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Abstract This paper focuses on discrete and continuous ad-
joint approaches and direct differentiation methods that can
efficiently be used in aerodynamic shape optimization prob-
lems. The advantage of the adjoint approach is the compu-
tation of the gradient of the objective function at cost which
does not depend upon the number of design variables. An
extra advantage of the formulation presented below, for the
computation of either first or second order sensitivities, is
that the resulting sensitivity expressions are free of field in-
tegrals even if the objective function is a field integral. This
is demonstrated using three possible objective functions for
use in internal aerodynamic problems; the first objective is
for inverse design problems where a target pressure distri-
bution along the solid walls must be reproduced; the other
two quantify viscous losses in duct or cascade flows, cast as
either the reduction in total pressure between the inlet and
outlet or the field integral of entropy generation. From the
mathematical point of view, the three functions are defined
over different parts of the domain or its boundaries, and
this strongly affects the adjoint formulation. In the second
part of this paper, the same discrete and continuous adjoint
formulations are combined with direct differentiation meth-
ods to compute the Hessian matrix of the objective func-
tion. Although the direct differentiation for the computation
of the gradient is time consuming, it may support the ad-
joint method to calculate the exact Hessian matrix compo-
nents with the minimum CPU cost. Since, however, the CPU
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cost is proportional to the number of design variables, a well
performing optimization scheme, based on the exactly com-
puted Hessian during the starting cycle and a quasi Newton
(BFGS) scheme during the next cycles, is proposed.

1 Introduction

Historically, the first study on the inverse design of an aero-
dynamic profile that produces a desired pressure distribution
was presented by Lighthill, [1]. His method was based on
the conformal mapping of the airfoil to a unit circle and was
restricted to incompressible flows, although an extension to
compressible flows was later presented by McFadden, [2].
Nowadays, the advent of powerful computers and the avail-
ability of flow analysis software with reasonable CPU cost,
allows aerodynamic shape optimization problems for com-
plex configurations (blades, wings or, even, an entire air-
craft) at various (from incompressible to supersonic) flow
conditions to run routinely.

The design of optimally shaped aerodynamic config-
urations based on an available analysis software (flow
solver) and predefined targets (objective functions) can
be solved using stochastic [3–6] or deterministic [7–11]
search algorithms, without excluding any hybridization of
them. Stochastic optimization methods, either population-
or individual-based ones, are well known for their ability to
capture the global optimal solution without being trapped
into local optima. The price to pay is the higher CPU cost
which can be reduced only through the smart use of sur-
rogate analysis tools [12–15]. Deterministic optimization
methods, cast in the form of gradient- and, occasionally
Hessian-driven algorithms, are efficient and effective tools
provided that a non-misleading starting solution is avail-
able and the fitness landscape is not multimodal close to the
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sought optimal solution. To employ any descent or ascent
method, procedures to compute first and second order sen-
sitivities of the objective function with respect to the design
variables are needed. It should be stressed that this paper is
dealing exclusively with exact gradient and Hessian compu-
tations, unless stated otherwise.

The objective function gradient required can be com-
puted using several algorithms, most of which are quite
costly, since their computational cost is proportional to the
number of design variables. Finite differences, direct dif-
ferentiation and the complex variable approach are among
them; they are all briefly reported in subsequent sections,
not only in the sake of completeness but since these consti-
tute auxiliary supporting elements of the proposed method.
Compared to the aforementioned techniques, the adjoint
method (which is where this paper is mostly focusing on)
computes the objective function gradient at the cost of a sin-
gle flow analysis, irrespective of the number of design vari-
ables. The adjoint approach can be devised either in discrete
or continuous form. In general, the discrete method in which
the adjoint equations are derived from the discretized flow
equations, is not that sensitive to the type of objective func-
tion used. In contrast, the continuous method is objective
function sensitive and customized developments should be
made whenever the objective function changes (being either
a field integral, a boundary integral along the solid walls or
a boundary integral at the inlet and outlet, etc.). Through-
out this paper, discrete and continuous adjoint variants are
developed and exposed in parallel.

Lions [16] was the first to handle an inverse design prob-
lem as a control problem, where the parameterized shape
of an aerodynamic body controlled the value of a func-
tion measuring the shape efficiency. The adjoint approach to
aerodynamic design was proposed by Pironneau, [17, 18],
restricted to potential flows only. The theory was then ex-
tended by Jameson to transonic flows governed by invis-
cid, [19–21], and viscous flow equations, [22]. A detailed
overview of existing adjoint methods, with possible links
to the formulation presented in this paper is provided else-
where in this paper (on a section-by-section basis).

This paper is structured in a way that allows the au-
thor to follow the adaptation of the proposed (discrete and
continuous) adjoint approaches to three different problems:
(a) inverse design of aerodynamic shapes where the target
is a known pressure distribution, (b) optimization of a duct
or cascade for minimum total pressure losses through it and
(c) optimization of the same configuration targeting at min-
imum entropy generation within the flow field. The last two
objective functions aim at minimizing viscous losses by han-
dling different flow quantities and are shown to perform sim-
ilarly. With the continuous adjoint approach, since the three
functionals are defined over a different part of the domain

(along the solid wall boundaries, at the inlet–outlet bound-
aries and over the flow domain, respectively), different for-
mulations (adjoint equations, boundary conditions, sensitiv-
ity derivatives) arise; these are all discussed below, in detail.
Irrespective of the objective function, a common feature of
the continuous adjoint variants presented is that the expres-
sion for the sensitivities does not include field integrals; this
is numerically convenient, as discussed below.

The second part in this paper is concerned with the com-
putation of second order sensitivities. It is known that the
relevant literature is extremely poor, although the knowledge
of the (exact) Hessian matrix allows the use of the very effi-
cient Newton method; in the majority of papers dealing with
the Hessian in the area of aerodynamic shape optimization,
this is approximated through various methods in combina-
tion with a quasi Newton method. Four approaches are pre-
sented, both in their discrete and continuous form, derived
from all possible combinations of the direct differentiation
and the adjoint approach.

Without loss in generality, the demonstrated applications
are all in the field of turbomachines (design of compressor
and turbine cascade airfoils).

