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Abstract Various multiscale methods are reviewed in the
context of modelling mechanical and thermomechanical re-
sponses of composites. They are developed both at the ma-
terial level and at the structural analysis level, considering
sequential or integrated kinds of approaches. More specifi-
cally, such schemes like periodic homogenization or mean
field approaches are compared and discussed, especially in
the context of non linear behaviour. Some recent develop-
ments are considered, both in terms of numerical meth-
ods (like FE2) and for more analytical approaches based
on Transformation Field Analysis, considering both the
homogenization and relocalisation steps in the multiscale
methodology. Several examples are shown.

1 Introduction

Composite materials are commonly applied in engineering
practice. They allow to take advantage of the different prop-
erties of the component materials, of the geometric structure
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and of the interaction between the constituents to obtain a
tailored behaviour as a final result. Such composite materials
may present both high stiffness and high damping, improved
strength and toughness, improved thermal conductivity and
electrical permittivity, improved permeability, unusual phys-
ical properties such as negative Poisson ratio, negative stiff-
ness inclusions, etc.

Most composite materials are multiscale in nature, i.e.
the scale of the constituents is of lower order than the scale
of the resulting material and structure. To fix the ideas, we
speak of the macroscopic scale as the particular scale in
which we are interested in (e.g. at structural level), while
the lower scales are referred to as microscopic scales (some-
times an intermediate scale is called mesoscopic scale). We
exclude here scales at atomic level, which would require a
separate paper.

For most of the analyses of composite structures, effec-
tive or homogenized material properties are used, instead
of taking into account the individual component proper-
ties and geometrical arrangements. These effective proper-
ties are usually difficult or expensive to measure and in the
design stage the composition may vary substantially, mak-
ing frequent measurements prohibitive. Hence a lot of effort
went into the development of mathematical and numerical
models to derive homogenized material properties directly
from those of the constituents and from their microstruc-
ture. Many engineering problems are solved at macroscopic
scale with such homogenized properties. However, some-
times such analyses are not accurate enough.

In principle it would be possible to refer directly to the
microscopic scale, but such microscopic models are often
far too complex to handle for the analysis of a large struc-
ture. Further, the data obtained would be redundant and
complicated procedures would be required to extract infor-
mation of interest.
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A way out is what is now commonly known as multi-
scale modelling, where macroscopic and microscopic mod-
els are coupled to take advantage of the efficiency of macro-
scopic models and the accuracy of the microscopic models.
The scope of such multiscale modelling is to design com-
bined macroscopic-microscopic computational methods that
are more efficient than solving the full microscopic model
and at the same time give the information that we need to
the desired accuracy [56].

In the case of material multiscale modelling and in ho-
mogenization in general, one usually proceeds from the
lower scales upward, in order to obtain equivalent material
properties. Alternatively, in the case of structural modelling
it is important to be able to step down through the scales un-
til the desired scale of the real, not homogenized, material is
reached. This technique is often known as unsmearing, lo-
calization or recovering method. Usually in a global analysis
both aspects need to be pursued, think for instance of a dam-
age or fracture analysis. The procedure just described is that
of a serial coupling and represents some sort of data pass-
ing up and down the scales. An alternative is the concurrent
coupling where both microscale and macroscale models are
strongly interwoven and have to be addressed continuously
as the computation goes on. This is particularly the case in
nonlinear situations.

In this paper we will briefly review the most common
methods applied to obtain equivalent properties and then
consider full multiscale modelling. Both linear and non-
linear aspects will be covered. Unsmearing is then dealt with
in some detail because it is often neglected while in many
cases it is of fundamental importance.

In Sect. 2 usual bounds and other estimates are presented,
starting from the Voigt and Reuss bounds. Section 3 il-
lustrates asymptotic homogenisation and its numerical im-
plementation. In Sect. 4 mean field approaches are dealt
with, while in Sect. 5 semi-analytical methods are described.
In Sect. 6 sequential multiscale procedures are addressed
and computational techniques are shown in some details in
Sect. 7. Recovery methods are presented in the final section.
Examples of applications of the discussed methods can be
found throughout the paper.

2 Bounds and Other Estimates

Over the last decades a large body of literature was de-
veloped, which deals with the micromechanical modelling
techniques for heterogeneous materials. As far as the effec-
tive properties are concerned, the various approaches may
be divided into two main categories, depending upon the mi-
crostructure characteristics.

In case of composites with linear constitutive behaviour,
if the microstructure is sufficiently regular to be considered

periodic, the effective properties may be determined in terms
of unit cell problems with appropriate boundary conditions.
This case is presented in Sect. 3. If the microstructure is
not regular the effective properties cannot be determined ex-
actly. Thus the goal consists instead in the definition of the
range of the possible effective behaviour in terms of bounds,
which depend on some parameters characterizing the mi-
crostructure, such as for instance the volume ratio of the in-
clusions in a matrix. To this purpose many homogenisation
methods have been developed. We mention the pioneering
studies by Voigt [175] and Reuss [151], who formulated rig-
orous bounds for the effective moduli of composites with
prescribed volume fraction. Some decades later Hashin and
Shtrikman [88–90] presented an extension of the method,
based on variational formulations. If the microstructure is
composed of a matrix and spheric or spheroidal inclusions,
the effective behaviour of composite can be obtained by
means of the self-consistent method [24, 26, 91, 93, 102],
for which an example will be shown in Sect. 7.6.

If the composite materials have non linear constitutive
behaviour, for periodic microstructure the effective prop-
erties can still be obtained in terms of unit cell problems
with appropriate boundary conditions. For composites with
random microstructures the first bounds are obtained by
Bishop and Hill [12, 13] for rigid perfectly plastic polycrys-
tals. Some extensions of the self-consistent method are also
available in literature, for example in Hill [94], Hutchinson
[99] and Berveiller and Zaoui [11].

In the framework of non linear bounds we mention also
the work by Willis and Talbot [166, 181], which provides
extensions of the Hashin-Shtrikman variational principles
for non linear composites. Their work is followed by the
introduction of several new variational principles making
use of appropriately chosen “linear comparison compos-
ites”, which allow the determination of Hashin-Shtrikman
and more general bounds and estimates, directly from cor-
responding estimates for linear composites. These include
the variational principles of Ponte Castañeda [141, 142] and
Talbot and Willis [167] for general classes of nonlinear com-
posites, of Suquet [163] for power-law composites and Ol-
son [138] for perfectly plastic composites.

2.1 The Voigt and Reuss Bounds

Consider an N -phase composite occupying the domain
�, with each phase occupying sub-domains �(r) (r =
1, . . . ,N), and let the energy-density function w(x,ε) and
the complementary energy function u(x,σ ) be expressed
in terms of the homogeneous phase potentials w(r)(ε) and
u(r)(σ ) as

w(x,ε) =
N∑

r=1

χ(r)(x)w(r)(ε), (1)
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u(x,σ ) =
N∑

r=1

χ(r)(x)u(r)(σ ), (2)

where χ(r)(x) = 1 if x ∈ �(r) or 0 otherwise, is the charac-
teristic function of phase r . These functions define the mi-
crostructure.

The characterization of the effective behaviour of a com-
posite can be obtained from the principle of minimum po-
tential energy. An effective potential W̃ is defined for the
composite from the average minimum potential energy de-
fined as

W̃ (ε̄) = min
ε(x)∈K

〈w(x,ε)〉, (3)

where the McCauley brackets denote volume average on the
domain, ε̄ = 〈ε〉 is the average of the actual strain field ε and
K is the set of kinematically admissible strains. A similar
formulation defines the stress potential Ũ

Ũ (σ̄ ) = min
σ (x)∈S

〈u(x,σ )〉, (4)

where σ̄ = 〈σ 〉 is the average of the actual stress field σ ,
and S is the set of statically admissible stresses satisfying an
average stress boundary condition.

For linear elastic composites, the effective strain and
stress potentials may be written in terms of the effective elas-
ticity tensor L̃ and compliance tensor M̃ in the following
way

W̃ (ε̄) = 1

2
ε̄ : L̃ : ε̄, (5)

Ũ (σ̄ ) = 1

2
σ̄ : M̃ : σ̄ . (6)

Usually Voigt’s analysis [175] is indicated as the first study
of the effective mechanical properties of composite solids,
with a complementary contribution given later by Reuss
[151]. Voigt assumes that the strain field within an aggre-
gate sample of heterogeneous material is uniform, arriving
to the estimate

L̄ =
N∑

r=1

c(r)L(r), (7)

where c(r) and L(r)are respectively the volume fraction and
the elasticity tensors of the r phase.

The dual assumption is made by Reuss, who approxi-
mates the stress fields within the aggregate of a polycrys-
talline material as uniform, obtaining

(L̄−1)−1 =
[

N∑

r=1

c(r)(L(r))−1

]−1

. (8)

In the context of linear composites, Hill [92] and Paul [140]
made the observation that the choice of a uniform strain field
in the variational statement (3) for W̃ leads to the rigorous
upper bound

W̃ (ε̄) <
1

2
ε̄ : L̄ : ε̄. (9)

This relation implies that the Voigt estimate is a rigorous
upper bound for L̃.

Similarly the choice of a uniform stress field for Ũ leads
to the upper bound

Ũ (σ̄ ) ≤ 1

2
σ̄ : M̄ : σ̄ . (10)

This relation implies that the Reuss estimate is a rigorous
lower bound for L̃ = M̃−1.

Therefore, one can interpret the Voigt and Reuss fields as
providing two microfields extremes, since the Voigt stress
field is one where the tractions at the phase boundaries can-
not be in equilibrium, that is, statically inadmissible, while
the implied Reuss strains are such that the heterogeneities
and the matrix could not be perfectly bonded, that is, kine-
matically inadmissible.

The bounds provide a rough and quick way of determin-
ing approximate aggregate responses of micro-heterogeneous
materials. However, the wideness of the bounds grows with
the volume fractions of inhomogeneities and the degree of
relative phase contrast in the properties.

2.2 More Refined Estimates

After the early work of Voigt, Reuss, Hill and Paul, im-
proved estimates have been pursued. Considering a compos-
ite made of particles dispersed in a matrix, one can assume
that there is no particle interaction, so that the problem is
transformed into the analysis of a single inclusion immersed
in an infinite domain made of the matrix material [57]. How-
ever, the assumption of non-interacting particles can lead to
unreliable results, especially for randomly dispersed partic-
ulate microstructure.

An improvement of this approach is given by the Self
Consistent method [26, 93]. The main idea is still to replace
the problem of the interaction among many particles by the
problem of interaction of one particle and an infinite ma-
trix: but now the unbounded domain is made of the effective
medium. Unfortunately, the self-consistent method can pro-
duce negative effective bulk and shear responses, for voids,
for volume fractions of 50% and higher. For rigid inclusions,
it produces infinite effective bulk responses for any volume
fraction and infinite effective shear responses above 40% [3,
185]. To avoid this problem, the generalized self consistent
methods encase the particle in a shell of matrix material,
surrounded by the effective medium (see Christensen [43]).
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However, such methods also exhibit problems, which are
discussed e.g. in Hashin [87].

On the basis of variational principles, Hashin and Shtrik-
man [88–90] developed their approximations, which can
also be regarded as bounds for the effective properties of
a composite. These bounds are sensitive to sample size and
are strictly valid only when the body is assumed to be infi-
nite, the microstructure isotropic and the effective responses
are isotropic.

One can arrive—for the bulk and shear modulus respec-
tively—to the following relations

κ1 + ν2
1

κ2−κ1
+ 3(1−υ2)

3κ1+4μ1

≤ κ∗ ≤ κ2 + 1 − ν2
1

κ1−κ2
+ 3υ2

3κ2+4μ2

(11)

μ1 + ν2
1

μ2−μ1
+ 6(1−υ2)(κ1+2μ1)

5μ1(3κ1+4μ1)

≤ μ∗ ≤ μ2 + (1 − ν2)

1
μ1−μ2

+ 6υ2(κ2+2μ2)
5μ2(3κ2+4μ2)

(12)

for a two-phase microstructure, where κ1,μ1 and κ2,μ2 are
the bulk and shear moduli for the phases, while ν2 is the
phase 2 volume fraction. It is also assumed that κ2 ≥ κ1 and
μ2 ≥ μ1.

There exist a lot of other approaches investigating the ef-
fective properties and the responses of micro-heterogeneous
materials. For detailed reviews, we refer the reader to the
works of Hashin [87], Mura [133], Aboudi [3], Nemat-
Nasser and Hori [136] and recently Torquato [172] and Zo-
hdi [185]. Also, for analyses of the nonlinear behaviour, we
cite the extensive works of Llorca and co-workers [80–82,
114–116, 149, 156, 157].

3 Asymptotic Homogenisation

In this section, composites with a regular or nearly regular
structure are considered. In this case it is possible to assume
a periodic structure for the composite made up of many
repetitive unit cells and make use of periodic homogenisa-
tion. Provided that the scale associated with the repetitive
unit cell is well separated from that of the overall structure,
the linear effective properties of the composite can be deter-
mined by solving a finite number of unit-cell problems. The
nonlinear case will be addressed separately in Sect. 7.

3.1 Statement of the Problem and Assumptions

Asymptotic analysis not only permits one to obtain equiva-
lent material properties, but also allows one to solve the full
structural problem down to stresses in the constituent mate-
rials at a micro (or local) scale. It is mostly applied to lin-
ear two-scale problems, but it can be extended to non-linear

Fig. 1 Example of a periodic structure with two levels: global on the
left and local on the right

analysis [18, 70, 71, 117, 154, 161, 162] and to several scales
[68]. We do not intend to give a full account of the under-
lying theory in this work. In references [10, 45, 137, 153]
the interested reader will find a rigorous formulation of the
method, its application in many fields and further references.
We present here the main points of the method.

Let us consider a structure with just two levels, the micro
(or local) level and the macro (or global) level. These levels
are shown in Fig. 1 for a structure assumed to be periodic
and, thus, asymptotic analysis can be successfully applied.

In a composite body � having a periodic structure any
function � denoting some physical quantity has the follow-
ing property:

if x ∈ � and (x + Y) ∈ � → �(x + Y) = �(x), (13)

where x is the position vector and Y is a constant vector
which determines the period of the structure.

One important assumption for asymptotic analysis is that
it must be possible to distinguish two length scales associ-
ated with the macroscopic and microscopic phenomena. The
ratio of these scales defines the small parameter ε. Two sets
of coordinates related by the following equation (14) for-
mally express this separation of scales between macro and
micro phenomena. The global coordinate vector x refers to
the whole body and the stretched local coordinate vector y
is related to the single, repetitive cell of periodicity

y = x
ε
. (14)

In the asymptotic analysis the normalized cell of periodicity
is mapped onto a sequence of finer and finer structures as
ε tends to 0. If the equivalent material properties as defined
below are employed, the considered fields (e.g. temperature,
displacement) converge towards the homogeneous macro-
scopic solution as the micro-structural parameter ε tends to
0. In this sense problems for a heterogeneous body and a ho-
mogenized one are equivalent. (For more details concerning
the mathematical meaning see [10] and [153]).

We consider now a problem of thermo-elasticity in a het-
erogeneous body such as that depicted in Fig. 1, defined by
the following equations
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balance equations

σε
ij,j (x) + fi(x) = 0, (15)

qε
i,i − r = 0; (16)

constitutive equations

σε
ij (x) = aε

ijkl(x)ekl(uε(x)) − αε
ij θ, (17)

qε
i = −Kε

ij θ,j ; (18)

strain definition

eij (uε(x)) = 1

2
(uε

i,j (x) + uε
j,i(x)); (19)

boundary and discontinuity conditions

σε
ij (x)nj = 0 on ∂�1 and uε

i (x) = 0 on ∂�2,
(20)

qε
i (x)ni = 0 on ∂�q and θε(x) = 0 on ∂�θ ,

[uε
i (x)] = 0, [σε

ij (x)nj ] = 0 on SJ ,
(21)

[θε(x)] = 0, [qε
i (x)ni] = 0 on SJ .

