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Abstract The purpose of this work is to provide an overview
of the most recent numerical developments in the field of
nematic liquid crystals. The Ericksen-Leslie equations gov-
ern the motion of a nematic liquid crystal. This system, in
its simplest form, consists of the Navier-Stokes equations
coupled with an extra anisotropic stress tensor, which repre-
sents the effect of the nematic liquid crystal on the fluid, and
a convective harmonic map equation. The sphere constraint
must be enforced almost everywhere in order to obtain an
energy estimate. Since an almost everywhere satisfaction
of this restriction is not appropriate at a numerical level,
two alternative approaches have been introduced: a penalty
method and a saddle-point method. These approaches are
suitable for their numerical approximation by finite ele-
ments, since a discrete version of the restriction is enough
to prove the desired energy estimate.

The Ginzburg-Landau penalty function is usually used
to enforce the sphere constraint. Finite element methods of
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mixed type will play an important role when designing nu-
merical approximations for the penalty method in order to
preserve the intrinsic energy estimate.

The inf-sup condition that makes the saddle-point method
well-posed is not clear yet. The only inf-sup condition for
the Lagrange multiplier is obtained in the dual space of
H 1(�). But such an inf-sup condition requires more reg-
ularity for the director vector than the one provided by the
energy estimate. Herein, we will present an alternative inf-
sup condition whose proof for its discrete counterpart with
finite elements is still open.

1 Introduction

Liquid crystals are commonly considered as the fourth state
of matter, different to gases, liquids, and solids. This is due
to the fact that liquid crystals exhibit phases between a liq-
uid and a crystalline solid which are known as mesophases.
There are various types of liquid crystals, according to the
degree of positional or orientational ordering shown by the
molecules that compose them. Different degrees of order-
ing can be achieved, depending on the temperature (ther-
motropic) and/or the concentration of a solute in a solvent
(lyotropic). The simplest liquid crystal phase is the nematic
one, which is made of elongated rod-like molecules with
similar size, whose centers of mass have no positional or-
der (as in an isotropic liquid), but tending to align along cer-
tain locally preferred directions, confering the anisotropic
structure. The orientational order is typically modeled by a
unit vector field, the director field d , with |d| = 1, which
represents the average orientation of the long axes of the
molecules in a volume element at a point. As the temper-
ature is lowered in the thermotropic case, or the concentra-
tion is increased in the lyotropic case, new thermodynamical
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states appear, and the molecules begin to separate into par-
allel, equally spaced layers. This is the smectic liquid crystal
phase. In a smectic liquid crystal, the positions of the molec-
ular centers of mass flow freely in each layer without corre-
lation from one layer to the next. The angle between the di-
rector field d and the local smectic layer normal n is denoted
by θ . When θ = 0, the structure is called a smectic-A liquid
crystal, otherwise it is called a smectic-C liquid crystal. On
some occasions there are transitions from smectic-A to the
smectic-C phase, i.e. the angle θ grows smoothly from zero
in response to a decrease of temperature or an increase of
concentration.

In the last years, the study of liquid crystals has aroused
an increasing interest in biology (cell membranes), physics
and engineering (in the growing technological industry of
electronic devices) owing to their optical properties. The
alignment of the director field d is affected by applied
electric or magnetic fields, that can rotate the director so
that it is aligned parallel to them; the molecules of a liq-
uid crystal exhibit dielectric or diamagnetic properties.
The director field can also be affected by boundary con-
ditions.

A usual geometry for liquid crystal display (LCD) de-
vices is that of a thin film made of pixels which are filled by
a liquid crystal. Each pixel consists of two transparent elec-
trodes, and two polarizing filters. The surfaces are treated
to keep the director of molecules at the top and the bottom
perpendicular to each other and to the surface normals. The
molecules in the pixel describe a helicoidal structure in the
transition between surfaces. If a polarized ray of light paral-
lel to the molecules in the external surface enters the pixel,
the plane of the polarization rotates with the director field.
Under external electric fields normal to the surfaces, the he-
licoidal structure is broken, the rotation is not possible, and
light is blocked by the polarizer. On the other hand, liquid
crystals also provide a description of some interesting mate-
rials, as DNA or petroleum.

The two main phenomenological theories describing spa-
tial configurations in nematic liquid crystals are the Oseen-
Frank [21, 49] and Landau-de Gennes [16, 17] theories.
Both approaches consist in modeling equilibrium states
as minima of a free-energy functional. Such functionals
are constructed subject to symmetry and invariance prin-
ciples, to capture some properties observed from experi-
ments.

The Oseen-Frank free energy is considered as a func-
tional of the director vector d . In its most basic form, the
free energy functional is given by

E(d) =
∫

�

{K1|∇ · d|2 + K2(d · (∇ × d))2

+ K3(d × (∇ × d))2}, (1)

where K1, K2, and K3 are the splay, twist, and bend elastic
constants, respectively. Note that when these constants are
equal, the Dirichlet energy becomes

E(d) = K

∫
�

|∇d|2.

Upon minimizing this energy subject to the sphere constraint
|d| = 1, the following optimality system appears

−�d − |∇d|2d = 0 in �. (2)

The Oseen-Frank theory is limited in the sense that it can
only explain point defects in liquid crystal materials but not
the more complicated line and surface defects that are also
observed experimentally. The defect points or singularities
in liquid crystals are regions where the anisotropic prop-
erties of molecules are broken. That is, the liquid crystal
behaves as an isotropic fluid. Therefore, the director field
cannot be defined. Mathematically, they are modeled by
|d| = 0. The defect points can be achieved by means of the
boundaries conditions.

The Landau-de Gennes functional is established in terms
of the order parameter tensor Q (traceless and symmetric)
as

E(d) =
∫

�

{
K1

2
|∇Q|2 + K2

2
|∇ · Q|2 + a tr(Q2)

− b tr(Q3) + c
(
tr(Q2)

)2
}
,

where Q depends on the components of the director vector
d as Qij = d idj − 1

d
δi,j ; δ is the Kronecker delta, d is the

space dimension and tr(·) indicates the trace of the matrix.
This theory was one of the major achievements of P.G. de
Gennes, who was awarded a Nobel prize in physics in 1991.

An alternative strategy to study the motion of defect
points in liquid crystals is to consider the long-time behavior
of the harmonic map flow for which it is also interesting to
incorporate the influence of the velocity. On the contrary, in
many situations, the anisotropic local orientation of the di-
rector field influences the stress tensors that govern the fluid
velocity. The hydrodynamic theory of nematic liquid crys-
tals was established by Ericksen [18, 19] and Leslie [35, 36].
The fundamental system consists of a set of fully coupled,
macroscopic equations, that contains the Oseen-Frank elas-
tic theory governing the steady state, equilibrium solutions.
A variant of the Ericksen-Leslie equations was proposed by
Lin in [37]. The equation therein is written in such a way that
the sphere constraint is not explicitly enforced. The obten-
tion of the energy law for this equation uses the fact that the
director field satisfies the constraint everywhere. So, it is not
suitable for numerical purposes, since the numerical approx-
imation does not satisfy the constraint everywhere, and so,



An Overview on Numerical Analyses of Nematic Liquid Crystal Flows 287

does not have an associated energy law. Then, some alterna-
tives are introduced. In order to get numerical methods with
an associated energy law, the sphere constraint is usually pe-
nalized with the Ginzburg-Landau penalty function such as
in the works of Becker, Feng and Prohl [8], and Lin, Liu,
and Zhang [41]. An alternative recently proposed by Badia,
Guillén-González and Gutiérrez-Santacreu in [5] is to use
an equivalent saddle-point formulation of the system pro-
posed by Lin in [37]. It provides a system of partial differ-
ential equations equivalent to the one in [37] that also leads
to numerical methods with an energy law. Furthermore, a
Ginzburg-Landau-type penalization can be introduced in the
saddle-point version, and treat both the original and penal-
ized problems using a unified numerical approach.

The goal of this paper is to present the different ap-
proaches used so far for the numerical approximation of ne-
matic liquid crystal flows. Section 2 begins with a descrip-
tion of the function spaces which we will draw on through-
out this work. We then describe the differential approaches
commented above. In Sect. 3, we will analyze the advan-
tages and disadvantages of existing finite element approxi-
mations in the literature for the Ginzburg-Landau penaliza-
tion in terms of stability and convergence. We will make
some remarks on the efficiency of the algorithms and lin-
earization techniques in case of nonlinear schemes. Next, in
Sect. 4, we review the numerical schemes designed for the
saddle-point version. So far, the numerical analysis of these
schemes is an open problem, mainly because the associated
inf-sup condition for the director Lagrange multiplier is still
not well-understood.

2 Problem Statement

2.1 Some Function Spaces

We will assume the following notation throughout this pa-
per. Let � ⊂ R

d , with d = 2 or 3, be a Lebesgue-measurable
domain and let 1 ≤ p ≤ ∞. We denote by Lp(�) the space
of all Lesbegue-measurable real-valued functions, f : � →
R, being pth-summable in � for p < ∞ or essentially
bounded for p = ∞, and by ‖f ‖Lp(�) its norm. When
p = 2, the L2(�) space is a Hilbert space whose inner prod-
uct is denoted by (·, ·).

Let α = (α1, α2, . . . , αd) ∈ N
d be a multi-index with

|α| = α1 + α2 + · · · + αd , and let ∂α be the differential op-
erator such that

∂α =
(

∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

.

For m ≥ 0 and 1 ≤ p ≤ ∞, we define Wm,p(�) (see
[1, 48]) to be the Sobolev space of m derivatives in Lp(�)

whose norm is defined by

‖f ‖Wm,p(�) =
⎛
⎝ ∑

|α|≤m

‖∂αf ‖p

Lp(�)

⎞
⎠

1/p

for 1 ≤ p < ∞,

‖f ‖Wm,p(�) = max|α|≤m
‖∂αf ‖L∞(�), for p = ∞,

where ∂α is understood in the distributional sense. In
the particular case of p = 2, Wm,p(�) = Hm(�). Let
C∞

c (�) be the space of infinitely differentiable functions
with compact support in �. Then W

m,p

0 (�) (analogously,
Hm

0 (�) when p = 2) is defined as the closure of C∞
c (�) in

Wm,p(�). The dual spaces of Hs(�) and Hs
0 (�) will be de-

noted by (Hs(�))′ and H−s(�), respectively. For any space
X, we shall denote the vector space Xd by its bold letter X.
For example, (L2(�))d is denoted by L2(�), (Hm(�))d by
Hm(�), etc. Consequently, in order to distinguish scalar-
valued fields, such as the pressure p, from vector-valued
fields, such as the velocity u, we denote them by roman
letters and bold-face letters, respectively.

For a real Banach space X, Lp(0, T ;X) denotes the
space of X-valued functions f defined on (0, T ) such that
‖ · ‖Lp(0,T ;X) = (

∫ T

0 ‖f ‖p
X)1/p < ∞. C1([0, T ];X) is the

space of continuously differentiable X-valued functions in
[0, T ] such that supt∈[0,T ]{‖f (t)‖X + ‖f ′(t)‖X} < ∞.

We will now introduce the function spaces in the context
of the Navier-Stokes equations. Firstly, we define

L2
0(�) =

{
p : p ∈ L2(�),

∫
�

p = 0

}
,

ϑ = {
v ∈ C∞

c (�);∇ · v = 0
}
.

Then, let H and V be the closure of ϑ in L2(�) and H 1
0(�),

respectively, characterized by

H = {u ∈ L2(�);∇ · u = 0,u · n = 0 on ∂�},
V = {u ∈ H 1(�);∇ · u = 0,u = 0 on ∂�}
provided that � is Lipschitz [55].

2.2 The Ericksen-Leslie Equations

Let � be a bounded open subset of R
d (d = 2 or 3) with

boundary ∂�, and T > 0 the final time of observation. We
will use the notation Q = �× (0, T ), � = ∂�× (0, T ), and
n the unit outward normal to ∂�. The Ericksen-Leslie equa-
tions for the flow of a nematic liquid crystal can be written
as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u − ν�u

+ ∇p + λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td + (u · ∇)d − γ�d − γ |∇d|2d = 0 in Q,

|d| = 1 in Q,

(3)
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where u : Q → R
d denotes the solenoidal velocity field,

p : Q → R denotes the pressure, and d : Q → R
d repre-

sents the director field that describes the average molecular
alignment.

The parameter ν > 0 is a constant depending on the fluid
viscosity, λ > 0 is an elastic constant and γ > 0 is a relax-
ation time constant. The expression (u · ∇)u is the vector
function whose ith component is

∑d
j=1 uj · ∂jui , ∇d is the

gradient operator (∂jd i ), (∇d)t denotes its transpose and
|d| = |d(x, t)| is the Euclidean norm in R

d .
From the point of view of continuum mechanics, system

(3) is essentially the simplest set of equations describing the
motion of a nematic liquid crystal. System (3) was proposed
by Lin in [37] from the macroscopic hydrodynamic theory
of nematic liquid crystals established by Ericksen [18, 19]
and Leslie [35, 36]. Since the original Ericksen-Leslie equa-
tions are mathematically untractable, further simplifications
must be done in order to reduce the many reactive coupling
terms between the fields d and u in the Oseen-Frank free en-
ergy functional. Although one could argue that system (3) is
over-simplified, it keeps the core of the mathematical struc-
ture, such as strong nonlinearities and constraints, as well as
the physical structure, such as the anisotropic effect of elas-
ticity on the velocity vector field u. Thus, system (3) can
be viewed as a good initial step towards the theoretical and
numerical analysis of the original problem.

Equation (3)1 is the conservation of the linear momen-
tum. The term λ∇ · ((∇d)t∇d) represents the anisotropic
effect of the alignment on the fluid velocity. So, (3)1−2 re-
duces to the classical Navier-Stokes equations for λ = 0,
which indicates that the molecular centers of mass have no
positional order; equation (3)2 stands for the incompress-
ibility of the fluid. Equation (3)3 is the conservation of the
angular momentum. Equation (3)4 indicates that d is not a
state variable, it only describes the orientation of the nematic
liquid crystal molecules.

As explained above, liquid crystals are in general sensi-
tive to temperature. Herein, we only consider the thermally
uncoupled model (3). To these equations we will add homo-
geneous Dirichlet and Neumann boundary conditions for the
velocity and director vector fields, respectively:

u(x, t) = 0, ∂nd(x, t) = 0 on (x, t) ∈ �, (4)

and the initial conditions

u(x,0) = u0(x), d(x,0) = d0(x) on x ∈ �. (5)

Here u0 : � → R
d and d0 : � → R

d are given functions
such that ∇ · u0 = 0 and |d0| = 1 in �. Pre-twist boundary
conditions for the director d modeled by non-homogeneous
Dirichlet conditions as for the pixels could be straightfor-
wardly considered but we have not included them here for
the sake of clarity.

A natural question that arises is: Does system (3) have an
energy estimate? In other words, we want to know if system
(3) is energetically dissipative. The next analysis is just done
formally. Let us start observing that the elastic stress tensor
can be re-written [38] as

λ∇ · ((∇d)t∇d) = λ∇
(

1

2
|∇d|2

)
− λ(∇d)t (−�d), (6)

where λ/2|∇d|2 can be incorporated as part of the pressure.
Then, multiply (3)1 by u and (3)3 by λ(−�d − |∇d|2d),
and integrate over �. Provided that |d| = 1 can be proved
previously in some way, it follows that

λ

∫
�

(∇d)t�d · u − λ

∫
�

(u · ∇)d · �d = 0,

λ

∫
�

(u · ∇)d · |∇d|2d = λ

2

∫
�

(|∇d|2u · ∇)|d|2 = 0,

and
∫

�

∂td · |∇d|2d = 1

2

∫
�

|∇d|2 d

dt
|d|2 = 0.

As usual for the Navier-Stokes framework, the free-diver-
gence constraint causes that pressure and convective term
vanish together with the boundary condition for u. There-
fore, one sees that problem (3) has the following energy law:

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)

)
+ ν‖∇u‖2

L2(�)

+ λγ ‖�d + |∇d|2d‖2
L2(�)

= 0. (7)

Here we have used the homogeneous Dirichlet and Neu-
mann boundary condition for the velocity and vector di-
rector field, respectively, to eliminate the boundary terms
stemmed from integration by parts.