2 Computation of the Gradient of an Objective
Function

In this section, an overview of the most widely used methods
to compute the gradient of an objective function F (a scalar
one in single-objective optimization or a vector one with L

components in multi-objective optimization) with respect to
the design variables bi, (i = 1, . . . ,N) is presented. In aero-
dynamic shape optimization problems, F or F1, . . . ,FL de-
pend on the flow (state) variables Uk that satisfy the flow
(state) equations Rm = 0, (k,m = 1, . . . ,M). Here, M is
the product of the number of grid nodes and that of flow
variables per grid node, i.e. the total number of state vari-
ables. Since the present paper is concerned with the adjoint
approach (primarily) and the direct differentiation method
(secondarily), both will be presented briefly at the end of this
section; in subsequent sections, however, thorough analyses
of their (discrete and continuous) variants can be found.

2.1 The Finite Difference Method

The simplest way to compute function derivatives is through
finite differences. δF

δbi
can be approximated by the central fi-

nite difference scheme

δF

δbi

∼= F(b1, . . . , bi + ε, . . . , bN ) − F(b1, . . . , bi − ε, . . . , bN )

2ε
,

(1)

where the outcome must become insensitive to the selected
value of ε. The CPU cost for the computation of sensitivities
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with respect to the N design variables is 2N function calls,
i.e. 2N calls to the (flow) analysis software. The method
is fully amenable to parallelization since function computa-
tions can be carried out concurrently. The cost can be halved
by using the one-sided, first order finite difference scheme,
namely

dF

dbi

∼= F(b1, . . . , bi + ε, . . . , bN) − F(b1, . . . , bi, . . . , bN)

ε
.

(2)

Accuracies in the computed function and gradient values are
strongly linked. This might become a huge problem in some
aerodynamic design applications where turbulent flows over
extremely stretched computational grids are modeled; if ad-
equate convergence of the flow equations is not achievable,
the accuracy in the gradient, computed through (1) and (2),
becomes questionable.

Note that, throughout this paper, the (total) derivative of
F with respect to bi will be denoted by δF

δbi
(instead of dF

dbi
)

whereas ∂F
∂bi

stands for the direct or partial sensitivities of F

with respect to bi .

2.2 The Complex Variable Method

An alternative, well performing method to compute the gra-
dient of an objective function is the so-called complex vari-
able method, [23–28].

Although the objective function F is a function with ex-
clusively real arguments, we may consider it to accept com-
plex arguments. So, in case of a single argument x, this can
be expanded in a Taylor series as follows

F(x + iε) = F(x) + iε
∂F

∂x
+ O(ε2). (3)

Equation (3) can be solved for the imaginary part to get

∂F

∂x
= lim

ε→0

imag(F (x + iε))

ε
, (4)

where imag( ) denotes the imaginary part of a complex
quantity. The real part of F is the function value, computed
with truncation error of O(ε). The last expression can be
generalized to cover optimization problems with N design
variables, so

∂F

∂bi

∼= imag(F (bi + iε))

ε
. (5)

Note that a single call to function F (i.e. a single evalua-
tion) per partial derivative is required. Although the cost of
running a code with complex variables is higher, the use of
(5) outperforms that of (1). Compared to the finite differ-
ence method, the use of complex variables leads to deriva-
tives that are less sensitive to the value of ε. The complex
variable method can be used in multi-objective optimization
problems as well.

2.3 Automatic Differentiation

Starting from an existing source code which numerically
solves the state pde’s to compute the scalar or vector objec-
tive function value(s), an automatic differentiation software,
[29, 30], generates a new code which additionally computes
the δF

δbi
values, according to a set of linguistic and math-

ematical rules. On condition that the analysis software is
available as source code, the development cost of the opti-
mization method through automatic differentiation becomes
negligible, despite the high memory requirements, [31].

Two approaches to automatic differentiation i.e. the so-
called forward and reverse modes have been developed. Re-
search is now focusing on hybrid modes which combine the
best features of both. Both employ the chain rule to accumu-
late contributions to derivatives in a different manner. For
N independent variables (b1, . . . , bN ) and a scalar function
F (L = 1), the F value is considered to be the outcome of
m − N successive operations, each of which corresponds
to a single program instruction. These instructions generate
m − N intermediate (dependent) variables bN+1, . . . , bm.

The forward mode, [30], propagates derivatives of inter-
mediate variables with respect to the independent variables.
Let us consider the sequence of auxiliary operations (corre-
sponding to virtual code instructions)

bN+1 = fN+1 (b1, . . . , bN) ,

bN+2 = fN+2 (b1, . . . , bN+1) ,

...

bm = fm (b1, . . . , bm−1) ,

F = bm

which generate the desired response F . The forward mode
holds a storage location for all intermediate gradients (de-
noted by ∇bi ) which are computed by means of the chain
rule, as follows

bN+1 = fN+1 (b1, . . . , bN) ,

∇bN+1 =
N∑

i=1

δfN+1

δbi

ei,

bN+2 = fN+2 (b1, . . . , bN+1) ,

∇bN+2 =
N∑

i=1

δfN+2

δbi

ei + δfN+2

δbN+1
∇bN+1,

...

bm = fm (b1, . . . , bm−1) ,

∇bm =
N∑

i=1

δfm

δbi

ei +
m−1∑

i=N+1

δfm

δbi

∇bi,
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F ≡ bm,

∇F ≡ ∇bm,

where ei is the i-th column of the N × N unit matrix. In
the derivative code, with instructions in accordance with the
previous sequence of operations, the desired gradient is the
outcome of the last instruction (∇F ), obtained in the ex-
pense of considerable memory requirements.

In the reverse mode, a scalar derivative (denoted by b̄i )
is associated with each intermediate variable (i = N + 1,

. . . ,m); the new quantities are defined by

b̄i = δbm

δbi

.

