∂Ω

(
w′

xnx + w′
yny

)
v d∂Ω

=
∫

Ω

vf dΩ (118)

Regular mesh with 400 nodes only was used for calcula-
tions. Results for both the local and global (variational) for-
mulations are presented in Fig. 20 (local) and Fig. 21 (vari-
ational). In those figures, the first row presents plots (in the
same scale) of the low order local solution error eLT , Higher

Order local solution error eHT and Higher Order local esti-
mation of the low order local error eLH respectively. Their
second rows present the true local residual error rt , its low
order local estimation rL and Higher Order (improved) local
estimation rH , respectively.

The same mesh was used for comparison of the cho-
sen global estimators of the low order solution error of
(116). The estimators were evaluated between nodes, on the
Delaunay triangles (one integral value over each triangle),
and over the whole domain (one value for the whole do-
main). They are presented (Figs. 22 and 23) starting from
the exact error distribution. Then hierarchic estimators (p,
h, HO), smoothing (Z-Z, HO) and residual (explicit and im-
plicit) are presented. Above the graphs, the effectivity in-
dexes (71) values are given. The best results were obtained
when using the Higher Order hierarchic estimator (i = 1.03)
and Higher Order smoothing estimator (i = 1.23). Their
quality is superior, especially when compared to the other
ones.

Further tests concerned application of higher order esti-
mators to an appropriate adaptive nodes generation. First,
the coarse regular mesh with 16 nodes was given. The
subsequent clouds were generated using the criteria (72)–
(73), and the local estimation of the residual error (39) of
(116). The adaptation process was stopped after 60 iterations
(Fig. 24), when the break-off criterion was satisfied. The fi-
nal finest, strongly irregular cloud consisted of 179 nodes.
During the adaptation process, the representative pairs (h̄, ē)

had been calculated on each cloud separately, using sim-
ple (centre of gravity) error indicator (75). Those quantities
were used in order to examine the convergence of the so-
lution and residuum on the set of irregular adaptive clouds.
The convergence rates (Fig. 25), for the low order solution
(the blue dots) a(L) = 2.01 and for the higher order one (the
red dots) a(H) = 4.29 give the final solution improvement
rate (in the logarithmic scale) a(H)/a(L) = 2.37. The corre-
sponding residuum improvement reaches a(H)/a(L) = 2.47.

Above mentioned values of convergence rates are col-
lected in Table 1. They are compared there with the values
of convergence rates obtained for the sets of regular meshes,

Fig. 19 Exact solution and
right hand side function for the
2D test
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Fig. 20 Local solution and residual error estimations—local formulation

Fig. 21 Local solution and residual error estimations—variational formulation
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Fig. 22 Global solution error
estimation: exact error;
h-hierarchic, p-hierarchic and
HO hierarchic estimators

Fig. 23 Global solution error
estimation: ZZ-smoothing,
HO-smoothing, residual explicit
and residual implicit estimators

Table 1 Comparison of the low
and Higher Order solution and
residual convergence rates,
evaluated on the sets of regular
meshes and adaptive irregular
clouds of nodes

Convergence type Regular meshes Adaptive irregular clouds of nodes

Solution convergence aLT 2.75 2.01

Solution convergence aHT 4.51 4.29

Solution improvement aHT /aLT 1.64 2.37

Residual convergence aL 1.40 0.94

Residual convergence aH 2.62 2.32

Residual improvement aH /aL 1.87 2.47

with the similar number of nodes as it appears in the ap-

propriate irregular cloud. Though the HO convergence are

very high (however similar to those obtained for irregular

clouds), the improvement rates are not as high as in the ir-

regular case. MFD operators are much more precise than for

the irregular clouds. However, the improvement rates for ir-
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Fig. 24 Set of irregular
adaptive clouds of nodes

Fig. 25 (Color online) Solution
and residual convergences on
the set of irregular clouds

regular clouds appear to be much higher—in such case the

low order MFD (without correction terms) is rather of low

quality and it requires a lot of individual adjustment. On the

other hand, similarity in convergence rates for both regu-

lar and irregular cases proved the HO MFD solution to be

independent from the quality of the basic low order MFD

operator.

Finally, the comparison of the solution time between the

standard (without multigrid) and the multigrid solution ap-

proaches was investigated. Two various situations were ex-

amined: HO multigrid approach on regular meshes (Fig. 26),

and adaptive HO multigrid approach (Fig. 27) for the set of

clouds of nodes already presented in Fig. 24.

In each case multigrid approach speeded up the FD anal-

ysis. Results show potential power of the multigrid approach

in order to reduce the computational time involved in the

analysis of large boundary value problems.

In the case of regular meshes (non-adaptive multigrid so-

lution approach) tested the speed up factor for the solution

Fig. 26 Comparison of computational time for the HO standard and
HO adaptive multigrid solution approaches for regular meshes

time was

T = tSTANDARD

tMULTIGRID
= 45.69 (119)

and in the case of irregular clouds of nodes (adaptive multi-
grid solution approach) the speed up factor for the solution



32 S. Milewski

Fig. 27 Comparison of computational time for the HO standard and
HO adaptive multigrid solution approaches for irregular clouds

time was

T = tSTANDARD

tMULTIGRID
= 10.12 (120)

One should realise that the solution time, in case of multi-
grid approach, strongly depends on the software and hard-
ware type used. Effective implementation of the algorithms
as well as use of parallel computing may additionally in-
crease the speed up factors (119) and (120). Moreover, sig-
nificant achievement of solution time is specially expected
when dealing with larger numbers of unknowns.

8 Selected Engineering Applications

The MFDM approach may be used in variety of engineer-
ing applications. Selected 1D and 2D problems present some
chosen examples of such numerical analysis. Especially, the
railroad rail analysis, presented here, may be treated as part
of larger research, focused on the analysis of the residual
stresses [30, 34, 73, 86]. Those simple tests give hope how
much could be gained towards effective solving more so-
phisticated 2D and 3D problems, when using the MFDM
with HO approximation.

