
Arch Comput Methods Eng (2010) 17: 403–434
DOI 10.1007/s11831-010-9054-1

O R I G I NA L PA P E R

Proper Generalized Decompositions and Separated
Representations for the Numerical Solution of High Dimensional
Stochastic Problems

Anthony Nouy

Received: 15 March 2010 / Accepted: 15 March 2010 / Published online: 2 October 2010
© CIMNE, Barcelona, Spain 2010

Abstract Uncertainty quantification and propagation in
physical systems appear as a critical path for the improve-
ment of the prediction of their response. Galerkin-type spec-
tral stochastic methods provide a general framework for the
numerical simulation of physical models driven by stochas-
tic partial differential equations. The response is searched in
a tensor product space, which is the product of determinis-
tic and stochastic approximation spaces. The computation of
the approximate solution requires the solution of a very high
dimensional problem, whose calculation costs are generally
prohibitive. Recently, a model reduction technique, named
Generalized Spectral Decomposition method, has been pro-
posed in order to reduce these costs. This method belongs
to the family of Proper Generalized Decomposition meth-
ods. It takes part of the tensor product structure of the so-
lution function space and allows the a priori construction
of a quasi optimal separated representation of the solution,
which has quite the same convergence properties as a poste-
riori Hilbert Karhunen-Loève decompositions. The associ-
ated algorithms only require the solution of a few determin-
istic problems and a few stochastic problems on determin-
istic reduced basis (algebraic stochastic equations), these
problems being uncoupled. However, this method does not
circumvent the “curse of dimensionality” which is associ-
ated with the dramatic increase in the dimension of stochas-
tic approximation spaces, when dealing with high stochastic
dimension. In this paper, we propose a marriage between the
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Generalized Spectral Decomposition algorithms and a sep-
arated representation methodology, which exploits the ten-
sor product structure of stochastic functions spaces. An ef-
ficient algorithm is proposed for the a priori construction of
separated representations of square integrable vector-valued
functions defined on a high-dimensional probability space,
which are the solutions of systems of stochastic algebraic
equations.

1 Introduction

The numerical prediction of the impact of uncertainties on
the response of physical models appears as a crucial is-
sue in many branches of science and engineering. These
last two decades, spectral stochastic methods have been ex-
tensively investigated for the propagation of uncertainties
through physical models driven by finite dimensional noise
(see e.g. [17, 34, 38, 50] and the references therein). These
methods rely on a representation of the response as a func-
tion of basic random variables modeling the input uncertain-
ties. An approximation of the response is sought on suitable
approximation basis. Several methods have been proposed
for the definition and computation of the approximate solu-
tion: L2 projection [19, 21], interpolation [3, 14, 49, 51, 54],
regression [6] or Galerkin projections [2, 16, 18, 35].

Galerkin spectral stochastic methods inherit from nice
mathematical results in functional analysis. They lead to ac-
curate predictions and allow for a better control on numer-
ical simulations through a posteriori error estimation and
adaptive approximation [22, 33, 45, 46, 48]. However, the
computation of the approximate solution requires the solu-
tion of a very high dimensional problem, which is gener-
ally prohibitive with traditional techniques. Moreover, it re-
quires a good knowledge of the mathematical structure of
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the physical model in order to extend classical determinis-
tic solvers to the stochastic framework (preconditioners, non
linear solvers, . . .).

In order to circumvent the above mentioned drawbacks
of Galerkin spectral stochastic methods, an a priori model
reduction technique, named Generalized Spectral Decompo-
sition (GSD) method, has been recently proposed for solv-
ing stochastic partial differential equations (SPDEs) [36–
38, 41]. This method, which takes part of the tensor prod-
uct structure of the solution function space, allows the a
priori computation of a quasi optimal separated represen-
tation of the solution, which has quite the same convergence
properties as classical spectral decompositions (i.e. Hilbert
Karhunen-Loève decompositions). A decomposition of the
solution is sought in the form

u(x, ξ) ≈
M∑

i=1

wi(x)λi(ξ), (1)

where the wi(x) are deterministic functions of the physi-
cal variables x (e.g. space and/or time) and where the λi(ξ)

are functions of the basic random variables ξ . The basic
principle of the GSD method consists in defining optimal
reduced basis from a double orthogonality criterium. Re-
duced basis functions then appear as the solutions of a
pseudo eigenproblem whose dominant eigenspace is associ-
ated with the desired optimal reduced basis. Dedicated algo-
rithms, inspired from classical algorithms for solving eigen-
problems, have been proposed for the approximation of the
optimal decomposition [37]. The main advantage of these
algorithms is that they only ask for the solution of a few un-
coupled deterministic problems for computing functions wi

and stochastic algebraic equations for computing stochastic
functions λi . Stochastic algebraic equations can be solved
with classical spectral stochastic methods, leading to an ap-
proximation of random variables λi(ξ) ≈ ∑P

α=1 λi,αHα(ξ ),
where the Hα(ξ) form a basis of classical stochastic approx-
imation spaces, such as polynomial or piecewise polynomial
spaces [10, 31, 43, 47, 52]. Deterministic problems being
uncoupled, classical deterministic solution techniques can
be used. It then makes the GSD method a partially non-
intrusive Galerkin spectral stochastic approach.

The separation of deterministic problems and stochas-
tic algebraic equations leads to drastic computational sav-
ings, especially for large scale applications. However, this
deterministic/stochastic separation does not circumvent the
“curse of dimensionality” which is associated with the dra-
matic increase in the dimension P of stochastic approx-
imation spaces, when dealing with a high stochastic di-
mension, i.e. with a large number of random variables ξ =
(ξ1, . . . , ξ r ). In this paper, we propose a marriage between
GSD algorithms and a separated variables representation
technique which exploits the tensor product structure of

stochastic functions space. The separation of variables is
used for the approximate representation of square-integrable
vector-valued functions Λ(ξ) (or second order random vec-
tors) defined on a high-dimensional probability space

Λ(ξ) = Λ(ξ1, . . . , ξ r ) ≈
Z∑

i=1

φ0
i φ1

i (ξ1) · · ·φr
i (ξ r ) (2)

where the φ
j
i (ξ j ) are real valued functions of basic random

variables ξ j . A representation (2) of order Z appears as a
classical spectral stochastic expansion of a random variable
Λ(ξ) on an Z-dimensional approximation basis {Ψi(ξ)}Zi=1,
with Ψi(ξ) = ∏r

i=1 φr
i (ξ r ), which is not selected a priori but

chosen such that it gives a quasi optimal approximation for a
given dimension Z. A natural extension of the GSD method
is proposed for the a priori construction of separated repre-
sentation (2). The algorithm proposed in this paper, which
can be applied to many problems defined in tensor prod-
uct spaces, yield rather good convergence properties with
respect to the order Z of the decomposition.

The overall methodology proposed in this paper allows
computing an approximate solution of the model in very
high dimensional approximation spaces (1020, 1050, . . .),
with algorithms having a complexity which is (quasi)linear
with the stochastic dimension r . It then allows to deal with
problems which are unaffordable with conventional spectral
stochastic approaches and usually require the use of classi-
cal Monte-Carlo simulations.

Let us note that the overall methodology and algorithms
could be naturally applied to the solution of other types of
problems defined in tensor product spaces. Some variants of
this methodology have been proposed for the a priori con-
struction of such separated representations of functions in
tensor product spaces [1, 5, 20, 26–28, 39, 40]. In the context
of spectral stochastic methods, a basic methodology has al-
ready been proposed in [12, 13]. This kind of methodologies
is receiving a growing interest in many applications where
numerical simulations suffer from the curse of dimensional-
ity. The obtained decompositions have been recently called
Proper Generalized Decompositions (PGD). PGD methods
can be seen as a family of methods for the a priori construc-
tion of separated representations of functions which are so-
lutions of problems defined in tensor product spaces (GSD
method belongs to this family). For some variants of algo-
rithms and some very particular frameworks, some mathe-
matical results are available [15, 29]. However, further math-
ematical investigations will be necessary in order to better
understand this type of decomposition in a general frame-
work and to propose more efficient algorithms. Neverthe-
less, as it will be illustrated in this paper, these types of al-
gorithms are already of great practical interest.



Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High 405

The outline of the paper is as follows. In Sect. 2, we
briefly recall the principle of classical stochastic spectral ap-
proaches for solving stochastic partial differential equations.
In Sect. 3, we recall the basics of the GSD method and re-
lated algorithms for the construction of decomposition (1).
In Sect. 4, we introduce a methodology for the solution of
stochastic algebraic equations defined on high dimensional
product probability spaces, which is based on the a priori
construction of decomposition (2). The proposed method
belongs to the family of Proper Generalized Decomposition
(PGD) methods. Sections 5 and 6 will illustrate the overall
methodology (coupling GSD algorithms and PGD in high
dimension) for model stochastic partial differential equa-
tions, namely stochastic advection diffusion reaction equa-
tions.

2 Stochastic Partial Differential Equations and
Galerkin Spectral Stochastic Methods

2.1 Weak Formulation of Stochastic Partial Differential
Equations

We consider a stochastic partial differential equation (SPDE)
defined on a physical domain (e.g. space or space-time do-
main) whose operator and right-hand side depend on a fi-
nite set of m real valued random variables ξ = (ξ1, . . . , ξm).
We introduce the associated finite-dimensional probability
space (Ξ ,B,Pξ ), where Ξ ⊂ R

m is the set of elementary
events, B is a σ -algebra on Ξ and Pξ is the probability
measure. We consider that the solution u of the SPDE is a
random variable with values in a Hilbert space V of func-
tions defined on the physical domain. A strong-stochastic
formulation of the SPDE writes: find u : Ξ → V such that
we have Pξ almost surely

u(ξ) ∈ V , a(u(ξ ), v; ξ) = b(v; ξ) ∀v ∈ V , (3)

where a and b and bilinear1 and linear forms on V . We con-
sider the particular class of SPDEs whose solution u is a
second order random variable with values in V , which is
supposed to be independent on the random event ξ .2 The so-
lution then belongs to Hilbert space L2(Ξ ,B,Pξ ; V ), which
can be identified with the tensor product space V ⊗ S , where
S := L2(Ξ ,B,Pξ ) denotes the space of real valued second
order random variables defined on (Ξ ,B,Pξ ) (or equiva-
lently the space of real-valued functions defined on Ξ which

1In this article, we only consider the case of linear SPDEs. Problem (3)
can be associated with a linear physical model but also with one step
of a nonlinear iterative strategy for solving a nonlinear SPDE.
2For SPDEs defined on random domains, a suitable reformulation of
the problem on a deterministic domain allows to work in a determinis-
tic function space V [7, 42, 53].

are B-measurable and square integrable). A weak-stochastic
formulation of (3) writes:

u ∈ V ⊗ S, A(u, v) = B(v) ∀v ∈ V ⊗ S, (4)

where bilinear form A and linear form B are defined by

A(u,v) := E
(
a(u(ξ ), v(ξ); ξ)

)
, (5)

B(v) := E
(
b(v(ξ); ξ)

)
, (6)

where E is the mathematical expectation defined by

E(f (ξ)) =
∫

Ξ
f (y)dPξ (y). (7)

2.2 Product Structure of Stochastic Function Space

We suppose that the set of m random variables ξ can be
split into r mutually independent sets of random variables
{ξ i}ri=1, i.e. ξ = {ξ1, . . . , ξ r}. Let (Ξ i ,Bi , Pξ i

), with Ξ i ⊂
R

mi , denote the probability space associated with the set of
random variables ξ i , with m = ∑r

i=1 mi . The probability
space (Ξ ,B,Pξ ) have a product structure:

Ξ =
r⊗

i=1

Ξ i , B =
r⊗

i=1

Bi ,

Pξ =
r⊗

i=1

Pξ i

(8)

Hilbert space S = L2(Ξ ,B,Pξ ) then have the following
tensor product structure:

S � S 1 ⊗ · · · ⊗ S r , S i := L2(Ξ i ,Bi , Pξ i
) (9)

If the mi random variables ξ i = (ξi,1, . . . , ξi,mi
) are mu-

tually independent, probability space (Ξ i ,Bi , Pξ i
) has it-

self a product structure: Ξ i = ⊗mi

j=1 Ξi,j , Bi = ⊗mi

j=1 Bi,j ,

Pξ i
= ⊗mi

j=1 Pξi,j
. Therefore, Hilbert space S i has the fol-

lowing tensor product structure: S i = S i,1 ⊗ · · · ⊗ S i,mi ,
with S i,j = L2(Ξi,j , Bi,j ,Pξi,j

).

2.3 Stochastic Approximation Spaces

Approximation spaces in Hilbert space S = L2(Ξ ,B,Pξ )

can naturally be built by tensorization of approximation
spaces in S i = L2(Ξ i ,Bi , Pξ i

). Let S i
Pi

denote a Pi -

dimensional approximation space in S i . A full tensoriza-
tion leads to a P -dimensional approximation space SP ⊂ S
defined by

SP = S 1
P1

⊗ · · · ⊗ S r
Pr

, P =
r∏

i=1

Pi (10)
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Let {hi
αi

(ξ i )}Pi

αi=1 denote a basis of S i
Pi

and let IP = {α =
(αj )

r
j=1;αj ∈ {1, . . . ,Pj }} denote a set of multi-indices.