The superscript ε is used to indicate that the variables of
the problem depend on the cell dimensions related to the
global length. Square parentheses denote the jump of the
enclosed value. The other symbols have the usual mean-
ing: u is the displacement vector, eij (u(x)) denotes the lin-
earized strain tensor, σij (x) the stress tensor, aijkl(x) the
tensor of elasticity, Kij (x) the tensor of thermal conductiv-
ity, αij (x) the tensor of thermal expansion coefficients, θ(x),
qi(x) temperature and heat flux respectively, and r(x), fi(x)

stand for thermal sources and volume forces.
Since the components of the elasticity and thermal con-

ductivity tensors are discontinuous, differentiation (in the
above equations and in (28)–(33) below) should be under-
stood in the weak sense. This is the main reason why most
of the problems posed in the sequel will be presented in a
variational formulation.

We introduce now the second assumption of homogeni-
sation theory: we assume that the periodicity of the mate-
rial characteristics imposes an analogous periodical pertur-
bation on quantities describing the mechanical behaviour of
the body; hence we will use the following representation for
displacements and temperatures

uε(x) ≡ u0(x) + εu1(x,y) + ε2u2(x,y) + · · · + εkuk(x,y),

(22)

θε(x) ≡ θ0(x) + εθ1(x,y) + ε2θ2(x,y) + · · · + εkθk(x,y).

(23)

Similar expansion with respect to powers of ε results from
(22), (23) for stresses, strains and heat fluxes

σ ε(x) ≡ σ 0(x,y) + εσ 1(x,y) + ε2σ 2(x,y) + · · ·
+ εkσ k(x,y), (24)

eε(x) ≡ e0(x,y) + εe1(x,y) + ε2e2(x,y) + · · · + εkek(x,y),

(25)

qε(x) ≡ q0(x,y) + εq1(x,y) + ε2q2(x,y) + · · ·
+ εkqk(x,y), (26)

where uk,σ k, ek, θk,qk for k > 0 are Y-periodic i.e. take the
same values on the opposite sides of the cell of periodicity.
The term scaled with the n-th power of ε in (22)–(26) is
called term of order n.

3.2 Formalism of the Homogenisation Procedure

The necessary mathematical tools are the chain rule of dif-
ferentiation with respect to the micro variable and averaging
over a cell of periodicity.

We introduce the assumption (22)–(26) into equations of
the heterogeneous problem (15)–(21) and make use of the
chain rule and of the following notation (see also [153])

d

dxi

f =
(

∂

∂xi

+ 1

ε

∂

∂yi

)
f = f,i(x) + 1

ε
f,i(y). (27)

This equation explains also the notation used in the sequel
for differentiation with respect to local and global indepen-
dent variables.

Because of (27) the balance equations split into terms
of different orders (the terms of the same power of ε are
equated to zero separately: e.g. (28) and (31) are of order
1/ε).

For the equilibrium equation we have

σ 0
ij,j (y)(x,y) = 0, (28)

σ 0
ij,j (x)(x,y) + σ 1

ij,j (y)(x,y) + fi(x) = 0, (29)

σ 1
ij,j (x)(x,y) + σ 2

ij,j (y)(x,y) = 0, (30)

· · ·
We have similar expressions for the heat balance equation

q0
i,i(y)(x,y) = 0, (31)

q0
i,i(x)(x,y) + q1

i,i(y)(x,y) − r(x) = 0, (32)

q1
i,i(x)(x,y) + q2

i,i(y)(x,y) = 0, (33)

· · · .
From (19) and (27) it follows that the main term of e in
expansions (25) depends not only on u0, but also on u1

e0
ij (x, y) = u0

(i,j)(x) + u1
(i,j)(y) ≡ eij (x)(u0) + eij (y)(u1).

(34)
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The constitutive relationships (17) and (18) assume now the
form

σ 0
ij (x,y) = aijkl(y)(ekl(x)(u0) + ekl(y)(u1)) − αij (y)θ0,

(35)

σ 1
ij (x,y) = aijkl(y)(ekl(x)(u1) + ekl(y)(u2)) − αij (y)θ1,

(36)

· · ·
q0
k (x,y) = Kkl(y)(θ0

,l(x) + θ1
,l(y)), (37)

q1
k (x,y) = Kkl(y)(θ1

,l(x) + θ2
,l(y)), (38)

· · ·
It can be seen that the terms of order n in the asymptotic
expansions for stresses (35), (36) and heat flux (37), (38)
depend respectively on the displacement and temperature
terms of order n and n + 1. In this way the influence of
the local perturbation on the global quantities is accounted
for. This is the reason why for instance we need u1(x,y)

to define via the constitutive relationship the main term in
expansion (24) for stresses.

3.3 Global Solution

Referring separately to the terms of the same powers of ε

leads to the following variational formulations for unknowns
of successive order of the problem. Starting with the first
order, it can be formally shown [73, 153] that u1(x,y) and
similarly θ1(x,y) may be represented in the following form
with separated variables

u1
i (x,y) = epq(x)(u0(x))χ

pq
i (y) + Ci(x), (39)

θ1(x,y) = θ0
,p(x)(x)ϑp(y) + C(x). (40)

We will call the χ
pq
i (y) and ϑp(y) the “homogenisation

functions” for displacements and temperature respectively.
The zero order component of the equation of equilibrium

(28) and of heat balance (31) in the light of (39) and (40)
yields the following boundary value problems for functions
of homogenisation

find χ
pq
i ∈ VY such that: ∀vi ∈ VY

∫

Y

aijkl(y)(δipδjq + χ
pq

i,j (y)(y))vk,l(y)(y)d� = 0; (41)

find ϑp ∈ VY such that: ∀ϕ ∈ VY
∫

Y

Kij (y)(δip + ϑ
p

,i(y)(y))ϕ,j (y)(y)d� = 0, (42)

where VY is the subset of the space of kinematically admis-
sible functions that contains the functions with equal values
on the opposite sides of the cell of periodicity Y . The six

vectors χpq and the three scalar functions ϑp depend only
on the geometry of the cell of periodicity and on the values
of the jumps of material coefficients across SJ . Functions
v(y) and ϕ(y) are usual test functions having the meaning
of Y -periodic displacements and temperature fields respec-
tively. They are used here to write explicitly the counterparts
of the expressions (28) and (31), in which the prescribed dif-
ferentiations are understood in a weak sense.

The solutions χpq and ϑp of the “local” (i.e. defined
for a single cell of periodicity) boundary value problems
(41) and (42) with periodic boundary condition can be in-
terpreted as obtained for the cell subject to a unitary aver-
age strain epq and, respectively, unitary average temperature
gradient ϑ,p(y). The true value of perturbations are obtained
after by scaling χpq and ϑp with true global strains (gra-
dient of global temperature), as it is prescribed by (39) and
(40).

In the asymptotic expansion for displacements (22) and
for temperature (23) the dependence on x alone occurs only
in the first term. The independence on y of these functions
can be proved (see for example [153]). The functions de-
pending only on x define the macro-behaviour of the struc-
ture and we will call them global terms. To obtain the global
behaviour of stresses and of heat flux the following mean
values over the cell of periodicity are defined [153]

σ̃ 0
ij (x) = |Y |−1

∫

Y

σ 0
ij (x,y)dY,

(43)

q̃0(x) = |Y |−1
∫

Y

q0(x,y)dY.

Averaging of (35) and (37) results in the following, effective
constitutive relationships

σ̃ 0
ij (x) = ah

ijklekl(u0) − αh
ij θ

0, q̃0
i = −kh

ij θ
0
,j . (44)

In the above equations the effective material coefficients ap-
pear. They are computed according to

ah
ijkl = |Y |−1

∫

Y

aijpq(y)(δkpδlq + χ
pq

k,l(y)(y))dY, (45)

kh
ij = |Y |−1

∫

Y

kip(y)(δjp + ϑ
j
,p(y))dY, (46)

αh
ij = |Y |−1

∫

Y

αij (y)dY. (47)

The macro-behaviour can be defined now by averaging first
order terms in the equilibrium and flux balance equations
(29), (32) and boundary conditions (20) and substituting
then the averaged counterparts of stress and heat flux (43)
(first order perturbations vanish in averaging of (29), (32)
because of periodicity). Equations (17) and (18) should be
replaced by (44), while (21) has no more sense since we deal
now with homogeneous uncoupled thermo-elasticity.
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The heterogeneous structure can now be studied as a ho-
mogeneous one with effective material coefficients given
by (45)–(47) and global displacements, strains and average
stresses and heat fluxes can be computed. Then we go back
to (35) for the local approximation of stresses. This last step
is the above mentioned unsmearing or localization.

3.4 Local Approximation of the Stress Vector

We note that the homogenisation approach results in two dif-
ferent kinds of stress tensors. The first one is the average
stress field defined by (44). It represents the stress tensor for
the homogenized, equivalent but “unreal” body. Once the ef-
fective material coefficients are known, the stress field and
the heat flux may be obtained from a standard F.E. structural
and heat transfer code.

The other stress field is associated with a family of uni-
form states of strains epq(x)(u0) over each cell of periodicity
Y. This local stress is obtained by introducing (34) into (35)
and results in

σ 0
ij (x,y) = aijkl(y)(δkpδlq − χ

pq

k,l(y))epq(x)(u0) − αij (y)θ0.

(48)

Because of (28) and (41) this tensor fulfils the equations of
equilibrium everywhere in Y. If needed, the stress descrip-
tion can be completed with a higher order term in (24). This
approach will be dealt in Sect. 8.2.

Finally the local approximation of heat flux is as follows

q0
j (y) = kij (y)(δip + ϑ

p

,i(y)
(y))θ0

,p(x). (49)

3.5 Numerical Implementation

It is now shown how the asymptotic homogenization can be
implemented in any finite element program [184]. The prob-
lem to be solved refers to a unit cell shown for instance on
the right hand side of Fig. 1. For the purpose of a finite ele-
ment solution it is convenient to use matrix notation for the
above introduced quantities. Accordingly the homogenisa-
tion functions are ordered as defined by (50) and (51) re-
spectively (the numbers in the superscripts in (50) and sub-
scripts in (51) refer to the reference axes 1, 2, 3).

XT (y)[{χ11(y)}{χ22(y)}{χ33(y)}{χ12(y)}{χ23(y)}
{χ13(y)}]3×6, (50)

T T (y) = {θ1(y)θ2(y)θ3(y)}1×3.

This is in accordance with the ordering of strains and tem-
peratures

e = {e11 e22 e33 e12 e23 e13 }T6 = {epq}T6 ,
(51)

θ = {θ1, θ2, θ3}T3 = {θp}T3 .

In the following the superscript e denotes the nodal value
in a finite element mesh of the unit cell. We have the usual
representations for each element

X(y) = N(y)Xe, T (y) = N(y)Te, (52)

where N contains the values of standard shape functions.
It is easy to show that the variational formulation (41) can

be rewritten as follows

find X ∈ VY such that: ∀v ∈ VY
∫

Y

eT (v(y))D(y)(1 + LX(y))dY = 0. (53)

In the above L denotes the matrix of differential operators,
D contains the material coefficients aijkl in the repetitive
domain. Matrix Xe which contains the values of homoge-
nization functions at the nodes of the mesh is obtained as a
finite element solution of (53). The equation to solve is the
following

KXe − F = 0; (54)

where X is Y -periodic, with zero mean value over the cell,
and

F =
∫

Y

BT D(y), K =
∫

Y

BT D(y)B, B = LN(y),(55)

D contains the material coefficients aijkl .
It can be shown that X in (53) and thus (54) is a solution

of a boundary value problem, for which the loading consists
of unitary average strains over the cell. This is seen in the
form of the first of (55), which forms a matrix. We solve
thus six equations for six functions of homogenisation.

The variational formulation (42) can be represented in a
form similar to (54), Te being Y -periodic, with given mean
zero value over the cell

KTe + F = 0; (56)

where

F =
∫

Y

BT
θ Kθ (y)dY ; KT =

∫

Y

BT
θ Kθ (y)Bθ dY ;

(57)
Bθ = Lθ N(y).

Kθ contains the conductivities kij of materials in the repet-
itive domain. Differential operators in Lθ are ordered suit-
ably for the thermal problem.

The periodicity conditions can be taken into account us-
ing Lagrange multipliers in the construction of a finite el-
ement code. Also the requirements of the zero mean value
has to be included in the program.
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Having computed Xe, Te and by consequence u1 and θ1

one can derive the effective material coefficients, according
to

Dh = |Y |−1
∫

Y

D(y)(1 + BXe)dY

Kh = |Y |−1
∫

Y

Kθ (y)(1 + BθT
e)dY (58)

αh = |Y |−1
∫

Y

α(y)dY.

As already pointed out, any thermoelastic finite element pro-
gram can be used to obtain global displacements and tem-
peratures. In a linear case the unit cell problem has to be
solved only once. The structural or thermo-mechanical prob-
lem can then be performed separately, using these effec-
tive properties: it is hence a two step procedure on different
scales, a homogenization step on the unit cell and a standard
thermo-mechanical problem on the structural level. How-
ever the method permits one to obtain also local strains and
stresses as shown above and dealt with more extensively in
Sects. 7 and 8. For this unsmearing procedure the gradients
of temperatures and strains are needed in the regions of in-
terest, see (48) and (49). Strains and temperature gradients
are directly obtained from the finite element interpolation.
To present the graphs of stresses and heat fluxes over the
single cell nodal projection can be used. To assure continu-
ity of tangential stresses, this projection should be extended
to patches of cells, see Sect. 8.1.

3.6 Boundary Effects and Time Dependent Problems

The periodicity condition used to find the local perturbation
is strictly applicable only inside the body. We have hence
the solution of a (thermo-)elasticity problem based on an
assumed stress or displacement field which is valid nearly
everywhere in the region occupied by the body under inves-
tigation, except on the boundary. The use of material coef-
ficients based on the assumption of periodicity in the global
solution (where the real boundary conditions are imposed)
may implicitly impose some unrealistic constraints close to
the boundary. This problem can be solved by some correc-
tions which change the solution in the domain close to the
boundary while away from the boundary the correction field
should asymptotically decrease. Such a correction can be
obtained by replacing the expansion (22) by

uε(x) ≡ u0(x) + ε(u1(x,y) + b1(x, z)) + · · · , (59)

where z represents the coordinates of an additional system
with the origin on the external surface, the axis z3 directed
normal to the boundary surface with the other two axes ori-
ented tangential to the surface and b is the boundary layer
correction. Vector b should vanish exponentially when z3

goes to infinity. The procedure is described in detail in [110]
and has been implemented by making use of one cell of pe-
riodicity and infinite elements with homogenized material
properties around it. The use of infinite elements assures the
desired exponential decay. Although the procedure is theo-
retically necessary near free edges, it is seldom applied in
practical engineering problems.

An alternative is the window method, where the mi-
crostructure with effective properties is embedded in a ma-
terial with constant properties, subjected at the outer side
to the boundary conditions wanted. In case of an applied
constant strain field mixed b.c. at the real boundary are ob-
tained [85].

Asymptotic theory of homogenization may involve also
the time scale. This is the case in thermo-mechanical prob-
lems with non stationary heat conduction or in presence of
impulsive heat loads or in problems with impact loads. In
the first case correctors for the initial conditions are useful
while in the other two cases spatial and temporal multiscale
methods should be applied. The interested reader is referred
to [21, 42, 111, 183] and references therein.

4 Mean Field Approaches and the Non Linear Case

The development of homogenisation procedures allowing
to compute the non-linear effective behaviour of heteroge-
neous materials depending on the properties of their con-
stituents or microstructure is a field of research in constant
evolution. The focus here is on mean field methods which
are based on the Eshelby inclusion solution. In these ap-
proaches, well adapted for heterogeneous materials with a
random microstructure distribution, average fields are con-
sidered for each phase in the material.