In the first tests, solved are simple non-linear b.v. prob-
lems. However, the main goal of these tests is to present the
possibility of the HO correction terms integration into the
standard iterative solution approach of a non-linear problem.
Moreover, the successive over-relaxation method is applied,
in order to speed up the iteration process. New concepts
of evaluating the relaxation parameter are proposed [84,
88]. They are expected to provide the significant solution
convergence and calculation time improvement, when com-
pared with the standard acceleration techniques. The follow-
ing tests are 1D problems of rather simple nature as well.
However, the discrete analysis of those tests requires multi-
ple solving of boundary value problems. Therefore, effective
and fast numerical tool is needed.

8.1 Formulation of the HO MFDM Solution Approach for
the Non-linear Problems

The non-linearity in mechanics [50, 101] may have two
main sources, namely geometrical (e.g. large deformations,
large strains) and physical ones (e.g. non-linear constitutive
law). In the present section, the general MFDM solution ap-
proach for analysis of the non-linear boundary value prob-
lems is presented. The quality of the MFD approximation
may be raised by considering HO correction terms. Those
terms are involved in the standard MFD iterative solution
approach, applied in the case of non-linear problems. Pro-
posed is also a new concept of acceleration of the standard
Newton-Raphson method [99], used for iterative solution of
the Simultaneous Algebraic Equations (SAE).

Consider the locally formulated boundary value problem
{

Lu = f in Ω

Lbu = g on ∂Ω
(121)

For linear problems, the differential operator L may be pre-
sented in the form

L(u) = a0u + a1ux + a2uy + a3uxx + · · · (122)

with functional coefficients ai = ai(x), i = 0,1, . . . . The
MFDM discretization leads to the Simultaneous Linear Al-
gebraic Equations (SLAE) then. Such group of problems
was considered in the previous chapters.

For the non-linear problems, the differential operator L

may be presented in the following general form

L(u) = F

(

u,
∂u

∂x
, . . . ,

∂(p)u

∂x(p)

)

(123)

Solution of (121) may be obtained then by the method of
successive iterations, solving the appropriate SLAE on every
step of calculations.

In the most primitive method of simple iterations, one
solves the linear problem, corresponding to (121) and (123),

in which the derivatives values u, ∂u
∂x

, . . . , ∂(p−1)u

∂x(p−1) are evalu-
ated from the previous iteration step. However, convergence
of this method may be poor or not sufficiently fast.

Much faster are those methods, in which the values ob-
tained from the SLAE are treated as the correction terms,
added to the unknown function u. Among them, one may
distinguish Newton-Raphson method and its numerous
modifications. Their common feature is using of the tangent
(or secant) incremental matrix, while they differ from each
other in the manner of calculating the right hand sides of the
SLAE. The incremental matrix ∂F

∂u
is derived from the Tay-

lor series expansion of (123) with respect to the unknown
function u

L(u) = F0 + ∂F

∂u
Δu + · · · ≈ F0 + ∂F

∂u
Δu (124)
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Fig. 28 Incremental Newton-Raphson method with the selfcorrecting
approach

where Δu—corrections of the solution, and F0—result of
the previous iteration step. In the Newton-Raphson method,
the right hand side of the SLAE comes from the difference
between the function f of the differential equation (121) and
the current value of the left hand side of (121). The initial ap-
proximation is improved, during the iteration process, until
the final precision is reached.

In the practical applications, the Newton-Raphson meth-
od is combined with the incremental approach, where the to-
tal non-homogeneity of the system is divided into n (n > 0)

increments (e.g. load increments). For each increment, the
iterative Newton-Raphson is applied separately. Moreover,
additional acceleration of the convergence may be obtained
by using appropriate relaxation or the self-correcting ap-
proach. The general incremental Newton-Raphson method
with the correcting parameter α (α = 1.2–1.3) [45] may be
given in the following form

Δui

∂F

∂u
= i · f

n
− α

(
i · f
n

− Fi−1

)

, i = 1,2, . . . , n

(125)

where ∂F
∂u

is the incremental Jacobian matrix (124), n—
assumed number of increments, Fi−1—left hand side value
of (121), on the previous iteration step. The geometrical in-
terpretation of (125) for 1D case is shown in Fig. 28.

Evaluation of the incremental matrix (124) may be per-
formed in several ways. Among them one may distinguish

1. N-R method with the tangent incremental matrix, evalu-
ated using analytical methods,

2. N-R method with the secant incremental matrix, evalu-
ated using numerical differentiation,

3. Modified N-R, in which the incremental matrix is up-
dated after several iteration steps,

4. Initial NR, in which the incremental matrix is evaluated
once for each increment,

5. N-R method, in which the incremental matrix has the di-
agonal form.

In the MFDM analysis, symbolic derivation may be used
for evaluating the tangent matrix on every k-iteration step
[37, 38, 45, 97], followed by application of the MFD formu-
las, generated by the means of the MWLS approximation,

Fuj

(
u

(k−1)
i , . . . , (u

(p)
i )(k−1)

) · u(k)
j

= Fuj

(
u

(k−1)
i , . . . , (u

(p)
i )(k−1)

) · u(k−1)
j − f

(k−1)
i

(126)
Fuj

(
u

(k−1)
i , . . . , (u

(p)
i )(k−1)

)

= ∂Fj

∂ui

∂ui

∂uj

+ ∂Fj

∂u′′
i

∂u′′
i

∂uj

+ · · · + ∂Fj

∂u
(p)
i

∂(p)ui

∂uj

Here differentiation
∂Fj

∂u
(s)
i

, s = 0,1, . . . , p may be performed

analytically, by symbolic operations, while derivatives ∂u(s)

∂uj
,

s = 0,1, . . . , p come from an appropriate MFD formulae,
generated and composed for the set of partial derivatives, at
the basic stage of the approach. This approach was success-
fully applied in several systems, designed for the discrete
analysis of the boundary value problems (e.g. FIDAM [45]
and NAFDEM [36, 38]).