A basis {Hα(ξ)}α∈IP
of SP is then simply obtained by let-

ting Hα(ξ) = ∏r
i=1 hi

αi
(ξ i ). For simplicity, we introduce a

one-to-one mapping between the set of multi-indices IP and
{1, . . . ,P } and equivalently denote {Hα}Pα=1 the basis of SP .

The reader can refer to [43] for a general methodology
for the construction of approximation spaces S i

Pi
in the case

of arbitrary probability measures Pξ i
. For the case where ξ i

is composed by mi independent random variables, classical
choices consist in introducing orthogonal complete polyno-
mial basis [18, 52] (classical polynomial chaos basis), or
piecewise polynomial basis [10, 30, 46]. These construc-
tions are classical and will not be detailed in this paper (see
e.g. [38]).

2.4 Galerkin Spectral Stochastic Approximation

Galerkin stochastic approaches consist in defining an ap-
proximate solution of problem (4) by

u ∈ V ⊗ SP , A(u, v) = B(v) ∀v ∈ V ⊗ SP , (11)

where SP ⊂ S is a P -dimensional approximation space. Let
{Hα}Pα=1 denote a basis of SP . Equation (11) can be inter-
preted as a system of P coupled SPDEs: find {uα}Pα=1 ∈
(V )P such that ∀β ∈ {1, . . . ,P }, ∀vβ ∈ V ,

P∑

α=1

E
(
a

(
uα, vβ; ξ)

Hα(ξ )Hβ(ξ )
) = E

(
b(vβ; ξ)Hβ(ξ)

)

3 Generalized Spectral Decomposition Method

In this section, we recall the basics of the Generalized Spec-
tral Decomposition method (GSD) [36, 37, 41], which is a
method for the a priori construction of a separated represen-
tation of the solution u of (4):

u ≈ uM =
M∑

i=1

wiλi, wi ∈ V , λi ∈ S (12)

where neither the functions wi nor the functions λi are fixed
a priori. Decomposition (12) is called a separated represen-
tation of order M . Functions wi and λi are said to be optimal
reduced basis functions with respect to a given metric if the
order M is minimal for a given accuracy, measured with this
particular metric. The GSD method provides a methodology
and dedicated algorithms for the a priori definition and con-
struction of a decomposition of type (12). In the context of
spectral stochastic methods, it can be seen as a method for
the a priori construction of a very low dimensional stochas-
tic approximation space SM := span({λi})Mi=1 ⊂ S .

Remark 1 Here, we use a terminology associated with sto-
chastic problems although the method could be applied to
the approximate solution of a large class of problems (4) de-
fined in a tensor product space V ⊗ S .

3.1 A Posteriori Separated Representation: Classical
Spectral Decomposition

When the solution u is known, an optimal separated repre-
sentation uM can be naturally defined by introducing an in-
ner product 〈〈·, ·〉〉V ⊗S on tensor product space V ⊗ S , this in-
ner product being built from inner products 〈·, ·〉V and 〈·, ·〉S
on Hilbert spaces V and S , i.e. such that ∀λ,λ∗ ∈ S and
∀w,w∗ ∈ V

〈〈λw,λ∗w∗〉〉V ⊗S = 〈w,w∗〉V 〈λ,λ∗〉S

The optimal order M separated representation uM is then
defined as the one which minimizes ‖u − uM‖V ⊗S , where
‖ · ‖V ⊗S is the norm associated with 〈〈·, ·〉〉V ⊗S . It turns out
that this optimal decomposition corresponds to the Hilbert
Karhunen-Loève decomposition, where functions {wi}Mi=1
span the M-dimensional dominant eigenspace of the follow-
ing eigenproblem:

Tu(w) = σu(w)w (13)

where operator Tu : V → V and σu : V → R
+ are defined by

Tu(w) = 〈u, 〈u,w〉V 〉S (14)

σu(w) = 〈Tu(w),w〉V
〈w,w〉V

(15)

Under regularity assumptions on u, Tu is a symmetric com-
pact operator on V , such that classical spectral theory ap-
plies. When selecting an orthogonal basis {wi}Mi=1 of the
dominant eigenspace of Tu, i.e. such that 〈wi,wj 〉V = 0
for i 
= j , stochastic functions are defined by λi =
〈wi,wi〉−1

V 〈u,wi〉V . For many problems, the a posteriori
computation of such a separated representation reveals that a
good accuracy can be obtained with a low order M . In other
words, there often exists a very low-dimensional reduced
basis of deterministic and stochastic functions allowing to
accurately represent the solution.

3.2 A priori Separated Representation: Generalized
Spectral Decomposition

When the solution u is not known, the above classical
Hilbert Karhunen-Loève decomposition can not be ob-
tained. The Generalized Spectral Decomposition method
(GSD) provides a methodology for the a priori construc-
tion (i.e. without knowing u) of a separated representation
which has quite the same convergence properties as classi-
cal Hilbert Karhunen-Loève decompositions. This method
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belongs to the so called family of Proper Generalized De-
composition methods (PGD).

We here introduce a definition of the separated repre-
sentation (12) based on two Galerkin orthogonality crite-
ria. Let us denote uM = ∑M

i=1 wiλi := WM · ΛM , where
WM = (wi)

M
i=1 ∈ (V )M and ΛM = (λi)

M
i=1 ∈ (S)M . The set

of deterministic functions WM and stochastic functions ΛM

are then defined by:

A(WM · ΛM,WM · Λ∗
M) = B(WM · Λ∗

M)

∀Λ∗
M ∈ (S)M (16)

A(WM · ΛM,W ∗
M · ΛM) = B(W ∗

M · ΛM)

∀W ∗
M ∈ (V )M (17)

Let f : WM ∈ (V )M �→ f (WM) ∈ (S)M denote the mapping
such that for a given WM , ΛM = f (WM) is the unique solu-
tion of (16). Let F : ΛM ∈ (S)M �→ F(ΛM) ∈ (V )M denote
the mapping such that for a given ΛM , WM = F(ΛM) is the
unique solution of (17). Equations (16) and (17) are then re-
spectively equivalent to ΛM = f (WM) and WM = F(ΛM).
These two equations can be rescasted as follows:

T (WM) = WM, with T (WM) := (F ◦ f )(WM) (18)

ΛM = f (WM) (19)

Equation (18) can be interpreted as a pseudo eigenproblem
where the linear subspace spanned by WM is interpreted as
a M-dimensional generalized eigenspace of operator T (see
[37]).

Remark 2 Denoting by VM = span(WM) and SM =
span(ΛM) the linear subspaces spanned by (wi)

M
i=1 and

(λi)
M
i=1 respectively, the proposed definition of the decom-

position can be interpreted as follows: find optimal M-
dimensional subspaces VM and SM such that uM ∈ VM ⊗
SM verifies simultaneously the two following Galerkin or-
thogonality criteria:

A(uM,v) = B(v) ∀v ∈ VM ⊗ S (20)

A(uM,v) = B(v) ∀v ∈ V ⊗ SM (21)

Equation (20) (resp. (21)) defines uM as the Galerkin ap-
proximation of u in the approximation space VM ⊗ S (resp.
V ⊗ SM ). The proposed GSD definition can then be inter-
preted as an a priori Galerkin model reduction technique,
where none of the reduced approximation spaces VM and
SM are selected a priori (see [38] for the connection with
other model reduction techniques).

3.3 Interpretation of GSD

Definition (18) appears as a generalization of Hilbert-
Karhunen-Loève decomposition where optimality is defined

with respect to the bilinear form A of the problem. For the
particular case where bilinear form A defines an inner prod-
uct 〈〈·, ·〉〉A := A(·, ·) on V ⊗ S with the following separation
property:

〈〈wλ,w∗λ∗〉〉A = 〈w,w∗〉A,V 〈λ,λ∗〉A,S , (22)

the proposed definition exactly coincides with a Hilbert
Karhunen-Loève decomposition. Indeed, in this case,
T (w) = σu(w)−1T̃u(w), with

T̃u(w) = 〈u, 〈u,w〉A,V 〉A,S (23)

σ̃u(w) = 〈T̃u(w),w〉A,V
〈w,w〉A,V

(24)

and (18) is equivalent to an eigenproblem on operator T̃u,
which is the correlation operator of u based on inner prod-
ucts 〈·, ·〉A,V and 〈·, ·〉A,S . Choosing WM as a basis of the
dominant eigenspace of T̃u and choosing ΛM = f (WM)

leads to a decomposition uM of order M which is optimal
with respect to the norm ‖ · ‖A associated with 〈〈·, ·〉〉A.

In the general case, (18) can not be interpreted as a clas-
sical eigenproblem. For problems where (4) are the Euler-
Lagrange of a quadratic optimization problem on V ⊗ S
(i.e. if A is a symmetric and coercive bilinear form), the
concept of optimal decomposition associated with a dom-
inant eigenspace can still be derived (see [37]). However,
since it is not a classical eigenproblem, dedicated algorithms
must be introduced in order to construct this optimal decom-
position. For more general problems, although optimality
properties are no longer available, algorithms inspired from
classical algorithms for the solution of eigenproblems lead
in practise to the construction of separated representations
which have good convergence properties with M .

Remark 3 For non symmetric problems, in order to rigor-
ously define an optimality criterium and to obtain a rigorous
definition of the dominance of generalized eigenspaces, the
problem could be reformulated as an optimization problem,
e.g. by introducing a minimal residual formulation. This
type of reformulation can be easily introduced in a finite di-
mensional (discretized) framework. However, in the contin-
uous framework, it requires to manipulate non classical for-
mulations of partial differential equations and induces many
computational issues since non standard computation codes
have to be implemented. In Sect. 4.5.3, this type of reformu-
lation will be discussed in a more general framework.

3.4 GSD Algorithms

We here briefly recall different algorithms that have been
proposed for the capture of quasi optimal decompositions.
For a detailed description and in depth study of these algo-
rithms, see [36, 37].
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3.4.1 Subspace Iterations

A first algorithm for capturing the dominant eigenspace

of operator T consists in building the series W
(k+1)
M =

T (W
(k)
M ), starting from an arbitrary set of functions W

(0)
M .

This algorithm can be interpreted as a subspace iteration
method for capturing the dominant eigenspace of opera-
tor T . In practise, span(W

(k)
M ) often rapidly converges to-

wards a subspace span(WM), which defines a generalized
spectral decomposition uM = WM · f (WM) which verifies
the two Galerkin orthogonality criteria (16) and (17). In the
context of the solution of an SPDE, one iteration of this al-
gorithm can be interpreted as follows: first, for a given set of
M deterministic functions WM , we compute ΛM = f (WM)

by solving a system of M stochastic algebraic equations cor-
responding to a Galerkin approximation of the SPDE on the
subspace VM ⊗ S , with VM = span(WM). In a second time,
we compute WM = F(ΛM) by solving a system of M cou-
pled PDEs corresponding to a Galerkin approximation of
the SPDE on the subspace V ⊗ SM , with SM = span(ΛM).
From a computational point of view, this algorithm has two
main drawbacks. First, such as classical stochastic Galerkin
methods, it still requires the solution of a coupled system of
deterministic PDEs. Secondly, since we do not know a pri-
ori the order M required for a given accuracy, this algorithm
has to be repeated for increasing orders M until reaching
the desired accuracy, thus leading to unnecessary intermedi-
ate computations. Other algorithms have been proposed in
order to minimize the computational efforts and in order to
only require the solution of uncoupled deterministic PDEs.

3.4.2 Power Algorithm

Power algorithm consists in performing subspace iterations
on a one-dimensional subspace in order to capture the domi-
nant eigenfunctions wi of successive operators T i = F i ◦f i ,
where mappings f i : V → S and F i : S → V are defined
such that λ = f i(w) and w = F i(λ) are respectively the
unique solutions of the two following problems:

A(wλ,wλ∗) = B(wλ∗) − A(ui,wλ∗) ∀λ∗ ∈ S (25)

A(wλ,w∗λ) = B(w∗λ) − A(ui,w
∗λ) ∀w∗ ∈ V (26)

where ui is the previously computed order i decomposi-
tion. This algorithm allows a progressive construction of
the set of deterministic functions WM . The separated de-
composition uM of order M can be defined by letting the
λi = f i(wi), for i ∈ {1, . . . ,M}. In the case where the gen-
eralized spectral decomposition corresponds to a classical
eigenproblem, this construction leads to the optimal decom-
position. However, for the general case, it only leads to a
sub-optimal decomposition. An update of stochastic func-
tions often significantly improves the accuracy of the de-
composition. This update consists in defining the stochastic

functions associated with WM by ΛM = f (WM), which re-
quires the solution of a system of M stochastic algebraic
equations.

3.4.3 Arnoldi Algorithm

Another algorithm, inspired from Arnoldi algorithm, has
been proposed in [37] in order to further minimize the com-
putational efforts. This algorithm leads to a decomposition
which for a given order M is less accurate than with sub-
space iteration (and sometimes than power method with up-
date). However, it only requires the solution of M uncoupled
PDEs in order to build the set of functions WM . An Arnoldi
procedure for the construction of WM is as follows: start-
ing from a function λ ∈ S , we compute an initial function
w1 = F(λ) by solving a simple deterministic PDE. Then,
we compute the generalized Krylov subspace KM(T ,w1) =
span{wi}Mi=1, defined by wi+1 = �K⊥

i
T (wi), where �K⊥

i
is

a projector onto the orthogonal of the i-dimensional Krylov
subspace. The computation of wi+1 from wi can be decom-
posed into three steps: in a first time, we compute λ = f (wi)

by solving a simple stochastic algebraic equation, which is
equivalent to a Galerkin projection of the initial SPDE on a
1-dimensional deterministic reduced basis span{wi} ⊂ V . In
a second time, we compute wi+1 = F(λ) by solving a sim-
ple deterministic PDE, which is equivalent to a stochastic
Galerkin projection on a 1-dimensional stochastic reduced
basis span{λ} ⊂ S . In a third time, we orthogonalize wi+1

with respect to Ki = span{wj }ij=1 (orthogonalization with
respect to a chosen inner product on V ). A basis WM being
obtained, the associated stochastic functions ΛM = f (WM)

are obtained by solving a system of M stochastic algebraic
equations. This procedure is summarized in the following
algorithm.