The first incursions into the non-linear homogenisation
dealt with crystal plasticity. The estimate of the elastic limit
of polycrystals from one of a single crystal was started by
Sachs [152] in 1928 and developed a short time after by
Taylor [169]. Later, Lin [113] extended the model of Tay-
lor by imposing the rate of total strain to be uniform in the
polycristal. These first approaches are thus specific to crystal
plasticity and formulated in the context of the physical met-
allurgy. In the beginning of the sixties an important change
took place when Eshelby [58] gave the solution to the prob-
lem of the inclusion through the concept of eigenstrains.

4.1 The Model of Kröner

Budiansky et al. [27] used in 1960 the solution of the prob-
lem of inclusion provided by Eshelby to model the initial
stages of elasto-plasticity of polycrystals. The authors as-
sumed that only the most favourably oriented grains devel-
oped plasticity whereas the matrix remained elastic. This



Multiscale Methods for Composites: A Review 39

situation is then assimilated to the inclusion problem. More-
over, by assuming that only a small quantity of grains tend
to yield, the authors used the approximation of the dilute
medium. Later, Kröner [102], initiator of the self-consistent
model in elasticity, proposed to apply it to elasto-plasticity.
Contrary to its predecessors who designed the matrix of the
Eshelby problem as the whole of non plasticized grains, he
assimilated it to the effective equivalent medium itself, that
is, to the overall polycristal. The localisation rule obtained
is written in the following form:

σ = � + 2μ(1 − β)(Ep − εp). (60)

In this expression σ and � are respectively the local and
overall stress tensors, Ep and εp the overall and the local
plastic strain tensors, μ the overall shear modulus, and β

is a parameter depending on the spatial distribution of the
grains and their elastic properties. When all inclusions are
assumed to be unit spheres (i.e. arising from an isotropic
spatial distribution) with isotropic elasticity, we have:

β = 2

15

7 − 5v

1 − v
. (61)

This localisation rule can easily be extended to more gen-
eral situations. The model of Kröner suffers from the same
insufficiencies as the models of Taylor or Lin providing an
estimate that is generally too stiff.

4.2 Hill’s Incremental Model

The alternative formulation suggested by Hill [94, 95] a few
years later is based on a linearization of the local constitutive
law. His idea is to bring back the non-linear problem of ho-
mogenisation in the scale transition from the single crystal to
the polycristal to what he knows well, the linear homogeni-
sation. For that, he linearizes the local constitutive law by
bringing it back in an incremental form:

σ̇ (x) = L(x) : ε̇(x), (62)

where L is the tangent modulus.
In this linearized expression, the instantaneous modulus

is of elasto-plastic nature and not only elastic. For the same
reasons as Kröner, he made the choice of the self-consistent
estimate to obtain the macroscopic behaviour of the poly-
cristal. The effective moduli L̄ assigned to the reference ho-
mogeneous medium is then given by the following expres-
sion:

L̄ = 〈L : A〉 =
∑

r

crLr : Ar ,

where Ar is the strain localisation tensor, and cr the volume
fraction of the phase r of the composite material. Therefore,
the localisation rule is written as:

σ̇ s = Bs(Ls) : �̇, ε̇s = As(Ls) : Ė. (63)

The strain and stress localisation tensors are given from the
solution of a dilute problem for a single inclusion of phase s,
embedded in a large volume of a homogeneous medium L̄:

As = [I + P : (Ls − L̄)]−1, Bs : L̄ = Ls : As , (64)

where the polarisation tensor P is defined by:

P = 1

4π |ζ |
∫

‖x‖=1
H(x)‖ζ−1.x‖−3dSx (65)

with H(x) = [x ⊗ κ−1 ⊗ x]sym,κ = x.L̄.x and ζ character-
izing the ellipsoidal geometry (on the unit sphere ‖x‖ = 1).
Let us note the anisotropic character of the polarisation ten-
sor P , due to its determination in terms of the reference
stiffness (the overall tangent stiffness in the self-consistent
scheme), which is anisotropic, even for an isotropic elasto-
plastic material. Therefore it has to be determined numeri-
cally at each step of an incremental simulation.

In this approach, the overall tangent behaviour can be
written as:

�̇ = L̄(E) : Ė. (66)

The elasto-plastic nature of the instantaneous moduli leads
to more realistic estimates (less stiff) than those given by the
Kröner or Taylor model. The model of Hill was extended by
Hutchinson [99] in 1976 to visco-plasticity by using tangent
creep compliances instead of elasto-plastic ones. He noticed
that, for power law creep, Hill’s formulation may be inte-
grated into a ‘total’ one making use of the secant creep com-
pliances.

4.3 The Secant, Tangent and Affine Formulations

Following the work of Hill, several authors quickly realised
that there are several possible ways to linearize the constitu-
tive laws and that the incremental formulation of Hill is not
unique. Thus, a few years later, several papers (Berveiller
and Zaoui [11], Tandon and Weng [168]) were published,
in the field of the non-linear homogenisation based on a
secant linearization of the constitutive law. In the model
of Berveiller and Zaoui, the secant linearization consists in
replacing the local constitutive law σ (x) = L(x) : (ε(x) −
εp(x)) by σ (x) = Lsec(ε) : ε(x) where Lsec(ε) is the secant
module. In the particular case of a spherical inclusion with
an isotropic behaviour, these authors have shown that the
obtained localisation rule is formally identical to the model
of Kröner, but with a reduction of the elastic moduli of the
reference homogeneous medium by a factor characterising
the evolution of the secant moduli of the effective medium.
Moreover, this factor decreases very quickly as the plastic
deformation grows.

Molinari et al. [129] proposed in 1987 a new method for
estimating the visco-plastic behaviour of polycrystals which



40 P. Kanouté et al.

is based on a tangent linearization of the local constitutive
laws:

σ (x) = L(x) : ε̇(x) + τ (x), (67)

where L is the tangent modulus of the phase medium sub-
jected to a pre-stress τ . For the homogenisation, like their
predecessors, these authors used the self-consistent scheme.
Initially, in order to lighten the calculations, Molinari et al.
[129] assumed that the polarisation tensor is isotropic.

Later, a development was proposed by Lebensohn and
Tomé [108] without using this assumption. In these two for-
mulations, the definition of the effective characteristics L̄

and τ̄ which define the overall response of the material is
nevertheless given only in the case of a power-law constitu-
tive equation (with the same exponent for all the phases and
all the slip systems). These authors thus thought to guaran-
tee the property L̄ = d�/dĖ for the overall relation, itself a
power law with the same exponent. It has been shown re-
cently by Masson [119] and Masson et al. [120] that the
effective moduli and compliances using the tangent local
quantities are in general not any more tangent. Moreover,
they showed that it is not necessary to use a power law only.
This observation has motivated the affine formulation pro-
posed by Masson et al. [120]. As Molinari et al. [129], they
used a tangent linearization of the local constitutive laws:

σ (x) = L(x) : (ε(x) − η(x));
(68)

ε(x) = S(x) : σ (x) + τ (x),

where η is the pre-strain. However the affine formulation
is based on a linear thermoelastic reference medium. The
tangent effective moduli and the pre-stress are then defined
using the following expressions:

L̄ = 〈L : A〉 =
∑

r

crLr : Ar ,

(69)
τ̄ = −L̄ : η̄, η̄ = 〈tB : η〉 =

∑

r

cr : B t
r : ηr .

Using the self-consistent scheme in the case of similar and
aligned ellipsoidal inclusions, the localisation rule can now
be written as:

εr = Ar : [E + P : (Lr : η − L̄ : η̄)]. (70)

We have also the overall constitutive equation as:

� = L̄ : (E − η̄). (71)

As mentioned in Masson and Zaoui [120], the operator L̄

does not correspond exactly with the current tangent overall
stiffness of the overall stress-strain response of the compos-
ite. In this model, as in the incremental tangent formulation,

the stiffness tensors (anisotropic), the localisation and polar-
isation tensors have to be evaluated at each step at a given
load. Moreover, the eigenstrains and the tangent stiffness are
taken as uniform inside each phase, but the stress and strain
fields are not necessarily uniform.

The development of variational approaches [165, 181]
for a behaviour deriving from a single potential (non-linear
elasticity or viscosity) has made possible to compare some
of these non-linear estimates to rigorous bounds of Hashin-
Shtrikman type. It has been shown by Gilormini [79] that
both the incremental and the classical secant formulations
lead to estimates which are too stiff and can even violate
these bounds in some cases. More recently, Chaboche et al.
[37, 40] have used some of these procedures in the context of
composite materials, and compared their estimates to unit-
cell finite element calculations using periodic boundary con-
ditions. The obtained main results are illustrated in Sect. 5.4.

4.4 The “Beta Rule”

In the same category of the modified Kröner approach by
a secant method, we have a slightly different one, useful
to describe the transition in local accommodation between
phases, from the small inelastic strains to very large ones.

Introduced by Cailletaud [29], this rule replaces εp and
Ep in (60) by an “accommodation” variable called βs , and
its average B =∑

s csβs . The evolution rule for βs is given
by the classical Armstrong-Frederick rule of plasticity:

β̇s = ε̇
p
s − Dβs‖ε̇p

s ‖. (72)

It allows to recover Kröner elastic accommodation for small
plastic strains, and Sachs for larger ones, when plastic
strains are important in most of the phases. Compared to the
methods described just above, we may notice the following
advantages:

– the correct applicability under any cyclic or multi-axial
loading;

– the much lower computational cost than in incremental or
affine methods.

Using comparisons with 3D finite element analyses, the β

rule has been shown by Cailletaud [30] and Cailletaud and
Pilvin [31] as having self-consistent overall properties.

4.5 Higher Order Theories

A modified secant theory has been proposed by Suquet
[164]. It is based on second-order moments in each individ-
ual phase of the linear comparison solid. The use of second-
order moments has also been considered by Hu [97] and
Buryachenko [28]. It has been shown by Suquet [164] and
Ponte Castañeda and Suquet [147] that this secant theory
based on second-order moments coincides with the Ponte
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Castañeda’s [142] variational procedure; this property en-
sures that the resulting estimates do not lead to the viola-
tion of any bound. More recently, the second-order moments
have been used by Brenner et al. [22] in the affine formula-
tion to take into account the intra-phase heterogeneity.

On the other hand, new linearizations have been searched
for, with the objective of generating softer estimates even
when using the classical reference quantities. This is the sec-
ond order procedure proposed by Ponte Castañeda [143, 144]
which makes use of a second-order Taylor development of
the strain or stress potentials. The comparison of the second-
order method to numerical simulations (Moulinec and Su-
quet [132]) has shown that quite accurate estimates are ob-
tained even at high values of heterogeneity contrast, includ-
ing the cases of rigid reinforcements or porous materials.

However, it has been demonstrated recently by Leroy and
Ponte Castañeda [112] that the second-order estimates can
violate the Hashin and Shtrikman bounds [89] near the per-
colation limit. Moreover, earlier, Nebozhyn and Ponte Cas-
tañeda [135] have pointed out the non convex character of
the predictions for the effective yield surface in the case
of porous materials with an incompressible matrix phase.
Later, Ponte Castañeda [145] has then proposed an im-
proved second order method incorporating field fluctuations.
The method delivers then nonlinear estimates that are ex-
act to second order in heterogeneity. The new homogenisa-
tion technique is motivated by the fact established by Suquet
[164] that the original second order method uses the first mo-
ments, or averages of the fields over the phases while second
moments of the fields are known to be important when the
field fluctuations are significant, as it is the case near perco-
lation.

Several applications of this new second order method
which incorporates both first and second-moment infor-
mation are then presented later for porous and rigidly re-
inforced composites (Ponte Castañeda [146]). The results
show that the new theory satisfies rigorous bonds, even near
the percolation limit, where field fluctuations become im-
portant, case for which the original second order estimates
failed. The case of porous materials with an incompressible
matrix is also now well estimated with the new method, and
in general the new estimates appear in better agreement with
numerical simulations taken from the literature.

5 Semi-analytical Methods

Semi-analytical methods can be defined as direct micro-
macro procedures for which the local constitutive equations
and criteria are evaluated at the local scale using explicit re-
lations to establish the link between the macroscopic and
the microscopic fields. Such method correlates the overall
macroscopic behaviour with microstructural responses. The

analytical relations are usually based on mean field proce-
dures. One advantage is that the local inelastic constitutive
laws are totally free. Contrarily, in most variational methods
or higher order theories like discussed in Sect. 4.5, there is
the assumption of a unique potential, therefore limiting the
application to non linear elasticity or deformation plasticity.
The following sections give an overview of some relevant
works from the literature applying this type of procedures.

5.1 The Transformation Fields Analysis

Regarding approximate schemes, the Transformation Field
Analysis proposed by Dvorak and co-workers can be seen as
an elegant way of reducing the number of macroscopic inter-
nal variables by assuming the microscopic fields of internal
variables to be piecewise uniform. The method has been de-
veloped initially for elasto-plastic composites (Dvorak and
Rao [52], Dvorak and Bahei-El-Din [50], Dvorak et al. [54],
Teply and Dvorak [170]). Its formalisation by Dvorak and
Benveniste [51] and Dvorak [49] has provided a theoretical
basis for further works.

The Transformation Field analysis is based on the idea of
a purely elastic redistribution of the macroscopic stress and
strain, and of the local eigenstresses or eigenstrains. TFA
is a generalised way of writing explicit scale transitions,
based on purely elastic interactions between sub-volumes
of the RVE, and it can be shown that many classical ap-
proaches (self-consistent, Sachs, Taylor, Kröner, etc.) are
special cases. In this method, the plastic strain and the ther-
mal expansion are considered as given eigenstrains. The lo-
cal stress field is then determined from the fields of eigen-
strain by solving linear problems with eigenstrains and the
plastic strain field which is updated by the flow rule.

Considering a representative volume V of an heteroge-
neous material where the size of the inhomogeneities is
small compared to that of V , the volume V is subdivided
into several local sub-domains Vr, r = 1,2, . . . ,N , such that
each contains one phase material. The local constitutive re-
lations in each sub-volume are written in the following form:

σ r (x) = Lr : εr (x) + λr (x),
(73)

εr (x) = εe
r (x) + μr (x), λr (x) = −Lr : μr (x),

μr (x) denotes a prescribed distribution of local eigenstrains
and λr (x) is the corresponding eigenstress field. The eigen-
strain and eigenstress fields may consist of contributions of
distinct physical origin like thermal strains, plastic strains
and transformation strains. The relation between the local
and overall fields is given by the following localisation rule:

εr = Ar : E +
∑

s

Drs : μs ,

(74)
σ r = Br : � −

∑

s

Frs : λs
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Dsr and Fsr are the “transformation influence tensors”
(fourth rank tensors). All the tensors Ar ,Br ,Drs,Frs de-
pend on the local and overall elastic moduli, and on the
shape and the volume fraction of the phases, and can be
derived once, independently of the inelastic process.

Let us note that expressions (74) are simple discretiza-
tions of exact expressions involving the non-local elas-
tic Green operator �(x,x′) of the homogeneous elastic
medium. For instance:

ε(x) = A(x) : ε̄ + 1

V

∫

V

D(x,x′) : μ(x′)dx′, (75)

where D(x,x′) = �(x,x′) : L(x′) gives the strain at point x
created by a transformation strain μ(x′) at point x′.

In cases where two phases are considered, with one sub-
volume only for each phase, these quantities Ar and Drs (re-
spectively Br and Frs) can be expressed in closed form by
means of Eshelby tensor. Contrarily, when using a decompo-
sition into several sub-domains for each phase, these tensors
can be determined by solving a set of linear problems (6
for the concentration tensors and 6N for the influence ten-
sors), by a finite element method (Dvorak, [55], Carrère et
al., [36]).

This formalism has been used in different works with
more complex behaviour (thermo-visco-plasticity, damage,
interface debonding) by Dvorak et al. ([53, 55]) and by other
groups namely Kattan and Voyiadjis [100], Chaboche et al.
[39], Fish et al. [70], Fish and Yu [69].