In the present paper, the approach is used together with a
new concept of acceleration of the NR convergence. Instead
of using self-correcting method, with arbitrarily chosen co-
efficient α, the modified relaxation technique is proposed.

In the most iterative methods, for both the SAE and
SLAE, the constant relaxation parameter μ is chosen in
such a way as to minimise the spectral radius of the error
dumping matrix [90]. Evaluation of such μ is difficult, so
it is obtained approximately, based on trial and error val-
ues of μ and observing the convergence (μ = 1.2–1.4). In
the proposed optimal relaxation method (Fig. 29), proposed
by Orkisz [88], and developed by Orkisz and author of the
present paper [84], the variant relaxation parameters μ(k) or
μ(k), λ(k) are chosen in such a way that they minimise the
relaxed residuum magnitude of the current solution û(k).
{ ˆ̂r(k) = F

(
û(k), . . . , (û(p))(k)

)− f (k)

r(k−1) = F
(
u(k−1), . . . , (u(p))(k−1)

)− f (k−1)

→ Δr(k) = r̂ (k) − r(k−1) (127)

The relaxation parameter(s) is/are variable. In each iteration
step their values are found by means of simple calculations.
Two situations may be distinguish

1. one relaxation parameter μ(k) is found by minimising the
magnitude I of relaxed residuum r(k) of current solution
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Fig. 29 Search for the optimal relaxation

r(k) = r(k−1) + μ(k)(r̂(k) − r(k−1))

= r(k−1) + μ(k)Δr(k) (128)

I = (r̂(k))t r̂ (k) (129)

dI

dμ(k)
= 0 → μ(k) = 1 − (r̂(k))tΔr(k)

(Δr(k))tΔr(k)

→ u(k) = u(k−1) + μ(k)
(
û(k) − u(k−1)

)
(130)

2. two relaxation parameters μ(k) and λ(k) are found after
two iteration steps by minimising the modified residuum
functional

I =
(
r̂ (k)
)t

r̂ (k)

=
(
r(k−1)

)t

r(k−1) +
(
μ(k)

)2 (
Δr(k)

)t

Δr(k)

+
(
λ(k)
)2 (

Δr(k−1)
)t

Δr(k−1)

+ 2μ(k)
(
r(k−1)

)t

Δr(k) + 2λ(k)
(
r(k−1)

)t

Δr(k−1)

+ 2μ(k)λ(k)
(
Δr(k)

)t

Δr(k−1) (131)

hence

⎧
⎪⎪⎨

⎪⎪⎩

μ(k) = − (r(k−1))tΔr(k−1)− (Δr(k))t r(k−1)

(Δr(k))t Δr(k−1)
(Δr(k−1))tΔr(k−1)

(Δr(k))tΔr(k−1)− (Δr(k))t Δr(k)

(Δr(k))t Δr(k−1)
(Δr(k−1))tΔr(k−1)

λ(k) = − (r(k−1))tΔr(k−1)+μ(k)·(Δr(k))tΔr(k−1)

(Δr(k−1))tΔr(k−1)

(132)

and finally

u(k) = u(k−1) + μ(k)
(
û(k) − u(k−1)

)

+ λ(k)
(
u(k−1) − u(k−2)

)
(133)

As it was shown in [84, 88], the relaxation discussed
above may significantly raise the convergence rates of the
iterative methods, and reduce the computational time.

The convergence of the N-R iterative method should be
controlled by estimating both the solution and residual er-
rors

ε = ‖u(k) − u(k−1)‖
‖u(k)‖

?≤ εadm

ω = ‖F(u(k), . . . , (u(p))(k)) − f (k)‖
‖F(u(0), . . . , (u(p))(0)) − f (0)‖

?≤ωadm (134)

Here, εadm and ωadm denote the admissible error values, for
solution and residuum respectively.

In the MFDM solution approach, the non-linear analy-
sis is integrated with the solution process. One may com-
bine here the features of iterative procedures of the Newton-
Raphson method (125) and smoothing of the HO solution.
Both methods deal with the same coefficient matrix of the
set of MFD equations, both with a modified right hand side
vector. Their modification may include here

1. corrections derived from the NR method

δ
(k)
ij = Fuj

(
u

(k−1)
i , . . . , (u

(p)
i )(k−1)

) · u(k−1)
j − f

(k−1)
i

(135)

2. optimal relaxation of the solution, with use of one param-
eter, or two parameters

3. Higher Order corrections derived from the Taylor series
expansion of the MFD operator value

Δ
(k)
ij = Δ

(k)
ij

(
∂(p+1)u

∂x(p+1)
, . . . ,

∂(2p)u

∂x(2p)

)

(136)

evaluated by means of the appropriate formulae compo-
sition.

The rough derivatives, derived from the MWLS approx-
imation without correction (136), are evaluated only for the
first iteration of the N-R algorithm. On the next iterative
steps, each MFD formula is improved by its appropriate cor-
rections, which are consequently added to the right hand
sides of the SLAE. Higher Order derivatives values (136)
are upgraded in the same time as the corrections (135) are
getting smaller and smaller. The convergence is controlled
by the (134) criteria.

8.2 Large Deflections of the Cantilever Beam

Considered was large deflections problem of the cantilever
beam, loaded with a concentrated moment M and, in what
follows, with a concentrated force P . The boundary value
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Fig. 30 Cantilever beam with large deflections

problem, posed in the local formulation

w′′(x)

[1 + (w′(x))2]3/2
= − 1

EJ
M(x)

w(0) = 0, w′(0) = 0, x ∈ (0,L) (137)

was transformed to the form, using the parametric notation
x = x(s), w = w(s), shown in Fig. 30. This transformation
was performed in order to allow very large for beam deflec-
tion analysed in all four sectors of the co-ordinate system
(s ∈ 〈0,2π〉).