By definition, b̄m ≡ 1. This definition is also extended to the
independent variables of the problem (i = 1, . . . ,N ). Ac-
cording to the chain rule, all but the m-th b̄i ’s, associated
with the dependent variables, can be computed using

b̄i =
m∑

j=i+1

δbm

δbj

δfj

δbi

=
m∑

j=i+1

b̄j

δfj

δbi

,

i = N + 1, . . . ,m − 1 (6)

whereas, for the independent variables, we may also write

b̄i =
m∑

j=N+1

δbm

δbj

δfj

δbi

=
m∑

j=N+1

b̄j

δfj

δbi

, i = 1, . . . ,N. (7)

From the algorithmic viewpoint, the reverse mode consists
of a forward and a backward sweep. During the forward
sweep, all dependent variables are computed and stored and
their derivatives initialized, i.e.

bi = fi (b1, . . . , bi−1) , i = N + 1, . . . ,m, (8)

b̄i = 0, i = 1, . . . ,m − 1, (9)

b̄m = 1. (10)

The reverse loop accumulates contributions to b̄i , i = m, . . . ,

N +1 and consists of two nested loops, which can be written
in pseudo-code as follows

do j = m,N + 1,−1

do i = 1, j − 1

b̄i = b̄i + b̄j
δfj

∂bi

enddo

enddo

There are many automatic differentiation tools available,
[32]. Among them, for either Fortran 77/90 or ANSI C/C++
codes, we briefly mention ADIFOR (Automatic Differen-
tiation of Fortran, [33]), TAMC (Tangent linear and Ad-
joint Model Compiler) or its successor TAF (Transforma-
tion of Algorithms in Fortran, [34]), DAFOR (Differential
Algebraic Extension of Fortran, [35]), GRESS (Gradient–
Enhanced Software System, [36]), Odyssée, [37], AD01,
[38], ADOL-F (Automatic Differentiation of FORTRAN
Codes, [39]), IMAS (Integrated Modeling and Analysis Sys-
tem, [40]), OPTIMA90, [41], ADIC (Automatic Differentia-
tion of C Programs, [42]), ADOL-C (Automatic Differentia-
tion of Algorithms written in C/C++, [43]).

2.4 Direct Differentiation

Direct differentiation is based on the computation of the gra-
dient of the state variables with respect to the design vari-
ables ( δUk

δbi
) and the application of the chain rule

δFl

δbi

= ∂Fl

∂bi

+ ∂Fl

∂Uk

δUk

δbi

(11)

to obtain the required gradient components of the objective
function(s). Direct differentiation can be applied in discrete
or continuous mode, as shown schematically below:
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According to the discrete direct differentiation method,
the state equations are first cast in discrete form, Rm = 0
and, then, differentiated to yield

δRm

δbi

= ∂Rm

∂bi

+ ∂Rm

∂Uk

δUk

δbi

= 0. (12)

The system of M × N equations, (12), must be solved
for δUk

δbi
and these values are introduced into (11), to com-

pute δFl

δbi
.

In the continuous direct differentiation method, differen-
tial equations and boundary conditions for δUk

δbi
are derived

starting from the state equations and their boundary condi-
tions. Let us assume that

L

(
δU

δbi

)
= φ, over �,

B2

(
δU
δbi

)
= ε, along S,

(13)

where S is the boundary of the flow domain �. Equa-
tions (13) must be discretized and solved (most likely with

the same numerical scheme used for the state equations) for
the nodal values of δUk

δbi
. Let us also assume that the objec-

tive functions Fl involve field and boundary integrals as well
as a term FG

l that depends exclusively on the sensitivities of
geometrical quantities. Then, δFl

δbi
can be symbolically ex-

pressed as

δFl

δbi

=
∫

�

γ
δU

δbi

d� +
∫

S

ζB1

(
δU

δbi

)
dS + δFG

l

δbi

, (14)

where γ and ζ are functions of geometrical quantities and
state variables and B1 is a differential operator. Once δUk

δbi

become available, δFl

δbi
can be deduced by numerically in-

tegrating (14). Practically, the discrete and continuous di-
rect differentiation methods have the same computational
cost.

2.5 The Adjoint Approach

The adjoint approach for the computation of the gradient of
Fl also appears in either discrete or continuous mode; both
are schematically shown below:

The discrete adjoint approach is based on properly de-
fined augmented functionals Faug,l . Their total derivatives
with respect to the design variables are expressed by intro-
ducing the adjoint variables (to be also referred to as costate
variables or Lagrange multipliers) 	ml as follows

δFaug,l

δbi

= δFl

δbi

+ 	ml

δRm

δbi

. (15)

Since δRm

δbi
= 0, the derivatives of Faug,l and those of Fl are

identical. Using (11) and (12), (15) yields

δFaug,l

δbi

= ∂Fl

∂bi

+ ∂Fl

∂Uk

δUk

δbi

+ 	ml

(
∂Rm

∂bi

+ ∂Rm

∂Uk

δUk

δbi

)
(16)

or

δFaug,l

δbi

= ∂Fl

∂bi

+ 	ml

∂Rm

∂bi

+
(

∂Fl

∂Uk

+ 	ml

∂Rm

∂Uk

)
δUk

δbi

. (17)



452 D.I. Papadimitriou, K.C. Giannakoglou

By satisfying the adjoint equations

∂Fl

∂Uk

+ 	ml

∂Rm

∂Uk

= 0 (18)

the derivatives of the augmented functionals are given by

δFaug,l

δbi

= ∂Fl

∂bi

+ 	ml

∂Rm

∂bi

. (19)

Compared to the discrete direct differentiation method, the
discrete adjoint approach requires the solution of (18), i.e.
M × L equations and, once the adjoint variables are avail-
able, δFl

δbi
is computed through (19). Consequently, in aero-

dynamic shape optimization problems, where the number of
design variables N is expected to be much greater than the
number of functionals, N � L, the gain from using the ad-
joint approach is clear.