Clearly, the sphere constraint over d has been crucial
to obtain the energy equality (7). This energy equality,
which has been formally established, is called the first en-
ergy equality for (3). It expresses the balance of energy
in the system between the kinetic and elastic energies, i.e.
the dependence between the linear and angular momen-
tum equations along with the incompressibility and unit Eu-
clidean norm constraint. Since any body force is consid-
ered, the rate of decay of the kinetic and elastic energy is
dictated by the viscous term ν‖∇u‖2

L2(�)
and by the term

λγ ‖�d + |∇d|2d‖2
L2(�)

which is the L2(�)-norm of the
residual with respect to the steady equation (2).

What one may now expect is that the constraint |d| = 1
would be a consequence of (3)1−3, such as the maximum
principle for convection-diffusion equations, since it is an
algebraic constraint. But this is not the case. First of all, we
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establish an equation for |d|. If we take the dot product of
(3)3 with d , this leads to

1

2

d

dt
|d(t)|2 + 1

2
(u(t) · ∇)|d(t)|2

− γ�d(t) · d(t) − γ |∇d(t)|2|d(t)|2 = 0.

Next, observe that

1

2
�|d|2 = �d · d + |∇d|2. (8)

Then,

1

2

d

dt
|d(t)|2 + 1

2
(u(t) · ∇)|d(t)|2

− γ

2
�|d(t)|2 + γ |∇d(t)|2(1 − |d(t)|2) = 0.

Equivalently, we have

1

2

d

dt
(|d(t)|2 − 1) + 1

2
(u(t) · ∇)(|d(t)|2 − 1)

− γ

2
�(|d(t)|2 − 1) − γ |∇d(t)|2(|d(t)|2 − 1) = 0. (9)

Finally, if we multiply this equality by |d|2 −1 and integrate
over �, integration by parts yields that the convective term
in this equality vanishes, since u ∈ V , and

1

4

d

dt

∫
�

(|d(t)|2 − 1)2 + γ

2

∫
�

(∇(|d(t)|2 − 1))2

= γ

∫
�

|∇d(t)|2(|d(t)|2 − 1)2. (10)

In order to apply the Gronwall lemma, we would need to
assume a regularity over d stronger than the one obtained
from the energy estimate (7). To be more precise, ∇d ∈
L2(0, T ;L∞(�)). Subsequently, we are not able to prove
the maximum principle this way; and hence the sphere con-
straint must be imposed in system (3).

The energy law (7) shows the proper functional spaces
where a feasible definition of global-in-time weak solutions
for (3) might be defined.

Definition 1 A pair (u,d) is said to be a weak solution of
(3)–(4)–(5) in (0, T ) if:

(a)

u ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ),

d ∈ L∞(0, T ;H 1(�)),

|d(x, t)| = 1, a.e. (x, t) ∈ Q.

(b) ∀φ ∈ C1([0, T ];V ∩ W 1,∞(�)) such that φ(T ) = 0,
∫ T

0
{−(u, ∂tφ) + ((u · ∇)u,φ) + ν(∇u,∇φ)

−λ((∇d)t∇d,∇φ)
}

dt = (u0,φ(0)).

(c) ∀ψ ∈ C1([0, T ];H 1
0(�)∩L∞(�)) such that ψ(T ) = 0,

∫ T

0
{−(d, ∂tψ) + ((u · ∇)d,ψ) + γ (∇d,∇ψ)

− γ (|∇d|2d,ψ)}dt = (d0,ψ(0)).

To our knowledge, the existence of a global-in-time weak
solution for (3) still remains as an open problem.

System (3) in its present formulation is overdetermined.
There are four equations for three unknowns, and none of
them seems to be dependent on the rest. Hence, the obten-
tion of an energy estimates from (3) seems to be unafford-
able. Of course, this is an important aspect when designing a
numerical approximation for (3), because it could affect the
robustness and uniqueness of the numerical method.

As observed, (3)1 (along with (3)2) and (3)3 (along with
(3)4) share a similar structure. But it is worth mentioning
that (3)2 is a linear differential constraint whereas (3)4 is a
nonlinear algebraic constraint, which does not imply that the
techniques in order to prove some results for one can be use-
ful for the other. Of course, one expects that the constraints
(3)2 and (3)4 will be satisfied in some sense.

With regard to (3)2, approximating solenoidal functions
with conforming finite elements is difficult, in the sense that
these finite-element basis functions are hard to construct and
computationally inefficient. Thus, the treatment of the in-
compressibility (3)2, related to the pressure Lagrange mul-
tiplier, is enforced by means of velocity-pressure saddle-
point methods which provide discrete divergence-free ap-
proximations and a well-known energy estimate. The cor-
responding velocity-pressure spaces must satisfy a discrete
inf-sup condition, in order to get a well-posed discrete prob-
lem. This compatibility conditions between spaces can be
circumvented via stabilized finite element methods (see e.g.
[4]). Alternatively, the incompressibility condition can be
penalized and the pressure unknown eliminated. This last
approach does not require the computation of the pressure,
but consistency is lost and the condition number blows up
with the penalty, making the solution of the system too ex-
pensive for acceptable values of the penalty parameter (see
e.g. [11]).

To enforce the unit Euclidean norm for the director d , we
can also consider a penalty or a saddle-point approach.

A Penalty Method

A well-known penalty formulation for (3) uses the Ginzburg-
Landau function f ε(d) = ε−2(|d|2 − 1)d , associated with
the penalty parameter ε > 0. Then, the penalty formulation
is obtained from (3) by weakening the constraint |d| = 1 by
|d| ≤ 1, and replacing the strongly nonlinear term |∇d|2d
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by f ε(d). Note that f ε is the gradient of the scalar potential
function

Fε(d) = 1

4ε2
(|d|2 − 1)2,

that is, f ε(d) = ∇dFε(d) for all d ∈ R
d . This fact is basic to

obtain an energy estimate for the penalized problem. Thus,
we arrive at
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu + (u · ∇)u − ν�u

+ ∇p + λ∇ · ((∇d)t∇d) = 0 in Q,
∇·u = 0 in Q,
∂td + (u · ∇)d + γ (f ε(d) − �d) = 0 in Q,
|d| ≤ 1 in Q.

(11)

The energy estimate for (11) was established in [38]. First
of all, we have to re-write the elastic stress tensor as in
(6) below. Then, (11)1 is multiplied by u and (11)2 by
λ(−�d + f ε(d)). After integrating over � and using the
fact that

λ

∫
�

(∇d)t�d · u − λ

∫
�

(u · ∇)d · �d = 0,

λ

∫
�

(u · ∇)d · f ε(d) = −λ

∫
�

(∇ · u)Fε(d) = 0,

and

λ

∫
�

∂td · f ε(d) = λ
d

dt

∫
�

Fε(d),

one infers that problem (11) has the energy law:

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)
+ λ

∫
�

Fε(d)

)

+ ν‖∇u‖2
L2(�)

+ λγ ‖ − �d + f ε(d)‖2
L2(�)

= 0. (12)

As far as we know, this is the best energy estimate for (11)
independent of ε.

In contrast to what happens for (3), the relaxed constraint
|d| ≤ 1 can now be accomplished [23, 44, 50] as a maxi-
mum principle for convection-diffusion-reaction equations,
allowing us to eliminate it from (11). That is, if |d0| ≤ 1
in �, then |d(t)| ≤ 1 in � for t ∈ (0, T ). Indeed, if we mul-
tiply (11)3 by d , we see that |d| satisfies

1

2

d

dt
|d(t)|2 + 1

2
(u(t) · ∇)|d(t)|2

− γ�d(t) · d(t) + γf ε(d) · d = 0.

The identity (8) leads to

1

2

d

dt
(|d(t)|2 − 1) + 1

2
(u(t) · ∇)(|d(t)|2 − 1) (13)

−1

2
γ�(|d(t)|2 − 1) + γf ε(d) · d ≤ 0, (14)

where we have used the fact that γ |∇d|2 ≥ 0. Testing the
above equation by (|d|2 − 1)+ ∈ H 1(�), with (·)+ being
the positive part, one observes that

f ε(d) · d (|d|2 − 1)+ ≥ 0

and∫
�

((u · ∇)(|d|2 − 1))(|d|2 − 1)+

= −1

2

∫
�

∇ · u[(|d|2 − 1)+]2 = 0,

and hence

d

dt
‖(|d|2 − 1)+‖2

L2(�)
+ γ ‖∇(|d|2 − 1)+‖2

L2(�)
≤ 0.

Since (|d0|2 − 1)+ = 0 in �, then |d| ≤ 1 in Q.
Now, the question that arises is how one recovers a so-

lution of system (3) from system (11) as ε → 0, at least
formally. We follow the ideas in [38] based on those de-
veloped for harmonic maps [10, 53]. To do so, we note
that equations (3)1−2 and (11)1−2 are exactly the same. So,
the difference between the two approaches strives in the d-
system, i.e. (3)3−4 and (11)3−4. From (12), one easily de-
duces that

1

2
‖u(t)‖2

L2(�)
+ λ

2
‖∇d(t)‖2

L2(�)

+ λ

∫
�

Fε(d(t)) ≤ C for all t ∈ [0, T ], (15)

where C = C(u0,d0) is independent of ε since
∫
�

Fε(d0) =
0. Therefore, in the limit as ε → 0 from

∫
�

Fε(d(t)) ≤ C,
we find |d| = 1. On the other hand, applying the cross prod-
uct of (11)4 with d , and passing to the limit as ε → 0, we
would obtain

∂td × d + (u · ∇)d × d − γ�d × d = 0,

which indicates that ∂td + (u · ∇)d − γ�d = 0 is par-
allel to d . Hence, there exists a function κ = κ(d) such
that

∂td + (u · ∇)d − γ�d = κ(d)d.

Now, taking the dot product with respect to d and using the
fact that |d| = 1, we find −γ�d · d = κ(d) concluding that
κ(d) = γ |∇d|2, owing to (8).

However, a little bit more can be said about system (11)
[8]. Define

w = −�d + f ε(d), (16)

then w ∈ L2(0, T ;L2(�)) from (12). Next, multiply (16) by
−�d and integrate over � to get
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‖�d‖2
L2(�)

= −(w,�d) + (f ε(d),�d)

≤ ‖w‖L2(�)‖�d‖L2(�) − (∇df ε(d)∇d,∇d)

≤ ‖w‖L2(�)‖�d‖L2(�) + C

ε2
‖∇d‖2

L2(�)
,

where in the last line we have used the fact that |d| ≤ 1 a.e.
in Q. Young’s inequality gives

‖�d‖2
L2(�)

≤ ‖w‖2
L2(�)

+ C

ε2
‖∇d‖2

L2(�)
.

Next, integrating over (0, T ) jointly with estimate (15) yield

∫ T

0
‖�d‖2

L2(�)
≤ Cε−2. (17)

This is the best dependence on ε for the H 2-norm for the
director vector. Therefore, the limiting problem (3) does not
hold the L2(0, T ;H 2(�)) regularity as ε → 0.

The following estimate can be also proved [44] by multi-
plying (11)1 by u, (11)3 by −λ�d , and bounding the term
λγ (f ε(d),d) as before:

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)

)

+ ν‖∇u‖2
L2(�)

+ λγ ‖�d‖2
L2(�)

≤ C

ε2
‖∇d‖2

L2(�)
. (18)

Thus, Gronwall’s inequality gives the bound

‖u‖2
L2(�)

+ ‖∇d‖2
L2(�)

+
∫ t

0
(ν‖∇u(s)‖2 + ‖�d(s)‖2

L2(�)
) ds ≤ C exp(t/ε2).

However, the dependence with respect to ε can be im-
proved by bounding

γ λ(f ε(d),�d) ≤ γ λ

2
‖�d‖2

L2(�)
+ C

ε4
,

where we have used the fact that |d| ≤ 1 in �. Thus, we have

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)

)

+ ν‖∇u‖2
L2(�)

+ λγ ‖�d‖2
L2(�)

≤ C

ε4
. (19)

The energy estimate (18) is better in order to obtain error es-
timates, but the energy estimate (19) is more adequate from
the point of view of stability.

The energy estimate (12) jointly with (17) allows then to
define global-in-time weak solutions in the following func-
tional frame.

Definition 2 A pair (d,u) is called a weak solution of (11)–
(4)–(5) in (0, T ) if:

(a)

u ∈ L∞(0, T ;H ) ∩ L2(0, T ;V ),

d ∈ L∞(0, T ;H 1(�)) ∩ L2(0, T ;H 2(�)),

|d(x, t)| ≤ 1, a.e. (x, t) ∈ Q.

(b) ∀φ ∈ C1([0, T ];V ) such that φ(T ) = 0,

∫ T

0
{−(u, ∂tφ) + ((u · ∇)u,φ) + ν(∇u,∇φ)

−λ((∇d)t∇d,∇φ)
}

dt = (u0,φ(0))

(c)

∂td + u · ∇d − γ�d + γf ε(d) = 0 a.e. in Q,

d(0) = d0 a.e. in �.

So far, the best convergence from (11) to (3), based
on an energy method and a compactness result, is to-
wards measure-valued solutions. By a semi-Galerkin ap-
proach, the approximate solutions are constructed so that
the energy law (12) holds and hence stability is attained in
L∞(0, T ;H 1(�)) for the director field and in L2(0, T ;V )∩
L∞(0, T ;H ) for the velocity field independent of ε. It is
well-known that the weak convergences associated with the
a priori estimates do not suffice to pass to the limit in the
nonlinear terms. Therefore, some sort of compactness ar-
gument for time-dependent functions is required. Using the
bounds for the approximate solutions in (11)3, we find that
the time derivative of the sequence of the approximate di-
rector vectors is bounded in L4/3(0, T ;L2(�)). Then a re-
sult of compactness [42, 43] shows that the sequence of
the approximated director vectors has a cluster point in
Lq(0, T ;Lr (�)) with 1 ≤ r < 6 and 1 ≤ q < ∞. Unfor-
tunately, this compactness is too weak to pass to the limit
in the elastic tensor (∇d)t∇d , since it is only bounded in
L∞(0, T ;L1(�)). Therefore, the elastic tensor only tends
to a certain measure (see [38, 39, 47]). One way to identify
the tensor in the limit in L∞(0, T ;L1(�)) would involve
a H 2(�) regularity independent of ε. However, the best
bound in this sense depends polynomially on ε (see (17)).

A Lagrange Multiplier Method

This sort of method introduces a new variable, the Lagrange
multiplier q that allows to enforce the sphere condition
|d| = 1. The saddle-point formulation of problem (3) reads
as follows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u − ν�u

+ ∇p + λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td + (u · ∇)d + γ (qd − �d) = 0 in Q,

|d| = 1 in Q.