The parametric co-ordinates

•
x = dx

ds
,

•
w = dw

ds
(138)

allow for evaluating derivatives required in the differential
equation (137)

w′ = dw

ds
· ds

dx
=

•
w
•
x

w′′ = d

dx
· dw

dx
= · · · = 1

•
x3

(
••
w · •

x − •
w · ••

x )

(139)

Therefore, the curvature, which appears in (137), may be
presented in the following parametric form

1

ρ
=

••
w · •

x − •
w · ••

x

(
•
x2 + •

w2)
3
2

= w′′

[1 + (w′)2] 3
2

(140)

After simplifying the denominator of (140)

•
x2 + •

w2 =
(

dx

ds

)2

+
(

dw

ds

)2

= dx2 + dw2

ds2
= ds2

ds2
= 1

(141)

one obtains the parametric notation of the beam deflection
problem for large deformations, equivalent to the form (137)

{ ••
w · •

x − •
w · ••

x

(
•
x2 + •

w2)
3
2

= f (x,w)

→
{ ••

w · ••
x − •

w · ••
x = f (x,w)

•
w · •

w + ••
x · ••

w = 0

→
{ ••

w = f · •
w

••
x = −f · •

w
(142)

where f (x,w) = −M(x,w)
EJ

. Additional conditions are ap-
plied on the boundary

w(0) = 0, w′(0) = 0, x(0) = 0 (143)

Moreover the beam preserves the constant length L

∫ L

0
ds = L →

∫ L

0

√
•
x

2 + •
w

2
ds = L (144)

during the whole deformation process.
Regular mesh with 20 nodes was introduced for the

test with the concentrated moment f (M) = M
EJ

at the un-
bounded end of the beam, with L =1. Calculations were
performed according to the MFDM solution algorithm, pro-
posed in the previous sections. However, the adaptive ap-
proach was not applied here. The load was successively in-
creased, following the subsequent deformation forms of the
beam. The mesh remained unchanged. Results are presented
in Fig. 31. It is worth stressing the quality of the solution rep-
resented by the ideal circle despite how large the deflection
is.

More sophisticated test deals with beam loaded by the
concentrated following force. The following form of the
right hand side function may be written then

f (x,w,P ) = 1

EJ
[PX(wL − w) + PY (xL − x)] (145)

where PX and PY are load projections in the ‘x’ and ‘y’ axis,
respectively. The full MFDM algorithm with adaptation and
HO approximation, proposed in the previous section, was
applied here.

Each time the mean residual error

rx =
√
(••
w −f · •

x
)2 +

(••
x +f · •

w
)2

(146)

evaluated at the points between two neighbouring nodes,
was larger than the admissible threshold value εadm = 0.01,
the cloud of nodes was refined by means of inserting new
nodes. Additionally, the set of clouds was analysed using
the multigrid technique, discussed in the previous section.
Therefore, each time the appropriate SLAE was solved on
the very first coarse regular mesh with 5 nodes only, consti-
tuting 4 unknown parameters (nodal deflections).

The results are presented in Fig. 32. In the initial state, the
basic regular mesh with 5 nodes only, was introduced. De-
spite inserting new nodes into the mesh (becoming irregular
cloud now), during the deformation process, the residual er-
ror (146) raised, because of the increased load value. As a
consequence, new nodes were again added. Therefore, the
residuum (146) was kept each time on the same threshold
level εadm = 0.01.
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Fig. 31 Large deflections of the
cantilever beam under
concentrated
moment—non-adaptive HO
MFDM solution approach

Fig. 32 Large deflections of the
cantilever beam under
concentrated following
force—adaptive multigrid HO
MFDM solution approach

8.3 Reliability Estimation

Another example was also chosen to show the area of ap-
plication of the MFDM approach, as the effective and pre-
cise numerical tool. The reliability estimation problem for
the simple 1D structure will be analysed [32, 66]. In me-
chanics, reliability is understood as probability of situation
when failure, due to appropriate criterion, does not appear.
For the simply supported beam, presented in Fig. 33, given
is the probability distribution of the concentrated force loca-
tion p(x).

The force location may fall into the safe Ωs or failure Ωf

zones. The force locations in the failure zones Ωf produce
non-admissible solutions, for beam deflections, violating the
applied criterion

g = wadm − wmax ≥ 0 (147)

Here wmax is the maximum beam deflection caused by
the fixed force location, and wadm—admissible deflection

Fig. 33 Safe and failure locations, due to the probability distribution

(Fig. 34) given. Therefore, the probability of failure may be
defined, as follows

P =
∫

Ωf
p(x) · dΩf

∫

Ωf +Ωs
p(x) · dΩ

(148)

and the reliability is the probability of the reverse situation

R = 1 − P (149)
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Fig. 34 Admissible and non-admissible solutions

In the discrete analysis, applied here reliability of a con-
sidered beam was estimated using the Monte Carlo simu-
lation method, and the MFDM solution approach. In the
Monte Carlo simulation method [17, 59], one deals with
many force locations, randomly chosen, due to the probabil-
ity distribution. For each fixed location the beam deflection
problem is solved using the MFDM approach. The failure
criterion is checked, and the load configuration is examined
then, whether it results in safe or failure solution. The prob-
ability of failure and reliability may be estimated, as follows

P ≈ nf

n

R = 1 − P ≈ n − nf

n

(150)

here nf denotes the number of failure locations and ns—
number of safe locations, derived from the Monte Carlo sim-
ulations and MFDM solutions. The large number of random
solution needed requires fast tool for solving the boundary
value problems with sufficiently high precision.