In the continuous adjoint approach, according to (14), the
gradient of the augmented functionals Faug,l is formulated
as

δFaug,l

δbi

=
∫

�

γ
δU

δbi

d� +
∫

S

ζB1

(
δU

δbi

)
dS + δFG

l

δbi

−
∫

�

	

[
L

(
δU

δbi

)
− φ

]
d�

−
∫

S

(
B∗

1 	
)[

B2

(
δU

δbi

)
− ε

]
dS, (20)

where B∗
1 is a linear operator. Through the Gauss divergence

theorem and integration by parts, the second field integral is
transformed as

∫

�

	L

(
δU

δbi

)
d� =

∫

�

(L∗	)
δU

δbi

d�

+
∫

S

(C∗
1	)C2

(
δU

δbi

)
dS, (21)

where L∗ is the adjoint operator to L, [44], and C∗
1 ,C2 are

operators derived from integration by parts. If B∗
1 and B∗

2
satisfy

∫

S

(C∗
1	)C2

(
δU

δbi

)
dS =

∫

S

(B∗
2 	)B1

(
δU

δbi

)
dS

−
∫

S

(B∗
1 	)B2

(
δU

δbi

)
dS (22)

(20) is finally expressed as

δFaug,l

δbi

=
∫

�

(
γ − L∗	

) δU

δbi

d�

+
∫

S

(
ζ − B∗

2 	
)
B1

(
δU

δbi

)
dS

+
∫

�

	φd� +
∫

S

(B∗
1 	)εdS + δFG

l

δbi

. (23)

By selecting the adjoint variable to satisfy the field and
boundary adjoint equations

L∗	 = γ, other �,

B∗
2 	 = ζ, along S

(24)

the gradient of the objective functions is given by

δFl

δbi

=
∫

�

	φd� +
∫

S

(B∗
1 	)εdS + δFG

l

δbi

. (25)

The conclusion drawn is the same with that of the dis-
crete adjoint approach: if N � L, the continuous adjoint
approach considerably outperforms the direct differentiation
method. A comparison between the discrete and continuous
approach can be found in [45, 46].

3 First Order Sensitivities in Aerodynamic Shape
Optimization—Direct Differentiation and Adjoint
Approaches

3.1 State Equations

Depending on the application, the governing (state) equa-
tions to be satisfied in aerodynamic shape optimization
problems are either the Euler or the Navier–Stokes ones. For
turbulent flows, a turbulence model should be used as well.
In this section, the Favre averaged Navier–Stokes equations
along with the low-Reynolds Spalart–Allmaras turbulence
model are used, [47]. However, variations in turbulent vis-
cosity are omitted; although this may reduce the accuracy
of the computed objective function sensitivities, the conver-
gence of the optimization algorithm towards the optimum is
not deteriorated significantly.

The Navier–Stokes equations for a compressible viscous
fluid are cast in tensor form as

Rn = ∂Un

∂t
+ ∂f inv

nk

∂xk

− ∂f vis
nk

∂xk

= 0, (26)

where for inviscid flows the last term is omitted. For 3D
steady flows, where t is the pseudo-time, the conservative
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variables Un and the inviscid f inv
nk and viscous f vis

nk fluxes,
are given by

⎡

⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

ρ

ρu1

ρu2

ρu3

E

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎣

f inv
1k

f inv
2k

f inv
3k

f inv
4k

f inv
5k

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

ρuk

ρu1uk + pδk1

ρu2uk + pδk2

ρu3uk + pδk3

uk(E + p)

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎣

f vis
1k

f vis
2k

f vis
3k

f vis
4k

f vis
5k

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

0

τ1k

τ2k

τ3k

umτkm + qk

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(27)

According to the standard notation, uk , E = ρe + 1
2ρu2

k ,

τkm = μ(
∂uk

∂xm
+ ∂um

∂xk
) + λδkm

∂ul

∂xl
(λ = − 2

3μ, where μ is the

sum of molecular and turbulent viscosity) and qk = k ∂T
∂xk

stand for the velocity components, total energy per unit vol-
ume, viscous stresses and heat fluxes, respectively. Also, δkm

is the Kronecker symbol.
In the present method and software, a vertex-centered fi-

nite volume method is used for the discretization of (26). In-
viscid fluxes crossing the boundaries of the control volume
formed around grid node P are computed using the Roe’s
upwind scheme, [48]. So, the numerical inviscid flux asso-
ciated with the edge formed by nodes P and Q is given by

hn,PQ = 1

2

(
Ank,P Uk,L + Ank,QUk,R

)

− 1

2
|Ank,PQ| (Uk,L − Uk,R

)
, (28)

where

Ankl = ∂f inv
nl

∂Uk

,

(29)
Ank = Anklnl

nl being the unit vector which is normal to each segment
defining the finite volume boundary. Second order accuracy
is obtained using appropriate Taylor expansions for Uk,L

and Uk,R , based on Uk,P , Uk,Q and the local gradients of
Uk , Fig. 1.

Equations (26) are then discretized, at vertex P as

Q(P)∑

Q=1

hn,PQ = 0, (30)

where Q(P ) is the number of the neighbouring nodes to P .

Fig. 1 Grid edge PQ and the associated finite volume boundary (i.e.
the interface of the finite volumes defined around grid nodes P and Q,
dotted line). A 1D Riemann problem is solved between the left (L) and
right (R) states, which are defined using the P , Q nodal values and
gradients of state variables

The computation of viscous fluxes is straightforward, by
considering a linear distribution of Uj over any grid cell,
an assumption that leads to constant gradient within each
grid cell (unstructured grids) or central differences (struc-
tured grids).

3.2 Inverse Design Using the Euler Equations

In most inverse design problems, the objective function to be
minimized is defined as the overall deviation of the pressure
or pressure coefficient distribution of any candidate solution
from a desired (target) pressure p or pressure coefficient cp

distribution. The shape that reproduces the target distribu-
tion, is sought. The first adjoint formulation for transonic
flows developed by Jameson, [19], was, in fact, dealing with
inverse design problems.

Provided that the target distribution is based on pressure,
the objective function may be defined as

F = 1

2

∫

Sw

(p − ptar )
2dS (31)

or

F = 1

2

∫

Sw

(cp − cp,tar )
2dS. (32)

This form of F may be used in many aerodynamic shape
optimization problems such as the optimization of airfoils,
wings, blades, ducts, etc. [22, 49–51]. The target pressure
distribution should be known in advance but, in this paper,
we will refrain from discussing possible ways for defining
the target pressure distributions.

3.2.1 Discrete Direct Differentiation and Adjoint
Approaches

Either the direct differentiation or the adjoint approach, both
used in their discrete mode, require the computation of four
quantities: ∂Rm

∂bi
, ∂Rm

∂Uk
, ∂F

∂bi
and ∂F

∂Uk
, prior to calculating δF

δbi
,
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according to the theory presented in (2.5). The way these
quantities can be computed is exposed below.