In the paper of Chaboche et al. [39] the transformation
field analysis has been extended to take into account the non-
linearities due to changing local behaviour induced by tem-
perature or damage. A generalised eigenstrain which takes
into account thermal and damage effects on the elastic be-
haviour is defined such as at the local scale the local consti-
tutive equation

σ r = L̂r : (εr − εθ
r − ε

p
r ) (76)

is replaced by:

σ r = Lr : (εr − εGE
r ), (77)

where L̂r is the average damaged stiffness in the sub-volume
and the thermal strain. The generalised eigenstrain is consid-
ered as an eigenstrain of the same nature as the plastic and
thermal ones:

εGE
r = (εth

r + ε
p
r + εd

r ), (78)

where the damage strain εd
r = (I − L−1

s : L̂s)(εs −ε
p
s −εθ

s ).
Then the localisation rule is written as follows:

εr = Ar : � +
∑

s

Drs : Ls : εGE
s . (79)

It is also demonstrated in [35] that by considering a large
number sub-volumes the method captures the local stress
and inelastic strain fields with good accuracy in comparison
to finite-element simulations.

Interface decohesion effects in composites were intro-
duced later by Dvorak and Zhang [53]. The authors repre-
sent stress changes due to local debonding under increasing
overall loads by damage equivalent eigenstrains which ad-
just local stresses in the affected volumes to values implied
by the selected decohesion models. Interaction between the
still bonded and partially debonded phases at any damage
state is described by transformation influence functions us-
ing TFA.

The TFA has been used by Fish et al. [70] to analyse a
composite structure by the finite element method. These au-
thors found a good agreement between the two-point aver-
aging scheme (plane TFA with uniform plane strain in the
matrix) and a more refined computation (multi-point incre-
mental homogenisation).

However, it has long been recognised by Dvorak himself
(Teply and Dvorak [170] and confirmed by others (Suquet
[162]; Chaboche et al. [39]; Michel et al. [123]) that the ap-
plication of the TFA to two-phase systems may require, for
non-linear heterogeneous materials, a sub-division of each
individual phase into several sub-domains to obtain a sat-
isfactory description of the effective behaviour. As a con-
sequence, the number of internals variables needed in the
effective constitutive relations, although finite, can be pro-
hibitively high. The need for a finer sub-division of the phase
results from the intrinsic non-uniformity of the plastic strain
field which can be highly heterogeneous even within a single
material phase.

5.2 Non Uniform TFA

In order to better take into account the non-linear redistrib-
utions induced by plasticity, the TFA method uses a subdi-
vision of each individual phase into several sub-domains, in
which are assumed uniform transformation strains (or eigen-
strains, or plastic strains). With the aim of reducing the num-
ber of such sub-volumes, the NTFA (Non-Uniform Trans-
formation Field Analysis) was proposed by Michel and Su-
quet ([123, 124]). The plastic strain is decomposed on a fi-
nite set of plastic modes which can present large deviations
from uniformity:

εan(x) =
∑

k

εan
k μk(x). (80)

The εan
k are now coefficients of the decomposition (that may

depend on time) and the μk(x) are the non-uniform transfor-
mation fields, defined independently on each phase. These
modes μk are non uniform (not even piecewise uniform)
and are meant to capture the salient features of the plastic
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flow modes. They are determined once (most often by solv-
ing specific numerical problems on given unit cells) and are
normalised with 〈μk

eq〉 = 1 in order for εan
k to be homoge-

neous to a plastic strain.
The constitutive relations are expressed in terms of scalar

projections on the modes (there is a direct analogy with crys-
tal plasticity):

τk = 〈σ : μk〉, ek = 〈ε : μk〉, ean
k = 〈εan : μk〉.(81)

The NTFA localisation rule becomes then:

ε(x) = A(x) : ε̄ +
∑

l

〈D ∗ μk〉(x)εan
l (82)

that can be rewritten, after multiplication by μk and averag-
ing over V :

ek = ak : ε̄ +
∑

l

Dklε
an
l , (83)

where the second order tensor ak and the influence factor
Dkl are defined as:

ak = 〈AT : μk〉, Dkl = 〈μk : (D ∗ μl )〉. (84)

Having assumed that all phases are elastically isotropic,
characterised by a bulk modulus κk and a shear modulus
Gk , the “resolved shear stress” is given by:

τk = 2Gk(ek − ean
k ). (85)

As we will see in Sect. 6.2 one interest of the TFA proce-
dure is to contain a general writing for macroscopic con-
stitutive equations based on the micromechanical evolution
laws. This property is partly retained with NTFA method. In
[123] there are two versions proposed:

– the uncoupled model: the reduced macroscopic state vari-
ables of the model are the overall strain ε̄ , the set of all
the εan

k and a set of tensorial variables βk associated with
each mode (and representing the field of internal variables
at the local scale).

– the coupled model: in order to reduce the number of in-
ternal variables, this version attaches an internal variable
βr to each phase, and not to each mode. It also couples

the different modes supported by the same phase, by a
quadratic average like:

Aan
r =

(
M(r)∑

k=1

|Aan
k |2

)1/2

, (86)

where the Aan
k are thermodynamic forces associated with

the βr , and M(r) is the number of modes in phase r .

The explicit forms of the two corresponding macroscopic
models are not indicated here. They assume a restriction
of inelastic local constitutive equations of the phases to a
Generalised Standard Material format (Halphen and Nguyen
[86]), and to a linear kinematic hardening. The interested
reader is invited to report to Michel and Suquet ([123, 124])
for additional information.

An example is given here, taken from (Michel and Suquet
[124] ), for a plane strain unit cell (square periodicity), with
a cylindrical elastic fibre (Ef = 400 GPa, νf = 0.2) and
an elasto-plastic matrix with non-linear isotropic hardening
(Em = 75 GPa, νm = 0.3, σ0 = 75 MPa, h = 416.5 MPa,
m = 0.3895), such that σeq ≤ R(p) = σ0 +hpm. There are 3
modes introduced, corresponding to 3 independent monoto-
nous inelastic analyses with the same constitutive behaviour
(made by FFT or by FE), uniaxial tension in directions 1 and
2, as well as pure shear.

Figure 2 shows the plastic mode μ1, with its 4 compo-
nents μ1

11,μ
1
22,μ

1
12,μ

1
33. Figure 3a indicates the results for

uniaxial (1) and shear (2) loadings for the reference cal-
culations (very fine mesh), for TFA (with 1 sub-volume
by phase), for NTFA with the coupled version (with the 3
modes). Very clearly TFA delivers a much too stiff macro-
scopic response, though NTFA correlates very well with the
reference solution. In Fig. 3b there are comparisons for 3
other loading conditions.

The advantage of NTFA over classical TFA is evident,
from the above example and others. However, there are still
some limitations, like:

– the need for a number of initial numerical elasto-plastic
solutions and the corresponding selection of the relevant
modes for a given situation. Moreover, only the coupled
version seems to work well for combined loadings, not
corresponding to the reference modes (see examples in
[123]);

Fig. 2 Plastic mode μ1, with its
4 components (with permission
of P. Suquet)
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Fig. 3 Comparisons between
TFA, NTFA and the reference
computation for 5 loading
conditions (with permission of
P. Suquet)

– the situations where cyclic conditions or non proportional
loading conditions are taking place, or non-isothermal
ones, which was not the case in the shown example;

– the GSM format that is needed, which limits the possible
flexibility of the local constitutive behaviour (non-linear
kinematic hardening, visco-plasticity. . .).

Another advantage of the NTFA method is its ability to
easily recover the local fields, in a natural way, after the solu-
tion of the overall structural boundary value problem. Such
a capability is illustrated by examples given in Michel and
Suquet [124]. See also Sect. 8 that is devoted to the locali-
sation methods.

5.3 The Methods of Cells or Generalised Methods of Cells

Another quite popular method in the literature is the Meth-
ods of Cells of Aboudi ([1, 2]). As in the Transformation
Field Analysis all the inelastic strains (thermal expansion,
plasticity, visco-plasticity) are considered as eigenstrains,
assumed to be known before applying the micro-macro tran-
sition rule. The method consists of a discretization of the
(periodic) unit cell as rectangular (in 2D) or parallelepiped
(in 3D) sub-domains.

In his first works, the representative cell consists of four
sub-cells; one is occupied by the fibrous material whereas
the other three are occupied by the matrix. The generalised
cell method (Paley and Aboudi [139]) is the generalisation
to any number of sub-cells. In these methods local equilib-
rium/compatibility equations are solved in an average sense
for uniform eigenstrains in each sub-cell. Continuity of trac-
tion and displacement rate on an average basis are imposed
at the interfaces between the constituents. The local equilib-
rium is guaranteed by the assumption that the velocity factor
is linearly expanded in terms of the local coordinates of the
sub-cell. This forms the relation between the microscopic
and the macroscopic strains, through the relevant concentra-
tion factors. The overall behaviour is finally expressed as a

constitutive relation between the average stress, strain and
plastic strain in the conjunction of the elastic stiffness tensor
of the composite.

The method looks as an approximation of an hybrid for-
mulation of the finite element method. In the context of uni-
directional composites, the generalised cell method allows
accurate and efficient analysis of the impact of fibre shape
and arrangement on the inelastic macroscopic response of
the composite as demonstrated by Arnold et al. [7]. The pre-
dictive capability of the method in various applications has
been summarised by Aboudi [4].

Damage effects also have been incorporated in the model
by Aboudi [2] to treat interface debonding or by Voyiad-
jis and Deliktas [177], using the local incremental damage
model of Voyiadjis and Park [178].

However, despite the accuracy of the method in mod-
elling the inelastic macroscopic response of periodic com-
posites, the accuracy with which local stress and strain fields
are captured is not as good, not allowing the possibility
of following precisely the evolution of damage at the local
scale. Aboudi et al. [5] have recently proposed a new method
for periodic multiphase materials to correct these effects. As
previously, the approximate solution for the displacement
field within each sub-cell is constructed based on volumet-
ric averaging of the equilibrium equations together with the
imposition of periodic boundary conditions, on both the dis-
placement and traction continuity conditions in an average
sense between the cells and sub-cells used to characterize
the microstructure of the material.

The particularity of this new approach is to approximate
the displacement field within each sub-cell, by quadratic
functions expressed in local coordinates. The capability of
the method to capture both the macroscopic response and
the local stress and inelastic strain fields is shown on a uni-
directional gr/al composite by comparisons to finite element
analyses and analytical models.
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5.4 Corrected TFA

As it has been recalled in the Sect. 5.1, the original TFA
method does not lead to satisfactory estimates of the global
and local behaviour of the composite when it is applied to
two-phase medium using plastic strains uniform over each
of the two phases. One way to reduce the excessive stiffness
of the TFA localization rule, is to take into account the in-
trinsic non-uniformity of the plastic strain as it is done by
Suquet and Michel (see Sect. 5.2). Another approach, based
on the use of an asymptotic stiffness tensor, is proposed in
1998 by Pottier [148] and Chaboche et al. [39]. The pro-
posed corrected method consists of writing the total elastic
localisation rule with corrected values for the eigenstrains.

Consider a composite made of elasto-plastic phases with
ε

p
s as the plastic deformation in the phase s. The correction

consists of writing the total elastic localisation rule with cor-
rected values for the eigenstrains as follows:

εr = Ar : E +
∑

s

Drs : Ks : εp
s . (87)

Moreover, we assume the asymptotic tangent stiffness of
the local constitutive equation to be known, such as ε̇

p
r =

(L
p
r )−1 : σ̇ r . In practice, it is obtained from the knowledge

of the hardening rules in each phase. For instance, in the
case of rate dependent plasticity, its modulus is the kine-
matic hardening parameter (that plays a role in the large
strain domain).

The corrected tensors Ks are then determined by the rate
forms of the localisation rule:

ε̇r = Ar : Ė +
∑

s

Drs : Ks : ε̇p
s (88)

with the corresponding elastic tangent one:

ε̇r = Ar : Ė, (89)

where the asymptotic tangent concentration tensor Ar is de-
fined by the following expression:

Ar = [I + P : (Lr − L̄)]−1 (90)

and the elasto-plastic tangent stiffness by L−1
r = (L

p
r )−1 +

L−1
r .

It is then shown that the following expression can be ob-
tained:
∑

s

Drs : Ks : (L−1
s − L−1

s ) : Ls : As = Ar − Ar . (91)

In this equation, the operators As ,Drs are constant and eval-
uated once from the elastic properties of the constituents.
The tensors Ks ,Ls ,As , are also constant and delivered from
the knowledge of the asymptotic tangent stiffness.

Moreover, the system in Ks in (91) is indeterminate. But
choosing Ks = I for the system with the smallest plastic
strain, its solution can be easily obtained.

We have to notice that the asymptotic tangent stiffness
is known only in its isotropic part, because the direction of
plastic flow is not known in advance. Therefore, the tensor
Ks is determined once, as an isotropic tangent corrector. De-
spite the standard TFA formalism, the proposed modifica-
tion does not follow exactly the Levin-Mandel equation.

5.5 Methods Comparisons

In order to compare some of the different methods listed
here, we have performed a numerical study on composite
materials in the context of asymptotic homogenisation. As-
suming a periodic structure for the composite made up of
many repetitive unit cells, reference solutions for the over-
all and the local constitutive behaviour of the composite are
obtained. The exact responses can then be used to evaluate
the accuracy of different homogenisation methods.

The results presented here are focussed on a two-phase
particle composite.

The inclusion volume fraction is taken as 0.3 and the
spherical inclusion is elastic isotropic with Ef = 400 GPa,
νf = 0.2 and the matrix isotropic elasticity is given by
Ef = 75 GPa, νf = 0.3 exactly the same conditions consid-
ered by Michel and Suquet [122]. The constitutive behaviour
of the matrix is described by a Von Mises elasto-plasticity
with a power law for isotropic hardening:

σeq − Hpα − σ0 ≤ 0 (92)

with H = 416 MPa, α = 0.3895 and σ0 = 75 MPa. In (92) p

is the accumulated plastic strain defined by ṗ =
√

2
3 ε̇p : ε̇p .

This case corresponds to a configuration considered by some
others authors (Michel and Suquet [122]; Gonzales and
Llorca, [80]; Doghri and Ouaar [47]). The particle reparti-
tion is assumed regularly distributed. For all the simulations,
the interface between the particle and the matrix is consid-
ered as perfect.

The composite has a square/hexagonal arrangement of
particles leading to an isotropic spatial repartition. The cor-
responding 3D unit cell can be nevertheless correctly ap-
proximated by an axisymmetric unit cell (Chaboche et al.
[40]).

The composite behaviour with a random distribution is
obtained through the finite element analysis of a periodic
cubic unit cell containing a random dispersion of 38 non-
overlapping identical spheres. A compromise between the
accuracy of the solution and the computer time to solve the
problem (in the context of a sequential computation) has
lead to this choice. The final particle arrangement is stati-
cally isotropic (all the directions in the unit cell are macro-
scopically equivalent). Figure 4 shows the local accumulated



46 P. Kanouté et al.

Fig. 4 Iso-values of the plastic strain in the RVE of the composite with a regular microstructure

plastic strains obtained in the composite with a regular mi-
crostructure.

The global stress/strain responses obtained with vari-
ous mean-field methods (the analytical TFA, the Hill’s in-
cremental, the Affine and finally the corrected TFA ap-
proaches) have been then compared to the reference overall
stress/strain responses delivered by the finite element simu-
lation on the unit cells. In each application of the mean field
methods that will be presented here, the homogenisation rule
of Mori-Tanaka (Mori and Tanaka [131]) has been chosen.

We have to remind that in the incremental and affine
methods, the tangent polarisation tensor P is anisotropic be-
cause of the anisotropic character of L. It has then to be
evaluated numerically, at each time step of an incremental
or affine simulation. However, the anisotropic stiffness can
be replaced by an isotropic approximation (Chaboche and
Kanouté [37]):

L∗
s = 3ksJ + 2γsK (93)

with J = 1
3 (1 ⊗ 1),K = I − J. Assuming an isotropic Von

Mises plastic flow, we have 2γs = 2μsh
p
s /h where h =

3μs + h
p
s , with the current plastic modulus h

p
s defined as

h
p
s = ∂σeq/∂p. The incremental and the affine method have

been evaluated using the complete anisotropic polarisation
tensor and this isotropic approximation.