The above proposed solution approach, using the Monte
Carlo simulation method [17], and the HO MFDM solution
approach, is given below

1. assume the admissible beam deflection uadm, used in the
failure criterion,

2. choose a random force location on the beam, based to the
Gaussian type probability distribution p(x)

3. for fixed force location, solve the boundary value prob-
lem

u′′(x) = f (x), f (x) = −M(x,P )

EJ

u(0) = u(4) = 0, x ∈ (0,4)

(151)

using the HO MFDM approach, and randomly chosen
loading data

Details of the MFDM solution approach

• beam was discretized with 33 nodes, regularly spaced,
• solution approach included the MFD schemes genera-

tion by means of the MWLS approximation, HO ap-
proximation using correction terms, as well as an im-
proved a-posteriori error estimation,

• cloud of nodes refinement in the closest neighbour-
hood of the boundary and force,

4. find the maximum nodal value of beam deflection umax,
5. check, whether the failure criterion (147) is satisfied, if

not, increase the number of failures nf ,
6. finally, estimate the beam reliability (150).

In Fig. 35, presented is the exemplary result of the ran-
dom procedure, with the force location fixed, as well as
the beam deflection problem solved, and failure criterion
checked. The force was located in the failure zone, in this
case.

The tests were performed in 100 series, each one con-
sisted of 2,000 Monte Carlo simulations. That gives the
total number of solved boundary value problems equal to
200,000. The final results are presented in Fig. 36. Shown
are

1. the exact reliability value, evaluated using formulae
(148) and (149)—dashed line,

2. numerical estimation of the reliability (150), from one of
the 100 series—light thick line,

3. numerical estimation of the reliability (150), averaged
from all 100 series—dark thick line.

High convergence rate may be observed, when the aver-
aging method is applied. The final numerical results are very
close to the theoretical value of beam reliability.

The above given 1D examples, though of very simple na-
ture, shows, that there is still need for exploring new solu-
tion methods, and developing the existing ones. Analysis of
many sophisticated problems of mechanics may be easier
and faster then.

8.4 Stationary Heat Flow Analysis in the Railroad Rail

The stationary heat flow in 2D domain will be considered.
The locally formulated boundary value problem may be
posed in the form of the differential equation of the second
order with the appropriate boundary conditions of essential
and natural type

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−kx

∂2T

∂x2
− ky

∂2T

∂y2
= f in Ω

−kn

∂T

∂n
= q̄n on ∂Ωq

T = T̄ on ∂ΩT

(152)

Here:

• Ω , ∂Ω = ∂Ωq + ∂ΩT are the problem domain and its
boundary,

• T = T (x, y) is the sought temperature function,
• kx, ky are known values of the coefficients of thermal con-

ductivity,
• f = f (x, y) is the known function of the heat generation

inside the domain,
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Fig. 35 Exemplary Monte
Carlo simulation with the
MFDM analysis

• q̄n is the known function of the heat flux on the boundary
Ωq ,

• T̄ is the known temperature function on the boundary ΩT .
• n = (nx, ny) is the versor normal to the boundary.

The appropriate variational problem concerns determination
of such a temperature function T ∈ H 1

0 +u(T̄ ), which fulfils
the essential boundary conditions from (152), that for any
∀V ∈ H 1

0 satisfied is the following principle
∫

Ω

(

kx

∂T

∂x

∂v

∂x
+ ky

∂T

∂y

∂v

∂y

)

dΩ +
∫

∂Ωq

q̄nv d∂Ω

=
∫

Ω

f v dΩ (153)

The above given problem was analysed by means of two
different discrete approaches, namely the HO MFDM using
the local formulation (152) as well as the standard Finite El-
ement discretization and approximation approach applied to
the variational principle (153). The HO MFDM solution ap-
proach consists of two steps, for low order (standard second
order approximation inside the domain) and higher order
solution (fourth order approximation, provided by the cor-
rection terms of the second order difference operators). The
appropriate MFD equations may be given in the following
forms

• for the low order solution

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−kx

r∑

j=1

M4,j Tj (i) − ky

r∑

j=1

M6,j Tj (i) = fi

in Pi ∈ Ω

−kxnx

r∑

j=1

M2,j Tj (i) − kyny

r∑

j=1

M3,j Tj (i) = (q̄n)i

in Pi ∈ ∂Ωq

Ti = T̄i in Pi ∈ ∂ΩT

Fig. 36 Reliability estimation convergence

(154)

• for the higher order solution (only right hand sides are
modified)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−kx

r∑

j=1

M4,j Tj (i) − ky

r∑

j=1

M6,j Tj (i)

= fi − (kxΔ
(4)
i + kyΔ

(6)
i

)

in Pi ∈ Ω

−kxnx

r∑

j=1

M2,j Tj (i) − kyny

r∑

j=1

M3,j Tj (i)

= (q̄n)i − (kxnxΔ
(2)
i + kynyΔ

(3)
i

)

in Pi ∈ ∂Ωq

Ti = T̄i in Pi ∈ ∂ΩT

(155)

All notations in the above formulas (154) and (155) are used
in accordance to the rules given and explained in the previ-
ous sections (r—number of nodes in the MFD star, Mk,j —

coefficients of the difference formulas matrix, Δ
(k)
i —values
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Fig. 37 Rail contour and the cloud of nodes for the MFD analysis

of the HO corrections terms, corresponding to the difference
operator for the k-th partial derivative at node Pi ).

The above given algorithms were applied for stationary
heat flow analysis in the railroad rail. Applied were the fol-
lowing data: kx = 4 J◦C ms , ky = 7 J◦C ms , f (x, y) = (20x −
30y) J

m3 s
, T̄ = 10°C, q̄n = 0. The rail contour as well as the

cloud of 254 nodes are shown in Fig. 37.
Figure 38 presents the temperature distribution corre-

sponding to the low order solution of the MFDM algorithm
given by (154).

Figure 39 presents the results of the a-posteriori error es-
timation of the LO solution obtained from (154) by means
of three different hierarchical estimators, namely the h-type
(first row), p-type (second row) and the HO-type (third row).
The appropriate reference solutions were found after consid-
ering denser cloud of nodes, approximation order raised to
4 as well as the HO MFD algorithm (155), respectively. In
the first column presented are distributions of the local error
(evaluated at nodes) whereas in the second one—its global
integral values (evaluated on the Delaunay triangles).