(20)
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The energy estimate associated with problem (20) was
derived in [5]. Assuming that |d| = 1 holds, the elastic stress
tensor can be written as

λ∇ · ((∇d)t∇d)

= λ

2
∇(|∇d|2) − λ(∇d)t (−�d + qd), (21)

since (∇d)t (qd) = 1
2q∇(|d|2) = 0. If we multiply (20)1 by

u and (20)3 by λ(−�d +qd), and integrate over �, we have

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)

)

+ ν‖∇u‖2
L2(�)

+ λγ ‖ − �d + qd‖2
L2(�)

= −
∫

�

∂td · qd. (22)

To control the right hand side of (22), we take the time
derivative of |d|2 = 1. Thus, it follows that ∂td · d = 0, i.e.
∂td and d are orthogonal. Therefore,

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)

)

+ ν‖∇u‖2
L2(�)

+ λ‖ − �d + qd‖2
L2(�)

= 0. (23)

From (23), no control over q is obtained. Typically, the
control over the Lagrange multiplier is achieved by virtue
of an inf-sup condition. Unfortunately, the inf-sup condition
associated to the nonlinear algebraic constraint |d| = 1 is
not well-understood yet at the continuum level, unlike the
one for the Navier-Stokes equations. The best result is due to
Hu, Tai, and Winther [32] in the context of steady harmonic
map problems, that is, for u = 0 and ∂td = 0. They proved

‖q‖H−1(�) ≤ α sup
d̄∈H 1

0(�)\{0}

〈q,d · d̄〉
‖d̄‖H 1

0 (�)

∀q ∈ H−1(�) (24)

where α > 0 depends on the W 1,∞(�)-norm of d . But such
a regularity assumption, d ∈ W 1,∞(�), is not a consequence
of (23). The natural inf-sup condition for problem (20) is

‖q‖L∞(�)′ ≤ α sup
d̄∈L∞(�)\{0}

〈q,d · d̄〉
‖d̄‖L∞(�)

∀q ∈ L∞(�)′ (25)

since q = −|∇d|2 ∈ L∞(0, T ;L1(�)) and L1(�) ⊂ L∞(�)′
To prove the inf-sup condition (25) we need to assume that
|d|2 > 1/α a.e. in � for some α > 0. First of all, we will see
that the mapping d· : L∞(�) → L∞(�) is surjective. In-
deed, let e ∈ L∞(�), then choose d̄ = d/|d|2e. Clearly, e =
d · d̄ ∈ L∞(�). Next, observe that ‖d̄‖L∞(�) ≤ α‖e‖L∞(�).
Thus, we have

‖q‖L∞(�)′ = sup
e∈L∞(�)\{0}

〈q, e〉
‖e‖L∞(�)

≤ α sup
d̄∈L∞(�)\{0}

〈q,d · d̄〉
‖d̄‖L∞(�)

for all q ∈ L∞(�)′. But this inf-sup condition is not appli-
cable owing to the presence of −γ�d in (20)3. Therefore,
we need to weaken the norm for the Lagrange multiplier q

as follows. Let q ∈ (H 1(�) ∩ L∞(�))′, then one can prove

‖q‖(H 1(�)∩L∞(�))′

≤ α sup
d̄∈H 1(�)∩L∞(�)\{0}

〈q,d · d̄〉
‖∇d̄‖L2(�) + ‖d̄‖L∞(�)

, (26)

where d ∈ H 1(�) ∩ L∞(�) such that |d|2 > 1/α a.e. in �.

A Ginzburg-Landau-Lagrange Method

The penalized Ginzburg-Landau problem can also be stated
in a saddle-point framework. This way, we can consider both
the penalized and limit problem in a unified frame. This
method consists in penalizing problem (20) as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u − ν�u

+ ∇p + λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td + u · ∇d + γ (qd − �d) = 0 in Q,

|d|2 − 1 = ε2q in Q.

(27)

As observed in [5], this method establishes a connection
between (11) and (20). Clearly, from (27)4, one sees that
q = 1

ε2 (|d|2 − 1), which plugged into (27)3 leads to (11)3.
On the other hand, when ε = 0, one obtains (20). The energy
estimate for (27) can be achieved analogously to the energy
estimate (23) given by the Lagrange method (20) (see [5]).
We have:

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)
+ ε2

4
‖q‖2

L2(�)

)

+ ν‖∇u‖2
L2(�)

+ λγ ‖ − �d + qd‖2
L2(�)

= 0. (28)

The numerical approximation of the Ericksen-Leslie
equations is difficult due to the following reasons:

1. The linear and angular momentum equations are nonlin-
ear.

2. It involves two constraints, the incompressibility condi-
tion (3)2 and the sphere condition (3)4, which is noncon-
vex.

3. The large number of unknowns that appear in the
Ericksen-Leslie equations, due to the coupling between
the nonlinear terms and the constraint conditions. So, its
numerical approximation and more specifically the so-
lution of the resulting linear systems is computationally
expensive.
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Upon analyzing a numerical scheme we must take into
account two things:

1. Stability. In numerical analysis, the terminology of sta-
bility is frequently associated with bounding the approx-
imate solutions in certain norms, which are related to
the energy of the model in question. Such estimates are
called a priori or energy estimates. Moreover, the exis-
tence and uniqueness of approximate solutions is based
on them.

2. Convergence. Two types of convergence results for ap-
proximate solutions can be considered. Compactness
shows that the approximate solutions converge to a weak
solutions under minimum regularity of the data, but no
rate of convergence can be guaranteed. On the other
hand, if a solution with more regularity than the one pro-
vided by the energy estimate is fixed, a priori error es-
timates can be performed, establishing rates of conver-
gence.

System (3)1−2 becomes the classical Navier-Stokes
equations plus an elastic stress tensor λ∇ · ((∇d)t∇d).
Therefore, we cannot expect better results than those known
for the Navier-Stokes equations (see [26, 55]). Since the
numerical approximation of fluid flows is computationally
expensive, efficient low-order approximations are favoured.
Roughly speaking, the discrete velocity and pressure spaces
are constructed by piecewise polynomials, globally contin-
uous functions, satisfying the corresponding inf-sup con-
dition. This sort of method provides algorithms which are
easy to implement, well-conditioned with respect to the dis-
cretization parameters and allows to deal with complex ge-
ometries. An alternative to inf-sup stable approximations are
the residual-based stabilization techniques (see e.g. [33]),
that allow to choose the velocity and pressure spaces without
the need to satisfy any compatibility condition and solves
the singularly perturbed nature of the problem at hand for
convection dominant flows.

With regard to the approximation of (3)3−4, each method
explained above will give rise to different variational for-
mulations to be approximated by finite-dimensional spaces.
In general, we will consider globally continuous piecewise
polynomial functions, even though the velocity and direc-
tor vector regularity are different. A notable exception is
the method in [44], where C1 approximations are used to
approximate the director vector; it was the first numerical
scheme to deal with the approximation of (11).

The Ginzburg-Landau method penalizes the constraint
(7)4 in the L2 norm, say

∫
�
(|d|2 − 1)2 ≤ Cε2, from (12).

Upon using this penalty method, an important choice is the
size of the penalty parameter ε. A very high penalty num-
ber leads to ill-conditioned algebraic systems, when the off-
diagonal blocks are multiplied by a large number. On the

other hand, the rate of convergence is spoiled by ε. Some-
times, the penalization parameter depends on the mesh pa-
rameters.

The Lagrange multiplier method introduces a new vari-
able to be computed, which represents an increasement in
the dimension of the resulting linear system. In any case, we
will see that the numerical approximations of the Ginzburg-
Landau approach require auxiliary variables in order to
prove an energy inequality, and in general the dimension of
the resulting system is larger than the one of the saddle-point
formulation. Furthermore, this method allows one to obtain
numerical approximations of the original problem (without
penalty) satisfying an energy inequality. On the other hand,
the inf-sup condition must be satisfied in order to be well-
posed (see [32]). As for the incompressibility condition, the
constraint (11)4 is satisfied in a discrete (weak) sense. Let
us remark that, as far as we know, there are no finite element
spaces capable to satisfy the restriction pointwise in general.
E.g. we can straightforwardly prove that the only functions
that belong to linear finite element spaces and satisfy the
sphere constraint pointwise are constant functions.

2.3 Finite Element Approximation

From now on, we assume that � is a bounded domain of
R

d (d = 2 or 3) with a polygonal o polyhedral Lipschitz-
continuous boundary and that there exists a family of tri-
angulations {Th}h>0 of � made up of triangles or quadri-
laterals in two dimensions and tetrahedra or hexahedra in
three dimensions, so that � = ⋃

K∈Th
K . Further, any two

elements K1,K2 ∈ Th satisfy int(K1) ∩ int(K2) = ∅ and
K1 ∩ K2 is empty or a entire common vertex, face or side.

For an arbitrary element K , we denote by hK > 0 the
diameter of K , with h = maxK∈Th

hK , and by bK the ra-
dius of the largest ball inscribed in K , with b = minK∈Th

bK .
The family of triangulations Th will be assumed to be quasi-
unform, i.e. there exists ρ > 0 such that b ≥ ρh for all
K ∈ Th and for all h > 0. The space of polynomials of de-
gree less or equal to k > 0 in a finite element K is denoted
by P k(K). The space of continuous piecewise polynomials
is defined as

P k
h =

{
vh ∈ C0(�) such that vh|K ∈ P k(K) ∀K ∈ Th

}
.

(29)

We also denote by Dk
h the space of piecewise polynomials

of order no larger than k without C0 continuity. In partic-
ular, D0

h is the space of piecewise constant functions. The
notation of the finite element spaces to be used for approx-
imating the primary variables are the following. For the ve-
locity and pressure we let (V h,Ph) to be two Lagrange fi-
nite element spaces associated with Th. Otherwise stated,
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the velocity finite element space V h that we consider is
((P 1

h)d ⊕ (Bh)
d) ∩ H 1

0(�), where

Bh = {vb such that vb|K ∈ P d+1(K), vb|∂K = 0, ∀K ∈ Th}

is the space of bubbles in every element (see e.g. [9]). The
pressure space Ph is P 1

h ∩ L2
0(�). This velocity-pressure fi-

nite element pair is known to satisfy the discrete inf-sup con-
dition

‖ph‖L2
0(�) ≤ β sup

v∈V h\{0}
(qh,∇ · v)

‖v‖H 1(�)

∀ph ∈ Ph, (30)

for β > 0 uniform with respect to h. On the other hand, for
the director field, we usually choose Dh to be again a La-
grange finite element space, i.e. (P 1

h)d . Otherwise stated,
these are the typical choices in the subsequent develop-
ments. In any case, the following results can be extended
to any other finite element spaces, provided the required inf-
sup conditions are satisfied. Throughout this work we will
need to introduce some extra discrete spaces which will de-
scribe when necessary.

We shall assume that � has the W 2,r ×W 1,r -elliptic reg-
ularity property for the Stokes problem. That is to say, for a
prescribed f ∈ Lr with r > 1, there exists a unique solution
(u,p) ∈ W 2,r (�) × W 1,r (�) of

⎧⎨
⎩

−�u + ∇p = f in �,

∇ · u = 0 in �,

u = 0 in ∂�,

(31)

which satisfies the following continuous dependence with
respect to f :

‖u‖W 2,r (�) + ‖p‖W 1,r (�) ≤ C‖f ‖Lr(�). (32)

On the other hand, we also assume that � holds a W 2,r -
elliptic regularity property for the Neumann problem; given
g ∈ Lr(�) with

∫
�

g = 0, there exists a unique solution d ∈
W 2,r (�) with

∫
�

d = 0 of

{−�d = g in �,

∂nd = 0 in ∂�,
(33)

which satisfies the following continuous dependence with
respect to g:

‖d‖W 2,r (�) ≤ C‖g‖Lr(�). (34)

For r = 2, properties (32) and (34) can be demonstrated
for convex � [13, 14, 30, 34] or C1,1 boundary [12, 51].
For r > 2, in two dimensions, properties (32) and (34) hold
when � is convex, and r depends on ∂� [12, 30]. However,
in three dimensions, r depends strongly on ∂� so that con-
vexity does not suffice [12, 13].

An arbitrary triangulation of an arbitrary domain does not
posses the C1,1 regularity in general. Therefore, from the
point of view of numerical analysis, we are limited to convex
domains. Isoparametric elements are needed to generalize to
domains with curved boundaries.

Usually, for the Navier-Stokes equation, the above reg-
ularity hypotheses are invoked when error estimates are
stated, but we will see here that such a regularity is required
even for convergence results by compactness.

The initial data are

u0 ∈ H and d0 ∈ H 1(�) with |d0| = 1 in �

when the convergence of the algorithm is established by
compactness or

u0 ∈ H 2
0(�) ∩ V and d0 ∈ W 2,r (�)

with |d0| = 1 in �

when the convergence of the algorithm is established by er-
ror estimates.

All the methods presented herein use a finite difference
discretization in time. Let us therefore introduce some nota-
tion related to the time variable that we will use through-
out the work. For simplicity, we suppose a uniform par-
tition of [0, T ] into N pieces. So, the time step size is
k = T/N and the time values (tn = nk)n=N

n=0 . Let φn
h be

a sequence in some Banach space X computed by some
time-stepping scheme, i.e. the sequence φn

h will represent an

approximation of φ(tn). We define δtφ
n+1
h = φn+1

h −φn
h

k
and

φ
n+1/2
h = φn+1

h +φn
h

2 . Let φr
h,k and φl

h,k be the piecewise con-

stant interpolation taking the value φn+1
h or φn

h on (tn, tn+1],
respectively. Moreover, we define the piecewise linear inter-
polation φh,k ∈ C0([0, T ];X) such that φh,k(tn) = φn

h , that
is,

φh,k(t) = t − tj

k
φn+1

h + tj+1 − t

k
φn

h ∀t ∈ [tn, tn+1].

Let us introduce some short-hand notation, in order to
simplify the writing of the different schemes:

a(u,v) = (∇u,∇v) for all u,v ∈ H 1(�),

bu(u, q) = (∇ · u, q) for all u ∈ H 1(�), q ∈ L2(�),

bd(q,d, d̄) = 〈q,d · d̄〉
for all q ∈ (H 1(�))′, d, d̄ ∈ H 1(�) ∩ L∞(�),

c(w,u,v) = 〈(w · ∇)u · v〉 for all w,u,v ∈ H 1(�).

It is clear that c(w,u,u) = 0 for all w ∈ V . At the discrete
level, the approximate velocity does not satisfy the incom-
pressibility condition in a pointwise sense. Thus, in order to
keep the skew-symmetry of the trilinear term, the stabilizing
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term 1
2 〈(∇ · u)w,v〉 is added to the convective term. Then

the trilinear form reads:

c̃(u,w,v) = 〈(u · ∇)w,v〉 + 1

2
〈(∇ · u)w,v〉,

for all w,u,v ∈ H 1(�),

for which c̃(w,u,u) = 0 holds for all u,w ∈ H 1
0(�).

3 On the Approximation of the Ginzburg-Landau
Problem (11)

3.1 Direct Approximation for the Ginzburg-Landau
Problem

3.1.1 A H 2-Conforming Approximation

The first authors who dealt with the approximation of (11)
for two-dimensional domains were Liu and Walkington in
[44]. They focused their work in the obtention of error esti-
mates, but they did not avoid the dependence on the penalty
parameter ε. The best result for a Ginzburg-Landau-type
equation is proved in [22], where the dependence of ε is
of polynomial order. Hence, an interesting open problem is
to obtain error estimates independent of the penalty param-
eter ε, or at least a polynomial dependence.

The starting point of the scheme lies in the following
weak reformulation of (11), which is obtained by taking
the L2 inner product of ū ∈ H 1

0(�) with the linear momen-
tum equation (11)3 and the L2 inner product of −�d̄ (for
d̄ ∈ H 2(�)) with the angular momentum equation (11)2.
After using integration by parts, the problem reads as: find
(u(t),p(t),d(t)) ∈ H 1

0(�) × L2
0(�) × H 2(�) satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tu,v) + c(u,u,v) + νa(u,v)

− bu(p, ū) + λc(d,v,�d) = 0,

bu(p̄,u) = 0,

(∂t∇d,∇d̄) − c(u,d,�d̄)

+ γ (�d − f ε(d),�d̄) = 0,

(35)

for all (ū, p̄, d̄) ∈ H 1
0(�) × L2

0(�) × H 2(�). Observe that
the elastic stress tensor has been written as in (21), where
the potential term λ

2 ∇(|∇d|2) has been absorbed into the
definition of the pressure, getting a modified pressure p ∼
p + λ

2 |∇d|2. In [44], Fε was truncated to have quadratic
growth outside of the unit ball.

In order to obtain a conforming approximation of (35) by
a Galerkin finite element approximation, one should use a
Dh space based on H 2 conforming finite elements for the
third equation in system (35). Thus, a general form for Dh

is

Dh = {d̄h ∈ C1(�) : d̄|T ∈ P d
k for all T ∈ Th}.