Other isotropic approximations can be also considered
namely the following isotropic form based on the general
projection method (Bornert, [17]; Doghri and Ouaar, [47]):

Liso
s = 3ksJ + 2μt

sK with μt
s/μs = (4 + h

p
s /hs)/5.

The results presented in Fig. 5 show the comparisons be-
tween the reference FE solution assuming a regular mi-

crostructure of the composite and several mean field meth-
ods.

Regarding the Fig. 5, the following remarks can be done:

• The affine, the incremental and the TFA procedures give
an extremely stiff response. The affine delivers a slightly
softer response than the TFA and the incremental meth-
ods.

• The isotropic approximations of the affine and incremen-
tal procedure, deliver much softer responses, much more
in accordance with the finite element reference solution,
but slightly softer. The same results has been obtained
for the incremental method (Gonzales and Llorca, [80];
Doghri and Ouaar, [47] for randomly distributed particle).

• The best approximations of the global behaviour of the
composite are given by the corrected TFA approach and
the incremental method based on an isotropic approxima-
tion of the polarisation tensor.

6 Sequential Multiscale Procedures

When dealing with the inelastic analysis of a structural com-
ponent, when the overall behaviour explicitly takes into ac-
count information and processes present at the lower scale,
there are currently two main approaches. In what follows we
will call them:

– the sequential multiscale procedures, in which the mul-
tiscale analysis, or the micro-to-macro homogenisation
process, is made separately from the structural analysis.
Prior treatments then define a set of overall constitutive
equations which format could be guided by the scale
change method. Material parameters in these equations
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Fig. 5 Comparison between the
reference FE solution and
various mean field methods.
Case of a power law matrix
composite

are subsequently identified with microscopic or macro-
scopic results, either true experiments or virtual experi-
ments performed through systematic applications of the
multiscale method. Such an approach is currently the one
used when we define the effective properties of a compos-
ite or multiphase material from the knowledge of the cor-
responding local properties and the phase arrangement;

– the integrated multiscale procedures, in which all the
complexity of the local microstructure (at least its finest
representation) is present during all the analysis of the
structural component, without summarising it in some
overall constitutive framework. In such cases, at each
step of the non-linear boundary value problem, the actual
overall response of each material point “asks” for the mi-
croscale response, through the localisation/homogenisa-
tion process. To some extent, through an averaging
scheme, the internal variables in the overall boundary
value problem are those of the microscale unit cells used
in this integrated multiscale numerical procedure.

In what follows, we summarise a narrow selection of
works done along the lines of the so-called sequential
procedure. We consider also as a sequential approach the
ones in which the macroscopic constitutive model are ex-
pressed more or less analytically through the local constitu-
tive equations, provided the scale change method (localisa-
tion/homogenisation rule) is taken in its simplest form. Ap-

plications of TFA methodologies in Sect. 5.4 appear of this
kind, as there are some approximations, eventually some
overall correction factors identified from numerical exper-
iments. More sophisticated local representations, like TFA
with many sub-domains, the NTFA method, the HFGMC,
the use of FFT techniques or multilevel finite elements, are
considered as integrated multiscale procedures. They are il-
lustrated in Sect. 6.2.

6.1 Unit Cell Methods

The class of so-called unit cell methods can be classified in
the category of sequential multiscale procedures. In these
methods, numerical computations involving a detailed rep-
resentative volume element (RVE) are used to induce macro-
scopic model.

These approaches have been used by many authors. We
can quote the works of Christman et al. [44] who have stud-
ied the deformation characteristics of ceramic whisker and
particulate reinforced metal matrix composites using unit
cell formulations to deliver the overall constitutive response
of the composite. Brockenbrough et al. [23] presented in
1991 numerical results on the effects of fibre distribution and
fibre cross-section geometry on the deformation of metal-
matrix composite reinforced with continuous fibres. Naka-
mura and Suresh [134] studied the combined effects of ther-
mal residual stresses and fibre packing on deformation of
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metal matrix composites using unit cell finite element calcu-
lations. Tvergaard [173] uses the same technique to analyse
the tensile properties for whiskers-reinforced metal matrix
composites. More recently, the works of Van der Sluis [174]
lie within this framework.

In the same period a lot of works have been carried out in
metal matrix composites to determine the thermally-induced
residual stresses at the interface fibre/matrix and to evaluate
their influence on the behaviour of this interface debonding
capability namely, Böhm [14], Mital et al. [128], Gunawar-
dena [84], Allen et al. [6], Arnold and Wilt [8]. Sorensen
and Talreja [160] analyse the influence of the fibre distribu-
tion on the initiation of matrix cracks.

More recently, different works have been carried out with
more complex unit cells. We can quote for instance Böhm et
al. [15] who use a multi-inclusion unit cell approach to study
the elastic and elasto-plastic behaviour of metal matrix com-
posites reinforced by randomly oriented short fibres. Com-
parisons between three-dimensional and two-dimensional
multi-particle unit cell models were also performed (Böhm
and Han [16]) for particle reinforced metal matrix compos-
ites. The recent works of Gonzales et al. [83] lie within this
context.

6.2 Macroscopic Constitutive Equations Obtained
from Analytical Homogenisation Techniques

Many homogenisation techniques are nowadays available,
generating a microscopically based stress-strain relation.
Most of this techniques consider only small elastic or elasto-
plastic deformations on both micro-macro levels. They pro-
vide adequate predictions of the overall behaviour of com-
posites or polycrystalline polymers. They are mainly based
on mean-field approaches (see Sect. 4) or on semi-analytical
methods (see Sect. 5). The focus here is on purely macro-
scopic constitutive equations which are inferred from other
analytical homogenisation techniques. Such models con-
tain some microscopic features although they are written as
purely phenomenological equations at the global scale.

Chaboche et al. [38] proposed a thermo-elastic-visco-
plastic constitutive equation for metal matrix composites
with short fibres built up from a simplified micromechanical
analysis. The paper considers the undamaged state of com-
posite with small strains. Using the Transformation Field
Analysis (TFA) developed a few years ago by Dvorak and
Benveniste (see Sect. 5.1) a completely macroscopic con-
stitutive model is derived. TFA is a very general manner of
writing explicit scale transitions, based on purely elastic in-
teractions between sub volumes of the RVE. Considering an
elastic elasto-visco-plastic matrix and an elastic fibre, the
yield surface is defined by the Von Mises criterion and the
visco-plasticity by the normality rule and a power law:

fr = ‖σ r − Xr‖ − σy, ‖a‖ =
(

3

2
a : Id : a

)1/2

, (94)

ε̇
p
r =

〈
fr

K

〉n
∂fr

∂σ r

. (95)

Moreover, a multi-kinematic non linear hardening rule is
considered:

Xr =
∑

q

Xq
r , Ẋq

r = Cq : ε̇p
r − �q : Xq

r ‖ε̇p
r ‖, (96)

σy,n,K are material coefficients, possibly depending on
temperature. Cq and �q, q = 1,2, etc., are hardening and
dynamic recovery tensors. The macroscopic constitutive
equation set is derived by substituting the local stress of the
matrix in its local plasticity criteria by its expression given
by the TFA localisation rule. The formulation obtained leads
to a well established model in the thermodynamic frame-
work. The model has been used to simulate the visco-plastic
response of a short fibre SIC/Al composite. The fairly good
correlation with numerical results, obtained with the peri-
odic homogenisation method, has led to apply this formula-
tion in the analysis of structural components.

Later on, Pottier [148] has used the same methodology
for long fibre composites and has introduced an anisotropic
macroscopic damage. To have a damage directly at the het-
erogeneities scale, Carrère et al. ([34, 36]) proposed an ex-
tended formulation. To that end the extension of TFA pro-
posed by Chaboche et al. [34] is used to take into account
the non-linearities due to changing elastic local behaviour
(temperature or damage induced). Let us consider the fol-
lowing localisation rule:

εr = Ar : � +
∑

s

Drs : Ls : εGE
s (97)

with εGE
r = (εth

r + ε
p
r + εd

r ) (see Sect. 5.1).
This leads to a system linking σ and ε. By regrouping the

terms in σ , we obtain a simple matrix system:

σ r = B̄r : � − Ār (T − T0) −
∑

k

H̄kr : εp
k

(98)
with B̄r = {K−1B}r , Ār = {K−1A}r , H̄kr = {K−1Hk}r .
K is a square matrix (2 × 2), B, A, and Hr are (1 × 2) ma-
trices. Each term of these matrices is a fourth order tensor
depending on the spatial distribution of the inclusions and
on the elastic properties of the fibres and the matrix.

Finally, the macroscopic constitutive equations are writ-
ten as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� = L̃(T ,D) : (E − Ep − Eth),

Ep =
∑

r

{
crBT

r : εp
r − crBT

r : �Sr :
∑

k

H̄kr : εp
k

}
,

α̃ =
∑

r

{crBT
r : αr} −

∑

r

{crBT
r : �Sr : Ār}

(99)
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with L̃(T ,D) = (S0 + �S̃)−1 where S0 is the initial macro-
scopic compliance tensor, and �S̃ the modification of com-
pliance by temperature T and damage D. The αr and α̃ are
respectively the thermal expansion tensor of the phase and
the macroscopic one.

Among the existing models, we can also quote the works
of Voyiadjis and Kattan [176] and Kattan and Voyiadjis
[100] who use micromechanical considerations to correlate
overall and local damage effect of fibre reinforced compos-
ite materials. An overall fourth-rank damage effect tensor
is introduced using the assumption of elastic energy equiv-
alence to account for the overall damage of the composite
system. In addition, two local fourth-rank damage effect ten-
sors are also considered to convey the damage effects in the
composite phases. Both scales are correlated together using
analytical scale transitions. The effective stress concept is
then used to describe the evolution of the internal parame-
ters.

In the context of granular materials, this type of ap-
proaches has usually been used. Some examples of recent
studies are given in references ([32, 41, 104, 121]).

7 Multiscale Computational Techniques

Finite element analysis of simple heterogeneous periodic or
quasi-periodic materials is nowadays a routine exercise that
can be easily handled at the level of the representative vol-
ume element (RVE). In the last few years, in the context of
structural inelastic analysis, a variety of direct micro-macro
methods has been developed. These approaches estimate the
relevant stress-strain relationship at a macroscopic point by
performing separate calculations on the RVE, assigned to
that macroscopic point. The analysis on the RVE is per-
formed using the finite element method, in Smit [158], Smit
et al., [159], Feyel [61–65], Miehe et al. [126], Terada and
Kikuchi [171], the Voronoï cell method in Ghosh et al. [78]
or the fast Fourier transforms in Moulinec and Suquet [132].

Although these methods are computationally expensive,
they offer the possibility of computing the macro-structural
response of heterogeneous materials with an arbitrary mi-
croscopic geometry and constitutive behaviour. The follow-
ing sections give an overview of the most relevant works
from the literature applying this type of procedures.

7.1 Multiscale FE Models

In most of the direct micro-macro methods in literature, the
analysis on the RVE, assigned to the macroscopic point, is
made by finite elements. The idea of using directly a fi-
nite element discretization of the microstructure, linked to
the macroscopic scale, using homogenisation rules, was first
proposed by Renard et al. [150] in 1987. Its complete gen-
eralisation and implementation in a general purpose finite

element code was done in 1998 by Feyel, in the context
of cyclic visco-plastic and damage analysis of components
made in a metal matrix composite. Later on numerous au-
thors will use it.

Terada and Kikuchi [171] generalized the two-scale mod-
elling scheme for the analysis of heterogeneous media with
fine periodic microstructures by using variational state-
ments. By means of the generalized variational principle
of Hu-Washizu [98] applied in the framework of non-linear
elasticity, they have shown that the global-local type com-
putational schemes can be unified in association with the
homogenisation procedure for general non-linear problems.

The two-scale derived variational problem is then solved
using the Newton-Raphson iterative scheme. In spite of the
successful computations for a heterogeneous elasto-plastic
body, the numerical analysis leads to underlying difficulties
in performing general class of non-linear multiscale analy-
ses. One of these is that, since the microscopic problems are
solved at each Gauss point of the FE mesh of the overall
structure, the deformation histories at time tn must be stored
until the equilibrium state at current time tn+1 is obtained.
The non-linearities require large computational resources in
practical applications.

Miehe et al. [127] present a theoretical and computa-
tional framework for the treatment of a homogenised macro-
continuum with locally attached microstructure. The pro-
posed concept is applied to the simulation of texture evo-
lution in polycrystalline metals, where the micro-structure
consists of a representative assembly of single crystal grains.
The deformation of this micro-structure is then coupled
with the local deformation at a typical material point of the
macro-continuum. In a process driven by the deformation
of the macro-continuum, this coupling can be defined by
three alternative constraints of the micro-structure deforma-
tion: zero fluctuation in the domain (Taylor-type assump-
tion); zero fluctuation on the boundary; or periodic fluctu-
ations on the boundary. These boundary conditions induce,
in combination with a given constitutive model for the ma-
terials constituents, a static equilibrium state of the micro-
structure at a certain stage of the deformation process.

The macroscopic extensive variables such as stresses and
dissipation are then defined as volume averages of their mi-
croscopic counterparts defined by the equilibrium state of
the micro-structure. In the proposed procedure, these aver-
ages are evaluated in a straightforward manner. This covers
the set-up and the solution of two locally coupled bound-
ary value problems for the finite deformations of the micro-
continuum and the pointwise associated micro-structure, re-
spectively.

In the same period, a general method called FE2 was in-
troduced by Feyel [61–65], which consists in describing the
behaviour of heterogeneous structures by using a multiscale
finite element model. To each integration point at the macro-
scopic scale a representative volume element is assigned and
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a separate finite element computation is performed simul-
taneously. This procedure does not require to specify the
macroscopic constitutive behaviour which is deduced from
the non-linearities in the behaviour of the associated mi-
crostructure. Once the relevant mechanical scales are cho-
sen, the model is built up using three main ingredients:

1) A modelling of the mechanical behaviour at the lower
scale (the RVE)

2) A localisation rule which determines the local solutions
inside the unit cell, for any given overall strain

3) A homogenisation rule giving the macroscopic stress
tensor, knowing the micromechanical stress state.

In principle any localization/homogenisation rule can be
used for points 1–3, but the most common method is the pe-
riodic homogenisation of Sect. 3, which is considered here.
Two F.E. meshes are needed: one for the cell of periodicity
and the other one for the macroscopic structure. The com-
putation is carried out simultaneously on both scales.

In the cell of periodicity located in each Gauss point of
the macroscopic structure the method allows to compute the
stress tensor at time t , knowing the strain and strain rate at
that time and the mechanical history since the beginning on.
In classical phenomenological models at macroscopic scale
the mechanical history is taken into account through a set
of internal variables. Here the internal variable set is con-
structed by assembling all microscopic data required by the
FE computation at lower level. This includes of course mi-
croscopic internal variables needed to describe dissipative
phenomena.

The local analysis yields the macroscopic (average)
stresses and strains, defined as

�ij = σ̄ ij = 1

V

∫

V

σ ij dV,

(100)
Eij = ēij = 1

V

∫

V

eij dV

also known as Bishop-Hill relations [12].
The integrated approach can be easily implemented

in classical finite element codes, based upon a Newton-
Raphson algorithm to handle all non-linearities. It consists
in fact of a sequence of Newton algorithms at global and
local level.

For its optimum performances, the tangent stiffness ma-
trix at macroscopic level has to be computed. For this calcu-
lation we need the macroscopic (algorithmic) tangent matrix
in the Gauss points which can be computed from the varia-
tion of the average strains and stresses of (100) as

Dmacro = δ��

δ�E
(101)

where � denotes the increment of the quantity between time
t and time t + �t . This computation depends of course on

the homogenisation theory used, and on its finite element
implementation.