Algorithm 1 Arnoldi algorithm for GSD

1: Initialize λ ∈ S
2: for i = 1 . . .M do
3: Compute wi = F(λ) {Deterministic PDE}
4: Orthogonalize w with respect to span(Wi−1)

5: Compute λ = f (wi) {Stochastic algebraic equation}
6: end for
7: Compute ΛM = f (WM) {System of stochastic alge-

braic equations}

Remark 4 In practise, the Arnoldi procedure may break at a
given iteration i. If the associated decomposition ui = Wi ·
f (Λi) has not reached the desired accuracy, the algorithm
is then restarted on the “deflated” operator T i , defined in
Sect. 3.4.2. For a detailed description and in depth study of
the above algorithms, see [37].
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3.5 Computational Aspects of GSD Algorithms

GSD algorithms have been introduced in a quite abstract set-
ting. Here, we detail the computational aspects of the algo-
rithms by simply specifying how to apply the mappings F ,
f , F i and f i .

3.5.1 Separated Representation of Bilinear and Linear
Forms

We consider that bilinear form a and linear form b in
equation (3) admit the following separated representations:
∀w,w∗ ∈ V ,

a(w,w∗; ξ) =
KA∑

k=1

ak(w,w∗)Ak(ξ), (27)

b(w∗; ξ) =
KB∑

k=1

bk(w
∗)Bk(ξ), (28)

where the ak are deterministic bilinear forms on V , where
the bk are deterministic linear forms on V , and where the
Ak and Bk are real-valued random variables defined on
(Ξ ,B,Pξ ).

3.5.2 Application of Mappings F and F i

Mapping F : S → V is defined such that w = F(λ) is the
solution of the following problem:

aλ(w,w∗) = bλ(w
∗) ∀w∗ ∈ V (29)

where aλ and bλ are deterministic bilinear and linear forms
on V defined by

aλ(w,w∗) =
KA∑

k=1

E(Akλλ)ak(w,w∗) (30)

bλ(w
∗) =

KB∑

k=1

E(Bkλ)bk(w
∗) (31)

Equation (29) is then a classical deterministic PDE.
Mapping F i : S → V is defined such that w = F i(λ) is

the solution of (29) with the following modified right-hand
side:

bi
λ(w

∗) =
KB∑

k=1

E(Bkλ)bk(w
∗)

−
i∑

j=1

KA∑

k=1

E(Akλλj )ak(wj ,w
∗) (32)

In practise, problem (29) is solved using classical discretiza-
tion techniques.

3.5.3 Application of Mappings f and f i

Mapping f : V → S is defined such that λ = f (w) is the
solution of the following problem:

αw(λ,λ∗) = βw(λ∗) ∀λ∗ ∈ S (33)

where αw and βw are bilinear and linear forms on S defined
by

αw(λ,λ∗) = E(λ∗(ξ)A(ξ)λ(ξ )), (34)

A(ξ) =
KA∑

k=1

ak(w,w)Ak(ξ), (35)

βw(λ∗) = E(λ∗(ξ )B(ξ )), (36)

B(ξ ) =
KB∑

k=1

bk(w)Bk(ξ) (37)

Equation (33) corresponds to a weak formulation of the sim-
ple stochastic algebraic equation A(ξ)λ(ξ) = B(ξ ).

Mapping f i : V → S is defined such that λ = f i(w) is
the solution of (33) with the following modified right-hand
side:

βi
w(λ∗) = E(λ∗(ξ )Bi(ξ)), (38)

where

Bi(ξ ) =
KB∑

k=1

bk(w)Bk(ξ)

−
i∑

j=1

KA∑

k=1

Ak(ξ)λj (ξ )ak(wj ,w) (39)

Mapping f : (V )M → (S)M is defined such that ΛM =
f (WM) is the solution of the following problem:

αW(ΛM,Λ∗
M) = βW(Λ∗

M) ∀Λ∗
M ∈ (S)M (40)

where αW and βW are bilinear and linear forms on (S)M

defined by

αW(ΛM,Λ∗
M) = E(Λ∗T (ξ)A(ξ )Λ(ξ)), (41)

βW(Λ∗
M) = E(Λ∗T (ξ)B(ξ )) (42)

where ΛM ∈ (S)M has been assimilated with a random vec-
tor Λ ∈ L2(Ξ ,B,Pξ ;R

M) � R
M ⊗ S , and where random

matrix A and random vector B are defined by

(A(ξ))ij =
KA∑

k=1

ak(wj ,wi)Ak(ξ), (43)

(B(ξ ))i =
KB∑

k=1

bk(wi)Bk(ξ) (44)
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3.5.4 How to Solve Stochastic Algebraic Equations?

Stochastic algebraic equations (33) and (40) can be clas-
sically solved using a Galerkin spectral stochastic method.
After the introduction of an approximation space SP , com-
puting the Galerkin projection λ ∈ SP (resp. ΛM ∈ (SP )M )
requires the solution of a system of P (resp. PM) equations
(see Appendix A for details on this classical solution tech-
nique).

For high-dimensional stochastic problems (requiring a
very large P ), the solution of these stochastic algebraic
equations may be computationally costly or even unafford-
able. In the following section, we introduce a methodology
based on separation of variables in order to solve these sto-
chastic algebraic equations in the case of high-dimensional
probability spaces.

4 Proper Generalized Decomposition for Solving
Equations Defined on Tensor Product Spaces

In this section, we introduce a methodology for the a priori
construction of a separated representation of the solution of
the following problem defined on a multi-dimensional ten-
sor product space:

u ∈ S 0 ⊗ S 1 ⊗ · · · ⊗ S r ,

α(u, v) = β(v) ∀v ∈ S 0 ⊗ S 1 ⊗ · · · ⊗ S r (45)

where α and β are bilinear and linear forms. This problem
can be associated with the initial SPDE (4), by letting α :=
A, β := B and S 0 := V . Letting S 0 := R

n, equation (45) can
be interpreted as a system of stochastic algebraic equations.
For example, such a system is obtained after a discretization
of the SPDE at the deterministic level (e.g. after introducing
a finite dimensional approximation space Vn ⊂ V ). It is also
associated with stochastic algebraic equations (33) and (40)
whose solution is required by GSD algorithms introduced in
Sect. 3 (see Sect. 3.5.4). The proposed methodology can be
seen as an extension of GSD method to the case r ≥ 2 and it
belongs to the family of Proper Generalized Decomposition
(PGD) methods.

4.1 Separated Representation of the Solution

An order Z separated representation of the solution of (45)
is defined by

u(ξ) ≈ uZ(ξ) =
Z∑

i=1

φ0
i φ1

i (ξ1) · · ·φr
i (ξ r ) (46)

where φi ∈ S i . The optimality of such a decomposition is
clearly related to the metric which is used for estimating the

distance between u and uZ . An optimal separated represen-
tation (46) could be naturally defined a posteriori by intro-
ducing a classical norm ‖ · ‖ on

⊗r
j=0 S j and by letting

‖u − uZ‖ = min
{φj

1 }rj=0,...,{φj
Z}rj=0

∥∥∥∥∥u −
Z∑

i=1

φ0
i · · ·φr

i

∥∥∥∥∥ (47)

In the case r = 1, this definition corresponds to a clas-
sical order M singular value decomposition, also named
Karhunen-Loève decomposition or Proper Orthogonal De-
composition. In the general case r > 1, this appears as a
multi-dimensional generalization of singular value decom-
position which has been extensively studied in the litera-
ture in the finite dimensional case (see e.g. [8, 24, 25] and
the references therein) and in the infinite dimensional case
[32]. In this general case, the a posteriori construction of
an optimal decomposition, i.e. leading to the minimal order
Z for a given accuracy, is a non trivial and sometimes ill-
posed problem [9, 23]. Various algorithms have been pro-
posed which lead to quasi optimal but not necessarily opti-
mal decompositions.

In this section, we focus on the more complicated prob-
lem of the a priori construction of the separated represen-
tation uZ , without knowing the solution u a priori. A basic
algorithm is proposed that leads to quite good convergence
properties of the decomposition in many situations.

4.2 Circumvent the Curse of Dimensionality for Spectral
Stochastic Methods

Decomposition (46) can be equivalently rewritten

uZ(ξ) =
Z∑

i=1

φ0
i Ψi(ξ ), Ψi(ξ) := φ1

i (ξ1) · · ·φr
i (ξ r ) (48)

with Ψi(ξ) ∈ ⊗r
j=1 S j � S = L2(Ξ ,B,Pξ ). It then ap-

pears as a spectral stochastic expansion of a second order
random variable u with values in S 0 on a basis {Ψi}Zi=1,
defining a Z-dimensional approximation space SZ ⊂ S .
Here, the difference with a classical spectral stochastic ap-
proach is that the stochastic approximation basis is not se-
lected a priori but is selected in order to accurately approx-
imate the solution with a very low dimension Z. The fol-
lowing algorithms aim at capturing a priori such an optimal
representation. We will see in the numerical examples that
for a given accuracy of the approximation, several orders of
magnitude (10, 1010, 10100, . . . ) may exist between the opti-
mal Z and the dimension P of classical stochastic approxi-
mation spaces SP defined in Sect. 2.3. For high-dimensional
stochastic problems, this methodology can be seen as a way
to circumvent the curse of dimensionality associated with
the dramatic increase in the dimension of stochastic approx-
imation spaces, when increasing the dimension of the under-
lying probability space.
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4.3 Progressive Definition of the Decomposition Based on
Galerkin Orthogonality Criteria

We first consider a progressive definition of the decomposi-
tion (46). We suppose that an approximate order Z decom-
position uZ has been determined. The aim is then to define a
new set of functions (φ0, φ1, . . . , φr) ∈ S 0 × S 1 × · · · × S r ,
leading to the following Z + 1 decomposition:

uZ+1 = uZ + φ0φ1 · · ·φr (49)

We here propose to define the new set of functions by the
following r + 1 Galerkin orthogonality criteria:

∀(φ̃0, . . . , φ̃r ) ∈ S 0 × · · · × S r ,

α(uZ + φ0φ1 · · ·φr, φ̃0φ1 · · ·φr) = β(φ̃0φ1 · · ·φr)

α(uZ + φ0φ1 · · ·φr,φ0φ̃1 · · ·φr) = β(φ0φ̃1 · · ·φr)

· · ·
α(uZ + φ0φ1 · · ·φr,φ0φ1 · · · φ̃r ) = β(φ0φ1 · · · φ̃r )

(50)

We introduce the following mappings

FZ
0 : S 1 × S 2 × · · · × S r → S 0

FZ
1 : S 0 × S 2 × · · · × S r → S 1

· · ·
FZ

r : S 0 × S 1 × · · · × S r−1 → S r

(51)

such that the set of (50) can be equivalently written:

φ0 = FZ
0 (φ1, φ2, . . . , φr)

φ1 = FZ
1 (φ0, φ2, . . . , φr)

· · ·
φr = FZ

r (φ0, φ1, . . . , φr−1)

(52)

Let us note that the product
∏r

j=0 φj is unchanged by the
following rescaling of functions:

r∏

j=0

φj =
r∏

j=0

γ jφj ,

r∏

j=0

γ j = 1, (53)

This defines an equivalence class of separated functions.
Selecting for the rescaling factor γ j = ‖φj‖−1

S j , for j ∈
{1, . . . , r}, and γ 0 = ∏r

j=1 1/γ j , yields normalized func-

tions {γ jφj }rj=1. We now introduce the following iterative
Algorithm 2 for the construction of the set of functions
(φ0, φ1, . . . , φr) having the above normalization property.

Algorithm 2 Power-type iterations

Require: uZ

1: Initialize (φ0, . . . , φr)

2: loop
3: for j = 1 . . . r do
4: φj = FZ

j ({φl}rl=0,l 
=j )

5: φj = φj/‖φj‖S j

6: end for
7: φ0 = FZ

0 ({φl}rl=1)

8: Check convergence of φ0 · · ·φr {tolerance εtol}
9: end loop

In practise, a simple stagnation criterium is used for check-
ing convergence in step 8. The initialization is usually gen-
erated randomly. For many types of problems, we observe
that this initialization has only a slight influence on the con-
vergence of the algorithm. The tolerance εtol in Algorithm 2
can be relatively coarse (in practise, we take εtol ≈ 10−2).
Also, the maximum number of iterations in the loop is usu-
ally taken relatively small (≈ 4). These choices will be jus-
tified in the numerical examples.