In two-dimensional domains, examples of C1 finite element
spaces are the bicubic Hermite elements or Argyris ele-
ments. However, for the first and second equation, one can
use a classical pair (V h,Ph) satisfying the inf-sup condition
(30), as the one introduced above. In particular, Vh = P 2

h

and Ph = P 1
h were considered in [44]. With respect to the

time integration, e.g. a fully implicit time stepping scheme
is used in [44]. All these considerations lead to the follow-
ing scheme: given (un

h,p
n
h,dn

h), find (un+1
h ,pn+1

h ,dn+1
h ) ∈

V h × Ph × Dh satisfying

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1, ūh)

− bu(p
n+1
h , ūh) + λc(ūh,d

n+1
h ,�dn+1

h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(∇δtd
n+1
h ,∇d̄h) − c(un+1

h ,dn+1
h ,�d̄h)

+ γ (�dn+1
h − f ε(d

n+1
h ),�d̄h) = 0,

(36)

for all (ūh, p̄h, d̄h) ∈ V h × Qh × Dh. As pointed out in [8],
the existence of a discrete solution (un+1

h ,pn+1
h ,dn+1

h ) for
(36) implies the relation between the time and penalty pa-
rameter k = O(e−1/ε2

). This is due to the lack of an energy
estimate independent of ε. In [44], the following discrete
energy estimate for (36) was derived

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2

+ k

n∑
j=0

(ν‖∇u
j+1
h ‖2 + γ λ‖�d

j+1
h ‖2)

≤ C

(
1

2
‖u0

h‖2 + λ

2
‖∇d0

h‖2
)

exp((n + 1)k/ε2)

for all n. (37)

In order to obtain bounds for en
u := un

h − u(tn) and en
d :=

dn
h − d(tn), we must assume some sort of regularity for the

solution of problem (11):

u ∈ C(0, T ;H 2
0(�)), ∂tu ∈ L2(0, T ;L2(�)),

∂ttu ∈ L2(0, T ;H−1(�)), p ∈ C(0, T ;H 1(�))

and

d ∈ C(0, T ;W 2,4(�)), ∂td ∈ L2(0, T ;H 1(�)),

∂ttd ∈ L2(0, T ;L2(�)).

In addition,

�d ∈ L2(0, T ;H 1(�)).
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In [44] it is shown the following error estimates:

‖en
u‖2

L2(�)
+ ‖en

d‖2
H 1(�)

+ k

n∑
m=0

(‖em
u ‖2

H 1(�)
+ ‖em

d ‖2
H 2(�)

)

≤ C(k2 + h2) for all n,

where the constant C > 0 depends on the penalty param-
eter ε and, obviously, on the regularity of the solution. To
obtain such error estimates, the differential form of (11) at
t = tn+1 was used with the corresponding consistency er-
rors. This approach needs the velocity vector u to satisfy an
extra compatibility condition established in [31] on the data
at t = 0 to get ∂ttu ∈ L2(0, T ;H−1(�)).

Moreover, the regularity for the director vector d requires
the Neumann problem (33) holding the regularity (34) for
r = 4, which leads to a restriction on the angles of the
boundary ∂�.

Clearly, C1-finite elements provide high order approxi-
mations because they consider a huge degree of approxima-
tions. The Argyris element is constructed with polynomials
of degree less than or equal to 5, and it has 21 degree of
freedom per triangle for a scalar problem in dimension 2,
whereas the bicubic Hermite element is obtained by prod-
ucts of polynomials of degree less than or equal to 3, in-
volving 16 degree of freedom for the same case. The huge
number of unknowns per element for a vectorial problem
in two and three dimensions make this C1 approximation
extremely intensive in terms of computational cost. Fur-
thermore, these approximations involve the derivatives of
the unknowns, complicating their implementation. Although
this scheme has demonstrated that can capture the behavior
of singularities, it is not appropriate in terms of computa-
tion. The use of low order Lagrangian element is favoured
for computational efficiency reasons.

3.1.2 A H 1-Conforming Approximation

The energy estimate (12) can be writen without the need to
have d ∈ H 2(�):

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)
+ λ

∫
�

Fε(d)

)

+ ν‖∇u‖2
L2(�)

+ λ

γ
‖∂td + (u · ∇)d‖2

L2(�)
= 0, (38)

since −�d + f ε(d), the equation for critical points of the
energy

∫
�

1
2 |∇d|2 + Fε(d), has been replaced by the ma-

terial derivative ∂td + (u · ∇)d . Lin and Liu presented in
[40] one of the simplest time-stepping schemes for the two-
dimensional Ginzburg-Landau problem (11), in which space
is discretized by H 1-conforming finite elements and time is

discretized implicitly with respect to the linear terms and
semi-implicitly with respect to the nonlinear terms, except
for the anisotropic stress tensor that is fully explicit; so, the
penalty term is discretized semi-implicitly. Thus, the result-
ing scheme reads

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1, ūh)

− bu(p
n+1
h , ūh) − λ((∇dn

h)
t∇dn

h,∇ūh) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , d̄h) + c(un

h,d
n+1
h , d̄h)

+ γ a(dn+1
h , d̄h) + γ

ε2
((|dn

h|2 − 1)dn+1
h , d̄h) = 0,

(39)

for all (ūh, p̄h, d̄h) ∈ V h × Ph × Dh. In [40], the discrete
spaces were V h = P 2

h , Ph = P 1
h and Dh = P 2

h .
Since no energy estimates can be proved independent of

the mesh and penalty parameter, the unique solvability of
(39) is conditional, that is, there exist a polynomial relation
k = R(ε,h) for which existence and uniqueness of discrete
solutions for the scheme (39) may be established.

Obviously, this scheme reduces significantly the compu-
tational cost, allowing larger scale numerical simulations.
The most important feature is that, at each time step, one
only needs to solve a sequence of two decoupled linear prob-
lems for the velocity-pressure pair and the director field, sep-
arately. However, the authors were not able to derive the dis-
crete analog to the energy estimate (38), which is basic for
unconditional stability and also important with regard to the
error analysis, if one wants to prove

‖en
u‖2

L2(�)
+ ‖en

d‖2
H 1(�)

+ k

n∑
m=0

(
‖em

u ‖2
H 1(�)

+ ‖em
d ‖2

H 2(�)

)

≤ C (k2 + h2) for all n.

A second algorithm based on the finite element method
of characteristics was presented in [40]. Fixed (un

h,p
n
h,dn

h),
find (un+1

h ,pn+1
h ,dn+1

h ) ∈ V h × Ph × Dh such that

(δtu
n+1
h (Xn

h), ūh) + νa(un+1, ūh)

− bu(p
n+1
h ,uh) − λ

(
(∇dn

h)
t∇dn

h,∇ūh

)= 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h (Xn+1

h ), d̄h) + γ a(dn+1
h , d̄h)

+ γ

ε2
((|dn

h|2 − 1)dn+1
h , d̄h) = 0, (40)

where we have denoted by

δtu
n+1
h (Xn

h) = un+1
h − un

h(X
n
h)

k
and

δtd
n+1
h (Xn+1

h ) = dn+1
h − dn

h(X
n+1
h )

k
,
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and Xn
h := x + k un

h(x) and Xn+1
h := x + k un+1

h (x), which
is a backward Euler time discretization of the characteristic
system

X(x, tn+1; tn) = x −
∫ tn+1

tn

u(X(x, tn+1; t), t) dt. (41)

Note that the convective velocity for dn+1
h is updated, due

to the sequential feature of the method. The discrete spaces
(V h,Ph,Dh) are considered as above.

The finite element method of characteristics for (11)1−2

leads to linear algebraic problems with time-independent
matrices, reducing the computational; we can decompose
(at least approximately) the associated matrix just once at
the beginning of computation. However, the same method
does not avoid that (11)3 and (11)4 lead to time-dependent
matrices. For this reason, they proposed an iterative method
for (40) in such a way the matrices do not change at each
iteration. Given d

n+1,j
h , find d

n+1,j
h ∈ Dh such that

(
d

n+1,j+1
h − dn

h(X
n+1
h )

k
, d̄h

)
+ a(d

n+1,j+1
h , d̄h)

+ γ

ε2

(
(|dn

h|2 − 1)d
n+1,j
h , d̄h

)
= 0.

It is proved the convergence of d
n+1,j
h to dn+1

h in the L2

norm, but it requires the relation γ k/ε2 < 1 between the
time and penalty parameter. In any case, for large scale prob-
lems and reasonably large time step sizes (e.g. ten times the
explicit time step size), the assembling of the linear matrix
is almost negligible compared to the solver time, and so, it is
not clear the computational gain of this approach. On top of
that, the iterations introduced over the d system are simple
Richardson iterations, and so, it is expected to have a worse
convergence than a Krylov-based solver.

3.2 Mixed Methods for the Ginzburg-Landau Problem

3.2.1 Using w = ∇d as an Auxiliary Variable

In a second work [45], Liu and Walkington avoided us-
ing Hermite finite elements for the approximation of the
director equation in problem (11). The key idea is to
introduce the auxiliary variable w = ∇d which allows
one to formulate the director equation in the framework
of mixed methods. Then, (35) can be written as find-
ing (u(t),p(t),d(t),w(t)) ∈ H 1

0(�) ×L2
0(�) × H 1(�) ×

H (div,�) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ut ,v) + c(u,u,v) + νa(u,v)

+ bu(p,v) + λc(u,d,∇ · w) = 0,

bu(p,u) = 0,

(∂tw, w̄) − c(u,d,∇ · w̄)

+ γ (∇ · w,∇ · w̄) − γ (f ε(d),∇ · w̄) = 0,

a(d, d̄) + (∇ · w, d̄) = 0,

(42)

for all (v̄, p̄, d̄, w̄) ∈ H 1
0 (�)×L2

0(�)×H 1(�)×H(div,�).
Note that �d = ∇ · w, which will be the extra equation
to compute d , and the elastic stress tensor is written as
(∇d)t∇ · w rather than wt∇ · w; the convective term in
the director equation remains the same (u · ∇)d = (∇d)tw,
rather than wtu. This is an important issue when obtaining
error estimates, because one would need to establish high or-
der norms for w, e.g. an L4 norm, as used in [45]. However,
this extra regularity is easier to obtain from the elliptic equa-
tion (42)4. Let us stress that w has d2 components, where d

is the dimension space.
A fully discrete scheme to approximate (42) is used in

[45], which is implicit with respect to time: given (un
h,d

n
h),

compute (un+1
h ,pn+1

h ,wn+1
h ,dn+1

h ) ∈ (V h,Ph,Wh,Dh)

such that

(δtu
n+1
h , ūh) + c̃(un+1

h ,un+1
h , ūh) + νa(un+1, ūh)

− bu(p
n+1
h , ūh) + λc(ūh,∇dn+1

h ,∇ · wn+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtw
n+1
h , w̄h) − c(un+1

h ,dn+1
h ,∇ · w̄h)

+ γ (∇ · wn+1
h − f ε(d

n+1
h ),∇ · w̄h) = 0,

a(dn+1
h , d̄h) − (∇ · wn+1

h , d̄h) = 0,

(43)

for all (ūh, p̄h, w̄h, d̄h) ∈ V h × Ph × Wh × Dh, where Wh

is an finite element approximation of H (�,div), e.g. the
Raviart-Thomas [56] or the BDFM finite element [9].

The introduction of w allows to compute the director field
and its first derivatives in an independent manner to keep
an energy estimate similar to (37). However, the price to
pay in terms of CPU cost is too large to be acceptable. The
auxiliary unknown introduces four new components to be
computed in dimension two, and nine in three dimensions,
more than the number of unknowns of the original problem!
Moreover, such a scheme is nonlinear, and some sort of iter-
ative method must be performed at every time step.

The solvability of scheme (43) by Brouwer fixed point
argument is subject to satisfying k = O(e−1/ε2

), which re-
quires a very small time step for moderate values of ε.
That restriction is a consequence of the energy estimate that
scheme (43) provides, which is the same as for scheme (36),
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but expressed in terms of w as follows:

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖wn+1

h ‖2
L2(�)

+ k

n∑
m=0

(
ν‖∇um+1

h ‖2
L2(�)

+ λ

2
γ ‖∇ · wm+1

h ‖2
L2(�)

)

≤ C exp((n + 1) k/ε2)

×
(

1

2
‖u0

h‖2
L2(�)

+ λ

2
‖w0

h‖2
L2(�)

)

for all n,

where the constant C is a constant independent of ε. This
bound blows up exponentially with ε−2.

The hypotheses of regularity for a solution (u,p,d) of
problem (11) are:

u ∈ C(0, T ;H 2
0(�)), ∂tu ∈ L2(0, T ;L2(�)),

∂ttu ∈ L2(0, T ;H−1(�)), p ∈ C(0, T ;H 1(�))

and

d ∈ C(0, T ;W 2,4(�)), ∂td ∈ L2(0, T ;H 1(�)),

∂ttd ∈ L2(0, T ;L2(�)).

In addition, w ∈ C(0, T ;H 2(�)). Then the following error
estimates hold:

‖un
h − u(tn)‖2

L2(�)
+ ‖wn

h − ∇d(tn)‖2
L2(�)

+ k

N∑
n=0

(‖un
h − u(tn)‖2

H 1(�)

+ ‖∇ · wn
h − �d(tn)‖L2(�)

)

≤ C(k2 + h2) for all n.

As for scheme (36), the regularity required for ∂ttu ∈
L2(0, T ;H−1(�)) needs a compatibility condition at t = 0
to be satisfied (see [31]).

We would like to mention that this regularity assumption
about the director vector to be approximated requires the
domain � to hold (34) for the Neumann problem (33) with
r = 4; therefore a restriction on the angles of the boundary
must be imposed.

3.2.2 Using w = −�d as an Auxiliary Variable

In order to avoid the large number of extra degrees of free-
dom and the nonlinearity of the numerical schemes above,
Girault and Guillén-González [23] considered instead the
auxiliary variable −�d , constructing a fully discrete mixed
scheme for (11) which is totally coupled but linear, uncondi-
tionally stable and convergent towards (11). Here we present

a slight adaptation of the scheme given in [23] for the Neu-
mann boundary condition.

Given (un
h,d

n
h) ∈ (V h,Dh), seek (un+1

h ,pn+1
h ,wn+1

h ,

dn+1
h ) ∈ V h × Ph × Dh × Wh the solution of the linear

algebraic system:

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1, ūh)

− bu(p
n+1
h , ūh) − λc(ūh,d

n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dn
h, w̄h)

+ γ (f̃ ε(d
n
h) + wn+1

h , w̄h) = 0,

a(dn+1
h , d̄h) − (wn+1

h , d̄h) = 0,

(44)

for all (ūh, p̄h, w̄h, d̄h) ∈ V h × Ph × Dh × Wh where Wh

is (D0
h)

d and

f̃ ε(d) =
{

f ε(d) if |d| ≤ 1,

0 otherwise.

In [23], it was observed that f̃ ε = f ε(T (d)), where

T (d) =
{

d if |d| ≤ 1,
d
|d| otherwise.

This truncation is impracticable from a numerical point of
view. Therefore, a way to perform a tractable truncation is

f̃
h

ε (d) = 1

ε2
(T (P0(|d|2)) − 1)d,

where P0 is the L2 orthogonal projection onto Wh; it im-
plies a loop on the triangles.

After a slight adaptation of the stability proof in [23] for
the Neumann boundary condition, we can prove that system
(44) satisfies the following discrete energy law:

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2

+ k

n∑
m=1

(
ν‖∇um

h ‖2
L2(�)

+ λγ ‖wm
h ‖2

L2(�)

)

≤
(

1

2
‖u0

h‖2 + λ

2
‖∇d0

h‖2
)

exp((n + 1) k/ε2) for all n.

which again blows up exponentially with ε−2.
This scheme reduces the degrees of freedom from schemes

(36) and (43), leading to smaller linear algebraic problems,
with the corresponding saving in terms of CPU time and
storage, and only involves a linear system per time step.
Although it is not immediate, scheme (44) can sligthly be
modified in such a way that it satisfies an energy estimate
independent of ε, under some assumptions over the choice
of the discrete spaces. Let us introduce the following as-
sumptions:
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(S) Stability conditions:

lim
(h,k,ε)→0

k

h2ε2
= 0 and

h

ε
≤ C. (45)

(C) Convergence conditions:

lim
(h,ε)→0

h

ε2
= 0. (46)

(H) The discrete spaces (V h,Dh) hold:

(V h · ∇)Dh ⊂ Wh and Dh ⊂ Wh.

Hypothesis (H) indicates that Wh must be a discontinuous
finite element space consisting of polynomial functions of
degree more than or equal to that of Dh and (V h · ∇)Dh,
i.e. the space (D2

h)
d .