In the case of the periodic homogenisation theory it is
convenient to add at local level (mesh of the cell of period-
icity) some degrees of freedom to the elements correspond-
ing to average or macroscopic strain E. It is recalled that at
local level the unknown displacements are the periodic part
u1 of the total displacement u on the cell. u1 is obtained
through (54) and (39). These, together with the first of (100)
are contained in the condensation procedure outlined below,
proposed in [62].

The deformation tensor is computed by (34) and may be
written as

e˜
0(x, y) = e˜(x)(u0) + e˜(y)(u1) = E˜ + e˜(y)(u1). (102)

The B matrix needed in this case, called B̂, is similar to the
usual one, except that a new part comes from degrees of
freedom associated with E (these degrees of freedom are
put at the end of the whole degrees of freedom list)

B̂ = (B 1), (103)

where B denotes as usual the standard symmetric gradient of
the shape functions. According to our choice, E has associ-
ated degrees of freedom and hence the associated reactions
give the mean stress �, to be multiplied by the volume of
the cell.

The assembled tangent stiffness matrix at the cell scale
can be written as

K =
∫

cell
B̂T DB̂d�. (104)

Taking into account (103) leads to

K =
∫

�e

[
BT DB BT D

DB D

]
d� =

[
k GT

G H

]
, (105)

where D represents the tangent matrix given by all micro-
scopic phenomenological constitutive equations.

Recalling the meaning of the additional d.o.f. and the as-
sociated reactions, the macroscopic tangent matrix Dmacro is
then nothing but a condensation of the previous matrix onto
the degrees of freedom associated to E (at most 6 degrees
of freedom shared across the whole microscopic mesh) in-
serted at the end of the list. That is

Dmacro = 1

volume
(H − Gk−1GT ), (106)

k =
∫

cell
BTDBd�, G =

∫

cell
DBd�,

(107)
H =

∫

cell
Dd�.

This condensed matrix is then very easy to compute. Then,
depending on the complexity of the macroscopic structure,
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this model may lead to large computations. Parallel com-
puting is proposed to overcome this difficulty and has been
applied to the analysis of a reinforced “bling” (bladed ring),
by Feyel and Chaboche [62].

The method has been used in generalised continua [64] to
treat the cases for which the classical periodic media theory
cannot be applied, for instance where the size of the RVE
is not very small compared to the size of the structure itself
and also compared to the size of the mechanical gradients.
However, the present FE2 framework does not treat specif-
ically edge effects and may not deliver good solutions near
edges.

A similar multi-level finite element modelling has been
developed by Smit [158], Smit et al. [159] and applied more
recently in the large strain context. The method has also
been extended to higher-order continua, by Kouznetsova et
al. [101].

Another multi scale computational strategy which makes
use of the homogenisation theory is proposed by Lade-
vèze and co-workers [105–107]. In that case the structure is
considered as an assembly of substructures and interfaces.
The junction between the macro and micro scales takes
place only at the interfaces. Namely, in the recent works of
Markovic and Ibrahimbegovic [118], a multi-level finite ele-
ment procedure is applied for modelling the inelastic behav-
iour of heterogeneous materials. In the paper strongly cou-
pled scales are considered, where the finite element method
is used at both scales. Yet, the micro-scale is not infinitively
smaller than the macro scale. The coupling of the scales is
obtained trough the framework of localised Lagrangian mul-
tipliers. The macro mesh plays the role of a frame which is
connected to the micro mesh through the Lagrangian multi-
pliers.

The works of Fish [66] may also be classified in this cat-
egory of models. The multiscale computational procedure
proposed by Fish is a superposition based method. A hier-
archical decomposition of the solution space u is made into
global uG and local uL effects, u = uL + uG. Enforcement
of solution compatibility is obtained by prescribing homo-
geneous boundary conditions on uL at the global interface
�GL. A multilevel solution scheme, termed as the s-version
of the finite element method has then been developed where
each level is discretized using a finite element mesh of arbi-
trary element size and polynomial order. Selection of the in-
terface �GL is one of the critical issues in this superposition
based method. A mathematical analysis aimed at quantify-
ing pollution effects on localized phenomena on the global
structural behaviour and identifying the optimal location of
the interface has also been carried out by Babuska [9] and
Fish [67].

7.2 The Voronoï Cell Method

One of the first simultaneous global-local computational
procedures has been carried out by Ghosh and co-workers
[78] with the Voronoï cell finite element method (VCFEM).
In this method, the finite element mesh evolves naturally by
Dirichlet Tessellation of a representative structure. This is a
process of subdivision of space, determined by set of points,
in such a way that each point has associated with it a region
that is closer to it than to any other. The subdivided regions
are called Voronoi cells. The cells may be identified with
basic structural elements in a heterogeneous microstructure.
They represent regions of immediate influence for each het-
erogeneity and also define neighbour regions by the cell
facets. The germinating points are then replaced by hetero-
geneities with shape, size and orientation. The discretization
should account for these features and avoid intersection of
the Voronoï cell edges with the heterogeneities.

A mesh generator accounting for arbitrariness in shape,
size and spatial distribution of inclusions has also been in-
troduced by Ghosh and Mulkopadhyay [77]. Tessellation of
a microstructural representative material element discretizes
the domain into a network of multi-sided convex ‘Voronoi’
polygons or cells. Each Voronoï cell contains at most one
second phase inclusion.

Formulations have been developed to directly treat mul-
tiple phase polygons as elements in a finite element model
by Ghosh and Mulkhopadhyay [77] for linear elasticity and
by Ghosh and Liu [75] for micro-polar thermo-elasticity and
for elastic-plastic problems in Moorthy at al. [130] and Gosh
and Moorthy [76]. Several applications of the method to
account for non-linear composite materials have been pre-
sented in recent papers. The main drawback of this method
is its time and memory consuming.

7.3 Models Based on Fast Fourier Transform

Walker et al. [179] used in 1994 the periodic microstruc-
ture assumption together with Fourier series approximation
to analyse the non-linear visco-plastic behaviour of fibrous
composites. The unit cell is discretized into triangular sub-
volumes. In each step of the loading history the total strain at
any point is governed by an integral equation. The strain and
stress fields within the repeating unit cell are obtained us-
ing Fourier series approximations. The non-linearity arising
from the visco-plastic behaviour of the material constituents
is treated as a fictitious body force in the governing inte-
gral. The authors have also shown that the problem can be
written using Green’s function approaches, a more general
method because it doesn’t need the periodic assumption, and
for which the numerical resolution converges more rapidly.

Fotiu and Nemat-Nasser [72] have also used Fourier
series approximation to estimate the overall properties of
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elasto-visco-plastic periodic composites in the context of the
periodic distribution of inclusions assumption. The formu-
lation is presented in three dimensions as well as for plane-
stress and plane-strain problems. The two methods have the
particularity to employ quite accurate field representation
within the repeating cell but can be computational time con-
suming

To avoid the difficulty due to meshing in case of complex
microstructure, when solving the local problem by FEM
methods, and to make direct use of microstructure images
of heterogeneous materials, Moulinec and Suquet [132] pro-
posed in 1998 an alternative method based on Fast Fourier
Transforms. FFT algorithms require data sampled in a grid
of regular spacing, allowing the direct use of digital images
of the microstructure. A specificity of the formulation is the
use of an iterative method not requiring the formation of a
stiffness matrix. Introducing an homogeneous reference ma-
terial with elastic stiffness c0, they have shown that the lo-
cal problem to be solved on a typical volume element can
be re-written as an implicit integral equation (the so-called
Lippman-Schwinger equation). It takes the form:

ε(u(x)) = −�0 ∗ (c(x) − c0) : ε(u(x)) + E, (108)

where ε and E are respectively the local and the overall
strain tensors. This expression becomes in the Fourier space:

ε̂(u)(ξ) = −�̂
0
(ξ) : (c(x) − c0) : ε(u)(ξ), ∀ξ �= 0,

(109)
ε̂(0) = E,

where ∗ denotes the convolution product and where �0 is the
Green operator associated with c0 which is explicitly known
in Fourier space. An iterative scheme is then derived from
the previous equation:

ε(ui+1) = −�0 ∗ ((c − c0) : ε(ui )) + E. (110)

Noting that a convolution product in real space becomes a
mere product in Fourier space:

ε̂i+1
(ξ) = ε̂i

(ξ) − �̂
0
(ξ) : (ĉ : ε̂i

)(ξ), ∀ξ �= 0,
(111)

ε̂i+1
(0) = E.

This method requires a number of iterations roughly pro-
portional to the contrast between the mechanical properties
of the phases and thus is inadequate for highly contrasted
or infinitely contrasted composites. The advantages of the
method are the following:

• Images of microstructures can be directly used in the
analysis, which avoids meshing the microstructure.

• The iterative procedure does not require the formation or
inversion of a stiffness matrix.

• The convergence is fast.

The method present the following limitations:

• The convergence is not ensured for materials containing
voids or rigid inclusions.

• The number of degrees of freedom is high in comparison
with the FEM. The method can be applied only on com-
puters with high memory capabilities.

To allow the application of this method for contrasted mate-
rials, Eyre and Milton [59] improved the procedure by intro-
ducing an accelerated scheme. The rate of convergence ob-
tained is then proportional to the square root of the contrast
but still cannot be applied to composites with infinite con-
trast (like porous materials). An alternative scheme based
on augmented Lagrangians and Fourier Transforms has later
been proposed in the paper of Michel et al. [125] for highly
contrasted or even infinitely contrasted materials. These di-
rect micro-macro methods have essentially been developed
and applied in the small strain format.

Fig. 6 The principle of the
bladed ring with a SiC-Ti
composite insert, as considered
for future engine design
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Fig. 7 Results obtained at the two scales at the maximum rotation
speed. The constitutive equation of the matrix is a classical elasto-
visco-plastic model with two back-stresses. Left: radial stress at the

macroscale; right: radial strain in two local cells (the amplification
factor for displacements is 10)

7.4 Example 1: FE2 Method Applied to a SiC/Ti
Composite Bling Component

This example illustrates the application of the so-called FE2

version of the multilevel finite element procedures (Feyel
[60]), in a non-linear incremental plasticity context. The
method is a totally integrated one, as implemented in a gen-
eral purpose finite element code (ZéBuLoN, the finite ele-
ment solver of Z-Set platformTM).

The lower level FE scale is solved as a periodic bound-
ary value problem, in which the average strain increment
is given by the overall FE solver, exactly as for any other
macroscopic constitutive equation in the code. After solving
the lower scale, the average stress increment, as well as the
consistent tangent matrix (algorithmic), are returned to the
overall problem. The tangent matrix is obtained by the con-
densation procedure detailed in Sect. 7.1 ((104) to (107)).

The model component is a simplified version of a “bling”
(or “bladed ring”), currently considered for possible replace-
ment of compressor or turbine discs in aeronautical turbo-
engines. The component, considered here as axisymmetric,
is made of a Titanium alloy (Fig. 6). It contains a circumfer-
entially reinforced part made in a SiC/Titanium composite
(long fibres, circumferential, large diameter, 100 to 140 µm,
Fig. 6b). The Titanium matrix inside the composite part is
assumed the same as in the homogeneous part. The bound-
ary r = Rint on the left is free, though the one at z = 0 takes
into account a symmetry condition.

At each Gauss point of the overall FE mesh and at each
iteration of the overall implicit incremental analysis of the
component, the localisation/homogenisation procedure is

made through an associated FE unit cell (mesh shown on
Fig. 7a). It delivers the local current inelastic response, us-
ing the elasto-visco-plastic constitutive equations of the Ti-
tanium matrix inside the composite (the fibre is considered
as elastic).

After the analysis, the available results are both macro-
scopic stress and strain fields (Fig. 7a) and local fields at
every unit cell, as shown on Fig. 7b for two typical points in
the composite part, including a point where shearing effects
were predominant.

Still in the context of the bling component analysis, this
FE2 method has been extended further (Carrère [33]) by us-
ing for the Titanium matrix inelastic constitutive equation
a scale change based on a self-consistent methodology (the
“beta rule” mentioned in Sect. 4.4). The polycrystalline ma-
trix is described using 48 grain orientations, crystal visco-
plasticity in each grain, with basal, prismatic and pyramidal
slip systems, as well as twinning pseudo-slip. The method,
called FE2.5, was useful to determine the impact of various
possible textures in the polycrystalline matrix on the overall
response of the component.

7.5 Example 2: Application of the Asymptotic Theory
of Homogenisation to a Nonlinear Problem with Three
Scales

If applied iteratively, asymptotic theory of homogenization
may also be used for non-linear situations. Furthermore, it
can obviously be used to bridge several scales. Here the
example deals with the thermo-mechanical analysis of a
Nb3Sn based strand used to wind the superconducting coils
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Fig. 8 Three level hierarchy in the strand made by European Ad-
vanced Superconductors Co. The central part of the strand (left) con-
sists of 55 groups of 85 filaments (about 4 micrometers diameter),
embedded in tin rich bronze matrix, while the outer region is made

of high conductivity copper. The strand diameter is 0.81 mm. Images:
courtesy of P.J. Lee, University of Wisconsin-Madison Applied Super-
conductivity Center

Fig. 9 Copper stress-strain
curve for some reference
temperatures. Piecewise linear
behaviour is assumed

of the next thermo-nuclear experimental reactor (ITER). In
the strand (Fig. 8) a three-level hierarchy can be identified
[18, 19]. Asymptotic theory of homogenisation is adopted
for the non linear situation and the three scales are bridged
by applying it in concurrent manner. The example shows the
cool down of the strand from Nb3Sn reaction temperature
(923 K) to the coil working condition (4 K).

We have to deal with non-linear, temperature-dependent
material characteristics. In the cross section of the strand
(Fig. 8) we can distinguish two main areas: an external
ring made of Oxygen-Free Electronic (OFE) copper sep-
arated by a thin tantalum barrier from an internal circle
composed of periodically repeated hexagonal cells in a tin
rich bronze matrix. Each of the hexagons is constructed
by the repetition of another unit cell: the cross section of
a single superconducting Nb3Sn filament embedded in a
bronze matrix. We assume that the strand components are

in equilibrium at 923 K without eigenstresses or strains,
which are relaxed since the strand remains for several hours
at high temperature where Nb3Sn is formed. Strains de-
velop during the cool down to 4 K because of the differ-
ent thermal contraction coefficients of Nb3Sn, bronze, tan-
talum and copper. Material characteristics are not easy to
find over the whole temperature range needed, for Nb3Sn it
is even more difficult owing to the complexity of the ex-
perimental tests. Most of the values used are taken from
the conductor database [46]. The Nb3Sn intermetallic has a
low thermal contraction but a relatively high elastic mod-
ulus and a very high yield strength, so that it remains
in its elastic state all over the cooling treatment. Bronze,
tantalum and copper are elasto-plastic materials, copper
and bronze having a quite low yielding limit, therefore
they are plastically flowing for most of the process. Cop-
per and bronze stress-strain behaviour for some reference



Multiscale Methods for Composites: A Review 55

Fig. 10 Bronze stress-strain
curve for some reference
temperatures. Piecewise linear
behaviour is assumed

temperatures is presented in Fig. 9 and Fig. 10 respec-
tively.

Because of the assumed behaviour of material properties
we deal with a sequence of problems of linear elasticity writ-
ten for a non-homogeneous material domain and with coeffi-
cients that are functions of both temperature and stress level.
At meso (filament hexagonal group) and micro level (single
filament) we must make sure that the yield conditions of the
single component materials are not violated. This is carried
out by an elastic-plastic analysis of the cells of periodicity. If
yielding occurs the cell of periodicity will be modified and
new, effective properties calculated for the next step.

The usual procedure starts with the composite cell of pe-
riodicity with given elastic components. As the strain in-
creases step by step, effective material coefficients are con-
stant until the stress reaches the yield surface at some points
of the cell. The yield surface in the space of stresses is dif-
ferent for each material component, being thus a function of
position. The region, where the material yields, is of finite
volume at the end of the step, thus it is easy to replace the
material with the yielded one, with the elastic modulus equal
to the hardening modulus of the elastic-plastic material and
with the Poisson ratio tending to 0.5.