Results of the h-adaptation process are presented in
Fig. 40. First rough cloud of nodes was presented in Fig. 37.
Figure 40 shows final strongly irregular cloud with 513
nodes (top left), the temperature distribution obtained on
this cloud (top right) as well as solution (temperature T )
convergence: the estimated solution error evaluated in both
the L2 norm (blue dots) and maximum norm (red squares),
given in terms of the number of unknowns.

Similar calculations were performed for the standard
FEM solution approach in order to compare both methods.
Triangular finite elements and linear interpolation were ap-
plied for the FEM solution approach. This type of common
knowledge will not be discussed here, however more de-
tails may be found e.g. in [99]. The FE mesh is presented

in Fig. 41, and temperature distribution (FEM solution)—in
Fig. 42.

Results of the a-posteriori error analysis conducted for
the FEM solution are presented in Fig. 43. They are pro-
duced by three hierarchical estimators, of h-type (denser
mesh), p-type (quadratic interpolation in triangles) and HO
FEM-MFDM-type. In the last case, application of the im-
proved reference (HO) solution to the error analysis of the
FEM solution is shown. Therefore, the last row in Fig. 43
is devoted to the results of the HO-type hierarchical esti-
mator, which is based on the HO FEM solution, obtained
after coupled FEM-MFDM analysis, by means of the for-
mulae composition and HO residuum correction of the stan-
dard FEM solution. Such technique may be another example
of effective combination of the meshless and element based
approaches.

Finally, the HO FEM solution was applied in the error-
based criteria of nodes generation in the adaptation strat-
egy for the FEM analysis. Results: the final mesh with 502
nodes, temperature distribution obtained for this mesh as
well as the solution convergence are shown in Fig. 44.

Results summary of the h-adaptation process is presented
in Fig. 45. The final cloud with 513 nodes (after the MFDM
analysis) as well as final FE mesh with 502 nodes (after the
FEM analysis) are presented once again in the top left and
top right, respectively. Similar trend in nodes concentration
may be observed. Besides, on the bottom presented is the
convergence in L2 norm of both the FEM (blue dots) and
MFDM solutions (red squares). Even though similar gen-
eration criteria were applied (based on the HO solutions),
the MFDM solution error is smaller and its convergence is
faster. Moreover, computational time spent on the adapta-
tion is smaller in case of the MFDM analysis (220 seconds
versus 405 seconds for the FEM analysis).

8.5 Non-stationary Heat Flow Analysis in the Railroad Rail

Consider the problem of determination of the temperature
distribution T (x, y, t) in the railroad rail (Fig. 46), for the
non-stationary heat flow process, given by the differential
equation with appropriate boundary and initial conditions

∇2T = k
∂T

∂t

T (x, y, t)|∂Ω = 100 [◦C] (156)

T (x, y, t = 0) = 500 [◦C]

The rail contour, and a cloud of 300 nodes with Delaunay
triangulation are presented in Fig. 46. This example may
be considered as the computational model of the techno-
logical cooling process in railroad rail manufacturing. Such
solution presents a preliminary step to the residual stresses
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Fig. 38 Temperature
distribution—MFDM solution
(Tmin = 6.89°C,
Tmax = 12.63°C)

Fig. 39 A-posteriori error estimation of the LO MFD solution, by means of three hierarchical estimators (h, p, HO)

analysis in railroad rails. The MFDM with Higher Order ap-
proximation was applied for the spatial (x, y) approxima-
tion. The time space was divided into 50 intervals 〈ti , ti+1〉,
i = 0,1, . . . ,49 of the same length Δt = 0.01 [s]. Time inte-
gration was performed by means of three different meshless
schemes (Fig. 47), namely

(i) meshless standard explicit formula (simplest, but con-
ditionally stable formula, using only one node at an un-
known time level)

(ii) meshless standard implicit formula (unconditionally
stable, with one node at known time level, and set of
nodes at an unknown time level)

(iii) improved Crank Nicholson meshless implicit formula
(unconditionally stable, with sets of nodes at both
known and unknown time levels). The other schemes
could be also considered.

Figure 48 shows the decrease of the maximum and mean
temperature values along the 50 time steps, up to point
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Fig. 40 (Color online) Results
of the MFDM h-adaptation
process by means of the HO
MFDM solution approach

where t = 50 · Δt = 0.5 [s]. Results (temperature distri-
bution at the end of the cooling process) from all three
meshless time integration schemes (i)–(iii) are compared in
Fig. 49. They are presented in the form of colour maps pre-
pared by means of grid of triangles.

9 Software Development

First attempts to design a fully integrated system for MFDM
analysis were made in the 70’s of the previous century, due
to development of the meshless finite difference method.
That version allowed for fully automatic calculations to be
carried out as in advanced programs of the finite element
method and was able to be preferred in non-linear, optimisa-
tion and time-dependent problems. The set of computer pro-
grams, called FIDAM (Finite Difference-Arbitrary Mesh,
[45]) was designed, programmed (in 1977 in Algor code)
and tested by Liszka [45]. It was used for analysis of both
linear and nonlinear problems in applied mechanics.

The next step was the development in the 80’s of spe-
cially designed environment and package of procedures,
called NAFDEM (Nonlinear Analysis Finite Difference El-
ement Method, [37, 38] written in Fortran 77 language
by Krok). It allowed for mixed FEM AND MFDM analysis
[38]. It had a special preprocessor JKJK realizing sophisti-
cated symbolic operations [37]. It is still the most developed
tool for MFDM/FEM analysis.

In the recent years, emphasis was laid upon development
of programs for chosen extensions of the basic MFDM ap-
proach, e.g. for physically based approximation [30] applied
in the residual stresses analysis of railroad rail [73] as well
as for examination of the MWLS approximation [67].