Moreover, the stabilizing term bu(Fε(d
n
h), ūh), related to

a potential, must be added and (dn+1
h − dn

h, d̄h), which in-
troduces some numerical dissipation. Therefore, the mod-
ified algorithm reads as: given (un

h,d
n
h) ∈ (V h,Dh), seek

(un+1
h ,pn+1

h ,wn+1
h ,dn+1

h ) ∈ V b
h × Ph × Dh × Wh the solu-

tion of the linear algebraic system:

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1, ūh)

+ λbu(Fε(d
n
h), ūh) − bu(p

n+1
h , ūh)

− λc(ūh,d
n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dn
h, w̄h)

+ γ (f ε(d
n
h) + wn+1

h , w̄h) = 0,

a(dn+1
h , d̄h) + (dn+1

h − dn
h, d̄h) − (wn+1

h , d̄h) = 0.

(47)

The key pass to get the energy estimates independent of
ε for scheme (44) is taken form [29], which is based on an
induction argument on the time step. Firstly, one obtains a
discrete version of (12) at time tn+1 by assuming that we
have a control of the discrete kinetic, elastic and penalty en-
ergy at time tn. The following proof is in fact new, since the
bounds in [23] for the original scheme (without the previous
modifications) blow up exponentially with ε−2.

Lemma 3 Suppose that there exists a constant Cd > 0 in-
dependent of h, k and, ε such that

‖un
h‖2

L2(�)
+ λ‖∇dn

h‖2
L2(�)

+ 2λ

∫
�

Fε(d
n
h) ≤ Cd. (48)

Then there exist h0 > 0, k0 > 0, and ε0 > 0 such that for
all h ≤ h0, k ≤ k0, and ε ≤ ε0 satisfying hypothesis (S), the

corresponding solution (un+1
h ,dn+1

h ,wn+1
h ) of the discrete

problem (47) satisfies the following inequality:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(‖un+1
h ‖2

L2(�)
− ‖un

h‖2
L2(�)

) + λ(‖∇dn+1
h ‖2

L2(�)

− ‖∇dn
h‖2

L2(�)
) + 2λ

∫
�

(Fε(d
n+1
h ) − Fε(d

n
h))

+ k(ν‖∇un+1
h ‖2

L2(�)

+ λγ ‖PWh
(f ε(d

n
h)) + wn+1

h ‖2
L2(�)

) ≤ 0, (49)

where PWh
indicates the L2(�)-orthogonal projection onto

Wh.

Proof Take ūh = 2 k un+1
h in (47)1 and p̄h = pn+1

h in (47)2.
Then, the term bu(p

n+1
h ,un+1

h ) vanishes. Thus, the identity
(a − b,2a) = |a|2 − |b|2 + |a − b|2 provides

‖un+1
h ‖2

L2(�)
− ‖un

h‖2
L2(�)

+ ‖un+1
h − un

h‖2
L2(�)

+ 2νk‖∇un+1
h ‖2

L2(�)
+ 2λk bu(Fε(d

n
h),u

n+1
h )

− 2λk c(un+1
h ,dn

h,w
n+1
h ) = 0. (50)

On the other hand, consider w̄h = 2λk(wn+1
h +PWh

(f ε(d
n
h)))

in (47)3 and d̄h = 2λ(dn+1
h − dn

h) in (47)4. Next, using
the fact that (un+1

h · ∇)dn
h ∈ Wh and dn+1

h − dn
h ∈ Wh due

to (H), we get

λ
(‖∇dn+1

h ‖2
L2(�)

− ‖∇dn
h‖2

L2(�)
+ ‖dn+1

h − dn
h‖2

H 1(�)

)

+ 2λ(dn+1
h − dn

h,f ε(d
n
h))

+ 2λkc(un+1
h ,dn

h,w
n+1
h + f ε(d

n
h))

+ 2λγ k‖PWh
(f ε(d

n
h)) + wn+1

h ‖2 = 0. (51)

Now, if we add (50) and (51) and use

c(un+1
h ,dn

h,f ε(d
n
h)) + bu(Fε(d

n
h),u

n+1
h ) = 0,

we have

(‖un+1
h ‖2

L2(�)
+ λ‖∇dn+1

h ‖2
L2(�)

)

− (‖un
h‖2

L2(�)
+ λ‖∇dn

h‖2
L2(�)

)

+ (‖un+1
h − un

h‖2
L2(�)

+ λ‖∇(dn+1
h − dn

h)‖2
L2(�)

+ 2λ‖dn+1
h − dn

h‖2
L2(�)

)

+ 2k
(
ν‖∇un+1

h ‖2
L2(�)

+ γ λ‖wn+1
h

+ PWh
(f ε(d

n
h))‖2

L2(�)

)

+ 2λ
(
dn+1

h − dn
h,f ε(d

n
h)
)≤ 0. (52)
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Next, we decompose the last term on the left-hand side of
(52) as follows:

2λ
(
dn+1

h − dn
h,f ε(d

n
h)
)

= 2λ

ε2

(
dn+1

h − dn
h, (|dn+1

h |2 − 1)dn
h

)

+ 2λ

ε2

(
dn+1

h − dn
h, (|dn

h|2 − |dn+1
h |2)dn

h

)

:= I1 − I2.

Rewriting I1 as

I1 = λ

ε2

∫
�

(|dn+1
h |2 − 1)(|dn+1

h |2 − |dn
h|2 − |dn+1

h − dn
h|2)

= λ

2ε2

∫
�

(
(Fε(d

n+1
h ) − Fε(d

n
h) + (|dn+1

h |2 − |dn
h|2)2)

+ λ

ε2

∫
�

(1 − |dn+1
h |2)|dn+1

h − dn
h|2

and bounding I2 as

I2 ≤ C

ε2
‖dn

h‖2
L∞(�)‖dn+1

h − dn
h‖2

L2(�)

+ λ

4ε2

∫
�

(|dn+1
h |2 − |dn

h|2)2,

we arrive at
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(‖un+1
h ‖2

L2(�)
+ λ‖∇dn+1

h ‖2
L2(�)

+ 2λ

∫
�

Fε(d
n+1
h )

)

− (‖un
h‖2

L2(�)
+ λ‖∇dn

h‖2
L2(�)

+ 2λ

∫
�

Fε(d
n
h)
)

+ ‖un+1
h − un

h‖2
L2(�)

+ λ‖∇(dn+1
h − dn

h)‖2
L2(�)

+ 2λ‖dn+1
h − dn

h‖2
L2(�)

+ λ

ε2

∫
�

(
1

4
(|dn+1

h |2 − |dn
h|2)2) + |dn+1

h − dn
h|2

)

+ 2k
(
ν‖∇un+1

h ‖2
L2(�)

+ λγ ‖PWh
(f ε(d

n
h))

+ wn+1
h ‖2

L2(�)

)

≤ C

ε2

(‖dn
h‖2

L∞(�) + ‖dn+1
h ‖2

L∞(�)

)
× ‖dn+1

h − dn
h‖2

L2(�)
:= I3. (53)

We next want to bound the term ‖dn+1
h − dn

h‖2
L2(�)

of I3.

Take as a test function w̄h = PWh
(w̄) with w̄ ∈ L3(�) into

(47)3. Then, by a duality argument, we have

‖δtd
n+1
h ‖L3/2(�) ≤ ‖un+1

h ‖L6(�)‖∇dn
h‖L2(�)

+ γ ‖PWh
(f ε(d

n
h)) + wn+1

h ‖L2(�).

≤ C(ν‖∇un+1
h ‖L2(�)

+ γ λ‖PWh
(f ε(d

n
h)) + wn+1

h ‖L2(�))

where we have used in the last line hypothesis (48). Next,
the term I3 can be handled as

I3 ≤ Ck2

ε2

(‖dn
h‖2

L∞(�) + ‖dn+1
h ‖2

L∞(�)

)‖δtd
n+1
h ‖2

L2(�)

≤ Ck2

h2ε2

(
‖dn

h‖2
H 1(�)

+ ‖dn+1
h ‖2

H 1(�)

)
‖δtd

n+1
h ‖2

L3/2(�)
,

where the inverse inequalities

‖d̄h‖L2(�) ≤ Ch−1/2‖d̄h‖L3/2(�)

and

‖d̄h‖L∞(�) ≤ Ch−1/2‖d̄h‖H 1(�) for all d̄h ∈ Dh

have been used. Then the bound of I3 remains as

I3 ≤ Ck

h2ε2

(‖dn+1
h ‖2

H 1(�)
+ ‖dn

h‖2
H 1(�)

)

× (
kν‖∇un+1

h ‖2
L2(�)

+ λγ k‖PWh
(f ε(d

n
h))

+ wn+1
h ‖2

L2(�)

)
. (54)

Our next goal is to bound ‖dn+1
h ‖H 1(�) in terms of

‖dn
h‖H 1(�) and ‖un

h‖L2(�). We consider (52) rewritten as

(‖un+1
h ‖2

L2(�)
+ λ‖dn+1

h ‖2
H 1(�)

)

+ (‖un+1
h − un

h‖2
L2(�)

+ λ‖dn+1
h − dn

h‖2
H 1(�)

)

+ 2k
(
ν‖∇un+1

h ‖2
L2(�)

+ γ λ‖wn+1
h

+ PWh
(f ε(d

n
h))‖2

L2(�)

)

= (‖un
h‖2

L2(�)
+ λ‖dn

h‖2
H 1(�)

)

− 2λ(dn+1
h − dn

h,f ε(d
n
h)) + 2λ(dn

h,d
n+1
h − dn

h). (55)

The right-hand side of (55) can be estimated as

2λ
(
dn+1

h − dn
h,f ε(d

n
h)
)

≤ Ck‖δtd
n+1
h ‖L3/2(�)

1

h1/2
‖f ε(d

n
h)‖L2(�)

≤ δk‖δdn+1
h ‖2

L3/2(�)
+ Cδ

1

h
‖f ε(d

n
h)‖2

L2(�)

≤ δk‖δtd
n+1
h ‖2

L3/2(�)
+ Cδ

1

hε2
‖dn

h‖2
L∞(�)Fε(d

n
h)

≤ δk‖δtd
n+1
h ‖2

L3/2(�)
+ Cδ

1

h2ε2
Fε(d

n
h)‖dn

h‖2
H 1(�)

≤ Cδk
(
ν‖∇un+1

h ‖2
L2(�)

+ γ λ‖wn+1
h

+ PWh
(f ε(d

n
h))‖2

L2(�)

)
+ Cδk

h2ε2
. (56)
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The control of ‖dn
h‖H 1(�) in the fourth line of (56) comes

from the inverse triangle inequality applied to
∫
�

Fε(d
n
h) ≤

Cd to give

∣∣‖dn
h‖2

L4(�)
− |�|1/2

∣∣2 ≤ ‖|dn
h|2 − 1‖2

L2(�)

= 4ε2
∫

�

Fε(d
n
h) ≤ Cdε2.

Hence, we have

‖dn
h‖2

L4(�)
≤ Cd(ε + |�|1/2).

Thus, we complete the seminorm ‖∇dn
h‖2 ≤ Cd in (48) to

‖dn
h‖2

H 1(�)
≤ C, where C is independent of h, k, and ε.

Therefore, from (56), we get, for δ small enough,

2λ
(
dn+1

h − dn
h,f ε(d

n
h)
)

≤ k
(
ν‖∇un+1

h ‖2
L2(�)

+ γ λ‖wn+1
h

+ PWh
(f ε(d

n
h))‖2

L2(�)

)+ Ck

h2ε2
. (57)

It is easy to bound the last term on the right-hand side of
(55) in a similar way:

2λ(dn
h,d

n+1
h − dn

h)

≤ 2λk‖dn
h‖L3(�)‖δtd

n+1
h ‖L3/2(�)

≤ δk‖δtd
n+1
h ‖2

L3/2(�)
+ Cδk. (58)

Thus, incorporating the bounds (57) and (58) to (55), one
obtains

‖dn+1
h ‖2

H 1(�)
≤ C

(
‖dn

h‖2
H 1(�)

+ ‖un
h‖2

L2(�)
+ Ck

h2ε2
+ Ck

)

Therefore, using hypothesis (48) and (S), we get the bound

‖dn+1
h ‖2

H 1(�)
≤ C. (59)

Finally, applying (59) in (54), the term I3 is bounded as

I3 ≤ C
k

h2ε2

(
kν|∇un+1

h |2 + λγ k|PWh
(f ε(d

n
h))

+ wn+1
h |2).

Using hypothesis (S), we can select (k0, h0, ε0) such that
for all k ≤ k0, h ≤ h0 and ε ≤ ε0,

C
k

h2 ε2
≤ 1

and we arrive at

I3 ≤ k
(
ν‖∇un+1

h ‖2
L2(�)

+ λγ ‖PWh
(f ε(d

n
h))

+ wn+1
h ‖2

L2(�)

)
.

Therefore, we obtain inequality (49) using this estimate
for I3 in (53). It ends the proof. �

In order to get stability estimates for scheme (47), we
will need to assume the following estimates over the initial
condition approximations d0

h and u0
h:

λ‖∇d0
h‖2

L2(�)
≤ K1, ‖u0

h‖2
L2(�)

≤ K2,

2λ

∫
�

Fε(d
0
h)dx ≤ K3,

where Ki > 0 (i = 1,2,3) are constants independent of h

and k.
The two first properties can be guaranteed e.g. consid-

ering d0
h = Ih(d0) and u0

h = Jh(u0) where Ih and Jh are
interpolation operators being stable in H 1(�)∩L∞(�) and
L2(�), respectively, and having optimal error properties; for
instance, the Scott-Zhang [52] or Clement [20] interpolant.
It is not an easy task to construct initial approximations satis-
fying |d0

h| = 1 (only constant linear finite element functions
satisfy the restriction pointwise), so the only thing we can
prove is a uniform bound with respect to ε for

∫
�

Fε(d
0
h).

Indeed, we have that the initial orientation of the liquid crys-
tal molecules verifies the constraint |d0| = 1. Therefore we
can write
∫

�

Fε(d
0
h) = 1

ε2

∫
�

(|d0
h|2 − |d0|2)2

= 2

ε2

∫
�

(
d0 + d0

h,d0 − d0
h

)2

≤ 1

ε2
‖d0 + d0

h‖2
L∞(�)‖d0 − d0

h‖2
L2(�)

.

Now, an optimal interpolation error implies that there is a
positive constant K3 such that

2λ

∫
�

Fε(d
0
h) ≤ C

h2

ε2
≤ K3, (60)

which involves the new restriction for the parameters h/ε ≤
K3 announced in (C).

We now state the new results about the global-in-time sta-
bility for scheme (47):

Theorem 4 There exist h0, k0 and ε0 so that for any h ≤ h0,
k ≤ k0 and ε ≤ ε0 satisfying the stability condition (S), the
corresponding solutions of the discrete problem (44) satis-
fies the estimates:

(i) max
0≤n≤N

‖un
h‖L2(�) ≤ C,

(ii) k

N−1∑
n=0

‖∇un+1
h ‖2

L2(�)
≤ C,
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(iv) max
0≤n≤N

‖dn
h‖H 1(�) ≤ C,

(v) k

N−1∑
n=0

‖PWh
(f ε(d

n
h)) + wn+1

h ‖2
L2(�)

≤ C,

(vii) max
0≤n≤N

∫
�

Fε(d
n
h) ≤ C,

where C > 0 is independent of (h, k, ε).

Proof It suffices to prove (49) for all n = 0, . . . ,N − 1.
For this, we argue by induction on n. Let us define Cd =
K1 +K2 +K3 with Ki the bounds for the initial data. Then,
in particular, (u0

h,d
0
h) satisfies the hypothesis of Lemma 3

for n = 0: ‖u0
h‖2

L2(�)
+λ‖∇d0

h‖2
L2(�)

+ 2λ
∫
�

Fε(d
0
h) ≤ Cd ,

then (49) holds for n = 0 (and, in particular, ‖u1
h‖2

L2(�)
+

λ‖∇d1
h‖2

L2(�)
+ 2λ

∫
�

Fε(d
1
h) ≤ Cd ).