4.4 Global Update of Functions

In many situations, the above progressive construction of the
decomposition may have a very slow convergence with Z,
far slower than the ideal a posteriori separated representa-
tion defined in (47). We here propose to perform a global
update of functions, which in practise significantly improves
the convergence properties of the decomposition. Let Φ

j
Z :=

{φj

1 , . . . , φ
j
Z} ∈ (S j )Z . The whole set of functions {Φj

Z}rj=0
can be defined by the following r +1 Galerkin orthogonality
criteria:

α(
∑Z

i=1 φ0
i φ1

i · · ·φr
i ,

∑Z
i=1 φ̃0

i φ1
i · · ·φr

i )

= β(
∑Z

i=1 φ̃0
i φ1

i · · ·φr
i ) ∀{φ̃0

i }Zi=1 ∈ (S 0)Z

· · ·
α(

∑Z
i=1 φ0

i φ1
i · · ·φr

i ,
∑Z

i=1 φ0
i φ1

i · · · φ̃r
i )

= β(
∑Z

i=1 φ0
i φ1

i · · · φ̃r
i ) ∀{φ̃r

i }Zi=1 ∈ (S r )Z

(54)

We introduce the following mappings:

F0 : (S 1)Z × · · · × (S r )Z → (S 0)Z

· · ·
Fr : (S 0)Z × · · · × (S r−1)Z → (S r )Z

(55)

such that the set of (54) can be equivalently written:

Φ0
Z = F0(Φ

1
Z, . . . ,Φr

Z)

· · ·
Φr

Z = Fr(Φ
0
Z, . . . ,Φr−1

Z )

(56)

We now propose the following algorithm for the a priori
construction of a separated representation of the solution of
problem (45).

Algorithm 3 Progressive construction with update (multi-
dimensional PGD)

1: Set u0 := 0
2: for Z = 1 · · ·Zmax do
3: Compute a new set (φ0

Z, . . . , φr
Z) with Algorithm 2



412 A. Nouy

4: for n = 1 to Nupdate do
5: for all j ∈ Jupdate do
6: Φ

j
Z = Fj ({Φl

Z}rl=0,l 
=j )

7: end for
8: end for
9: Check convergence of uZ

10: end for

The set Jupdate ⊂ {0, . . . , r} is composed by the dimensions

j for which the sets of functions Φ
j
Z are updated. One usu-

ally observes that the accuracy of the decomposition is im-
proved when increasing the set Jupdate. In practice, when the
updating along a dimension j is achievable from a compu-
tational point of view, this dimension should be added to the
set Jupdate. Repeating the updating step several times (i.e.
taking Nupdate > 1) may improve the quality of the obtained
decomposition. However, since the computational cost of
this updating step increases (non linearly) with the order Z,
unnecessary updates should be avoided. There is no general
theoretical results about the efficiency of this updating step,
which is clearly problem dependent. Numerical experiences
may help deriving guidelines for a specific class of prob-
lems. From the experiences of the author, one observes that
Nupdate = 1 is sufficient in many situations, especially for
the case of SPDEs dealt with in this article. For the practical
implementation of this algorithm, see Appendix B.

4.5 Interpretation of Algorithm and Comments

4.5.1 The Case r = 1: Generalized Spectral
Decomposition

The case r = 1 (i.e. when function space S 0 ⊗ S 1 is a
tensor product of two spaces) corresponds to the case of
the generalized spectral decomposition described in Sect. 3,
which appears as a generalization of Karhunen-Loève de-
composition. We show in this case that optimal functions
φ0

i ∈ S 0 (resp. φ1
i ∈ S 1) are associated with the dominant

eigenspace of a pseudo eigenproblem on operator F0 ◦ F1

(resp. F1 ◦ F0). Several algorithms have been proposed and
studied for the capture of an approximation of the dominant
eigenspace (see Sect. 3.4). Here, Algorithm 2 corresponds to
power-type iterations for finding the dominant eigenfunction
of the deflated operator (FZ

0 ◦ FZ
1 ). Algorithm 3 then corre-

sponds to a power-type method with deflation and update
for capturing an approximate generalized spectral decom-
position (see Sect. 3.4.2 and [36, 37]). For classical eigen-
problems (i.e. for classical spectral decomposition), it can be
proved that updating has no effect [37]. However, in general
(for the pseudo eigenproblem), it has been observed that up-
dating can significantly improve the approximation of dom-
inant eigenspaces and can lead to a better convergence with
Z of the generalized spectral decomposition [36, 37, 41].

Further mathematical investigations are still necessary
for a better understanding of this pseudo eigenproblem, for
which—to the knowledge of the author—there is no math-
ematical framework available (see [37] for discussions on
this pseudo eigenproblem). However, the proposed power-
type algorithm with update seems to lead to a rather good
approximation of the optimal decomposition in many situa-
tions.

4.5.2 The Case r > 1

In the case r > 1, there is no straightforward interpretation
in terms of an pseudo eigenproblem. Further investigations
will be necessary in order to correctly interpret the decom-
position and propose more efficient algorithms, possibly still
inspired from algorithms for solving classical eigenprob-
lems, or from other algorithms for the a posteriori construc-
tion of separated representations.

For the particular case where α(·, ·) is a symmetric con-
tinuous coercive bilinear form on

⊗r
j=0 S j , the proposed

construction can also be interpreted as a nonlinear approx-
imation algorithm. Indeed, for this particular case, prob-
lem (45) can be reformulated as the following minimization
problem

u = arg min
v∈S 0⊗···⊗S r

1

2
α(v, v) − b(v) (57)

= arg min
v∈S 0⊗···⊗S r

‖u − v‖2
α, (58)

where ‖u‖2
α = α(u,u) denotes the norm induced by α.

Equations (50) are then associated with stationarity condi-
tions (or Euler-Lagrange equations) of the following opti-
mization problem:

min
φ0,...,φr

‖u − uZ − φ0 · · ·φr‖2
α (59)

while (54) are associated with stationarity conditions of the
following optimization problem:

min
{φ0

i }Zi=0,...,{φr
i }Zi=1

∥∥∥∥∥u −
Z∑

i=1

φ0
i · · ·φr

i

∥∥∥∥∥

2

α

(60)

The construction of the decomposition can then be inter-
preted as a nonlinear approximation problem, where the op-
timal separated representation is defined as the one which
minimizes the distance to u with respect to the metric in-
duced by the bilinear form α. A proof of the convergence of
the progressive decomposition uZ , defined by

‖u − uZ+1‖2
α = min

φ0,...,φr
‖u − uZ − φ0 · · ·φr‖2

α (61)

can be found in [15] in an abstract setting, for problems de-
fined in tensor product spaces. In [29], the progressive con-
struction (without update) has been interpreted as a Greedy
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algorithm in nonlinear approximation [4, 11], where the
“dictionary” is composed by separated functions of type∏r

j=0 φj , φj ∈ S j .
Algorithm 2 then corresponds to an alternated minimiza-

tion procedure, where minimization is performed on a func-
tion φj ∈ S j while letting fixed the other functions φj ′

,
j ′ 
= j . In Algorithm 3, the updating step corresponds to
the minimization problem (60), where successive minimiza-
tions are performed along dimensions j ∈ Jupdate. It is
easy to prove that iterative Algorithm 2 has a monotonic
convergence. It is also straightforward to prove that Algo-
rithm 3 leads to a monotone convergence of the decomposi-
tion uZ with Z. Performing several updates in Algorithm 3
(Nupdate > 1) corresponds to performing several iterations
of an alternated minimization procedure for solving (60).
In practise, one observes that performing only one iteration
(i.e. only one update per updated dimension, Nupdate = 1)
is often sufficient. Additional iterations do not significantly
improve the accuracy. This has been observed on several nu-
merical examples but since only a few mathematical results
are available, it should be confirmed on a larger set of exam-
ples.

In the opinion of the author, the interpretation as a pseudo
eigenproblem seems more pertinent than an interpretation as
a nonlinear approximation problem, and could lead to the
development of more efficient algorithms to capture an op-
timal decomposition or an approximation of it (as it is done
in the case r = 1 with the GSD algorithms).

4.5.3 Reformulation as an Optimization Problem:
Necessary or Not?

If problem (45) corresponds to stationarity conditions of a
quadratic optimization problem, monotone convergence of
Algorithm 3 can be proved. It is a property of robustness of
the algorithm and of the proposed construction. In order to
recover this robustness for more general problems (e.g. for
non-symmetric bilinear form α), a reformulation of prob-
lem (45) as an optimization problem can be introduced. Let
R(u) ∈ S 0 ⊗· · ·⊗ S r denote the residual of (45), defined by

〈v,R(u)〉S 0⊗···⊗S r := 〈v,β − α(u)〉S 0⊗···⊗S r (62)

:= β(v) − α(u, v) (63)

where 〈·, ·〉S 0⊗···⊗S r denotes an inner product on Hilbert
space

⊗r
j=0 S j and where β ∈ ⊗r

j=0 S j and α(u) ∈⊗r
j=0 S j are associated with linear forms β(·) and a(u, ·)

by Riez representation. Then, denoting by ‖·‖ the associated
norm, the separated decomposition can be progressively de-
fined as follows

min
φ0,...,φr

‖R(uZ + φ0 · · ·φr)‖2 (64)

which can be rewritten as (59) by replacing bilinear form
α(u, v) and linear form β(v) by bilinear form 〈α(v),α(u)〉
and linear form 〈α(v),β〉 respectively. Equations (50) then
have to be interpreted as the stationarity conditions associ-
ated with optimization problem (64). The obtained decom-
position uZ then satisfies an optimality criterium with re-
spect to the residual norm. Under suitable assumptions, the
convergence of the progressive decomposition uZ defined
by (64) can be proved [15].

However, one observes in practise that it leads to poor
convergence properties of uZ with respect to natural norms
in tensor product Hilbert spaces (e.g. L2 norm). Although
monotone convergence is not guaranteed for non-variational
problems (non symmetric problems), in many cases, a con-
struction based on Galerkin orthogonality criteria appears
to yield better convergence properties with respect to usual
norms and should be preferred when one tries to obtain the
lowest order of decomposition for a given precision with re-
spect to a usual norm.

The minimal residual formulation also presents another
drawback from the computational point of view. Indeed, al-
gorithms based on separation of variables take part of the
separated representation of the operator and right-hand side
(see appendix B on computational aspects). In this minimal
residual formulation, the initial operator and right-hand side
are multiplied by the adjoint operator, which drastically in-
crease the separation order of the operator and right-hand
side of the new formulation.

Remark 5 This minimal residual formulation (or least-
square formulation) has been proposed in [5] for the solution
of algebraic equations in finite dimensional tensor product
spaces and applied to the solution of stochastic algebraic
equations in [12]. For each order Z, the authors proposed
an algorithm based on an alternated minimization procedure
for solving

min
{φ0

i }Zi=0,...,{φr
i }Zi=1

∥∥∥∥∥R

(
Z∑

i=1

φ0
i · · ·φr

i

)∥∥∥∥∥

2

(65)

For each order Z, iterations are performed until convergence
or stagnation. If the residual does not satisfy a desired accu-
racy, the algorithm is restarted with order Z + 1. In the case
r = 1, this corresponds to the subspace iterations for solv-
ing the pseudo eigenproblem (see Sect. 3.4.1). For r > 1,
this alternated minimization technique corresponds to the
steps 4 to 8 of Algorithm 3 (so called updating steps), with
Jupdate = {0, . . . , r} (all dimensions). Since the required or-
der Z for a given accuracy is not known a priori, this type
of algorithm can lead to high computational costs. In this
article, a progressive construction with updates is then pre-
ferred.
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Fig. 1 Example 1

5 Example 1: Advection Diffusion Reaction Equation

5.1 Formulation of the Problem and Discretization

Formulation of the Problem We consider an advection dif-
fusion reaction equation defined on a spatial domain Ω =
(0,1)× (0,1) and a time interval I = (0, T ), with T = 0.03.
We denote by ξ ∈ Ξ the random input parameters. The so-
lution field u(x, t, ξ), defined on Ω × I × Ξ verifies

u̇ − μ(ξ)Δu + c(ξ) · ∇u + κ(ξ)u = f (ξ) on Ω × I

(66a)

u = 0 on ∂Ω × I (66b)

u = 0 on Ω × {0} (66c)

where u̇ ≡ ∂tu, where μ and κ are random diffusion and
reaction parameters, where c is a random advection velocity,
and where f is a random source term. We take

μ(ξ) = 1 + 0.2ξ1,

c(ξ) = 250(1 + 0.2ξ2)

(
x − 1

2
,

1

2
− y

)
,

κ(ξ) = 10(1 + 0.2ξ3)

f (ξ) = 100(1 + 0.2ξ4)IΩ1

where (x, y) = x ∈ Ω , IΩ1 is the indicator function of a sub-
domain Ω1 = (0.7,0.8) × (0.7,0.8) ⊂ Ω (see Fig. 1) and
where ξ = (ξi)

4
i=1 is a set of 4 mutually independent uni-

form random variables ξi ∈ U(−1,1). The set of elemen-
tary events is then Ξ = ⊗4

i=1 Ξi , with Ξi = (−1,1), and is
endowed with the uniform probability measure Pξ .

On Fig. 2, plotted is the solution corresponding to out-
come ξ = 0 (mean value of parameters).