Fig. 41 FE mesh for the FEM analysis

However, the above mentioned program packages and
some other not mentioned here, do not allow for effective ex-
amination of the HO approximation, discussed in this work.
Therefore, completely new programs of test nature were de-
signed and generated in order to control ever single aspect of
the approach and its influence on the approximation quality.
All results, presented in the previous sections in the form of
tables and figures, were obtained using those implementa-
tions.

Computer algorithms were designed separately for 1D
and 2D testing. First, they were based on the classic FDM,
with regular meshes and interpolation schemes only. Then
they were consequently developed towards examination of
the following features
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Fig. 42 Temperature
distribution—FEM solution
(Tmin = 7.10°C,
Tmax = 12.36°C)

Fig. 43 A-posteriori error estimation of the standard FEM solution, by means of three hierarchical estimators (h, p, HO MFDM)

• arbitrarily irregular clouds of nodes, allowing for adap-

tive and random distribution,

• the MWLS approximation, for MFD schemes—generation

and postprocessing,

• various MFD schemes, allowing for effective approxima-

tion on the boundary, including

(a) simple multipoint schemes,

(b) use of generalised degrees of freedom,

(c) use of boundary condition and domain equation

specified on its boundary,

(d) other combined techniques.

• a-posteriori solution error estimation, in the local form

(at any required point),

• a-posteriori residual error estimation, in the local form

(at any required point),

• convergence analysis on the set of regular meshes,
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Fig. 44 Results of the FEM
h-adaptation process by means
of the HO FEM solution
approach

Fig. 45 (Color online)
Comparison of the final results
of the h-adaptation process for
the FEM and MFDM
approaches

Fig. 46 Rail contour and cloud
of nodes with Delaunay
triangles
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• generation criterion for new nodes, based on improved
estimation of the residual error,

• cloud of nodes smoothing, based on appropriate smooth-
ing criteria, avoiding abrupt changes in nodes density,

• a-posteriori solution error estimation, in the global (inte-
gral) form, over the chosen interval (hierarchic, smooth-
ing and residual types),

• development of error indicators for irregular cloud of
nodes,

• convergence analysis on a set of adaptive irregular clouds
of nodes,

• multigrid analysis on a set of regular meshes and irregu-
lar clouds of nodes for standard (low order) and HO ap-
proximation.

Program codes (named HOMFDM1D for analysis of
1D tasks, and HOMFDM2D for analysis of 2D problems)
were written in the C++ language [19] by the author,
and applied in the Microsoft Visual C++ environment. All
codes are based on the object-oriented programming style
[19, 20]. Appropriate classes result from the MFDM na-
ture, e.g. point, node, cloud of nodes, Delaunay triangle,
Voronoi polygon (last two in 2D programs), and MFD star.
Most of the graphs were prepared in the Matlab environment
[9, 53], especially due to convenient visualisation package.

Fig. 47 Three different schemes for time integration

Fig. 48 Temperature change during cooling process (max and mean
values)

Both programs, for 1D and 2D analysis, use external code
designed for generating 2D nodes topology, partially taken
from [92]. It provides the following topology information

• list of all Delaunay triangles, given by their vertices
(cloud’s nodes),

• list of all Voronoi polygons, given by their edges (lines
between their vertices).

Below given is the exemplary set of data needed for anal-
ysis of non-stationary heat flow in railroad rail, considered
in the previous section. Before the solution algorithm starts,
one has to provide the following information:

• geometrical information (boundary),
• number of nodes n,
• number of nodes in the domain MFD stars,
• number of nodes in the boundary MFD stars,
• the basic approximation order p,
• number of Gauss integration points, needed in postpro-

cessing,
• type of boundary approximation (standard, use of gen-

eralised degrees of freedom, use of boundary condition,
. . .),

• type of time integration scheme (explicit, implicit),
• boundary and initial data, resulted from the type of b.v.

problem,
• time step and number of time steps,
• the admissible error level and maximum number of itera-

tions, needed in iteration processes.

As the results, one obtains the variety of text results,
which are plotted to the default output (screen, file, . . .).
Among them, one may distinguish

• topology information (Voronoi polygons, Delaunay trian-
gles, nodes neighbours, . . .),

• list of nodes belonging to subsequent MFD stars,
• the MFD formulae, up to the p-th order, obtained at each

node by means of MWLS approximation,
• the low order and higher order solutions for function and

its derivatives up to the 2p-th order at each time step,
• the low order and higher order solutions obtained at each

point of interest (postprocessing).

Afterwards, such set of results is used in the graphi-
cal postprocessor (Matlab). The fully developed version of
such program (named HEATMIL), allowing for separate
and combined FEM-HO MFDM analysis of the station-
ary and non-stationary heat flow analysis, may be found
at the author’s university webpage http://www.L5.pk.edu.pl/
~slawek/HEATMIL. It is currently used for both didactic
and scientific purposes.

All computer programs mentioned above, though pro-
duced very promising results so far, still have the nature
of prototypes need further development, especially towards
solving of 3D boundary value problems. Planned is also
their adaptation to other chosen engineering applications.

http://www.L5.pk.edu.pl/~slawek/HEATMIL
http://www.L5.pk.edu.pl/~slawek/HEATMIL
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Fig. 49 Distribution of the temperature for t = 0.5 [s] for three time schemes

10 Final Remarks

An approach to analysis of boundary value problems is de-
veloped. It is based on the Higher Order approximation
in the Meshless Finite Difference Method (HO MFDM).
Higher Order approximation is provided here by correc-
tion terms resulting from the Taylor series expansion of the
difference operator values located in each difference star.
Those terms consist of Higher Order derivatives, that modify
only the right-hand side of the difference equations, while
the left-hand side remains unchanged. Therefore the same
difference equations have to be solved only twice in order
to obtain the higher order solution. Higher Order correction
terms may be successfully adopted in many various aspects
of the MFDM solution approach, like solution quality im-
provement inside the domain, and on its boundary, error es-
timation, adaptive multigrid approach, as briefly shown in
this paper.