Now, we assume that (us
h,d

s
h) holds (49) for s =

1, . . . , n − 1. Adding (49) for s = 1, . . . , n − 1, one has

‖un
h‖2

L2(�)
+ λ‖∇dn

h‖2
L2(�)

+ 2λ

∫
�

Fε(d
n
h)

≤ ‖u0
h‖2

L2(�)
+ λ‖∇d0

h‖2
L2(�)

+ 2λ

∫
�

Fε(d
0
h)

≤ K1 + K2 + K3 = Cd,

which implies from Lemma 3 that (49) holds for n. �

The convergence for scheme (44) is demonstrated by two
different ways: compactness and error estimates. The com-
pactness for the discrete velocity is attained by estimating
a discrete fractional time estimate for the velocity and di-
rector field. The line of argument is as follows. Add (44)1

from n = m to m + r − 1 and take ū = um+r
h − um

h as a test
function. Then, use adequately equation (44)2 and add from
m = 1 to N − r to get

k

N−r∑
m=1

‖um+r
h − um

h ‖2
L2(�)

= −νk2
N−r∑
m=1

m+r∑
n=m

a(un+1
h ,um+r

h − um
h )

− k2
N−r∑
m=1

m+r∑
n=m

ch(u
n
h,u

n+1
h ,um+r

h − um
h )

− λk2
N−r∑
m=1

m+r∑
n=m

c(um+r
h − um

h ,dn
h,w

n+1
h ).

Let us now focus on how to control the last term. A discrete
integration by parts and Sobolev’s inequality leads to

λk2
N−r∑
m=1

m+r∑
n=m

c(um+r
h − um

h ,dn
h,w

n+1
h )

≤ C(kr)1/2

(
N−1∑
n=1

k‖wn+1
h ‖2

L2(�)

)1/2

×
(

N−1∑
n=1

k‖∇dn
h‖2

L3(�)

)1/2

×
(

N−r∑
m=1

k‖∇(um+r
h − um

h )‖2
L2(�)

)1/2

≤ C(kr)1/2. (61)

Obviously, we need the control k
∑N−1

n=1 ‖dn
h‖2

W 1,3(�)
≤ C to

obtain (61), which takes advantage of k
∑N−1

n=1 ‖wn
h‖2

L2(�)
≤

C, proved in [23] by assuming ∂� to be only Lipschitz.
Therefore, we arrive at

N−r∑
m=0

‖um
h − um+r

h ‖2
L2(�)

dt ≤ C (rk)1/2

for all r = 1, . . . ,N − 1.

A similar bound for the discrete director can be obtained:

N−r∑
m=0

‖dm+r
h − dm

h ‖2
H 1(�)

dt ≤ C (rk)1/2

for all r = 1, . . . ,N − 1.

The expressions above, in term of time interpolations asso-
ciated with the sequences {un

h} and {dn
h}, are written as

∫ T −δ

0
‖ur

h,k(t + δ) − ur
h,k(t)‖2

L2(�)
dt ≤ Cδ1/2

for all δ ∈ (0, T ), (62)∫ T −δ

0
‖dr

hk(t + δ) − dr
hk(t)‖2

H 1(�)
dt ≤ Cδ1/2

for all δ ∈ (0, T ). (63)

Next, a compactness result from [54] provides that the se-
quences {dr

h,k} and {ur
h,k} are compact in L2(0, T ;L2(�)),

which is extensible to {d l
h,k} and {ul

h,k}. This strong conver-
gence for {dr

h,k} is not enough to pass to the limit in the elas-

tic stress tensor of (44)1. Testing (44)4 with d̄ = dn+1
h one

can prove the strong convergence of {∇dr
h,k} and {∇d l

h,k}
towards ∇d in L2(0, T ;L2(�)) as obtained in [23]. There-
fore, one gets the existence of a global-in-time weak solution
to (11) (see Definition 2).
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On the other hand, error estimates are obtained in [23].
Indeed, if the solution (u,p,d) to (11) has the following
regularity:

(u,d,w) ∈ L2(H 2(�) × W 2,3(�) × H 1(�)),

u ∈ L∞(W 1,3(�) ∩ L∞(�)),

p ∈ L2(H 1(�)),

(∂tu, ∂td, ∂tw) ∈ L2(H 1(�) × H 2(�) × W 1,6/5(�)),

then scheme (44) satisfies the error estimates:

‖en
u‖2

L2(�)
+ ‖∇en

d‖2
L2(�)

+ k

n+1∑
m=1

(‖∇em
u ‖2

L2(�)
+ ‖em

w‖2
L2(�)

)

≤ C(h2 + k2) for all n,

where we recall that en
u := un

h −u(tn), en
d := un

h −d(tn), and
en
w := wn

h − w(tn). These error estimates are derived by us-
ing an integral formulation for problem (11) which avoids to
assume nonlocal compatibility conditions on the initial data
[31]. Instead, the integral formulation requires more regu-
larity for the time derivatives of the solution to be approxi-
mated.

Three iterative methods to decouple (un+1
h ,pn+1

h ) from
(dn+1

h ,wn+1
h ) at each time step are also obtained for scheme

(44) in [23]. For any n ≥ 0, given wn
h, dn

h, un
h and pn

h , these
schemes compute wn+1

h , dn+1
h , un+1

h and pn+1
h as follows:

1. (a) Given w0 = wn
h, if n > 1, or w0 = −PWh

(�d0), if
n = 1, where PWh

is the L2 orthogonal projection
onto Wh.

(b) For i ≥ 1, known wi−1, compute (ui , pi) ∈ V h ×Ph

such that

1

k
(ui − un

h, ū) + νa(∇ui ,∇v) − bu(pi,∇ · v)

+ ch(u
n
h,ui , ūh) = c(ūh,d

n
hwi−1),

bu(p̄h,ui ) = 0.

(c) Next, compute (wi ,d i ) ∈ Wh × Dh the solution of:

1

k
(d i − dn

h, w̄h) + γ (wi ,wh)

= −c(ui ,d
n
h, w̄h) − γ (f̃ ε(d

n
h), w̄h),

a(d i , d̄h) − (wi , w̄h) = 0.

2. (a) Let u0 = un
h.

(b) Known ui−1, compute (wi ,d i ) ∈ Wh ×Dh, solution

of:

1

k
(d i − dn

h, w̄h) + γ (wi , w̄h)

= −c(ui−1,d
n
h, w̄h) − γ (f̃ ε(d

n
h), w̄h),

(d i , d̄h) − (wi , d̄h) = 0.

(c) Next, compute (ui , pi) ∈ V h × Ph such that

1

k
(ui − un

h, ūh) + νa(ui , ūh) − bu(pi, ūh)

+ ch(u
n
h,ui , ūh) = c(ūh,d

n
h,wi ),

bu(p̄h,ui ) = 0.

3. (a) Let u0 = un
h and w0 = wn

h, if n > 0, or w0 =
−PWh

(�d0), if n = 1.
(b) Known ui−1 and wi−1, compute in a parallel way

• (wi ,d i ) ∈ Wh × Dh such that

1

k
(d i − dn

h, w̄h) + γ (wi , d̄h)

= −c(ui−1,d
n
h, w̄h) − γ (f̃ (dn

h), w̄h),

a(d i , d̄h) − (wi ,dh) = 0,

• and (ui , pi) ∈ V h × Ph such that

1

k
(ui − un

h, ūh) + νa(ui , ūh) − bu(pi,uh)

= −ch(u
n
h,ui−1, ūh) + c(ūh,d

n
h,wi−1),

bu(p̄h,ui ) = 0.

The convergence of these iterative methods is established
under the condition h2 ≤ Ck, where C > 0 is a constant de-
pending on ε.

3.2.3 Using w = −�d + f ε(d) as an Auxiliary Variable

So far, the finite element schemes that have been presented
to approximate a solution to the Ericksen-Leslie equations
(3) by means of the Ginzburg-Landau equations (11) do not
preserve a discrete version of the energy law (12). In fact,
the only exception is the novel modification of (44), i.e. sys-
tem (47). This is basically due to the fact that the nonlinear
function f ε(d) does not belong to the discrete space Dh.
In order to get such an energy law one must write the elastic
tensor λ∇ · ((∇d)t∇d) in terms of the critical point equation
−�d + f ε(d) like

λ∇ · ((∇d)t∇d) = λ∇
(

1

2
|∇d|2 + Fε(d)

)

− λ(∇d)t (−�d + f ε(d)), (64)
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as in [8, 29]. Then, if one defines the variable w =
−�d + f ε(d), which represents the Euler-Lagrange equa-
tion related to the Ginzburg-Landau free energy functional∫
�

1
2 |∇d|2 + Fε(d), model (11) can be reformulated as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu + u · ∇u − ν�u + ∇p − λ(∇d)tw = 0 in Q,

∇·u = 0 in Q,

|d| ≤ 1, ∂td + u · ∇d + γw = 0 in Q,

−�d + f ε(d) − w = 0 in Q,

(65)

where the pressure p is modified by the potential function
p + λ

2 |∇d|2 + λFε(d) (which is called again p for simplic-
ity).

The vector spaces where the weak formulation of prob-
lem (65) is well-posed are as follows: find (u(t),p(t),

d(t),w(t)) ∈ H 1
0(�) × L2

0(�) × H 1(�) × L2(�) such that

(∂tu, ū) + c(u,u, ū) + νa(u, ū)

− bu(p, ū) − λc(ū,d,w) = 0,

bu(p̄,u) = 0,

(∂td, w̄) + c(u,d, w̄) + γ (w, w̄) = 0,

a(d, d̄) + (f ε(d), d̄) − (w, d̄) = 0,

(66)

for all (ū, p̄, w̄, d̄) ∈ H 1
0(�) × L2

0(�) × L2(�) × H 1(�).
Two finite-element Euler time-stepping schemes [8, 29]

have been developed to approximate (66), being both im-
plicit for the linear terms and semi-implicit for the nonlin-
ear ones. The main difference among them lies in the way
of treating the time integration of f ε . Becker, Feng and
Prohl proposed in [8] a fully implicit approximation while
Guillén-González and Gutiérrez-Santacreu suggested a fully
explicit one.

Thus, the scheme developed in [8] is expressed as fol-
lows. Let (un

h,d
n
h) ∈ (V h,Dh) be given, then find the solu-

tion (un+1
h ,pn+1

h ,dn+1
h ,wn+1

h ) ∈ V h × Ph × Dh × Wh of
the nonlinear system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1

h , ūh)

− bu(p
n+1
h , ūh) − λc(ūh,d

n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dn
h, w̄h) + γ (wn+1

h , w̄h) = 0,

a(dn+1
h , d̄h) + (f ε(d

n+1
h ,dn

h), d̄h)h − (wn+1
h , d̄h) = 0,

(67)

for all (ūh, p̄h, w̄h, d̄h) ∈ V h × Ph × Wh × Dh, where
f ε(d

n+1
h ,dn

h) = 1
2ε2 |dn+1

h |2dn+1
h − dn

h. Here, a discrete in-
ner product is used (·, ·)h, which is defined as follows. Let
{φa : a ∈ Nh} denote the nodal basis associated the set

of all nodes Nh = {al}l∈L of Th. Thus, the nodal inter-
polation operator IDh

: C(�) → Dh is such that IDh
ψ :=∑

a∈Nh
ψ(a)φa . Then the discrete inner product (·, ·)h is

defined in the following way: for all �,ψ ∈ C(�), one has

(�,ψ)h :=
∫

�

Ih(� · ψ) =
∑

a∈Nh

�(a) · ψ(a)

∫
�

φa .

This discrete inner-product applied to the potential term
(f ε(d

n+1
h ,dn

h), d̄h)h produces a 1/ε2-diagonal lumped mass
matrix. A Newton method is considered in [8] to linearize
the problem.

Scheme (67) provides a discrete energy law which mim-
ics the continuous energy law (12):

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2
L2(�)

+ λ

∫
�

Fε(d
n+1
h )

+ k

n+1∑
m=1

(
ν‖∇um

h ‖2
L2(�)

+ λγ ‖wm
h ‖2

L2(�)

)

≤
(

1

2
‖u0

h‖2
L2(�)

+ λ

2
‖∇d0

h‖2
L2(�)

+
∫

�

Fε(d
0
h)

)
for all n. (68)

This scheme is unconditionally stable and convergent to-
wards a measured-valued solution of (3). This convergence
is attained in two steps; firstly, when the time and space dis-
cretization parameters go to zero, the convergence towards a
weak solution of the penalized problem (65) is proved, and
afterwards, when the penalty parameter ε goes to zero, one
arrives at a measure-valued solution of problem (3), where
the elastic tensor (∇d)t∇d only tends to a certain measure
(see [39]).

The scheme presented in [29] was designed for non-
homogeneous Dirichlet boundary conditions. This scheme
should be redesigned appropriately in order to guaran-
tee stability for homogeneous Neumann boundary condi-
tions. The renewed scheme preserves the time discretiza-
tion of the penalty function in a fully explicit way. Then,
the scheme becomes: given (un

h,d
n
h) ∈ (V h,Dh), find

(un+1
h ,pn+1

h ,dn+1
h ,wn+1

h ) ∈ V h × Ph × Dh × Wh solving
the finite element linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh) + νa(un+1

h , ūh)

− bu(p
n+1
h , ūh) − λc(ūh,d

n
h,w

n+1
h ) = 0,

bu(p̄h,u
n+1
h ) = 0,

(δtd
n+1
h , w̄h) + c(un+1

h ,dn
h, w̄h) + γ (wn+1

h , w̄h) = 0,

a(dn+1
h , d̄h) + (f ε(d

n
h), d̄h)h − (wn+1

h , d̄h) = 0,

(69)

for all (ūh, p̄h, w̄h, d̄h) ∈ V h × Ph × Wh × Dh.
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Scheme (69) is conditionally stable in the terms of
scheme (47) (assuming (S)) and convergent (assuming (C))
to a measure-valued solution, but this time the convergence
is attained by making the mesh parameter (h, k) and the
penalty parameter ε go to zero at the same time, what could
be done for scheme (67) as well. Since the approximation
of f ε is explicit, the linear algebraic problem (69) does not
depend on ε, which assures that the conditional number of
the system at every time step is not affected by ε. However,
the stability condition (S) implies that the time step k must
be quite small if the size of ε is proportional to the space
parameter h, but numerical experiences in [29] have demon-
strated to be optimal.

The convergence of schemes (67) and (69) is obtained
by means of compactness results. For the discrete director
vector, it is easy to check that

k

N−1∑
n=0

∥∥∥δtd
n+1
h

∥∥∥2

L3/2(�)
≤ C,

by choosing as a test function w̄h = PWh
w̄ in (67) or (69);

we have also used the fact that w ∈ L3(�) and the L3(�)-
stability of the L2 projection operator PWh

(see [15]). As
a consequence of the energy estimates and a compactness
result in [54], one gets the compactness of the sequence
{dh,k,ε} in Lq(0, T ;Lr (�)) with 1 ≤ r < 6 and 1 ≤ q < ∞,
where dh,k,ε is the linear piecewise continuous function
such that dh,k,ε(tn) = dn

h.
We think the way how the compactness for the discrete

velocity in L2(0, T ;L2(�)) is proved in [8] is not clear.
From (68), the sequence of discrete velocities is bounded in
L∞(0, T ;L2(�)) ∩ L2(0, T ;H 1

0(�)). Afterwards, by a du-
ality argument, the discrete time derivative for the velocity is
bounded in the dual space of V ∩ H 2(�). Then the Aubin-
Lions compactness lemma is used. To apply this com-

pactness result, one needs the embeddings H 1
0(�)

compact�→
L2(�) ↪→ (V ∩ H 2(�))′, but the embedding from L2(�)

into (V ∩H 2(�))′ is not injective. Obtaining a compactness
result for the discrete velocity turns out to be harder than
for the Ginzburg-Landau problem (11) for a fixed ε, even
for problems with a similar structure such as the density-
dependent Navier-Stokes equations ([27, 46] and [28]).

Now we cannot prove the time fractional estimate

N−r∑
m=0

‖um
h − um+r

h ‖2
L2(�)

dt ≤ C(rk)1/2

for all r = 1, . . . ,N − 1

obtained in [23], since no control over k
∑N−1

n=1 ‖dn
h‖2

W 1,3(�)≤ C is available with C being independent of ε. Let us
sketch the way of getting compactness for the discrete ve-
locity in an appropriate way. Let

Xh = {ūh ∈ V h : bu(p̄h, ūh) = 0 ∀p̄h ∈ Ph}

be the discrete divergence-free space associated with V h and
consider A−1

h : V h → Xh the inverse discrete Stokes opera-
tor defined as

(∇A−1
h uh,∇vh) = (uh,vh) ∀vh ∈ Xh. (70)

Notice that (70) is well-defined owing to the inf-sup condi-
tion (30).