Weak Formulation We introduce the weak formulation (4)
of problem (66) with the following definition of function
spaces

V = V x ⊗ V t , V x = H 1
0 (Ω), V t = L2(I ),

S = L2(Ξ ,B,Pξ )

Fig. 2 Example 1. Solution u(ξ) for ξ = 0 (mean values of parame-
ters) at different time steps

Fig. 3 Example 1. Finite element mesh

and the following definitions of bilinear and linear forms:

a(u, v; ξ) =
∫

I

∫

Ω

u̇v dx dt +
∫

Ω

u(0+)v(0+) dx

+
∫

I

∫

Ω

μ(ξ)∇u · ∇v dx dt

+
∫

I

∫

Ω

c(ξ) · ∇u v dx dt

+
∫

I

∫

Ω

κ(ξ )u v dx dt (67)

l(v; ξ) =
∫

I

∫

Ω

vf (ξ) dx dt (68)

where u(0+) ≡ limt↓0 u(x, t, ξ). Let us note that with this
weak formulation, the initial condition is verified in a weak
sense.

Discretization At the space level, we introduce a finite ele-
ment approximation space V x

Nx
⊂ V x with dimension Nx =

4435. The finite element mesh composed of 3-nodes trian-
gles is shown on Fig. 3. At the time level, we introduce
a piecewise constant approximation space V t

Nt
⊂ V t asso-

ciated with a partition {Ii = (ti−1, ti )}Nt

i=1 of the time inter-
val I . A time discontinuous Galerkin framework is used by
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introducing the following definition of time derivatives:

∫

I

∫

Ω

u̇v dx dt :=
Nt−1∑

i=1

∫

Ω

(
u(t+i ) − u(t−i )

)
v(t+i ) dx

where u(t±i ) ≡ limε↓0 u(ti ± ε). We here introduce a uni-
form partition with Nt = 80. Finally, at the stochastic
level, we first introduce a classical polynomial approxima-
tion space SP = ⊗4

i=1 S i
Pi

⊂ S , where the S i
Pi

= Pp(Ξi)

are unidimensional polynomial spaces of degree p = 5
(Pi = 6). The dimension of SP is then P = 1296. The clas-
sical Galerkin approximation is defined by

u ∈ V x
Nx

⊗ V t
Nt

⊗ SP ,

A(u, v) = B(v) ∀v ∈ V x
Nx

⊗ V t
Nt

⊗ SP

(69)

Remark 6 Let us note that approximation space SP is here
defined as the full tensorization of unidimensional polyno-
mial spaces (polynomial space with partial degree p). It does
not correspond to the classical polynomial chaos approxima-
tion space (polynomial space with total degree p).

5.2 Generalized Spectral Decomposition

In this section, we apply the GSD Algorithm 1 (Arnoldi-type
algorithm) for the a priori construction of a decomposition
of the solution

u(x, t, ξ) ≈ uM(x, t, ξ)

=
M∑

i=1

wi(x, t)λi(ξ ) := WM · ΛM

where the wi(x, t) ∈ V x
Nx

⊗ V t
Nt

are deterministic modes
(space-time modes) and the λi ∈ SP are stochastic modes.
In this section, we only focus on the properties of the GSD
method introduced in Sect. 3. We do not focus on the solu-
tion of stochastic algebraic equations and we consider that
these equations are solved with a very good accuracy (error
less than the error associated with the truncation order M of
the GSD). The solution of these stochastic algebraic equa-
tions with the algorithm proposed in Sect. 4 will be analyzed
in the following Sect. 5.3.

5.2.1 Algorithm and Computational Aspects of GSD

We recall that for building a decomposition of order M , the
Arnoldi-type Algorithm 1 requires the solution of M classi-
cal deterministic problems (problems wi = F(λ)), M sto-
chastic algebraic equations (problems λ = f (wi)) and a
system of stochastic algebraic equations (problem ΛM =
f (WM)) for the update of stochastic functions. The set of
M deterministic modes wi are computed by solving only

Fig. 4 Example 1. First 4 deterministic modes {wi(x, t)}4
i=1 of the

GSD decomposition built by Algorithm 1 (shown at three different time
steps)

M uncoupled deterministic problems wi = F(λ) for differ-
ent λ ∈ SP (29). These problems correspond to classical ad-
vection diffusion reaction problems associated with differ-
ent deterministic parameters μλ = E(μλλ), cλ = E(cλλ)

and κλ = E(κλλ) (respectively for the diffusion, advection
and reaction terms) and with a deterministic source term
fλ = E(f λ). Bilinear and linear forms in (29) write

aλ(w,w∗) =
∫

I

∫

Ω

E(λλ)ẇw∗ dx dt

+
∫

Ω

E(λλ)w(0+)w∗(0+) dx

+
∫

I

∫

Ω

κλww∗ dx dt
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Fig. 5 Example 1. Probability
density functions of stochastic
modes Λ9 = {λi}9

i=1 = f (W9)

of GSD decomposition u9

+
∫

I

∫

Ω

μλ∇w · ∇w∗ dx dt

+
∫

I

∫

Ω

cλ · ∇ww∗ dx dt (70)

lλ(v) =
∫

I

∫

Ω

w∗fλ dx dt (71)

5.2.2 Illustration of the Obtained Decomposition

We here illustrate the decomposition u9 = W9 · Λ9 of or-
der M = 9 obtained by the Arnoldi-type algorithm. Fig-
ure 4 shows the first 4 deterministic modes {wi}4

i=1. These
modes are orthonormalized with respect to the natural in-
ner product in L2(Ω) ⊗ L2(I ). Figure 5 shows the proba-
bility density functions of stochastic modes Λ9. In Table 1,
we indicate the mean m1(λi) := E(λi) and second moment
m2(λi) := E(λ2

i ) of each stochastic mode λi .
Since the deterministic modes are orthonormalized with

respect to the inner product in L2(Ω) ⊗ L2(I ), the values
m2(λi) reflect the contribution of the different modes to the
L2 norm of the solution:

‖uM‖2
L2(Ω×I×Ξ)

= E(〈uM,uM 〉L2(Ω×I )) =
M∑

i=1

m2(λi)

Table 1 First and second moments of random variables {λi}9
i=1

i m1(λi) m2(λi )

1 12.458 157.7

2 0.603 0.8521

3 0.139 0.5362

4 −0.084 0.0467

5 −0.055 0.0073

6 0.035 0.0029

7 0.123 0.0387

8 0.008 0.0002

9 0.050 0.0065

We observe a global decrease in the contribution of the
modes to the norm of the decomposition uM . However, we
notice that the convergence is not monotonic.

5.2.3 Convergence of the Generalized Spectral
Decomposition

We here study the convergence of the GSD decomposition
with respect to the order M of the decomposition.
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Fig. 6 Example 1. Convergence
with M of uM . Relative errors
εM

2 and εM∞ estimated with
Monte-Carlo simulations

Fig. 7 (Color online) Example
1. Convergence with M of the
probability density function of
the quantity of interest
Q2(uM)(ξ ). Reference
computed with Monte-Carlo

Error in Solution We estimate the relative error between

uM and the semi-discretized solution u ∈ V x
Nx

⊗ V t
Nt

⊗ S :

εM
γ = ‖u − uM‖γ

‖u‖γ

(72)

We introduce two different norms ‖ · ‖γ defined as follows

‖u‖L2(Ξ ;L2(Ω×I )) = E
(
‖u(ξ)‖2

L2(Ω×I )

)1/2
(73)

‖u‖L∞(Ξ ;L2(Ω×I )) = sup
ξ∈Ξ

‖u(ξ)‖L2(Ω×I ) (74)

and we denote the corresponding relative errors (72) by

εM
2 and εM∞ respectively. These two norms are estimated by

Monte-Carlo simulations:

‖v‖2
L2(Ξ ;L2(Ω×I ))

≈ 1

Q

Q∑

q=1

‖v(ξ (q))‖2
L2(Ω×I )

(75)

‖v‖L∞(Ξ ;L2(Ω×I )) ≈ sup
q∈{1,...,Q}

‖v(ξ (q))‖L2(Ω×I ) (76)

where the {ξ (q)}Qq=1 are Q samplings of random variables ξ .

The reference values u(ξ (q)) are obtained by solving the
corresponding deterministic problems with a classical deter-
ministic numerical solution technique. Here, we take Q =
100, which leads to a good estimation of error indicators.
Figure 6 shows the convergence with M of error indicators
εM
γ . We observe a good convergence with M in the L2-norm

(error less than 10−2 for M = 15) and also in the L∞-norm
(error 2.10−2 for M = 15). The good convergence in the
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Fig. 8 Example 1. Convergence
with M of the mean μM

Q2
(a) and

standard deviation σM
Q2

(b) of
the quantity of interest
Q2(uM)(ξ ). Relative error with
respect to the reference
Monte-Carlo simulations

Fig. 9 Example 1. Convergence
with M of the mean μM

Q1
(t) (a)

and standard deviation σM
Q1

(t)

(b) of the quantity of interest
Q1(uM)(t, ξ ). Relative error (in
L2(I )-norm) with respect to the
reference Monte-Carlo
simulations

L∞-norm indicates that with a low order M , the approxima-
tion uM(ξ) is relatively good for almost every elementary
events ξ ∈ Ξ .

Error on Quantities of Interest In order to further analyze
the convergence, we focus on two quantities of interest:

Q1(u)(t, ξ ) =
∫

Ω2

u(x, t, ξ) dx

Q2(u)(ξ ) =
∫

I

∫

Ω2

u(x, t, ξ) dx dt =
∫

I

Q1(u)(t, ξ ) dt

where Ω2 = (0.2,0.3) × (0.2,0.3) ⊂ Ω is a subdomain
shown on Fig. 1. Let us note that Q2 is a random variable
and that Q1 is a stochastic process in time. Figure 7 shows
the convergence with M of the probability density function
(pdf) of Q2(uM). The reference pdf is computed with a clas-
sical Monte-Carlo method with 30,000 samples (resolution
of 30,000 advection-diffusion-reaction deterministic prob-
lems). On Fig. 8, we observe the convergence with M of the
mean μM

Q2
and standard deviation σM

Q2
of Q2(uM). The plots

indicate the relative error of these statistical quantities with
respect to reference values obtained with the Monte-Carlo

method. We observe a very quick convergence with M (al-
though non monotonic) of the quantity of interest Q2.

On Fig. 9, we observe the convergence with M

of the mean μM
Q1

(t) and standard deviation σM
Q1

(t) of
Q1(uM)(t, ξ ), which are time functions. The plots indicate
the relative error with respect to reference values obtained
with the Monte-Carlo method, the error being computed in
the L2(I )-norm. We observe a very quick convergence with
M of these statistical quantities (relative error less than 10−2

with M = 10). On Fig. 10, we observe the convergence with
M of the 99.9% quantiles of Q1(uM)(t, ξ ). These quantiles
(which are time functions) represent the envelope such that
the probability of Q1(uM)(t, ξ ) being inside this envelope is
99.9%. We also observe a very good approximation of these
quantiles with a low order decomposition (M ≈ 12).

Let us recall that only M classical deterministic prob-
lems have to be solved in order to compute an order M gen-
eralized spectral decomposition. This low number of deter-
ministic problems to be solved must be compared with the
huge number of deterministic simulations required by clas-
sical sampling techniques such as Monte-Carlo.
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Fig. 10 (Color online) Example
1. Convergence with M of the
99.9% quantiles of the quantity
of interest Q1(uM)(t, ξ).
Reference (in blue in the
background) computed by
Monte-Carlo simulation

5.3 Proper Generalized Decomposition for the Solution of
Stochastic Algebraic Equations: Separated
Representation at the Stochastic Level

We now illustrate the behavior of the Proper Generalized
Decomposition (PGD) technique introduced in Sect. 4 for
the solution of the stochastic algebraic equations required in
the construction of the generalized spectral decomposition
uM = WM · ΛM (steps 5 and 7 of Algorithm 1). These sto-
chastic algebraic equations correspond to problems of type
λ = f (wi) and ΛM = f (WM) (see Sect. 3.5.3 for the defin-
ition of these problems). We use the following tensor prod-
uct structure of the probability space: Ξ = Ξ1 × · · · × Ξ4,
Pξ = Pξ1 ⊗ · · · ⊗ Pξ4 , where Pξi

is the uniform probabil-
ity measure on Ξi . The stochastic function space S has
the following tensor product structure: S = S1 ⊗ · · · ⊗ S4,
with S i = L2(Ξi, dPξi

), and we introduce an approximation
space SP = ⊗4

i=1 S i
Pi

as detailed in Sect. 5.1.