In author’s opinion, Higher Order approximation MFDM
approach (formulation and solution process) involves vari-
ous original concepts. Among them one may mention

• Higher Order approximation in MFDM based on correc-
tion terms including improvement of the boundary condi-
tions and solution inside the domain,

• simple and fast approach for obtaining improved Higher
Order solution (the same set of equations with modified
right hand side only, simple Higher Order derivatives cal-
culation),

• a new local error estimation approach based on
– nodes density control,
– development of the modified Moving Weighted Least

Squares approach,
– error indicators,

• essentially improved global (solution and residual)
a-posteriori error estimation approach based on new high
quality Higher Order MFDM solutions used as reference;
its application to both the Meshless Methods and for Fi-
nite Element results,

• a-posteriori error indicators and their application to adap-
tive solution approach,

• global error indicators, defined on the set of local points,
• Higher Order multigrid MFDM approach,
• acceleration of solution of simultaneous algebraic equa-

tions (both linear and nonlinear),
• use of MFDM to arbitrarily formulated b.v. problems, in-

cluding global/local Petrov-Galerkin formulations,
• development of relevant computer programs,
• chosen applications of the Higher Order MFDM solution

approach in mechanics.

Improved solution and residual error estimation is advantage
worth stressing. The global criteria developed for error esti-
mation in the FEM analysis have been adopted and applied
here. When the Higher Order error estimates are included,
they provide especially high quality (2p-th order) of estima-
tion for both the solution and residual errors, as compared
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with those obtained by means of existing smoothing proce-
dures providing p + 1 order of approximation. It is worth
stressing that these error estimates, though developed here
for the MFDM analysis, may be also used in the other dis-
crete methods, e.g. in the FEM.

The problem of Higher Order approximation was formu-
lated here and tested on a variety of 1D and 2D benchmark
tests. Some of them are presented here. All of the analysed
problems gave very encouraging results. Especially worth
stressing is solution effectivity and high quality of its error
estimation.

Altogether, all experience gained so far in development
of the Higher Order MFDM approach clearly indicates that
Higher Order MFDM presents a very general and potentially
very promising approach to effective analysis of a wide class
of boundary value problems in mechanics, posed either in a
local or in any global formulation. However, true justifica-
tion of the proposed approach should be demonstrated in the
future on a variety of real, large engineering tasks.

The research is currently under development and a lot of
work remains to be done. Besides further testing and solving
boundary value problems with error analysis, present activ-
ities and future plans include combinations of this approach
with other discrete methods, especially with the Finite El-
ement Method, as well as further development of a special
MFD node generator, based on the nodes density control,
higher order approximation technique, and multigrid solu-
tion procedure. Currently the application of the Higher Or-
der MFDM approach to analysis of boundary value prob-
lems given in the local Petrov-Galerkin formulation type
(MLPG) is considered.

Several of the recently developed topics are briefly de-
scribed below

• Combination of the Higher Order MFDM with the MLPG
formulations, especially with the MLPG5, where the test
function is assumed as the Heaviside function. In such
case, only the trial function in the variational principle
has to be approximated using its nodal values, while all
integral terms, which contain derivatives of the test func-
tion, vanish. Moreover, original Atluri’s concept has been
extended by the authors for the linear type of the test func-
tions. Such approach allows for effective analysis of those
variational formulations, where whole differentiation is
prescribed to the test function only.

• Improved a-posteriori error estimation using Higher Or-
der terms extended to the Finite Element analysis. The
well-known hierarchical and smoothing error estimates
may be improved when using the Higher Order refer-
ence solution, as already mentioned here. The estimation
reaches the 2p-th order then, which provides a superior
quality estimation, comparable with the hp techniques.
Another concept allows for using the Higher Order solu-
tion as the base for the automatic optimal hp nodes adap-
tation strategy, originally proposed by Demkowicz [22]

for the FEM. In such case, the meshless Higher Order
reference solution does not require doubled number of el-
ements and approximation raised, and is obtained for the
same adapted FE mesh.

• Selected mechanical and engineering applications, espe-
cially in the multiscale homogenization problems. In most
cases, numerical homogenization is performed by means
of the FEM solution approach. However, the MFDM
proved to be an effective tool in such problems, in which
strongly irregular meshes or clouds of nodes are required
for the best fit to the material inclusion distribution. More-
over, the homogenization error may be reduced when us-
ing the Higher Order terms.

• Software development. The lack of commercial software
discourages scientists from the common and effective use
of the MFMD tools. However, required computer codes
for the MFDM analysis may be designed and created with
significant help from the existing FE codes. In the sim-
plest cases, only nodes based topology as well as modifi-
cation of the local function approximation should be im-
plemented.

Further the most important directions of the research may
include the following topics:

• development of the mathematical foundation of the
MFDM with Higher Order approximation, and error esti-
mation provided by correction terms,

• practical extension of the Higher Order MFDM solution
approach to 3D problems,

• the MFDM approach formulation on a differential mani-
fold, with the Higher Order approximation used,

• combinations of the MFDM, using Higher Order approx-
imation, with other discrete methods, e.g. Finite Ele-
ment Method (FEM), Boundary Element Method (BEM),
other Meshless Methods (MM), Artificial Intelligence
(AI) methods, e.g. Neural Networks (NN), Evolutionary
Algorithms (EA),

• Further development of the MFDM/MLPG approach,
• wide applications of the MFDM approach using Higher

Order approximation to analysis of various engineering
problems,
– Taking into account discontinuities and/or singularities

in 2D-3D problems,
– Constrained optimisation problems, e.g. experimental

data smoothing,
– Damage and fracture mechanics problems,
– Sensitivity analysis,
– Analysis of problems, based on the theory of fuzzy sets

approach,
– Reliability estimation of structure,

• software development.
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