The cell of periodicity is hence transformed into another
one with one more material and the usual analysis procedure
is restarted again with a uniform strain, a new homogeniza-
tion function and a new stress map over the cell. We identify
each new region where further local yielding occurs, then
redefine the cell and perform the analysis. The loop is re-
peated as many times as needed. Also the recovery proce-
dure of stress and heat flux have to be applied at each level
taking into account the temperature dependence of the ma-
terial characteristics [18]. The algorithm is summarized in
Box 1.

It is to note, that for solving “the kinematical problem”
mentioned in points 6 and 8 of Box 1, it is not always nec-
essary to use the true finite element solution. If the cell of
periodicity has not been changed before, this solution can
be composed according to (39), (40) suitably rewritten.

The analysed structure and the three scales are shown in
Fig. 8, where the single filament (micro scale), groups of fil-
aments (meso scale) and the superconducting strand (macro
scale) can be seen.

On the meso level we have the repetitive pattern of the
superconducting filament in the bronze matrix (micro scale
RVE), filling the hexagonal region as illustrated on the right
hand side of Fig. 8 and Fig. 11. The second translational
structure is the net of the hexagonal filament groups (meso
scale RVE) in the body of the single strand shown in the
centre of Fig. 8 and Fig. 11. The homogenization splits thus
into two steps, each one dealing with rather similar geometry
and a comparable scale separation factor.

After the homogenization procedure, the resulting equiv-
alent material has an orthotropic behaviour, depending upon
the material characteristics and the geometrical configura-
tion of the unit cell. The main diagonal terms are shown in
Fig. 12.

The particular nature of the thermo-elastic-plastic process
has allowed the use of a tangent stiffness procedure of Box 1,
which avoids costly equilibrium iterations of a Newton-
Raphson procedure at macroscopic level. In the adopted
procedure the updating of the cell (step 9 of Box 1) is com-
pulsory to avoid to drift away from equilibrium path. The
results are remarkably accurate as shown in Fig. 13, where
the computed and measured residual strains after the cool
down process are compared.
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1. Compute effective coefficients at micro level;
2. Compute effective coefficients at meso level;
3. Apply increment of forces and/or temperature at the macro level, solve global homogeneous problem;
4. Compute global strain Eij : Eij = eij (u0) reminding that Eij = ẽε(x) (see (100))
5. Apply Eij to meso level cell by equivalent kinematical loading (displacement on the border);
6. Solve the kinematical problem at the meso level for w1(y), compute stress (unsmearing for meso level) and

strain Eij ; now Eij = eij (w0) and Eij = ẽε(y)

7. Apply Eij from meso to micro level cell by equivalent kinematical loading (displacements on the border);
8. Solve the kinematical problem at the micro level for w1(z), compute stress (unsmearing for micro level);
9. Verify yielding of the material in the physically true situation at micro level. If yes change mechanical

parameter of the material and go to 1, else if exit.

Box 1 Three-scale bridging within a tangential stiffness procedure. w1(z) of point 8 is the first order term of the displacement expansion w at
micro level

Fig. 11 Finite element mesh of
micro- (on the right) and meso-
(in the middle) scale unit cell

7.6 Example 3: Application of a Self Consistent Like
Method to a Thermo-Elastic Problem

As mentioned, in the generalised self consistent method the
inclusion is encased in a shell of matrix material outside of
which the effective medium is considered. In this case the
investigation is extended to the coupled thermo-mechanical
field, for a composite with linear, temperature dependent
material characteristics.

As an example we show the application of the method to
a thermo-mechanical problem involving the superconduct-
ing strand shown in Fig. 14. Similar to the previous one, it
is composed of an outer ring of OFE copper separated by a
tantalum barrier from a inner bronze matrix where supercon-
ducting filaments are embedded. The strand is here modelled
according to the scheme of Fig. 15, where the radii r = a, b

are given by the area ratios of the cross section. The mate-
rial characteristics are the same as in the previous example,
but copper and bronze are considered elastic. The goal of
this work is to find the values of the effective Young mod-

ulus Eeff , Poisson ratio veff and thermal expansion coeffi-
cient αeff [19, 20].

We consider a problem of thermo-elasticity defined in a
heterogeneous body such as that depicted in Fig. 15 sub-
jected to a variation of temperature. Stress σ , strain ε and
displacements u (which are the elements of the solution of
the boundary value problem over the heterogeneous domain)
are defined piecewise with respect to the radius r as follows
(Fig. 15):

u =
⎧
⎨

⎩

ua, r < a,

ub, a < r < b,

uc, r > b,

ε =
⎧
⎨

⎩

εa, r < a,

εb, a < r < b,

εc, r > b,
(112)

σ =
⎧
⎨

⎩

σ a, r < a,

σ b, a < r < b,

σ c, r > b.

The problem is defined by the usual equilibrium equations
which, referred to a cylindrical system of coordinates (r ra-
dial component, θ circumferential component and z longi-
tudinal component) and taking into account the axial sym-
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Fig. 12 Main diagonal elasticity terms for bronze (stars), Nb3Sn (crosses), meso and macro level homogenization results

Fig. 13 Validation: measured
[180] and computed residual
strains in the strand of Fig. 8,
after the cool down process
from 923 K to 4.2 K

metry of the problem (shear stress component and angular

strain component are zero) can be written as

dσ i
r

dr
+ σ i

r − σ i
θ

r
= 0, i = a, b, c (113)

with the following continuity and boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

σa
r = σb

r for r = a,

σ b
r = σ c

r for r = b,

lim
r→+∞σ c

r = 0.

(114)
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Fig. 14 Strand from Furukawa Co. Courtesy of P. Lee, University of
Wisconsin-Madison Applied Superconductivity Center

Fig. 15 Domain and sub-domains. In region c the effective material is
considered

Finally the kinematical admissibility requires

{
ua

r = ub
r for r = a,

ub
r = uc

r for r = b.
(115)

Taking into account the axial symmetry, the only non zero
components are

σ =
⎛

⎝
σr

σθ

σz

⎞

⎠ , ε =
⎛

⎝
εr

εθ

εz

⎞

⎠ (116)

related by the following tensor of elasticity

C = E

(1 + υ)(1 − 2υ)

⎛

⎝
1 − υ υ υ

υ 1 − υ υ

υ υ 1 − υ

⎞

⎠ . (117)

As for the determination of the effective properties, we are
looking for an equivalent, homogeneous and isotropic mate-
rial that can replace the composite at the macro scale. The
unknown effective Young modulus Eeff , Poisson ratio veff

and thermal expansion coefficient αeff may vary during the
loading process due to the temperature dependency of ma-
terial characteristics. The equivalent behaviour is described
by the displacement, strain and stress fields that verify the
equilibrium conditions in the infinite domain filled with the
homogeneous material and subjected to the same loading
condition as the composite.

Let us consider a field of displacements defined by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ua
r = Aar,

ub
r = Abr + Bb

r
,

uc
r = Acr + Bc

r
,

⎧
⎪⎨

⎪⎩

ua
θ = 0,

ub
θ = 0,

uc
θ = 0,

⎧
⎪⎨

⎪⎩

ua
z = ezz,

ub
z = ezz,

uc
z = ezz,

(118)

where the value of ez for the displacement component in z

direction is given (we assume that the cross section of the
strand remains plane). It is easy to check that the displace-
ment field defined in (118) implies a stress field which veri-
fies the balance conditions inside each sub-domain.

The thermo-elastic problem is solved with MAPLE sym-
bolic code, which gives formal relations for displacement,
strain and stress fields in each sub-domain. The five con-
stants of integration Ai and Bi in (118) are defined by
the continuity and boundary conditions (114) and kine-
matical conditions (115). At this point the problem is for-
mally solved: displacement, strain and stress fields are ex-
pressed as a function of the known material characteristics
Ea, νa,αa,Eb, νb,αb and the unknown effective properties
Eeff , νeff , αeff .

To obtain the homogenised material characteristics we
define the following functionals, expressing (in terms of
strain or stress components) the difference between the solu-
tion of problem written for the infinite homogenised domain
and the solution computed for the composite material

�(Eeff , veff , αeff )

=
∫ ∞

0
((ε

eff
r − εr)

2 + (ε
eff
θ − εθ )

2 + (ε
eff
z − εz)

2)dr,

(119)

�(Eeff , veff , αeff )

=
∫ ∞

0
((σ

eff
r − σr)

2 + (σ
eff
θ − σθ )

2 + (σ
eff
z − σz)

2)dr

(120)
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Fig. 16 Functional � by arbitrarily fixing the value of Eeff = 110 GPa

These functionals are related to the energy difference be-
tween the homogenised and composite solution. In the
above equations the dependence of functionals � and � on
Eeff , veff , αeff is explicitly marked. It is worth to underline
that these characteristics depend upon temperature, so the
effective values are computed for a certain number of ref-
erence temperatures. By minimizing the two functionals we
would get two sets for the values of the effective mater-
ial characteristics, which could be considered as a sort of
bounds. In this way, from the physical point of view, the re-
search of the best material properties for the homogenised
body would be performed always over the statically and
kinematically admissible fields of stress and strain. How-
ever a direct minimization of the two functionals above, with
three unknowns, is not straightforward.

On the other hand, by arbitrarily fixing for instance the
value of Eeff equal to a certain value and plotting the func-
tional � as a function of veff , αeff , it appears that it exhibits
a minimum (Fig. 16). In an analogous way, by arbitrarily fix-
ing for instance the value of αeff equal to a certain value and
plotting the functional � as a function of Eeff , veff , it shows
again to admit a minimum (Fig. 17). As a consequence
the procedure can be automated and speeded up: the triplet
(Eeff , veff , αeff ) can be computed using two 2D Newton-
type algorithms, according to the following scheme:

Fig. 17 Functional � by arbitrarily fixing the value of
αeff = 0.98 10−5 K−1

1. Initialization: Eeff = (Ea + Eb)/2
veff = (va + vb)/2
αeff = (αa + αb)/2

2. Keeping (αeff )�i+1 = (αeff )�i , minimize � to get (Eeff ,
veff )�i+1

3. Update: (Eeff , veff )�i = (Eeff , veff )�i+1
4. Keeping (Eeff )�i+1 = (Eeff )�i+1, minimize � to get (αeff ,

veff )�i+1
5. Update αeff : (αeff )�i = (αeff )�i+1 ignore (veff )�i+1
6. Go to 2 with new αeff .

The procedure stops when the difference between two
successive values of the set (Eeff , veff )� or of (αeff )� is less
than a pre-defined tolerance.

8 Recovery Methods After the Component Analysis

Recovery methods after the component analysis have partly
already been addresses when presenting the different proce-
dures (Sects. 3.4 and 7) but will be dealt with again here in
some detail because of their importance in many situations.
An important part of multi-scale modelling is the recovery
of stress and heat flux as well as strain, temperature and dis-
placements at the level of the microstructure.

When the size of the microstructure on which we want to
recover local stresses is very small (scales well separated),
it is sufficient to apply the localisation rule by considering,
on the volume occupied by the local unit cell, that the over-
all macroscopic stress field is uniform. Additional problems
arise when the microstructure is quite large compared with
the component size and with the wavelength of the macro-
scopic stress field. The present section summarises and il-
lustrates some techniques that could be used in this context.
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8.1 Stress Recovery through Least Square Fit
and Projection

A simple procedure for stress recovery which does not de-
pend on the particular way the macroscopic displacement
field has been obtained is presented by projection [182]. It
is applicable to any kind of solid continuum as long as the
displacement field is known with sufficient accuracy. How-
ever it finds its natural application in the study of composite
materials. It stems from a least square fit [96]

χ =
∫

�

(σ − σ ∗)2d�

with smoothing function substituted by σ ∗ = Nσ , (121)

where σ denotes the unsmoothed stresses, coming e.g. from
a finite element calculation, σ ∗ the stresses obtained by in-
terpolation through shape functions N from the yet unknown
nodal values of the stresses σ , which are sought for. The
condition of minimum of χ with respect to σ yields

∫

�

NT Nσ ∗d� =
∫

�

Nσd�. (122)

This procedure is called functional smoothing and is ap-
plicable in general.

In the following we will use a local discrete smoothing,
where we limit ourselves to one element or a patch of ele-
ments at a time and to stresses given in a limited number of
points, i.e. in the Gauss points. The procedure is explained
for the more general 3-D case (allowing e.g. to handle beam
bending and torsion at the same time) [74] and the smooth-
ing matrix is then given also for a plane situation.

First a local finite element discretization is constructed
in the region under investigation with at least one element
per material component. The displacements of the macro-
solution, obtained by other means, are sampled at the nodes
of this local mesh to compute the Gauss point stresses and
their nodal projection. Attention is now restricted to a sin-
gle element of the local discretization e.g. a prismatic 3-D
Lagrangian element with 27 nodes. The above sampled dis-
placements are imposed on these 27 nodes. In this way a
quadratic distribution of each displacement component can
be obtained in the element and therefore a linear distribution
of their derivatives. In a linear elastic problem, by means of
the usual differential rules, strains are obtained in the Gauss
points located in the known positions and finally the consti-
tutive law gives the stresses in the same points. Stresses at
these points are of good accuracy [96, 184].

In the elastic-plastic case a local equilibrium problem has
to be solved with the imposed displacements in the nodes us-
ing the microscopic constitutive laws and enforcing the yield
condition. This again yields stresses in the Gauss points.

At this point stresses should be extrapolated to the nodes
by means of the discrete local smoothing procedure. Con-
sidering eight Gauss points in the above element, if σi (i =
1,2, . . . ,8) are the unsmoothed stresses in these points, the
extrapolated stress values at the corner nodes of the three-
dimensional solid element are obtained by minimising the
functional

χ =
8∑

i=1

(σi − g(xi, yi, zi))
2,

where g(xi, yi, zi) =
8∑

j=1

Ñj (xi, yi, zi)σ̃j (123)

with Ñj linear smoothing functions and σi as above the un-
known smoothed nodal stresses. Note that the smoothing
shape function is an order lower than the shape functions for
the above displacement interpolation and in the stress cal-
culation in the elasto-plastic case. The minimization of the
above functional yields the following equation [74]

ÑT Ñσ̃ = ÑT σ , (124)

where Ñ is an (8 × 8) matrix collecting the smoothing shape
functions, evaluated in the Gauss points. By inverting the
matrix Ñ a direct relation between the smoothed stresses at
the corner nodes of a three-dimensional solid element and
the unsmoothed stresses at the 2 × 2 × 2 Gauss points of the
same element is obtained.

σ̃ = Ñ−1σ . (125)

For prismatic elements in which the Jacobian determinant is
constant, the matrix Ñ−1 is given by

Ñ−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c b b c d c

b a b c c b c d

c b a b d c b c

b c b a c d c b

b c d c a b c b

c b c d b a b c

d c b c c b a b

c d c b b c b a

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(126)

where

a = 5 + 3
√

3

4
, b =

−
(√

3 + 1
)

4
,

c =
√

3 − 1

4
, d = 5 − 3

√
3

4
.

It has to be observed that in (125) the vector σ̃ indicates
the eight stress components σij (with the same indices) act-
ing on the nodes as function of the relevant components at
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Fig. 18 Cells of periodicity (visible in both images) and one layer of the macroscopic mesh in the cross section of the coil on the right hand side
(the coil is about 13 meters high)

the Gauss points. Therefore the knowledge of the full three-
dimensional stress state in the eight nodes requires the ap-
plication of (125) to the six stress components. The so ob-
tained nodal stress values of neighbouring elements can be
averaged to eliminate stress discontinuities within material
boundaries (layers). Smoothing is not performed across lay-
ers. This procedure has been applied with success in [74],
especially what through-thickness shear stresses are con-
cerned. For plane problems the procedure is the same, only
that now 9-node quadrilateral elements are used for the in-
terpolation of the displacements, with at least one element
per each material component (layer).