5.3.1 Solution of Problems λ = f (w)

We first analyze the solution of problems λ = f (wi) for
the different modes i, corresponding to step 5 of Algo-
rithm 1). These problems correspond to the solution of (33)
which can be seen as a Galerkin projection of the initial
stochastic problem on the 1-dimensional deterministic ba-
sis spanned by wi . Let us denote by A(ξ )λ(ξ) = B(ξ) the
strong-stochastic form of these problems. We use Algo-
rithm 3 for the approximate solution of these problems.
For the updating step (steps 5 to 7), we use an updating
along each stochastic dimension, i.e. Jupdate = {1, . . . , r},

and a number of updates Nupdate which will be indicated
later. This algorithm leads to the construction of the follow-
ing order Z decomposition of stochastic function λ ∈ S �
R ⊗ S 1 ⊗ · · · ⊗ S 4:

λ(ξ) ≈ λZ(ξ) =
Z∑

i=1

φ0
i φ1

i (ξ1) · · ·φ4
i (ξ4)

with φ0
i ∈ R and φ

j
i ∈ S j

Pj
. In order to analyze the conver-

gence of the decomposition, we introduce the following er-
ror indicator in L2-norm:

εZ = ‖λ − λZ‖L2(Ξ)

‖λ‖L2(Ξ)

, (77)

with ‖λ‖L2(Ξ) = E(λ(ξ)2)1/2. The L2-norm is estimated
with Monte-Carlo simulations:

‖λ‖2
L2(Ξ)

≈ 1

Q

Q∑

q=1

λ(ξ (q))2, (78)

where the {ξ (q)}Qq=1 are Q samplings of random vari-

ables ξ . The reference values are defined by λ(ξ (q)) =
A(ξ (q))−1B(ξ (q)). Here, we take Q = 100. Let us note that
error indicator εZ evaluates the distance between the ap-
proximate solution λZ ∈ SP and the strong stochastic so-
lution λ ∈ S . It then takes into account two contributions
of errors: the approximation error (introduction of SP ⊂ S )
and the error due to the separated representation technique
(truncation error). In this example, the approximation error
is negligible compared to the truncation error (sufficiently
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Fig. 11 Example 1.
Approximate solution of
stochastic algebraic equations
λ = f (wi) with Algorithm 3.
Convergence with Z of λZ , in
L2-norm, for Nupdate = 0 (a)
and Nupdate = 1 (b)
(Jupdate = {1, . . . , r})

high polynomial degree used for SP ). On Fig. 11, we il-
lustrate the convergence with Z of λZ for different prob-
lems λZ ≈ f (wi). We plot the convergence for a parameter
Nupdate = 0 or 1 in the Algorithm 3. We observe a very
fast convergence in Z = 2 or 3 modes for each mode and
we do not observe any significant influence of parameter
Nupdate. The error value which is reached after Z = 2 or
3 corresponds to the lowest numerical precision which can
be reached with separated representation technique (corre-
sponding to an error about 10−8 in algebraic norms). These
results indicate that for problems λ = f (wi), a very good
accuracy is obtained with Z only equal to 1 or 2 (i.e. the λ

admits a very low order separated representation).

5.3.2 Solution of Problems ΛM = f (WM)

We now focus on the solution of the system of stochastic al-
gebraic equations ΛM = f (WM), corresponding to step 7 of
Algorithm 1 (update of stochastic functions). This problem
is solved with Algorithm 3. For the updating step (steps 5 to
7 of Algorithm 3), we use an updating along each dimension,
i.e. Jupdate = {0, . . . , r}, and a number of updates Nupdate

which will be indicated later. This problem corresponds to
the solution of (40) which can be seen as a Galerkin projec-
tion of the initial SPDE on the M-dimensional deterministic
basis spanned by WM = {wi}Mi=1 (reduced basis of space-
time functions).

Remark 7 We will test the Algorithm 3 for different or-
ders M . However, let us recall that in practise, when us-
ing the Arnoldi-type Algorithm 1, problem ΛM = f (WM)

is solved only one time, after the construction of a set of de-
terministic functions {wi}Mi=1. More precisely, if the Arnoldi
procedure is restarted, it is solved one time after the con-
struction of each Krylov subspace.

We assimilate ΛM ∈ (S)M with a random vector Λ ∈ R
M ⊗

S and we denote by A(ξ)Λ(ξ) = B(ξ) the strong-stochastic

form of problem ΛM = f (WM). We use the Algorithm 3
for the approximate solution of this problem. It leads to the
construction of the following order Z decomposition of sto-
chastic functions ΛM ∈ (S)M ≡ Λ ∈ R

M ⊗ S 1 ⊗ · · · ⊗ S 4:

Λ(ξ) ≈ ΛZ(ξ) =
Z∑

i=1

φ0
i φ

1
i (ξ1) · · ·φ4

i (ξ4),

with φ0
i ∈ R

M and φ
j
i ∈ S j

Pj
. In order to analyze the con-

vergence of the decomposition, we introduce the following
error indicator in L2-norm:

εZ
M = ‖Λ − ΛZ‖RM⊗L2(Ξ)

‖Λ‖RM⊗L2(Ξ)

(79)

with ‖Λ‖RM⊗L2(Ξ) = E(‖Λ(ξ )‖2
RM )1/2. The L2-norm is es-

timated with Monte-Carlo simulations

‖Λ‖2
RM⊗L2(Ξ)

≈ 1

Q

Q∑

q=1

‖Λ(ξ (q))‖2
RM (80)

where the {ξ (q)}Qq=1 are Q samplings of random variables ξ .

Reference values Λ(ξ (q)) = A(ξ (q))−1B(ξ (q)) are obtained
by solving a simple system of deterministic equations. Here,
we take Q = 100. As mentioned in the previous section, the
approximation error, due to the introduction of SP ⊂ S , is
here negligible. Then, εZ

M quantifies the truncation error (for
a truncation order Z). On Fig. 12, we illustrate the conver-
gence with Z of ΛZ for different problems ΛM,Z ≈ f (WM).
We plot the convergence for a parameter Nupdate = 0 or 1
in the Algorithm 3. We here notice for M > 1 a significant
influence of the updating step in Algorithm 3. Indeed, for
a given order Z, the accuracy of the decomposition ΛZ ob-
tained with Nupdate = 1 is better than the one obtained with-
out update (Nupdate = 0).

On Fig. 13, we test the influence of the number of updates
Nupdate. As mentioned in Sect. 4.4, we observe in this exam-
ple that performing more than 1 update (Nupdate > 1) does
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Fig. 12 Example 1.
Approximate solution of the
system of stochastic algebraic
equations ΛM = f (WM) with
Algorithm 3. Convergence with
Z of ΛM,Z , in L2-norm, for
Nupdate = 0 (a) and
Nupdate = 1 (b)

Fig. 13 Example 1.
Approximate solution of the
system of stochastic algebraic
equations ΛM = f (WM) with
Algorithm 3 for different
orders M . Convergence with Z

of ΛM,Z , in L2-norm. Influence
of parameter Nupdate of the
algorithm

not improve the accuracy of the decomposition obtained
with Nupdate = 1. We observe that when increasing M , a
higher order Z is required for reaching a given accuracy.
However, this order Z is always very small compared to the
dimension of the stochastic approximation space P = 1296.
A L2 error less than 10−2 is obtained with only Z = 5 what-
ever the order M .

The overall methodology can be seen as a technique
for constructing automatically a very low dimensional sto-
chastic approximation space SZ = span{Ψi}Zi=1 ⊂ SP , with

Ψi(ξ) = ∏4
j=1 φ

j
i (ξj ), which is well adapted to the repre-

sentation of the solution u of the present stochastic problem.
Here, Z ≈ 5 only is sufficient to reach a good approxima-
tion.

Let us finally note that computational costs associated
with the overall numerical strategy are very low. For ex-
ample, for the construction of a GSD decomposition uM of
order M = 15, it took a few seconds on a simple laptop. As
illustrated in this example, u15 provides a very good approx-
imation of u and of the quantities of interest.
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Fig. 14 Example 2. Spatial
modes {μi(x)}40

i=1 of the
decomposition (82) of random
field μ(x, ξ) (modes sorted
from left to right and top to
bottom)

6 Example 2: Stationary Advection Diffusion Reaction
Equation

6.1 Formulation of the Problem and Discretization

Formulation of the Problem We consider a stationary ad-
vection diffusion reaction equation defined on a spatial do-
main Ω = (0,1) × (0,1) (see Fig. 1). It is a stationary ver-
sion of Example 1 where the only source of uncertainty
comes from the diffusion coefficient which is chosen as a
random field, depending on a set of random variables ξ ∈ Ξ .
The solution field u(x, ξ), defined on Ω × Ξ verifies

− ∇ · (μ(x, ξ)∇u) + c · ∇u + κu = f on Ω (81a)

u = 0 on ∂Ω (81b)

where κ = 10 is a deterministic reaction coefficient and c =
250(x − 1

2 , 1
2 − y) is a deterministic advection velocity. The

source term is deterministic and is defined by f = 100IΩ1

(see Fig. 1), where Ω1 = (0.7,0.8) × (0.7,0.8) ⊂ Ω , with
IΩ1 the indicator function of Ω1. μ(x, ξ) is a random field
defined by

μ(x, ξ) = μ0 +
40∑

i=1

√
σiμi(x)ξi (82)

where μ0 = 1 is the mean value of μ, where the ξi ∈
U(−1,1) are mutually independent uniform random vari-
ables and where the μi(ξ) are a set of L2(Ω)-orthonormal
spatial functions. These spatial functions are plotted in
Fig. 14. The associated amplitudes

√
σi are plotted on

Fig. 15. The m = 40 random parameters ξ = (ξi)
m
i=1 define

a probability space (Ξ ,B,Pξ ), with Ξ = (−1,1)m and Pξ

the uniform probability measure on Borel σ -algebra B.

Fig. 15 Example 2. Amplitudes
√

σi of the modes of the decomposi-
tion (82) of random field μ(x, ξ)

Remark 8 The couples (μi, σi) ∈ L2(Ω) × R
+ are chosen

as the 40 dominant eigenpairs of eigenproblem T (μi) =
σiμi , where T is the kernel operator

T : v ∈ L2(Ω) �→
∫

Ω

α(x,y)v(y) dy ∈ L2(Ω),

with α(x,y) = 0.22 exp(−‖x−y‖2

0.32 ). The expression (82) for
μ(x, ξ) then corresponds to a truncated version of a ho-
mogeneous random field with mean 1, standard deviation
0.2/

√
3 and exponential square covariance function with

correlation length 0.3.

Weak Formulation We introduce the weak formulation (4)
of problem (81) with the following definition of function
spaces

V = H 1
0 (Ω), S = L2(Ξ ,B,Pξ ) (83)
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and the following definitions of bilinear and linear forms:

a(u, v; ξ) =
∫

Ω

μ(x, ξ)∇u · ∇v dx

+
∫

Ω

c · ∇u v dx +
∫

Ω

κu v dx (84)

l(v) =
∫

Ω

vf dx (85)

Discretization At the space level, we introduce a finite el-
ement approximation space VN ⊂ V with dimension N =
4435. The finite element mesh composed of 3-nodes tri-
angles is shown on Fig. 3. At the stochastic level, we in-
troduce different approximation strategies, associated with
different separations of function space S � S 1 ⊗ · · · ⊗ S r ,
where S j = L2(Ξ j ,Bj ,Pξ j

) and Ξ j = (−1,1)m
∗
, with

r × m∗ = m = 40. We introduce complete polynomial ap-
proximation spaces S j

P ∗ = Pp(Ξ j ) of degree p = 4, with

P ∗ = (p+m∗)!
p! and define

S ⊃ SP � S 1
P ∗ ⊗ · · · ⊗ S r

P ∗

We will take for the reference computation (r,m∗) = (8,5).
The associated dimension of SP is then P = (P ∗)r ≈
6.1016. Let us note that with such a dimension, a direct com-
putation of the stochastic Galerkin projection is unafford-
able in this example. The overall methodology proposed in
this article (Sects. 3 and 4) allows obtaining an approxima-
tion of this Galerkin projection.

6.2 Generalized Spectral Decomposition

In this section, we apply the GSD Algorithm 1 (Arnoldi-type
algorithm) for the a priori construction of a decomposition
of the solution

u(x, ξ) ≈ uM(x, ξ) =
M∑

i=1

wi(x)λi(ξ) := WM · ΛM

where the wi ∈ VN are spatial modes and the λi ∈ SP are
stochastic modes. In this section, we only focus on the prop-
erties of the GSD method introduced in Sect. 3 (for deter-
ministic/stochastic separation). We do not focus on the so-
lution of stochastic algebraic equations and we consider that
these equations are solved with a good accuracy (error less
than the error associated with the truncation order M of the
GSD). The solution of these stochastic algebraic equations
with the algorithm proposed in Sect. 4 will be analyzed in
the following Sect. 6.3.

6.2.1 Algorithm and Computational Aspects

We recall that for building a decomposition of order M , the
Arnoldi-type Algorithm 1 requires the solution of M classi-
cal deterministic PDEs (problems wi = F(λ)), M stochastic

Fig. 16 Example 2. Deterministic modes {wi(x)}9
i=1 of the GSD de-

composition u9

Table 2 First and second moments of random variables {λi}9
i=1

i m1(λi) m2(λi)

1 2.4628 6.1

2 0.0307 1.9 × 10−3

3 −0.0017 9.8 × 10−4

4 0.0002 2.1 × 10−4

5 −0.0002 2.4 × 10−4

6 0.0003 1.2 × 10−4

7 −0.0003 7.8 × 10−5

8 0.0006 2.1 × 10−5

9 −0.0003 2.1 × 10−5

algebraic equations (problems λ = f (wi)) and a system of
stochastic algebraic equations (problem ΛM = f (WM)) for
the update of stochastic functions. The set of M determin-
istic modes wi are computed by solving only M uncoupled
deterministic problems wi = F(λ) for different λ ∈ SP (29).
These problems correspond to classical stationary advec-
tion diffusion reaction problems associated with different
deterministic parameters μλ(x) = E(μ(x, ξ)λ(ξ)2), cλ =
E(cλ2) = cE(λ2) and κλ = E(κλ2) = κE(λ2) (respectively
for the diffusion, advection and reaction terms) and with a
deterministic source term fλ = E(f λ) = f E(λ). Bilinear
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Fig. 17 Example 2. Probability
density functions of stochastic
modes Λ9 = {λi}9

i=1 = f (W9)

of GSD decomposition u9

Fig. 18 Example 2.
Convergence with M of uM .
Relative errors εM

2 and εM∞
estimated with Monte-Carlo
simulations

and linear forms in (29) write

aλ(w,w∗) =
∫

Ω

μλ(x)∇w · ∇w∗ dx (86)

+ E(λ2)

∫

Ω

c(x) · ∇ww∗ dx

+ E(λ2)

∫

Ω

κww∗ dx (87)

lλ(v) = E(λ)

∫

Ω

w∗f dx (88)

6.2.2 Illustration of the Obtained Decomposition

We here illustrate the decomposition u9 = W9 · Λ9 of order
9 obtained by the Arnoldi-type algorithm. Figure 16 shows
the first 9 deterministic modes {wi}9

i=1. These modes are
orthonormalized with respect to the natural inner product
in L2(Ω) (in the construction of generalized Krylov sub-
space). Figure 17 shows the stochastic modes Λ9. In Table 2,
we indicate the mean m1(λi) := E(λi) and second moment
m2(λi) := E(λ2

i ) of each stochastic mode λi .
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Fig. 19 Example 2.
Comparison between GSD
approximation u15 and direct
computations u for different
outcomes ξ (q) of random
variables. Associated outcomes
of diffusion coefficient μ (first
column), direct simulation δu

(second column), and GSD
approximation δu15 (third
column). δu(x, ξ) = u(x, ξ) −
u(x,0), where u(x,0) is the
solution with a mean random
field μ = μ0

Since the deterministic modes are orthonormalized with
respect to the inner product in L2(Ω), the values m2(λi)

reflect the contribution of the different modes to the L2 norm
of the solution:

‖uM‖2
L2(Ω×Ξ)

= E((uM,uM)L2(Ω)) =
M∑

i=1

m2(λi)

We observe a global decrease in the contribution of the
modes to the norm of the decomposition uM .