By multiplying (67)1 by k2, summing for n = m, . . . ,

m − 1 + r , setting ūh = A−1
h (um+r

h − um
h ) as a test function

in (67)1, and summing for m = 0, . . . ,N − r , we get

k

N−r∑
m=0

|∇A−1
h (um+r

h − um
h )|2

= −k2
N−r∑
m=0

m−1+r∑
n=m

c
(
un

h,u
n+1
h ,A−1

h (um+r
h − um

h )
)

+ νk2
N−r∑
m=0

m−1+r∑
n=m

(∇un+1,∇A−1
h (um+r

h − um
h )
)

+ λk2
N−r∑
m=0

m−1+r∑
n=m

(
(∇dn

h)
twn+1

h ,A−1
h (um+r

h − um
h )
)

:= J1 + J2 + J3. (71)

Let us only focus on how to estimate J3

J3 ≤ C k2
N−r∑
m=0

m−1+r∑
n=m

|∇dn
h||wn+1

h |‖A−1
h (um+r

h − um
h )‖L∞(�)

≤ C k2
N−r∑
m=0

m−1+r∑
n=m

|wn+1
h |‖A−1

h (um+r
h − um

h )‖L∞(�).

Sobolev’s inequality shows that

‖A−1
h (um+r

h − um
h )‖L∞(�) ≤ C‖A−1(um+r

h − um
h )‖W 1,r (�)

with r > d , d being the dimension of �. The following
bound

‖A−1
h (um+r

h − um
h )‖W 1,r (�)

≤ C‖A−1(um+r
h − um

h )‖W 1,r (�),

is proved in [25], under the regularity (32) with r > d for
A−1 the Stokes operator (31). Thus, applying Sobolev’s in-
equality, H 2(�) ↪→ W 1,r (�), with r ≤ 6, gives

‖A−1(um+r
h − um

h )‖L∞(�) ≤ C‖A−1(um+r
h − um

h )‖H 2(�)

≤ C‖um+r
h − um

h ‖L2(�), (72)
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where we have used the regularity result (32) for r = 2.
Therefore,

J3 ≤ C k2
N−r∑
m=0

m−1+r∑
n=m

‖wn+1
h ‖L2(�)‖um+r

h − um
h ‖L2(�)

≤ k

N−r∑
m=0

‖um+r
h − um

h ‖L2(�)

×
(

k

m−1+r∑
n=m

‖wn+1
h ‖2

L2(�)

)1/2

(r k)1/2 ≤ C(r k)1/2.

Finally, we conclude that

k

N−r∑
m=0

‖∇A−1
h (um+r

h − um
h )‖2

L2(�)
≤ C (r k)1/2,

which is equivalent to

∫ T −δ

0
‖uh,k,ε(t + δ) − uh,k,ε(t)‖2

X′
h
dt ≤ Cδ1/2

∀δ : 0 < δ < T

due to the fact that ‖∇A−1
h uh‖L2(�) and ‖uh‖X′

h
are equiv-

alent norms.
Note that the time fractional time estimate for the dis-

crete velocity is bounded in the V ′
h norm, which depends

on the space parameter h; therefore we cannot apply the
compactness results given by Simon in [54]. Then the idea
will be to encounter a fractional time norm being indepen-
dent of the mesh parameters. Consider the space V = {u ∈
H 1

0(�) : ∇ · u = 0} and the orthogonal projection Rh :
V h → V such that (∇(Rhuh − uh),∇v) = 0, ∀v ∈ V . One
knows from [29] that ‖Rhuh‖V ′ ≤ C(h|∇ · uh| + ‖uh‖V ′

h
)

and
∫ T −δ

0
‖Rhuh,k,ε(t + δ) − Rhuh,k,ε(t)‖2

V ′dt ≤ Cδ1/2 + Ch.

Finally, the compactness of {Rhu
l
h,k,ε} in L2(0, T ;L2(�))

follows by a perturbed compactness result due to Azérad
and Guillén-González in [3]. To conclude with the strong
convergence, one uses the external approximation from Xh

to V , in order to prove that the sequence {ul
h,k,ε} is com-

pact in L2(0, T ;L2(�)). To complete with the convergence
we must pass to the limit. In [29], the authors needed to im-
pose the additional hypothesis (C) in the process. Although,
scheme (67) is unconditionally stable, it may need such a
condition.

An interesting issue is to prove compactness under the
minimum assumptions over the boundary of �. At the con-
tinuous level, one would need the Neumann problem to have
the regularity (34) for r = 2 when a semi-Galerkin method is

used, while the discrete compactness result needs the Stokes
problem to have the regularity (32) for r > d , with d the
space dimension. For the Ginzburg-Landau problem (11), it
was attained in [23] for fixed ε.

3.2.4 A Second-Order Scheme for the Ginzburg-Landau
Problem

We next discuss the work of Lin, Liu and Zhang in [41].
They presented the first numerical work preserving an ex-
act discrete energy law for (38), i.e. without introducing nu-
merical diffusion provided by the time-stepping schemes. It
relies on a modified Crank-Nicolson or midpoint scheme:
given (un

h,d
n
h) ∈ (V h,Dh), find (un+1

h ,wn+1
h ) ∈ V h × Wh

and (pn+1
h ,dn+1

h ) ∈ Ph ×Dh solving the finite element non-
linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+1
h , ūh) + c̃(u

n+1/2
h ,u

n+1/2
h , ūh)

+ νa(u
n+1/2
h , ūh) − bu(p

n+1/2
h , ūh)

− λ
γ
c(ūh,d

n+1/2
h , δtd

n+1
h + (u

n+1/2
h · ∇)d

n+1/2
h ) = 0,

bu(p̄h,u
n+1/2
h ) = 0,

(δtd
n+1
h , d̄h) + c(u

n+1/2
h ,d

n+1/2
h , d̄h)

+ γ a(d
n+1/2
h , d̄h) + γ (f ε(d

n+1
h ,dn

h), d̄h) = 0,

(73)

where

f ε(d
n
h,d

n+1
h ) = 1

ε2

(|dn+1
h |2 − 1) + (|dn

h|2 − 1)

2
d

n+1/2
h .

Clearly, this approximation of f ε(d) has second order of
accuracy in time. The energy law given by (73) takes the
form

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2
L2(�)

+ λ

∫
�

Fε(d
n+1
h )

+ νk

n+1∑
m=1

‖∇u
m+1/2
h ‖2

L2(�)

+ λ

γ
k

n+1∑
m=1

‖δtd
m+1
h + (u

m+ 1
2

h · ∇)d
m+ 1

2
h ‖2

L2(�)

= 1

2
‖u0

h‖2
L2(�)

+ λ

2
‖∇d0

h‖2
L2(�)

+
∫

�

Fε(d
0
h)

for all n.

The fact that no auxiliary variable is introduced is a clear
benefit of this approach. In contract, since scheme (73) is
nonlinear, one needs to perform nonlinear iterations. The
authors proposed a Picard type linearization together with
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a block Gauss-Seidel solver and a fully explicit treatment
of the nonlinear terms, in order to have a time-independent
time matrix and use an exact LU or Cholesky decomposition

only once. Let us define φs−1/2 = φn
h+φs−1

h

2 and φs+1/2 =
φs

h+φn
h

2 . Then, given (un
h,d

n
h) ∈ (V h,Dh), the methods reads

as:

1. Known us−1, find (us ,ps) ∈ V h × Ph such that
(

us
h − un

h

k
, ūh

)
+ c̃(us−1/2,us−1/2, ūh)

+ νa(us+1/2, ūh) − bu(ps+1/2, ūh)

− λc

(
ūh,ds−1/2,

ds−1
h − dn

h

k

+ (us−1/2 · ∇)ds−1/2

)
= 0,

bu(p̄h,us+1/2) = 0.

2. Next, find ds ∈ Dh such that
(

ds
h − dn

h

k
, d̄h

)
+ c(us−1/2,ds−1/2, d̄h)

+ a(ds+1/2, d̄h) + (f ε(d
n
h,d

s−1
h ), d̄h) = 0.

The use of direct solvers is restricted to very small problems.
For real applications, iterative methods are the only choice,
due to CPU and memory limitations. In those cases, this way
to deal with coupling and nonlinearities is very rudimentary.
More modern approaches to linearization and linear solvers,
e.g. Newton-Krylov-type solvers, surely provide better re-
sults.

There is no numerical analysis for scheme (73). The con-
vergence in the sense of error estimates or compactness is a
interesting question that is open.

4 On the Approximation of the Ericksen-Leslie
Problem (3)

This section is devoted to finite element schemes for the
Ericksen-Leslie equations (3) that provide a discrete energy
law. To obtain the energy law (7) we need the sphere con-
straint |d| = 1 to be fulfilled almost everywhere in Q which
is difficult to achieve at the discrete level due to the own
nature of Lagrange finite elements. Therefore, constructing
stable numerical approximations directly for (3) results a
more difficult task than for the Ginzburg-Landau problem
(11).

4.1 A Direct Approximation

The next scheme we will present is due to Becker, Feng,
and Prohl in [8]. The numerical approximations are based

on the ideas given in [7] for the unsteady harmonic map
equation which utilizes the Galerkin method with Lagrange
finite elements of order 1. The vector identity a × (b × c) =
(a · c)b − (a · b)c for all a,b, c ∈ R

3 and |d| = 1 lead to the
identity

d × (d × �d) = −|∇d|2d − �d.

Therefore, problem (3) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u − ν�u

+ ∇p + λ∇ · ((∇d)t∇d) = 0 in Q,

∇·u = 0 in Q,

∂td + u · ∇d + γ d × (d × �d) = 0 in Q,

|d| = 1 in Q.

(74)

From (74)3, it is not hard to prove that |d| = 1 holds almost
everywhere in Q. Therefore, the set of (3)3−4 is equivalent
to (74)3. Based on that, we consider that system (74) is the
best differential reformulation of (3). But it has its limita-
tions when designing numerical schemes.

Let us first state the variational formulation by using
the elastic stress expression (6). Find (u(t),p(t),d(t)) ∈
H 1

0(�) × L2
0(�) × H 2(�) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tu, ū) + c(u,u, ū) + νa(u, ū)

− bu(p, ū) + λc(ū,d,w) = 0,

bu(p̄,u) = 0,

(∂td, d̄) + c(u,d, d̄)

+ γ (d × (d × �d), d̄) = 0,

(75)

for all (ū, p̄, d̄) ∈ H 1
0(�) × L2

0(�) × L2(�).
In order to reach the energy law that stems form (74) we

multiply (74)1 by u and (74)3 by −�d and integrate over
�. Then the identity (a × b) · a = −(a × c) · b leads to

d

dt

(
1

2
‖u‖2

L2(�)
+ λ

2
‖∇d‖2

L2(�)

)

+ ν‖∇u‖2
L2(�)

+ λγ ‖�d × d‖2
L2(�)

= 0. (76)

The discrete problem for (75) proposed in [8] uses the fi-
nite element spaces Vh = ((P 1

h)d ⊕ (Bh)
d) ∩ H 1

0(�), Ph =
P 1

h ∩ L2
0(�), and Dh = (P 1

h)d for the discrete velocity,
pressure and director, respectively. Moreover, the scheme
uses an implicit time integration for the linear terms, semi-
implicit time integration for the convective terms, a midpoint
time integration for the trilinear term in (75)3 and semi-
midpoint rule for the elastic stress tensor in (75)1. There-
fore, if we are given (un

h,d
n
h) ∈ (V h,Dh), we want to find a
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discrete solution (un+1
h ,pn+1

h ,dn+1
h ) ∈ V h ×Ph ×Dh solv-

ing the finite nonlinear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh)

+ νa(un+1
h , ūh) − bu(p

n+1
h , ūh)

+ λc(ūh,d
n+1
h ,�hd

n+1/2
h ) = 0,

bu(p̄h,u
n
h) = 0,

(δtd
n+1
h , d̄h) + c(un+1

h ,dn
h, d̄h)

+ γ (d
n+1/2
h × (d

n+1/2
h × �hd

n+1/2
h ), d̄h) = 0

(77)

for all (ūh, p̄h, d̄h) ∈ V h ×Ph ×Dh, where �h : H 1(�) →
Dh is the discrete Laplace operator defined by

−(�hd, d̄h) = (∇d,∇d̄h) for all d̄h ∈ Dh.

It is not hard to prove the discrete analog to (76) from (77)
without any extra condition for the parameters:

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2
L2(�)

+ νk

n+1∑
m=1

‖∇u
m+1/2
h ‖2

L2(�)

+ λγ k

n+1∑
m=1

‖dm+1/2
h × �hd

m+1/2
h ‖2

L2(�)

≤ 1

2
‖u0

h‖2
L2(�)

+ λ

2
‖∇d0

h‖2
L2(�)

.

Since the Dirichlet seminorm ‖∇dn+1
h ‖L2(�) is not equiva-

lent to the norm ‖dn+1
h ‖H 1(�) in this case, the existence of

(un+1
h ,dn+1

h ) to (77) is established for the L2(�) norm un-
der the restriction k = O(h2+d/2) by means of a fixed point
argument; we refer the reader to Corollary 1.1 on p. 279
of [26] or Lemma 1.4 on page 164 of [55]. Of course, this
problem does not appear for time-independent nonhomo-
geneous Dirichlet boundary conditions. Therefore, scheme
(77) seems to be unconditionally solvable.

The following task is to know how the sphere constraint
holds for the director field in the limit for the scheme (77).
In [7] a sharp proof is given for two-dimensional domains.
If the initial director field satisfied |d0

h(z)| = 1 for all nodes
z ∈ Nh and under the relation k = O(h3), one gets

‖|dn+1
h |2 − 1‖L2(�) ≤ ‖|d0

h|2 − 1‖L2(�) + g(h), (78)

where g(h) → 0 when h → 0. Such an estimate can be
seen in term of the potential function associated to the
Ginzburg-Landau penalty function as Fε(d

n+1
h ) ≤ C for

ε = ‖|d0
h|2 − 1‖2

L2(�)
+ g2(h). While the first term on the

right-hand side of (78) is of order h, the second term is
of order hα for some α < 1. Along the proof the authors

used some sort of Poincaré inequality to be able to obtain
‖dn

h‖H 1(�) ≤ C‖∇dn
h‖L2(�), but it is not clear from the Neu-

mann boundary condition imposed on the director vector.
However, for time-independent Dirichlet boundary condi-
tions, that Poincaré inequality is straightforwardly obtained
by a lifting of the boundary condition. Note that the restric-
tion k = O(h3) is equivalent to hypothesis (S) for scheme
(47) in two-dimensional domains.

The following estimate for the discrete time derivative of
the discrete director field is needed to obtain (78):

k

N−1∑
n=0

∥∥∥δtd
n+1
h

∥∥∥2

Lp(�)
≤ C

for p < 2 and p = 3/2 in two- and three-dimensional do-
mains, respectively. This estimate is attained by a duality
argument. But again a Poincaré inequality is needed.

The convergence of scheme (77) is as an open problem
even towards measure-valued solutions [38, 39].