Among the various methods to compute the nodal values
of ∂Rm

∂bi
, the use of finite differences (based on (28), where

the design variables are perturbed one by one), appears to
be a logical choice. Other possible approaches are the hand
differentiation, the automatic differentiation or the complex
variable method. The nodal values of ∂Rm

∂Uk
can be computed

using (30), by analytically differentiating it with respect to
the flow variables.

Concerning the direct sensitivities of F with respect to
the design and flow variables, we get (based on (31))

∂F

∂bi

= 1

2

∑

Sw

(p − ptar )
2 δ(S)

δbi

(33)

and

∂F

∂Uk

=
∑

Sw

(p − ptar )
δp

δUk

δUk

δbi

S, (34)

where S denotes the finite arc length (2D) or surface ele-
ment (3D) over the solid walls controlled by the design vari-
ables. All the aforementioned sensitivities ( ∂Rm

∂bi
, ∂Rm

∂Uk
, ∂F

∂bi

and ∂F
∂Uk

) can be computed in a straightforward manner, at
negligible CPU cost.

In this paper, we will refrain from discussing sensitivi-
ties of geometrical quantities with respect to the design vari-
ables, such as δ(S)

δbi
, etc. These sensitivities depend on the

selected parameterization; more on this topic can be found
in [50–52].

3.2.2 Continuous Direct Differentiation

The first order partial sensitivity of the Euler equations,
where the pseudo-time derivative has been omitted, (the ex-
tension to the Navier–Stokes equations is straightforward) is
zero, so

∂

∂bi

(
∂f inv

nk

∂xk

)
= 0. (35)

The two partial derivatives are interchangeable (just for this
reason, the partial ∂

∂bi
, instead of the total δ

δbi
, sensitivity

was used), thus

∂

∂xk

(
Anmk

∂Um

∂bi

)
= 0. (36)

Equation 36 is solved separately for each of the N nodal
sensitivities ∂Un

∂bi
. Then, the computation of δUn

δbi
is straight-

forward, based on the general expression

δ�

δbi

= ∂�

∂bi

+ ∂�

∂xl

δxl

δbi

(37)

written for � = Um. In conformity with the discretization of
the state equations, a Roe-like scheme is used for (36), as
well. At any node P , the discretized forms of (36) become

Q(P)∑

Q=1

gni,PQ = 0, (38)

where the flux “along” a segment PQ, (Fig. 1), is given by

ginv
ni,PQ = 1

2

(
Ank,P

∂Uk

∂bi

|L + Ank,Q

∂Uk

∂bi

|R
)

− 1

2
|Ank,PQ|

(
∂Uk

∂bi

|L − ∂Uk

∂bi

|R
)

. (39)

The boundary conditions imposed to (36) are also in con-
formity with those imposed to the flow equations. For in-
stance, for subsonic flows in ducts or cascades (where the
stagnation pressure pt , temperature Tt and flow angle α

at the inlet, I , and the static pressure p at the outlet, O ,
are fixed), ∂pt

∂bi
|I = 0, ∂Tt

∂bi
|I = 0, ∂α

∂bi
|I = 0 and ∂p

∂bi
|O = 0,

i = 1, . . . ,N , should be enforced as boundary conditions.

The numerical fluxes gni = ∂f inv
nk

∂bi
nk across any solid

wall element are computed by taking into account the no-
penetration condition uknk = 0 which, in a 3D case, leads
to

⎡

⎢⎢⎢⎢⎢⎢⎣

ginv
1i

ginv
2i

ginv
3i

ginv
4i

ginv
5i

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

0

n1

n2

n3

0

⎤

⎥⎥⎥⎥⎥⎥⎦

∂p

∂bi

−

⎡

⎢⎢⎢⎢⎢⎢⎣

1

u1

u2

u3
E+p

ρ

⎤

⎥⎥⎥⎥⎥⎥⎦

× ρ

(
uk

δnk

δbi

+ ∂uk

∂xl

δxl

δbi

nk

)
. (40)

3.2.3 The Continuous Adjoint Approach

According to Sect. 2.5, the adjoint variables or Lagrange
multipliers 	n are introduced in the expression defining the
variation in Faug as follows

δFaug

δbi

= δF

δbi

+
∫

�

	n

δRinv
n

δbi

d�. (41)

However, instead of using the (zero) total sensitivity of the
flow equations, the (also zero) partial sensitivity of Rinv

n (i.e.
∂Rinv

n

∂bi
) can be used. As it will be proved later on, this leads to

sensitivities of same accuracy through less demanding com-
putations. So, instead of (41), let

δFaug

δbi

= δF

δbi

+
∫

�

	n

∂Rinv
n

∂bi

d�. (42)
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Partial derivatives with respect to the design variables and
grid coordinates may be interchanged, yielding

∫

�

	n

∂Rinv
n

∂bi

d� =
∫

�

	n

∂

∂bi

(
∂f inv

nk

∂xk

)
d�

=
∫

�

	n

∂

∂xk

(
∂f inv

nk

∂bi

)
d�. (43)

Integration by parts and the application of the Gauss diver-
gence theorem in (43) gives

∫

�

	n

∂Rinv
n

∂bi

d� = −
∫

�

∂	n

∂xk

∂f inv
nk

∂bi

d�

+
∫

S

	n

∂f inv
nk

∂bi

nkdS. (44)

The first term on the r.h.s. is further analyzed as

−
∫

�

∂	n

∂xk

∂f inv
nk

∂bi

d� = −
∫

�

Anmk

∂	n

∂xk

∂Um

∂bi

d�. (45)

The second integral on the r.h.s of (44) splits into two in-
tegrals, one over the wall boundary and another at the in-
let/outlet of the domain, as follows

∫

S

	n

∂f inv
nk

∂bi

nkdS =
∫

Sw

	n

∂f inv
nk

∂bi

nkdS

+
∫

Si,o

	n

∂f inv
nk

∂bi

nkdS. (46)