6.2.3 Convergence of the Generalized Spectral
Decomposition

We here study the convergence of the GSD decomposition
with respect to the order M of the decomposition.

Error in Solution We estimate the relative error between
uM and the semi-discretized solution u ∈ VN ⊗ S :

εM
γ = ‖u − uM‖γ

‖u‖γ

(89)
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Fig. 20 (Color online) Example 2. Convergence with M of the probability density function of the quantity of interest Q(uM)(ξ )

We introduce two different norms ‖ · ‖γ defined as follows

‖u‖L2(Ξ ;L2(Ω)) = E(‖u(ξ)‖2
L2(Ω)

)1/2 (90)

‖u‖L∞(Ξ ;L2(Ω)) = sup
ξ∈Ξ

‖u(ξ)‖L2(Ω) (91)

and we denote the corresponding relative errors (89) by
εM

2 and εM∞ respectively. These two norms are estimated by
Monte-Carlo simulations:

‖v‖2
L2(Ξ ;L2(Ω))

≈ 1

Q

Q∑

q=1

‖v(ξ (q))‖2
L2(Ω)

(92)

‖v‖L∞(Ξ ;L2(Ω)) ≈ sup
q∈{1,...,Q}

‖v(ξ (q))‖L2(Ω) (93)

where the {ξ (q)}Qq=1 are Q samplings of random variables

ξ . The reference values u(ξ (q)) are obtained by solving
the corresponding deterministic problems. Here, we take
Q = 100, which leads to a good estimation of error indi-
cators. Figure 18 shows the convergence with M of error
indicators εM

γ . We observe a good convergence with M of

the L2-norm (error less than 10−2 for M = 15) and also in
the L∞-norm (error 3.10−2 for M = 15). The good conver-
gence in the L∞-norm indicates that with a low order M ,
the approximation uM(ξ) is relatively good for almost every

elementary events ξ ∈ Ξ (see Fig. 19 for the illustration of
this fact).

Convergence of Quantities of Interest In order to further
analyze the convergence, we focus on a quantity of interest:

Q(u)(ξ ) =
∫

Ω2

u(x, ξ) dx (94)

where Ω2 = (0.2,0.3) × (0.2,0.3) ⊂ Ω is a subdomain
shown on Fig. 1. Let us note that Q2 is a random variable.
Figure 20 shows the convergence with M of the probabil-
ity density function (pdf) of Q(uM). The reference pdf is
computed with a classical Monte-Carlo method with 36,000
samples (resolution of 36,000 advection diffusion reaction
deterministic problems). We observe a very good conver-
gence with M of the quantity of interest Q2.

On Fig. 21, we observe the convergence with M of the
probability of the event {Q(uM)(ξ) > q}, i.e.
Pξ {Q(uM) > q} for different values of q . We observe that
the number of modes M must be increased in order to ac-
curately predict events with lower and lower probabilities.
However, we observe that a relatively low order decomposi-
tion (M = 20) allows to accurately predict the probability of
rare events (events with a probability lower than of 10−3).
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Fig. 21 Example 2. Convergence with M of the probability
Pξ {Q(uM) > q} for different values q . Reference computed with
Monte-Carlo

6.3 Proper Generalized Decomposition for the Solution of
Stochastic Algebraic Equations: Separated
Representation at the Stochastic Level

We now illustrate the behavior of the Proper Generalized
Decomposition (PDG) technique introduced in Sect. 4 for
the solution of the stochastic algebraic equations required in
the construction of the generalized spectral decomposition
uM = WM · ΛM .

6.3.1 Solution of Problems λ = f (w)

We first analyze the solution of problems λ = f (wi) for
the different modes i, corresponding to step 5 of Algo-
rithm 1. These problems correspond to the solution of (33)
which can be seen as a Galerkin projection of the initial
stochastic problem on the 1-dimensional deterministic ba-
sis spanned by wi . Let us denote by A(ξ )λ(ξ) = B(ξ) the
strong-stochastic form of these problems. We use the Al-
gorithm 3 for the approximate solution of these problems.
For the updating step (steps 5 to 7), we use an updating
along each stochastic dimension, i.e. Jupdate = {1, . . . , r},
and a number of updates Nupdate which will be indicated
later. This algorithm leads to the construction of the follow-
ing order Z decomposition of stochastic function λ ∈ S �
R ⊗ S 1 ⊗ · · · ⊗ S r :

λ(ξ) ≈ λZ(ξ) =
Z∑

i=1

φ0
i φ1

i (ξ1) · · ·φr
i (ξ r ),

with φ0
i ∈ R and φ

j
i ∈ S j

Pj
. In order to analyze the conver-

gence with Z, we use the error indicator εZ defined in (77).
The L2-norm is estimated with (78) (Monte-Carlo simu-
lations), where the {ξ (q)}Qq=1 are Q samplings of random

variables ξ . The reference values are defined by λ(ξ (q)) =
A(ξ (q))−1B(ξ (q)). Here, we take Q = 100. Let us note that

error indicator εZ evaluates the distance between the ap-
proximate solution λZ ∈ SP and the strong stochastic so-
lution λ ∈ S . It then takes into account two contributions
of errors: the approximation error (introduction of SP ⊂ S )
and the error due to the separated representation technique.
In this example, the approximation error is still negligible
compared to the truncation error (sufficiently high polyno-
mial degree used for SP ). On Fig. 22, we illustrate the con-
vergence with Z of λZ for different problems λZ ≈ f (wi).
We plot the convergence for a parameter Nupdate = 0, 1 or
2 in Algorithm 3. For each problem, we observe very low
error values for small orders Z and a relatively good con-
vergence rate with Z. We notice that the convergence rate
with Z is increased when increasing the number Nupdate

of updates (for a given order Z, better approximation when
increasing Nupdate). However, performing more than 2 up-
dates (Nupdate > 2) is not necessary. That means that for a
given order Z and when updating the decomposition, the up-
dating procedure converges very fast with Nupdate towards
the optimal decomposition of order Z. Figure 23 illustrates
this influence of Nupdate.

For each problem λ = f (wi), the algorithm allows the
capture of a very low dimensional stochastic approximation
space SZ = span{Ψi}Zi=1 ⊂ SP , with Ψi(ξ) = ∏r

j=1 φ
j
i (ξ j ),

which is well adapted to the representation of the solution
λ of each stochastic algebraic equation. This order Z must
be compared to the dimension of the underlying approxima-
tion space P = 6.1016. In fact, for these problems, an order
Z = 1 seems sufficient (error about 10−3). These results in-
dicate that the λ is well approximated by an order one (rank-
one) separated representation and this representation is well
captured by the proposed algorithm.

6.3.2 Solution of Problems ΛM = f (WM)

We now focus on the solution of the system of stochastic al-
gebraic equations ΛM = f (WM), corresponding to step 7 of
Algorithm 1 (update of stochastic functions). This problem
is solved with Algorithm 3. For the updating step (steps 5 to
7 of Algorithm 3), we use an updating along each dimension,
i.e. Jupdate = {0, . . . , r}, and a number of updates Nupdate

which will be indicated later. This problem corresponds to
the solution of (40) which can be seen as a Galerkin projec-
tion of the initial stochastic problem on the M-dimensional
deterministic basis spanned by WM = {wi}Mi=1.

We assimilate ΛM ∈ (S)M with a random vector Λ ∈
R

M ⊗ S and we denote by A(ξ)Λ(ξ ) = B(ξ ) the strong-
stochastic form of problem ΛM = f (WM). Algorithm 3
leads to the construction of the following order Z decom-
position of stochastic functions ΛM ∈ (S)M ≡ Λ ∈ R

M ⊗
S 1 ⊗ · · · ⊗ S r :

Λ(ξ) ≈ ΛZ(ξ) =
Z∑

i=1

φ0
i φ

1
i (ξ1) · · ·φr

i (ξ r ),
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Fig. 22 Example 2.
Approximate solution of
stochastic algebraic equations
λ = f (wi) with Algorithm 3.
Convergence with Z of λZ , in
L2-norm, for Nupdate = 0 (a),
Nupdate = 1 (b) and Nupdate = 2
(c) (Jupdate = {1, . . . , r})

Fig. 23 Example 2.
Approximate solution of
stochastic algebraic equations
λ = f (wi) with Algorithm 3,
for i = 1 (a) and i = 2 (b).
Convergence with Z of λZ , in
L2-norm. Influence of the
number of updates Nupdate

(Jupdate = {1, . . . , r})

with φ0
i ∈ R

M , φ
j
i ∈ S j

P ∗ . In order to analyze the conver-
gence of the decomposition, we introduce the error indica-
tor εZ

M , defined in (79). The L2-norm is estimated with (80)

(Monte-Carlo integration), where the {ξ (q)}Qq=1 are Q sam-

plings of random variables ξ . Reference values Λ(ξ (q)) =
A(ξ (q))−1B(ξ (q)) are obtained by solving a simple system
of equations. Here, we take Q = 100. As mentioned in the
previous section, the approximation error, due to the intro-
duction of SP ⊂ S , is here negligible. Then, εZ

M quantifies
the truncation error (for truncation order Z).

Figure 24 illustrates the convergence with Z of ΛZ for
different problems ΛM,Z ≈ f (WM). We plot the conver-

gence for a parameter Nupdate = 1 in Algorithm 3. We
observe that when increasing M , a higher order Z is re-
quired for reaching a given accuracy. However, the required
order seems to stabilize for M > 10. We obtain a good
accuracy with a low order Z (error less than 10−2 for
Z = 7).

From now on, we only focus on the problem ΛM =
f (WM) for M = 15. In Fig. 25, we test the influence of the
number of updates Nupdate. As mentioned in Sect. 4.4, we
observe in this example that performing more than 1 update
(Nupdate > 1) does not improve the accuracy of the decom-
position for a given order Z.
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Fig. 24 Example 2. Approximate solution of the system of stochas-
tic algebraic equations ΛM = f (WM) with Algorithm 3. Convergence
with Z of ΛM,Z in L2-norm for different orders M (Nupdate = 1)

Fig. 25 Example 2. Approximate solution of the system of stochastic
algebraic equations ΛM = f (WM), for M = 15, with Algorithm 3.
Convergence with Z of ΛM,Z , in L2-norm. Influence of parameter
Nupdate of the algorithm

6.3.3 Influence of the Way to Separate Function Space S

We finally test the influence of the way to separate function
space S = ⊗r

i=1 S i , with S i = L2(Ξ i ,Bi , Pξ i
). The cor-

responding approximation space is SP = ⊗r
i=1 S i

P ∗ , with
S i

P ∗ = Pp((−1,1)m
∗
). In the above reference computation,

we selected (r,m∗) = (8,5). We now consider the alter-
natives indicated in the following table (for each couple
(r,m∗), the dimension of P ∗ and the total dimension P are
indicated).

r 40 20 10 8 5
m∗ 1 2 4 5 8
P ∗ 5 15 70 126 495
P ≈9.1027 ≈3.1023 ≈3.1018 ≈6.1016 ≈3.1013

Let us remark that the change in P comes from the fact that
function spaces S i

P ∗ are polynomial spaces with total degree
p (and not partial degree) in m∗ dimensions. On Fig. 26,
we plot for these different alternatives, the convergence with
Z for problem ΛM,Z ≈ f (WM), with M = 15. We observe

Fig. 26 Example 2. Approximate solution of the system of stochas-
tic algebraic equations ΛM = f (WM), for M = 15, with Algorithm 3
(Nupdate = 1). Convergence with Z of ΛM,Z , in L2-norm. Influence
of the separation of function space S

that in this example, the way to separate the function space
S does not have a significant influence on the convergence
with Z. For all alternatives, an order Z ≈ 7 allows to obtain
an error 10−2.