For each of the 9-node elements stresses are calculated
with the real material properties at the four Gauss points lo-
cated at element co-ordinates [ξ = ±1/

√
3, ζ = ±1/

√
3].

For projection linear shape functions are used, yielding
for the corner node stresses
⎧
⎪⎪⎨

⎪⎪⎩

σ 1

σ 2

σ 3

σ 4

⎫
⎪⎪⎬

⎪⎪⎭
=

⎡

⎢⎢⎣

a c b c

c a c b

b c a c

c b c a

⎤

⎥⎥⎦

⎧
⎪⎪⎨

⎪⎪⎩

σI

σII

σIII

σIV

⎫
⎪⎪⎬

⎪⎪⎭
(127)

where a = 1 + √
3/2, b = 1 − √

3/2 and c = −1/2. Su-
perscripts 1–4 indicate corner nodes, while subscripts I–IV
refer to Gauss points. It is recalled that linear distribution
of stresses are exactly represented by this method whereas
more complex stress fields are approximated by means of a
least squares fit.

Projection can also be applied to carry out the stress re-
covery in case of asymptotic homogenization: the strains of
the macroscopic solution are transferred to the finite element
mesh of the single cell used to obtain numerically the ef-
fective coefficients, see Sect. 3.5. These macroscopic strains
are treated as input data for the local (microscopic) prob-
lem. This yields the stresses in the Gauss points. The min-
imization is carried out as above, usually over a patch of
elements. If needed, a previous least square minimization of
the macroscopic strains can be carried out over an array of
neighbouring cells [155].

As an example we refer to a D shaped superconducting
coil with cable in conduit superconductors [109]. A cross
section of the coil, and two cells of periodicity are shown in
Fig. 18. Each cell is made up of an outer layer of epoxy and
an adjacent layer of stainless steel. The central void part is in
reality filled by a bundle of superconductors similar to those
treated in Sect. 7.5 and 7.6. They do not contribute to the
overall load bearing capacity of the coil and are hence here
neglected. The mechanical analysis of the coil has been car-
ried out on a rather rough finite element mesh using the ma-
terial properties obtained through asymptotic theory homog-
enization of Sect. 3, giving the displacements at the nodes.
Two adjacent cells of Fig. 18 are discretized locally by 27-
node elements and the above displacements are sampled at
these nodes. The six components of the stresses in the nodes
are obtained with the above procedure. The distribution of
the normal stress σ11 and of the three shear stresses τ12, τ13
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Fig. 19 Distribution of (from top to bottom): the normal stress σzz;
tangential stress τxy ; tangential stress τyz; tangential stress τxz; along
two adjacent cells of Fig. 18

Fig. 20 Graph of normal stresses over a cell of periodicity: influence
of second order correctors. Top: second order correction to stress; mid-
dle: first order approximation; bottom: the final stress field obtained
through superposition. The undeformed grid is the reference position

and τ23 along two adjacent cells (line AA of Fig. 18) are
shown in Fig. 19. These values compare well with those ob-
tained through the procedure described in the next section
[155], hence there is a choice available for the most appro-
priate procedure.

8.2 Asymptotic Correctors

The local approximation of stresses in case of asymp-
totic theory of homogenization was already dealt with in
Sect. 3.4. This yields constant stresses over a particular ma-
terial in the unit cell (zero order approximation of the stress
field). However, if the separation of scales between local and
global phenomena is not so sharp i.e. the micro-structural
parameter ε of (14) is larger than e.g. 0.1, or for instance
bending phenomena are of importance, it is advisable to take
into account the second-order term in the expansion of the
displacements (22). This gives the possibility of computing
first-order terms in the stress description [48, 155].
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Fig. 21 (a) FE meshes for the reference calculation; (b) the macroscopic calculation with the mapped local unit cell mesh that serves for the local
stress recovery step

Similar to (39) we have

u2
i (x,y) = κ

pqr
i (y)e0

pq,r (x) + C2
i (x), (128)

where a new homogenization function κ
pqr
i (y), also called

corrector, appears together with the gradients of global
strains. These correctors are obtained by solving a varia-
tional problem

Find κ
pqr
i ∈ VY such that : ∀vi ∈ VY

∫

Y

aijkl(y)(κ
pqr

k,l(y)(y) − δkrχ
pq
l (y))vi,j (y)(y)dY (129)

=
∫

Y

av
irpq(y)vi(y)dY

and the enhanced stresses are obtained via

σε
ij (x,y) = aijkl(y)[(δpkδql − χ

pq
k,l )e

0
pq

+ ε(κ
pqr

k,l(y)(y) − δkrχ
pq
l (y))e0

pq,r ]. (130)

The numerical implementation is described in [155] and re-
sults in an equation of the type of (54). It is just recalled
that instead of 6 components in the strain vector we have to
handle 18 components of the strain gradient vector. The size
of the matrices in the final equation increases accordingly.
As an example the graph of normal stresses of a square cell
of periodicity is shown in Fig. 20. This cell is again made
up of an outer layer of epoxy and an adjacent layer of stain-
less steel. The central part is void. It represents the jacket of
a cable in conduit superconductor. The structural problem
solved is that of a D-shaped coil [155] subjected to Lorentz
forces. In Fig. 20 clearly the non-uniform stress distribution

Fig. 22 Macroscopic stress projection on the unit cell before the local
stress recovery

over a single material is shown which has been obtained by
means of the second order stress correction.

8.3 Example of Stress Recovery After an Overall Finite
Element Analysis Made with a Macroscopic
Constitutive Law

In many applications, we will have to use sufficiently simple
macroscopic constitutive equations for the inelastic analy-
sis of the structural component. Such constitutive equa-
tions may be defined from prior-micro-to-macro analyses.
This is the so-called “sequential multiscale” approach, see
Sect. 6. The TFA is one of these approaches. In its multi-sub-
volumes version (Dvorak [55], Carrère et al. [35]) it consid-
ers a unit cell finite element analysis to determine the various
localisation and influence tensors. The same unit cell will be
used below to treat the local stress recovery step.
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Fig. 23 Comparison of the
calculated elasticity solutions
for stress component σ 11,
without taking into account
edge effect

Fig. 24 Comparison of the
calculated elasticity solutions
for stress component σ 22, taking
into account edge effects or not
the edge effect

Let us assume an overall component analysis made with
a constitutive equation built by the TFA approach. In a post-
processing of this analysis, we intend to recover the local
fields (stress, strain, plastic strain) on the true microstruc-
ture (supposed to be known locally). The method presented
here is an application of classical periodic homogenisation,
within the same kind of approximations than in Sect. 8.1
above.

It is shown that it may deliver quite good local results,
even for a coarse microstructure relative to the component
size and wavelength of the overall fields (large overall stress
gradients).

The test example taken here is given on Fig. 21a, in
an unidirectional composite part (long fibres) submitted to

combined transverse loads, bending and shear. It is treated
in 2D, first for elastic constituents. The reference solution is
obtained with mesh in Fig. 21a. The macroscopic solution
is given with a coarse mesh like in Fig. 21b, and a constitu-
tive equation deduced from a single unit cell (mesh shown
on Fig. 21b) by TFA method (reduced here to elasticity):

� = L : E (131)

in which L =∑
r crLr : Ar , with Ar being the strain locali-

sation tensor such that

εr = Ar : E. (132)
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Fig. 25 Cumulated Plastic
strain, (a) for the reference
calculation and (b) for the
macroscopic calculation
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Fig. 26 (a) Reference
calculation on one cell of
Fig. 25a and (b) Recovery
plastic field
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Fig. 27 Principle of the
recovery by an “interpolated
mapping”

Fig. 28 Complete mesh of the
actual structure for the reference
computation

The obtained macroscopic solution is then mapped (inter-
polated and projected) on the TFA unit cell, as shown on
Fig. 22, for the cell positioned at (2,2) as shown in Fig. 21a.
This is done everywhere in the part, or in the region of in-
terest at which we need a local stress field. In the elastic
case, it is made by applying the stress localisation tensor
(of the microscale) to the overall solution �(x), that is non-
uniform (as in previous sections, y denotes the local scale,
x, the overall one). We then write:

σ s = σ (x,y) = Bs(y) : �(x). (133)

The obtained solution by this first order recovery method (in
fact the classical one in periodic homogenisation) compares

very well with the reference solution, Fig. 23, except at the
edges (see below).

In Fig. 24 for a lower valued stress component, we see
also a good comparison on the three central cells, though
the macroscopic solution is even not the average of the local
one.

Still within the same first order scheme, the local recov-
ery can also be made in the non linear inelastic case. In the
shown example, still the one of Fig. 21a, the macroscopic
solution is obtained through a TFA based constitutive model
(Sect. 6.2). Figure 25a shows the reference solution (all fi-
bres meshed) for the accumulated plastic strain. The corre-
sponding macroscopic solution is indicated on Fig. 25b.
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Fig. 29 Accumulated
visco-plastic strain in the
reference computation at time
t = 7.5 s

The local recovery after the coarse macroscopic solution
is made using TFA. In the present case it has been rewritten
in a rate form, as:

σ̇ s = σ̇ (x,y) = Bs(y) : �̇(x) −
∑

r

Fsr (y) : Lr : ε̇p
r , (134)

ε̇
p
r = λ̇r

∂fr

∂σ r

= L
p
r : σ̇ r . (135)

Formally, through the TFA discretization, the σ̇ r , as well
as ε̇

p
r , are depending also on the local position of the sub-

volume “r”. L
p
r is the instantaneous local plastic tangent

operator in the same sub-volume.
Knowing the overall stress rate solution �̇(x), the solu-

tion of the above system leads to the local stress rate then to
the local plastic strain rate and, by time integration, to the
local plastic strain field.

Figure 26b illustrates the obtained local results on the
cell indicated Fig. 21b, compared with the reference solu-
tion on Fig. 26a. Though different discretizations are used
(recall that TFA recovery is not a finite element procedure),
the comparison is quite acceptable.

Let us note that improvements of the above techniques
are now available “naturally” in the context of NTFA (Non-
uniform Transformation Field Analysis) method, as shown
for instance by Michel and Suquet [124].

As shown for instance in Fig. 24, the only incorrect re-
sults are in the region where take place “edge effects”, in
the first and last rows of fibres in the present composite ex-
ample (free edges or transition zones with a pure matrix re-
gion). The problem is clearly related with a loss of period-
icity. Solving such situations need to rewrite local boundary

value problems in these regions, which boundary conditions
should be taken from the previously re-localized fields (trac-
tions and/or displacements).

Other solutions were proposed, for instance by Dumon-
tet [48], introducing a boundary layer field, or by Buannic
and Cartraud [25] who proposed additional specific bound-
ary conditions. This problem has been dealt with also in
Sect. 3.6, where infinite elements have been used [110]. A
very simple heuristic way is to introduce spatially decay-
ing stress localisation functions B∗(y) near the edge, using
exponentials or others, like done in Kruch [103]. Figure 24
illustrates the improvement by such a simple interpolation
rule, with the local stress that now correctly vanishes at the
free edge.

8.4 A Practical Example of Local Field Recovery
when Using FE2 Integrated Multiscale Methods

The method presented here is typically adapted for the case
using an integrated multiscale method based on imbricated
FE techniques (like FE2). As will be shown, the method
can be applied as a post-processing interpolation technique,
without having to reformulate the localisation problem.

The goal is to compute ε(x), for any x, without any ref-
erence to y (cell coordinate) because all cells have to be
mapped at their real locations.

An “interpolated-mapping” of the results obtained by
FE2 methods is used to compute actual fields Fig. 27. Let us
suppose that all heterogeneities remain elastic and that the
surrounding medium is also elastic. For each macroscopic
integration point whose spatial coordinate is xi , and for each
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Fig. 30 Results obtained by the recovery technique made after the FE2 overall analysis, when taking into account damage at the fibre/matrix
interface (time t = 6.76 s). Left: radial stress; right: damage at the interface

position inside the underlying unit cell, the instantaneous
strain tensor (for instance) is equal to

ε(xi ,y) = A(y) : E(xi ). (136)

The recovery technique by an “interpolated-mapping” is
nothing but a macroscopic interpolation of results coming
from all microscopic computations. Let γ (x) be a mechan-
ical component to be interpolated inside a macroscopic el-
ement; γ (x) can be computed using the shape functions of
the finite element containing x ∼:

γ (x) =
∑

i

γ (xi )Ni(x). (137)

Ni(x) are the shape function of the current macroscopic el-
ement, γ (xi ) are the values of γ at the nodes surrounding
the point x. This relation can also be applied to microscopic
quantities as soon as the unit cell, resized and translated to

its real location and size, is mapped onto the macroscopic
mesh. For instance:

ε(x,y) = ε(x,x/η) =
∑

i

ε(xi ,x/η)Ni(x)

=
∑

i

A(x/η) : E(xi )Ni(x) = A(x/η) : E(x). (138)

This kind of relations can be generalized and extended in
non-linear cases like in plasticity or visco-plasticity.

One major advantages of using FE2 techniques is that
the required estimations of A (that are very difficult to esti-
mate in non-linear cases) have already been implicitly com-
puted during the FE2 analysis. Another advantage is that the
computation of re-localized values can be made a posteri-
ori in a post-processor, since it only requires already com-
puted information. It is then possible to restrict this extra-
computation to critical zones of the structure.
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Fig. 31 Comparison between
the reference radial inelastic
strain in the reference
calculation and in the
re-localization after the FE2

analysis

From a practical and programming point of view, the re-
localization is performed by three steps∼:

1 - map the unit cell onto the global mesh at its real location,
2 - extract the microstructural information from all integra-

tion points near x, compute nodal values,
3 - compute the re-localized component using (138).

In Feyel [61], it was shown how continuity of the final
local fields is automatically enforced when changing the po-
sition from a unit cell to the neighbouring one.

Figure 28 to Fig. 31 show some application results to
the example of a compressor bling treated in Sect. 7.4. The
same macroscopic mesh and mesh of the FE unit cell are
used (Fig. 7). However, in the present case, in order to ren-
der more difficult the local stress recovery process, we con-
sider much larger fibre sizes (of the order of 2 millimeters).
Figure 28 presents the mesh of the complete structure (all
fibres meshed) that serve for the reference computation and
the subsequent comparisons. Figure 29 illustrates an exam-
ple of obtained fields, the accumulated visco-plastic strain
in Titanium (fibres are still elastic).

Figure 30 shows the σ11 (radial) stress field in the com-
posite region of the component after using the FE2 technique
(only the overall coarse mesh and the unit cell shown in
Fig. 7) and the recovery by the post-processing described
just above. It indicates the perfect continuity of the field be-
tween the various cells of the recovery.

One may observe that stresses are relaxed in fibres, due
to the partial failure of some fibre/matrix interfaces. This is
due to the completely coupled damage analysis performed
in that example, in which the interface damage behaviour is

modelled by cohesive elements. Figure 30b shows the corre-
sponding localised damage state, still obtained by the same
interpolation technique.

The comparison between the re-localized fields and the
ones obtained in the reference solution has been made along
the radial line drawn in Fig. 28 (third line of fibres). Fig-
ure 31 shows the comparison for the component ε

p

11 of the
visco-plastic strain. One may observe a very good compari-
son, except for the extreme positions (right and left) at which
are present edge effects, discussed in the section just above.

9 Conclusions

There exist many methods for the multiscale analysis of
composites. They range from analytical methods, semi-
analytical ones to purely numerical ones. These methods
have been reviewed in this paper. In particular asymptotic
analysis, mean field approaches, transformation field analy-
sis and different variants of it, sequential multiscale pro-
cedures, especially multiscale FE methods, have been ad-
dressed in detail. Examples are shown, and some compar-
isons which may help the reader to choose the most appro-
priate method for his purpose. Recovery methods after the
component analysis have also been addressed and several
examples have been shown. This aspect, essential in a mul-
tiscale procedure, is often neglected.
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