Along the solid wall boundaries, f inv
nk depends on bi both

directly and indirectly (i.e. through the corresponding move-
ment δxl of solid wall nodes), so the total sensitivity of f inv

nk

is given by (37) for � = f inv
nk . Using (37), the first integral

on the r.h.s of (46 is expressed as

∫

Sw

	n

∂f inv
nk

∂bi

nkdS =
∫

Sw

	n

δf inv
nk

δbi

nkdS

−
∫

Sw

	n

∂f inv
nk

∂xl

δxl

δbi

nkdS. (47)

The first integral on the r.h.s. of (47) yields

∫

Sw

	n

δf inv
nk

δbi

nkdS =
∫

Sw

	n

δ
(
f inv

nk nkdS
)

δbi

−
∫

Sw

	nf
inv
nk

δ (nkdS)

δbi

. (48)

From the definition of the inviscid fluxes, (27), and consid-
ering the no-penetration condition for the velocity along the

solid walls, we get

⎡

⎢⎢⎢⎢⎢⎢⎣

f inv
1k

f inv
2k

f inv
3k

f inv
4k

f inv
5k

⎤

⎥⎥⎥⎥⎥⎥⎦
nk|Sw =

⎡

⎢⎢⎢⎢⎢⎢⎣

ρuknk

ρuknku1 + pδk1nk

ρuknku2 + pδk2nk

ρuknku3 + pδk3nk

uknk(E + p)

⎤

⎥⎥⎥⎥⎥⎥⎦

Sw

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0

pn1

pn2

pn3

0

⎤

⎥⎥⎥⎥⎥⎥⎦

Sw

= p

⎡

⎢⎢⎢⎢⎢⎢⎣

N1

N2

N3

N4

N5

⎤

⎥⎥⎥⎥⎥⎥⎦

Sw

. (49)

Consequently,

δ

δbi

(
f inv

nk nk|Sw

)
= δp

δbi

Nn + p
δNn

δbi

. (50)

Note that, in viscous flows, (50) is still valid since uk = 0.
Using (50), (48) becomes

∫

Sw

	n

δf inv
nk

δbi

nkdS =
∫

Sw

	k+1nk

δp

δbi

dS

+
∫

Sw

	k+1p
δ (nkdS)

δbi

−
∫

Sw

	nf
inv
nk

δ (nkdS)

δbi

=
∫

Sw

	k+1nk

δp

δbi

dS +
∫

Sw

(
	k+1p − 	nf

inv
nk

) δ (nkdS)

δbi

.

(51)

By means of (43) to (51) the final expression for the integral
that appears in (42) becomes

∫

�

	n

∂Rinv
n

∂bi

d� = −
∫

�

Anmk

∂	n

∂xk

∂Um

∂bi

d�

+
∫

Si,o

	n

∂f inv
nk

∂bi

nkdS

+
∫

Sw

	k+1nk

δp

δbi

dS

+
∫

Sw

(
	k+1p − 	nf

inv
nk

) δ (nkdS)

δbi

−
∫

Sw

	n

∂f inv
nk

∂xl

δxl

δbi

nkdS. (52)



456 D.I. Papadimitriou, K.C. Giannakoglou

The total sensitivities of the objective function of (31) are

δF

δbi

= 1

2

∫

Sw

(p − ptar )
2 δ(dS)

δbi

+
∫

Sw

(p − ptar )
δp

δbi

dS. (53)

Combining (52) and (53), the corresponding sensitivities of
Faug are expressed as

δFaug

δbi

= 1

2

∫

Sw

(p − ptar )
2 δ(dS)

δbi

+
∫

Sw

(p − ptar )
δp

δbi

dS

︸ ︷︷ ︸
SWCR

∫

�

Anmk

∂	n

∂xk

∂Um

∂bi

d�

︸ ︷︷ ︸
FAE

+
∫

Si,o

	n

∂f inv
nk

∂bi

nkdS

︸ ︷︷ ︸
IOBC

+
∫

Sw

	k+1nk

δp

δbi

dS

︸ ︷︷ ︸
SWCR

+
∫

Sw

(
	k+1p − 	nf

inv
nk

) δ (nkdS)

δbi

−
∫

Sw

	n

∂f inv
nk

∂xl

δxl

δbi

nkdS. (54)

In (54), the field integral depending on the partial sensitivi-
ties of the flow variables ∂Um

∂bi
(marked with FAE) is elimi-

nated by satisfying the field adjoint equations

−Anmk

∂	n

∂xk

= 0. (55)

Like the flow equations, (55) are solved using a pseudo time-
marching scheme, by introducing a pseudo-temporal term,
as follows

∂	m

∂t
− Anmk

∂	n

∂xk

= 0. (56)

A Roe-like scheme is used for the discretization of the ad-
joint equations. According to this scheme, the adjoint fluxes
crossing the boundaries of finite volumes, Fig. 1, are given
by

tn,PQ(P ) = 1

2
Akn,P

(
	k,L + 	k,R

)

+ 1

2
|Akn,PQ| (	k,L − 	k,R

)
,

(57)

tn,PQ(Q) = 1

2
Akn,Q

(
	k,L + 	k,R

)

+ 1

2
|Akn,PQ| (	k,L − 	k,R

)
,

where 	k,L and 	k,R are expressed in terms of the nodal
values and gradients of 	k . The wall boundary conditions
for the adjoint equations are derived from (54), by eliminat-
ing boundary integrals that depend on the sensitivities of the
flow variables (marked with SWCR). So, the adjoint bound-
ary condition over the wall boundary yields

p − ptar + 	k+1nk = 0. (58)

Equation 58 closely resembles the no-penetration condi-
tion along solid walls. When the optimal geometry is ap-
proached, p tends to ptar and (58) postulates that the adjoint
velocity 	k+1nk normal to the wall vanishes.

The inlet/outlet conditions are derived by eliminating the
integrals marked with IOBC from (54). By taking into ac-
count that QI and QO flow variables are fixed at the in-
let and outlet, respectively, the elimination of the aforemen-
tioned integrals leads to 5 − QI (or 4 − QI in 2D flows)
fixed adjoint variables at the inlet and 5 − QO (or 4 − QO )
at the outlet. The remaining ones are extrapolated from the
interior of the flow domain.