For the case (r,m∗) = (40,1), corresponding to a com-
plete separation of function space, it turns out that the algo-
rithm allows to construct a very low dimensional subspace
SZ ⊂ SP , which is adapted to the solution of the problem.
The solution appears to be well represented with Z ≈ 7, to
be compared with P = 9.1027. The proposed methodology
can be seen as a method for constructing an adapted “highly
sparse” representation of a solution in tensor product spaces.

6.3.4 Sensitivity Analysis

Finally, we perform a sensitivity analysis of the quantity of
interest with respect to random variables ξi . We use first or-
der Sobol sensitivity indices defined by

Si = Var(E(Q|B̃i ))/Var(Q) (95)

where Var(A) = E(A2) − E(A)2 denotes the variance of
a random variable A and where E(Q|B̃i ) is the random
variable obtained by the projection of Q ∈ L2(Ξ ,B,Pξ )

onto the subspace L2(Ξ , B̃i , Pξ ), where B̃i := σ−1(ξi) :=
· · ·⊗ {Ξi−1} ⊗ Bi ⊗ {Ξi+1} ⊗ · · · ⊂ B is the σ -algebra gen-
erated by random variable ξi . This projection is the condi-
tional expectation E(·|B̃i ). The reader can refer to [44] for
an introduction to sensitivity analysis in the context of spec-
tral stochastic methods. The computation of the conditional
expectation operation is very simple when we have a sepa-
rated representation of the quantity of interest Q under the
form Q = ∑Z

k=1 φ0
k

∏m
i=1 φi

k(ξi). Indeed, we have

E(Q|B̃i ) =
Z∑

k=1

φ
j
k (ξj )α

j
k , α

j
k = φ0

k

m∏

i=1,i 
=j

E(φi
k(ξi))
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Fig. 27 Example 2. First order
Sobol sensitivity indices of Q

with respect to random variables
ξi , i = 1 . . .40. Convergence
with M

where the expectations are simply obtained since the expan-
sion of functions φi

k on polynomial basis is known (simple
operations in the context of spectral stochastic methods). On
Fig. 27, we plot the sensitivity index of each random variable
for different values of decomposition order M . We observe
a fast convergence with M of sensitivity indices (good esti-
mation with M = 5). This analysis illustrates that many ran-
dom variables, and then many modes in the decomposition
of the diffusion parameter, are not important in the predic-
tion of this quantity of interest. The proposed method allows
to characterize accurately the significant random variables
among a large number of random variables. Let us note that
in this example, the sensitivity indices of random variables
ξi do not monotically decrease with i, although the random
variables were sorted by decreasing contribution in the rep-
resentation of the random field μ(x, ξ). Then, the selection
of the most significant random variables was not trivial in
this example.

7 Conclusion

A model reduction technique, based on a priori sepa-
rated representations, has been proposed for solving high-
dimensional stochastic partial differential equations with
spectral stochastic approaches. It combines Generalized

Spectral Decomposition algorithms, for a quasi optimal de-
terministic/stochastic separation, and a new Proper Gen-
eralized Decomposition (PGD) algorithm for the solution
of systems of stochastic algebraic equations. This PGD al-
gorithm exploits the tensor product structure of stochastic
functions space and allows the a priori construction of a sep-
arated representation of a random solution defined on a very
high-dimensional product probability space. The method
can handle with problems with such a dimension that their
solution is unfeasible with standard spectral stochastic tech-
niques. In that sense, the overall methodology appears as a
way to circumvent the curse of dimensionality.

The ability of the proposed algorithms to solve high-
dimensional stochastic problems has been illustrated on nu-
merical examples. Further works will be devoted to the val-
idation of these algorithms for a larger class of stochastic
problems and to other types of problems formulated in ten-
sor product spaces.

Appendix A: Computational Aspects of Generalized
Spectral Decomposition

We here consider the computational aspects associated with
the solution of problem:

u ∈ V ⊗ S, A(u, v) = B(v) ∀v ∈ V ⊗ S (96)
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with Generalized Spectral Decomposition algorithms intro-
duced in Sect. 3.

A.1 Separated Representation of Bilinear and Linear
Forms

We consider that bilinear form a and linear form b in (3)
admit the following separated representation:

a(w, w̃; ξ) =
KA∑

k=1

ak(w, w̃)Ak(ξ),

b(w̃; ξ) =
KB∑

k=1

bk(w̃)Bk(ξ)

(97)

where the ak are deterministic bilinear forms on V , where
the bk are deterministic linear forms on V , and where the Ak

and Bk are real-valued random variables defined on prob-
ability space (Ξ ,B,Pξ ). An approximation space VN =
span{ϕi}Ni=1 ⊂ V is introduced. A function w ∈ VN is iden-

tified with a vector w ∈ R
N , such that w = ∑N

i=1 wiϕi . Let
A : Ξ → R

N×N and b : Ξ → R
N denote the random matrix

and random vector such that ∀w, w̃ ∈ VN

a(w, w̃; ξ) := w̃T A(ξ)w,

b(w̃; ξ) := w̃T b(ξ)
(98)

Random matrix A and random vector b can be decomposed
as follows:

A(ξ) =
KA∑

k=1

A0
kAk(ξ), b(ξ) =

KB∑

k=1

b0
kBk(ξ) (99)

where the A0
k ∈ R

N×N and b0
k ∈ R

N are matrices and vec-
tors associated with bilinear forms ak and linear forms bk

on VN .

A.2 Classical Stochastic Approximation and Tensor
Product Notation

We now introduce an approximation space SP =
span{Hα}Pα=1 ⊂ S and introduce matrices A1

k ∈ R
P×P and

vectors b1
k ∈ R

P such that

(A1
k)αβ = E(Ak(ξ)Hα(ξ)Hβ(ξ)),

(b1
k)α = E(Bk(ξ)Hα(ξ))

(100)

A function u ∈ VN ⊗ SP is identified with u = ∑P
α=1 uα ⊗

eα ∈ R
N ⊗ R

P , where eα ∈ R
P is identified with Hα ∈ SP .

Bilinear form A and linear form B on VN ⊗ SP are identified
with A ∈ R

N×N ⊗ R
P×P and b ∈ R

N ⊗ R
P defined by

A =
KA∑

k=1

A0
k ⊗ A1

k, b =
KB∑

k=1

b0
k ⊗ b1

k (101)

and such that

A(u,v) := v · A · u, B(v) := v · b (102)

where operations between tensor products must be inter-
preted as follows: denoting A0 ∈ R

N×N , A1 ∈ R
P×P , w ∈

R
N , λ ∈ R

P

(A0 ⊗ A1) · (w ⊗ λ) := (A0w) ⊗ (A1λ) (103)

(w ⊗ λ) · (w ⊗ λ) := (wT w)(λT λ) (104)

A separated representation uM of order M is equivalently
denoted

uM ≡ uM =
M∑

i=1

wi ⊗ λi , wi ∈ R
N, λi ∈ R

P

A.3 Discretized Versions of Mappings

The residual associated with uM is defined by

bM = b − A · uM :=
KBM∑

k=1

b̃0
k ⊗ b̃1

k (105)

Mappings f M : VN → SP , FM : SP → VN , f : (VN)M →
(SP )M , F : (SP )M → (VN)M are identified with mappings
fM : R

N → R
P , FM : R

P → R
N , f : R

N×M → R
P×M , F :

R
P×M → R

N×M , defined by

λ = fM(w)

=
(

KA∑

k=1

(wT A0
kw)A1

k

)−1 ⎛

⎝
KBM∑

k=1

(wT b̃0
k)̃b

1
k

⎞

⎠

w = FM(λ)

=
(

KA∑

k=1

A0
k(λ

T A1
kλ)

)−1 ⎛

⎝
KBM∑

k=1

b̃0
k(λ

T b̃1
k)

⎞

⎠

Λ = f(W)

=
(

KA∑

k=1

(WT A0
kW) ⊗ A1

k

)−1 ⎛

⎝
Kb∑

k=1

(WT b0
k) ⊗ b1

k

⎞

⎠

W = F(Λ)

=
(

KA∑

k=1

A0
k ⊗ (ΛT A1

kΛ)

)−1 ⎛

⎝
Kb∑

k=1

b0
k ⊗ (ΛT b1

k)

⎞

⎠
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Appendix B: Computational Aspects of
Multi-dimensional Proper Generalized
Decomposition

We here consider the computational aspects associated with
the solution of problem

u ∈ S 0 ⊗ · · · ⊗ S r , α(u, v) = β(v) ∀v ∈ S 0 ⊗ · · · ⊗ S r

(106)

with the Proper Generalized Decomposition algorithm in-
troduced in Sect. 4.

B.1 Separated Representation of Bilinear and Linear Forms

We consider that S 0 � R
n and assimilate u ∈ S 0 ⊗ · · · ⊗ S r

with a random vector u(ξ). We consider that bilinear form
α and linear form β in equation (106) write:

α(u, v) = E(vT Au), β(v) = E(vT b) (107)

where random matrix A(ξ) ∈ R
n×n and random vector

b(ξ) ∈ R
n admit the following separated representation:

A(ξ) =
KA∑

k=1

A0
kA

1
k(ξ1) · · ·Ar

k(ξ r ) (108)

b(ξ) =
KB∑

k=1

b0
kB

1
k (ξ1) · · ·Br

k (ξ r ) (109)

where A0
k ∈ R

n×n, b0
k ∈ R

n, and where A
j
k,B

j
k : Ξ j → R

are random variables defined on probability space
(Ξ j ,Bj ,Pξ j

).

B.2 Stochastic Approximation and Tensor Product
Notation

For each j ∈ {1, . . . , r}, we introduce an approximation

space S j
Pj

= span{hj
α}Pj

α=1 ⊂ S j and introduce matrices

Aj
k ∈ R

Pj ×Pj and vectors bj
k ∈ R

Pj such that

(Aj
k )αβ = E(A

j
k(ξ j )h

j
α(ξ j )h

j
β(ξ j )), (110)

(bj
k )α = E(B

j
k (ξ j )h

j
α(ξ j )) (111)

A function u ∈ S 0 ⊗ S 1
P1

⊗ · · · S r
Pr

is identified with u ∈
R

n ⊗ R
P1 ⊗ · · · ⊗ R

Pr . For simplicity, let n := P0. Bi-
linear form α and linear form β are then identified with
A ∈ R

P0×P0 ⊗R
P1×P1 ⊗· · ·⊗R

Pr×Pr and b ∈ R
P0 ⊗R

P1 ⊗
· · · ⊗ R

Pr defined by

α(u, v) := v · A · u, B(v) := v · b (112)

with

A =
KA∑

k=1

A0
k ⊗ A1

k ⊗ · · · ⊗ Ar
k (113)

b =
KB∑

k=1

b0
k ⊗ b1

k ⊗ · · · ⊗ br
k (114)

and where operations between multi-dimensional tensors
must be interpreted as follows: ∀Aj ∈ R

Pj ×Pj and
∀φj ∈ R

Pj ,

(A0 ⊗ · · · ⊗ Ar ) · (φ0 ⊗ · · · ⊗ φr )

:= (A0φ0) ⊗ · · · ⊗ (Arφr ) (115)

(φ0 ⊗ · · · ⊗ φr ) · (φ0 ⊗ · · · ⊗ φr ) :=
r∏

j=0

(φjT

φj ) (116)

A separated representation uZ ∈ S 0 ⊗· · ·⊗ S r of order Z is
equivalently denoted

uZ ≡ uZ =
Z∑

i=1

φ0
i ⊗ · · · ⊗ φr

i , φ
j
i ∈ R

Pj

B.3 Discretized Versions of Mappings

B.3.1 Mappings FZ
j

The residual associated with uZ is defined by

bZ = b − A · uZ :=
KBZ∑

k=1

b̃0
k ⊗ · · · ⊗ b̃r

k (117)

Mappings

FZ
j : · · · ⊗ S j−1 ⊗ S j+1 ⊗ · · · → S j (118)

are identified with mappings

FZ
j : · · · ⊗ R

Pj−1 ⊗ R
Pj+1 ⊗ · · · → R

Pj (119)

defined by

φj = FZ
j (. . . ,φj−1,φj+1, . . .)

=
(

KA∑

k=1

Δ
j
kAj

k

)−1 (KBZ∑

k=1

δ
j
k b̃j

k

)
(120)

with

Δ
j
k =

r∏

l=0
l 
=j

φlT Al
kφ

l , δ
j
k =

r∏

l=0
l 
=j

φlT b̃l
k (121)
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B.3.2 Mappings Fj

Mappings

Fj : · · · ⊗ (S j−1)Z ⊗ (S j+1)Z ⊗ · · · → (S j )Z (122)

are identified with mappings

Fj : · · · ⊗ R
Pj−1×Z ⊗ R

Pj+1×Z ⊗ · · · → R
Pj ×Z (123)

Denoting Φj = (φ
j

1, . . . ,φ
j
Z) ∈ R

Pj ×Z , mapping Fj is de-
fined by

Φj = Fj (· · · ,Φj−1,Φj+1, · · · )

:=
(

KA∑

k=1

Δ
j
k ⊗ Aj

k

)−1 (KBZ∑

k=1

δ
j
k ⊗ bj

k

)
(124)

where Δ
j
k ∈ R

Z×Z and δ
j
k ∈ R

Z are defined by

(Δ
j
k )pq =

r∏

l=0
l 
=j

φlT

p Al
kφ

l
q , (δ

j
k )p =

r∏

l=0
l 
=j

φlT

p bl
k (125)
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