4.2 A Saddle-Point Formulation

When expressed in the appropriate mathematical setting,
one realizes that all the above numerical method described
are connected. Lagrange multiplier methods allow one to
introduce a unified formulation leading to a numerical al-
gorithm for the Ginzburg-Landau equations (11) and the
Ericksen-Leslie equations (3). The following variational
form of (27) was proposed in [5]. Consider the term λ∇ ·
((∇d)t∇d) written in a similar way to (38) done in [40,
41] which saves to compute an extra variable as for schemes
(43), (47), (67) and (69). Then the problem consists of find-
ing (u(t),p(t),d(t), q(t)) ∈ H 1

0(�) × L2
0(�) × W 1,3(�) ∩

L∞(�) × Q(�) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂tu, ū) + c(u,u, ū) + νa(u, ū)

− bu(p, ū) + λ

γ
c(ū,d, ∂td + (u · ∇)d) = 0,

bu(p̄,u) = 0,

(∂td, d̄) + c(u,d, d̄) + γ a(d, d̄) + γ bd(q,d, d̄) = 0,

bd(q̄,d,d) − ε2(q, q̄) = 〈1, q̄〉,

(79)

for all (u(t),p(t),d(t), q(t)) ∈ H 1
0(�)×L2

0(�)×H 1(�)×
Q(�)′. The space Q(�) is L2(�) when ε > 0 or Q(�)

is the dual space of H 1(�) denoted by (H 1(�))′ when
ε = 0. It is easy to see that the weak formulation (79)
is well-defined on the previous spaces. Note that for two-
dimensional domains d may only belong to W 1,3(�) due
to Sobolev’s inequality W 1,3(�) ↪→ L∞(�). The idea to
consider the Lagrange multiplier to belong to (H 1(�))′
stemmed from the inf-sup condition (24).
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Another possible formulation studied in [5] consists in
replacing the weak formulation

bd(q̄,d,d) − ε−2(q, q̄) = 〈1, q̄〉

of the sphere constraint by its derivative in time

2bd(q̄,d, ∂td) − ε2(∂tq, q̄) = 0 for all q̄ ∈ Q(�). (80)

An Implicit Algorithm

A first attempt to discretize (79) is an implicit Euler
scheme. So, let dn

h ∈ Dh and un
h ∈ V h be given. Then find

(un+1
h ,pn+1

h ,dn+1
h , qn+1

h , ) ∈ V h ×Ph ×Dh ×Qh such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+1
h , ūh) + c̃(un+1

h ,un+1
h , ūh)

+ νa(un+1
h , ūh) + bu(p

n+1
h , ūh)

+ λ

γ
c(ūh,d

n+1
h , δtd

n+1
h + (un+1

h · ∇)dn+1
h ) = 0,

bu(q̄h,u
n+1
h ) = 0,

(δtd
n+1
h , d̄h) + γ a(dn+1

h , d̄h)

+ c(un+1
h ,dn+1

h , d̄h) + γ bd(qn+1
h ,dn+1

h , d̄h) = 0,

2bd(q̄h,d
n+1
h , δtd

n+1
h ) − ε2(δtq

n+1
h , q̄h) = 0,

(81)

for all

(ūh, p̄h, d̄h, q̄h) ∈ V h × Ph × Dh × Qh

where the finite element spaces are Vh = ((P 1
h)d ⊕ (Bh)

d)∩
H 1

0(�), Ph = P 1
h ∩ L2

0(�, Dh = (P 1
h)d , and Qh = P 1

h . Ob-
serve that (81)4 is the discrete version of the alternative
equation (80) since if we considered

bd(q̄h,d
n+1
h ,dn+1

h ) − ε−2(qn+1
h , q̄h) = 〈1, q̄h〉 (82)

an energy estimate would not be clear.
The following energy inequality holds for scheme (81):

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2
L2(�)

+ λε2

4
‖qn+1

h ‖2
L2(�)

+ νk

n∑
m=0

‖∇um+1
h ‖2

L2(�)

+ λ

γ
k

n∑
m=0

‖δtd
m+1
h + (um+1

h · ∇)dm+1
h ‖2

L2(�)

≤ 1

2
‖u0

h‖2
L2(�)

+ λ

2
‖∇d0

h‖2
L2(�)

+ λε2

4
‖q0

h‖2
L2(�)

for all n.

A Crank-Nicolson Algorithm

If we want to get an unconditionally stable scheme pre-
serving the energy law (7) for ε = 0 or (12) for ε > 0, we
should consider a Crank-Nicolson time integration. Thus,
given (un

h,d
n
h) ∈ V h × Dh, we seek the discrete solution

(un+1
h ,pn+1

h ,dn+1
h , qn+1

h ) ∈ V h × Ph × Dh × Qh such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+1
h , ūh) + c̃(u

n+1/2
h ,u

n+1/2
h , ūh) + νa(u

n+1/2
h , ūh)

+ bu(p
n+1/2
h , ūh) + λ

γ
c(ūh,d

n+1/2
h , δtd

n+1
h

+ (u
n+1/2
h · ∇)d

n+1/2
h ) = 0,

bu(q̄h,u
n+1/2
h ) = 0,

(δtd
n+1/2
h , d̄h) + γ a(d

n+1/2
h , d̄h)

+ c(u
n+1/2
h ,d

n+1/2
h , d̄h)

+ γ bd(q
n+1/2
h ,d

n+1/2
h , d̄h) = 0,

bd(q̄h,d
n+1
h ,dn+1

h ) − ε2(qn+1
h , q̄h) = 〈1, q̄h〉,

(83)

for all

(ūh, p̄h, d̄h, q̄h) ∈ V h × Ph × Dh × Qh.

Note that the restriction over dh has been discretized by us-
ing an implicit time integration.

The following a priori energy equality holds for scheme
(83):

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2
L2(�)

+ λε2

4
‖qn+1

h ‖2
L2(�)

+ νk

n∑
m=0

‖∇u
m+ 1

2
h ‖2

L2(�)

+ k

n∑
m=0

β

γ
‖δtd

m+ 1
2

h + (u
m+ 1

2
h · ∇)d

m+ 1
2

h ‖2
L2(�)

= 1

2
‖u0

h‖2
L2(�)

+ λ

2
‖∇d0

h‖2
L2(�)

+ λε2

4
‖q0

h‖2
L2(�)

for all n.

Note that an equality is now obtained, that is, the energy
law is exactly conserved, since scheme (83) introduces no
numerical dissipation.

A Semi-Implicit Algorithm

We next show a linear algorithm developed in [5], which is
implicit for the linear terms and semi-implicit for the non-
linear terms.

Given (un
h,d

n
h) ∈ V h×Dh, we want to find finite element

functions (un+1
h ,pn+1

h ,dn+1
h , qn+1

h ) ∈ V h × Ph × Dh × Qh
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such that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δtu
n+1
h , ūh) + c̃(un

h,u
n+1
h , ūh)

+ νa(un+1
h , ūh)

+ bu(p
n+1
h , ūh) + λ

γ
c(ūh,d

n
h, δtd

n+1
h

+ (un+1
h · ∇)dn

h) = 0,

bu(q̄h,u
n+1
h ) = 0,

(δtd
n+1
h , d̄h) + γ a(dn+1

h , d̄h)

+ c(un+1
h ,dn

h, d̄h) + γ bd(qn
h,dn+1

h , d̄h) = 0,

2bd(q̄h,d
n
h, δtd

n+1
h ) − ε2(δtq

n+1
h , q̄h) = 0,

(84)

for all (ūh, p̄h, d̄h, q̄h) ∈ V h × Ph × Dh × Qh. The discrete
energy inequality that provides scheme (84) is as follows:

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2
L2(�)

+ λε2

4
‖qn+1

h ‖2
L2(�)

+ νk

n∑
m=0

‖∇um+1
h ‖2

L2(�)

+ λ

γ
k

n∑
m=0

‖δtd
m+1
h + (um+1

h · ∇)dm
h ‖2

L2(�)

≤ 1

2
‖u0

h‖2
L2(�)

+ λ

2
‖∇d0

h‖2
L2(�)

+ λε2

4
‖q0

h‖2
L2(�)

for all n.

Schemes (81), (83) and (84) turn out to be uncondition-
ally long-time stable with decreasing discrete energy. In par-
ticular, scheme (84) is the first linear scheme for both the
Ginzburg-Landau problem and the Ericksen-Leslie problem
which is unconditionally stable.

If we want to prove existence of discrete solutions for
scheme (81) we will find the following problems. For ε > 0,
scheme (81) is conditionally solvable for the same reasons
explained for scheme (77). In order to solve that problem
one may consider

a(dh, d̄h) = (∇dh,∇d̄h) + ε2(dh, d̄h)

to complete the H 1(�) norm. Therefore, the energy estimate
remains

1

2
‖un+1

h ‖2
L2(�)

+ λ

2
‖∇dn+1

h ‖2
L2(�)

+ λε2

4
‖dn+1

h ‖2
L2(�)

+ λε2

4
‖qn+1

h ‖2
L2(�)

+ νk

n∑
m=0

‖∇um+1
h ‖2

L2(�)

+ λ

γ
k

n∑
m=0

‖δtd
m+1
h + (um+1

h · ∇)dm+1
h ‖2

L2(�)

≤ 1

2
‖u0

h‖2
L2(�)

+ λ

2
‖∇d0

h‖2
L2(�)

+ λε2

2
‖d0

h‖2
L2(�)

+ λε2

4
‖q0

h‖2
L2(�)

for all n.

Nevertheless, for ε = 0, the existence of the discrete La-
grange multiplier would be established by making use of a
discrete version of the inf-sup condition (26) which is far
away to be understood. So far, it is known [32] the follow-
ing discrete version of the inf-sup condition (24)

inf
qh∈Qh,0

sup
dh∈Dh

bd(qh,dh, d̄h)

‖qh‖H−1(�)‖d̄h‖H 1(�)

≥ β(dh) > 0, (85)

where now the constraint equation is

bd(qh,dh, d̄h) =
∫

�

qhIQh,0(dh · d̄h) (86)

and Qh,0 = P 1
h ∩ H 1

0 (�). We recall that IQh,0 is the nodal
projection operator into Qh,0. The inf-sup condition (85) has
been used in [32] to numerically study the steady-state har-
monic map problem whose solution is characterized by a
nonlinear saddle-point problem. The discrete solutions are
computed by a full Newton linealization which is well-posed
if it starts close to a local minimum regular enough. To
prove the inf-sup condition (85), the nodal projection op-
erator IQh,0 played an important role. This projection can be
considered without spoiling the stability of schemes (81),
(83), and (84). For nodes on the Dirichlet boundaries, it
is natural to set the Lagrange multiplier to zero, since the
sphere constraint is (hopefully) satisfied by the boundary
conditions. However, it is nonsense on Neumann bound-
aries, since we also need to enforce the sphere constraint
there. As was point out in [32], the inf-sup condition (85)
is not clear for Neumann boundaries, but numerical experi-
ences showed in [5] indicate that the inf-sup condition also
holds in these cases, and subsequently, schemes (81), (83)
and (84) are well-posed.

Schemes (81) and (83) enforce the sphere constraint in
a discrete sense, as the incompressibility condition for the
Navier-Stokes equations. If we consider the modification of
the constraint equation (86) proposed in [32] for the pro-
jection operator IQh

, then one can prove that |dn+1
h (a)|2 −

|dn
h(a)|2 + |dn+1

h (a) − dn
h(a)|2 = ε2(qn+1

h (a) − qn
h(a)) for

scheme (81) and ε2qn+1
h (a) = |dn+1

h (a)|2 − 1 for scheme
(83) at every node a ∈ Nh. To be more precise, we have
qn+1
h (a) = ε−2(|dn+1

h (a)|2 −1)+∑n
j=1 |dj+1

h (a)−d
j
h(a)|2

if we choose q0
h = 0 and |d0

h(a)| = 1 and qn+1
h (a) =

ε−2(|dn+1
h (a)|2 − 1) for all nodes a ∈ Nh, respectively.
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Clearly, computing the time derivative of the sphere con-
straint provides a weaker enforcement at the nodes.

On the other hand, for ε = 0, we have that |dn+1
h (a)|2 +∑n

j=1 |dj+1
h (a) − d

j
h(a)|2 = 1 and |dn+1

h (a)|2 = 1 for
schemes (81) and (83), respectively.

It was pointed out in [5] that the closed integration of the
constraint trilinear form

bd(qh,dh, d̄h) �
∑

a∈Nh

q(a)d(a) · d̄(a)

∫
�

φ(a), (87)

provides the same statement than for the constraint equation
(86). Moreover, the dh−qh block matrices in the correspond-
ing linear system are diagonal matrices and hence computa-
tionally more appealing.

Iterative algorithms for the implicit schemes (81) and
(83) have been developed. For scheme (84), a modified
Newton method is designed in order to decouple the compu-
tation of the velocity-pressure pair from the director vector
and its Lagrange multiplier. For scheme (81) with (82) tak-
ing ε = 0, a Gauss-Seidel method combined jointly with the
projection method due to Alouges [2, 6] is also performed.
The idea is to consider a Picard linearization of (81) with
(82) together with a normalization of the director field ap-
proximation.

Let (un+1,k
h ,p

n+1,k
h ,dn+1,k

h , q
n+1,k
h , ) ∈ V h ×Ph ×Dh ×

Qh be known.

1. Compute (d̃
n+1,k+1
h , q

n+1,k+1
h ) ∈ Dh × Qh, solution of

(δt d̃
n+1,k+1
h , d̄h) + c(un+1,k

h , d̃
n+1,k+1
h , d̄h)

+ γ a(d̃
n+1,k+1
h , d̄h)

+ γ bd(q
n+1,k+1
h ,dn+1,k

h , d̄h) = 0,

bd(q̄h,d
n+1,k
h , d̃

n+1,k+1
h ) = 〈1, q̄h〉.

2. Compute dn+1,k+1
h ∈ Dh as

dn+1,k+1
h (a) = d̃

n+1,k+1
h (a)

|(d̃n+1,k+1
h (a)|

for all a ∈ Nh.
3. Known dn+1,k+1

h ∈ Dh, compute (un+1,k+1
h ,p

n+1,k+1
h ) ∈

V h × Ph by a Picard linearization:

(δtu
n+1,k+1
h , ūh) + c̃(un+1,k

h ,un+1,k+1
h , ūh)

+ νa(un+1,k+1
h , ūh) + bu(p

n+1,k+1
h ,vh)

+ λ

γ
c(ūh,d

n+1,k+1
h , ∂td

n+1,k+1
h

+ (un+1,k+1
h · ∇)dn+1,k+1

h ) = 0,

bu(p̄h,u
n+1,k+1
h ) = 0.

Obviously, dn+1,k+1
h satisfies the nonlinear constraint (87)

since Step 2 enforces the sphere constraint on the nodes.
With regard to CPU cost, the saddle-point structure needs

eight degrees of freedom per node, only beated by schemes
(39), (73), and (77) which do not introduced any auxiliary
variable. The numerical analysis of schemes (81), (83), and
(84) is still open.

5 Conclusions

In this work, we have analyzed the existing numerical
schemes in the literature to approximate the Ericksen-Leslie
equations (3) by means of low-order finite elements. We
have distinguished between implicit and semi-implicit meth-
ods. Existence of discrete solutions have been detailed for
the implicit schemes, as well as their linearization. The con-
vergence of these algorithms is presented by two different
ways: compactness and error estimates.

Clearly, schemes (36) and (43) have been designed to sat-
isfy the energy law (17). This is the reason why we think that
there is no way to adapt them to hold an energy estimate in-
dependent of the penalty parameter ε. The large number of
degrees of freedom make them somehow impracticable for
large scale simulations.

Probably, scheme (39) is the most efficient algorithm
among the linear methods presented herein since it does not
compute any extra auxiliary variable. In contrast, there is
no mean of finding an energy estimate independent of ε.
Schemes (47), (67) and (69), designed for approximating
the Ginzburg-Landau equation, need to compute extra vari-
ables in order to keep a discrete version of the energy law
(7). They introduce between d and d2 additional degrees of
freedom per node (d being the space dimension), which im-
plies a too high computationally cost. In particular, although
scheme (69) has such an energy estimate, there is no con-
trol over the auxiliary unknown w = −�d independent of ε,
which could clearly deteriorate the resulting linear system.
Another important drawback of schemes (47) and (69) is
the fact that they are conditionally stable. The relation (45)
is quite restrictive, in the sense that one needs a time step
small for moderate values of ε if ε = O(h). It is interest-
ing to note that scheme (67) is unconditionally stable, but it
requires the extra relation (46) to pass to the limit towards
measure-valued solutions, as was pointed out in [29].

One of the main advantages of using the saddle-point ap-
proach is that it allows to approximate numerically both the
Ericksen-Leslie problem and the Ginzburg-Landau problem
by means of the same numerical approximation. Moreover,
it allows to take ε arbitrary small (or even zero) in compar-
ison with the previous algorithms, since the condition num-
ber is independent of ε. However, the proof of the inf-sup
condition that would allow to prove the well-posedness of
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the algorithm is still open. Numerical tests have shown an
(H 1)′ stability in [5]. We would also mention that the non-
linearity in the equation for the director vector is quadratic
while for other alternatives it is cubic.

The best choice to approximate the Eriscksen-Leslie
equations in terms of the number of degrees of freedom is
scheme (77), since it does not introduce any extra variable.
Nevertheless, the convergence is not clear even for two-
dimensional problems due to the fact the cubic nonlinearity
involves second derivatives.
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