After eliminating the field and boundary integrals de-
pending on ∂Um

∂bi
, the remaining terms in (54) provide the

sensitivity derivatives of the objective function as follows

δFaug

δbi

= 1

2

∫

Sw

(p − ptar )
2 δ(dS)

δbi

+
∫

Sw

(
	k+1p − 	nf

inv
nk

) δ (nkdS)

δbi

−
∫

Sw

	n

∂f inv
nk

∂xl

δxl

δbi

nkdS. (59)

This expression is free of field integrals of any derivative
of geometrical quantities with respect to the design vari-
ables (the so-called geometrical sensitivities). This is advan-
tageous since, repetitive remeshing processes within each
optimization cycle would be needed otherwise. The compu-
tation of sensitivities is, thus, faster and more precise. Ac-
cording to (59), the sensitivities of the objective function are
expressed exclusively in terms of boundary integrals along
the solid walls.

3.2.4 Inverse Design with Targets other than Pressure

In the continuous adjoint approach for inverse design prob-
lems, whenever the objective function does not depend on
pressure, the derivation of the adjoint boundary conditions
along the wall is not straightforward. Using a pressure-based
functional, such as the one of (31), and the Euler equations
as state equations, the use of the Gauss divergence theo-
rem in the development of δFaug

δbi
leads to an integral over

the solid walls that depends on the pressure sensitivity with
respect to the design variables. In these integrals, the effect
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of pressure sensitivity is eliminated by satisfying the adjoint
wall boundary conditions, (58). On the opposite, if F is de-
fined in terms of velocities, i.e.

F = 1

2

∫

Sw

(u − utar )
2dS, (60)

where utar (S) is the target velocity distribution, a relation
similar to (58) cannot be derived and integrals containing

Au

δu

δbi

+ Ap

δp

δbi

(61)

cannot be eliminated. A way to overcome this problem has
been proposed in [53], where additional sets of adjoint vari-
ables are introduced over the wall boundary. A straightfor-
ward handling of the so-called inadmissible objective func-
tions, such as that of (60), can be found in [54], where the
sensitivity of pressure is associated with the sensitivities of
other flow variables. With the objective function of (60), the
correlation between pressure and velocity sensitivities, [54],

δp

δbi

= −ρu
δu

δbi

(62)

can be used, leading to a new adjoint boundary condition at
the wall, namely

(u − utar ) − ρu	k+1nk = 0. (63)

3.2.5 An Alternative Continuous Adjoint Approach
Based on Metrics

An alternative continuous adjoint approach can be devel-
oped starting from (41), instead of (42). Without loss in
generality, using the standard transformation (xi ↔ ξ i ) as-
sociated with structured grids, according to which ∂�

∂xk
=

∂�
∂ξm

∂ξm

∂xk
, we get

δ

δbi

(
∂�

∂xk

)
= ∂

∂xk

(
δ�

δbi

)
+ ∂�

∂ξm

δ

δbi

(
∂ξm

∂xk

)
, (64)

where ∂ξm

∂xk
are the grid metrics. Since the transformed grid

is invariant with respect to design variables, in (64), the re-
lation δ

δbi
( ∂�
∂ξm ) = ∂

∂ξm ( δ�
δbi

) was used. Then,

∫

�

	n

δ

δbi

(
∂f inv

nk

∂xk

)
d� =

∫

�

	n

∂

∂xk

(
δf inv

nk

δbi

)
d�

+
∫

�

	n

∂f inv
nk

∂ξm

δ

δbi

(
∂ξm

∂xk

)
d�.

(65)

In this case, the sensitivities of Faug are given by

δFaug

δbi

= 1

2

∫

Sw

(p − ptar )
2 δ(dS)

δbi

+
∫

Sw

(p − ptar )
δp

δbi

dS

︸ ︷︷ ︸
SWCR

−
∫

�

Anmk

∂	n

∂xk

∂Um

∂bi

d�

︸ ︷︷ ︸
FAE

+
∫

Si,o

	n

∂f inv
nk

∂bi

nkdS

︸ ︷︷ ︸
IOBC

+
∫

Sw

	k+1nk

δp

δbi

dS

︸ ︷︷ ︸
SWCR

+
∫

Sw

(
	k+1p − 	nf

inv
nk

) δ (nkdS)

δbi

+
∫

�

	n

∂fnk

∂ξm

δ

δbi

(
∂ξm

∂xk

)
d�. (66)

The elimination of terms marked with FAE, SWCR and
IOBC gives rise to the same field adjoint equations and
boundary conditions as those presented in the previous sec-
tion. However, the gradient of the objective function is ex-
pressed differently, as follows

δFaug

δbi

= 1

2

∫

Sw

(p − ptar )
2 δ(dS)

δbi

+
∫

Sw

(
	k+1p − 	nf

inv
nk

) δ (nkdS)

δbi

+
∫

�

	n

∂fnk

∂ξm

δ

δbi

(
∂ξm

∂xk

)
d�. (67)

In contrast to (59), (67) contains a field integral with the sen-
sitivities of grid metrics. In order to compute these sensitiv-
ities at any optimization cycle, a finite difference approach
based on the generation of new meshes as many times as the
number of the design variables should be used. This makes
this approach quite costly and prone to numerical errors, due
to the selection of the finite difference step value. In a sub-
sequent section, a brief presentation of the transformation of
the field integral of metrics to a boundary integral, see [55],
is presented.

3.2.6 Inverse Design—Applications

The adjoint formulations presented in the previous sections
are demonstrated by performing the inverse design of a 2D
compressor and a 2D turbine cascade. In both cases, the tar-
get is a known pressure distribution along the airfoil con-
tours. First order sensitivity derivatives computed using the
adjoint approach are compared with finite differences. Based
on the so-computed sensitivities, different gradient-based al-
gorithms are used and their convergence behaviours are plot-
ted and compared. Finally, the optimal airfoils are compared
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Fig. 2 Inverse design of a 2D turbine cascade, left, and a 2D com-
pressor cascade, right. First order sensitivities of the objective function
computed using the metrics-free continuous adjoint approach, (59),
a metrics-based continuous adjoint approach based on metrics, (67),

the direct differentiation method, (53) and a central finite difference
scheme. The first half values correspond to the design variables of the
suction side and the rest to those of the pressure side

Fig. 3 Inverse design of a 2D
turbine cascade, left, and a 2D
compressor cascade, right.
Reduction rate of the objective
function value using three
optimization algorithms;
steepest descent,
Fletcher–Reeves conjugate
gradient and BFGS quasi
Newton algorithm

with reference shapes, i.e. those used to derive the target
pressure distributions.

The blade airfoil shapes are parameterized using Bézier-
Bernstein polynomials. For the turbine cascade, each airfoil
side is parameterized using eight control points. The first
two and last two control points per blade airfoil side are kept
constant resulting to a total number of eight design variables.
The camber and stagger angles are fixed to 60◦ and 25◦, re-
spectively; the pitch-to-chord ratio is equal to 0.8. The inlet
flow is axial and the exit isentropic Mach number is equal
to 0.7.

For the compressor cascade, the airfoil suction and pres-
sure sides are formed by two arcs, the stagger angle is 30◦
and the pitch-to-chord ratio is 0.6. The inlet flow angle and
the exit isentropic Mach number are equal to 56◦ and 0.36,
respectively. The two airfoil sides are parameterized using
seven control points each. Here, also, the first two and last
two control point points at each side are fixed, so the total
number of design variables is six.

The first order sensitivity derivatives of F , computed us-
ing four different approaches are plotted in Fig. 2. The four
curves are almost identical, proving that all four approaches
are equally accurate. However, these approaches have differ-
ent computational costs, since a different number of equiv-
alent flow solutions is required by each of them. The most

costly algorithm is the finite difference scheme. It requires
2N calls to the flow solver. We recall that, at a preprocessing
level, a parametric study was necessary to select the proper
ε value. Note, also, that the convergence of the flow equa-
tions to machine accuracy is indispensable when computing
sensitivities through finite differences. The direct differenti-
ation method (numerical solution of (36) for ∂Uk

∂bi
) has only

half of the previous cost (i.e. N equivalent flow solutions)
and overcomes ambiguities related to the proper selection
of ε.

As already mentioned, the adjoint approaches are the
most efficient ones, since the CPU cost for the computation
of the first order sensitivities is almost twice that for solving
the flow equations. In Fig. 2 two adjoint approaches are pre-
sented. The metrics-based adjoint approach uses (67) and re-
quires some extra cost for remeshing the computational do-
main (2N mesh regenerations within bifurcated boundaries)
so as to compute metrics variations δ

δbi
(
∂ξm

∂xk
). The metrics-

free adjoint, i.e. the use of (59), avoids any auxiliary remesh-
ing and the so-induced inaccuracies and produces very ac-
curate sensitivities.

In Fig. 3, three gradient-based optimization algorithms
are used and compared in terms of the objective function
value reduction rate: steepest descent, the Fletcher–Reeves
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Fig. 4 Inverse design of a 2D
turbine cascade, left, and a 2D
compressor cascade, right.
Reduction rate of the first order
sensitivity values of the
objective function using three
gradient-based optimization
algorithms; steepest descent,
Fletcher–Reeves conjugate
gradient and BFGS quasi
Newton algorithm

Fig. 5 Inverse design of a 2D
turbine cascade, left, and a 2D
compressor cascade, right. First
order sensitivities of F computed
during the steepest descent
method (absolute values,
semi-log scale) at three cycles
within the optimization loop

conjugate gradient and the BFGS (Broyden, Fletcher, Gold-
farb, Shanno, [8]) quasi Newton algorithm. Using the same
three gradient-based algorithms, the reduction rate of the
first order sensitivity norm is shown in Fig. 4. Figures 3 and
4 reveal the same convergence behaviour. Steepest descent
(with an “optimal” fixed stepsize) is the slowest method. A
much better performance is that of conjugate gradient but
the quasi Newton method by far outperforms even the con-
jugate gradients.

The change in first order sensitivities during a steepest
descent based optimization is shown in Fig. 5. The first or-
der sensitivity values are reduced by almost three orders of
magnitude within one hundred cycles.

In Fig. 6, the initial, optimal and reference airfoils as well
as the corresponding pressure distributions are plotted. The
optimal shapes and the corresponding pressure distributions
shown herein have been obtained using the quasi Newton
algorithm. The optimal pressure distribution coincides with
the target one. The same conclusion can be drawn by com-
paring the optimal and reference airfoil contours, although
this was not (direct) objective of the inverse design prob-
lems.

3.3 Inverse Design Using the Navier–Stokes Equations

In viscous flows, the continuous adjoint approach requires

the development of the additional term
∫
�

	n
∂Rvis

n

∂bi
d�

which appears in (42). Equations (43) and (44) are still valid,

both for f inv
nk and f vis

nk . So,

−
∫

�

	n

∂

∂bi

(
∂f vis

nk

∂xk

)
d� = −

∫

�

	n

∂

∂xk

(
∂f vis

nk

∂bi

)
d�

=
∫

�

∂	n

∂xk

∂f vis
nk

∂bi

d�

−
∫

S

	n

∂f vis
nk

∂bi

nkdS. (68)

The first term on the r.h.s. of (68) is developed as

∫

�

∂	n

∂xk

∂f vis
nk

∂bi

d� =
∫

�

[
∂τkm

∂bi

(
∂	m+1

∂xk

+ um

∂	�

∂xk

)

+ ∂um

∂bi

τkm

∂	�

∂xk

+ ∂qk

∂bi

∂	�

∂xk

]
d�,

(69)

where, in what follows, � = 4 for 2D flows and � = 5 for
3D flows. The partial sensitivities of the viscous stresses can
be written as

∂τkm

∂bi

= μ

[
∂

∂xm

(
∂uk

∂bi

)
+ ∂

∂xk

(
∂um

∂bi

)]

+ λδkm

∂

∂xl

(
∂ul

∂bi

)
(70)
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Fig. 6 Inverse design of a 2D
turbine cascade, top, and a 2D
compressor cascade, bottom.
Initial, optimal and reference
cascade airfoils and the
corresponding pressure
distributions. We recall that
reference airfoils are those used
to produce the target pressure
distributions

and the first part on the r.h.s. of (69), can be integrated by
parts. After rearranging the indices, we get

∫

�

∂τkm

∂bi

(
∂	m+1

∂xk

+ um

∂	�

∂xk

)
d�

=
∫

�

{
μ

[
∂

∂xm

(
∂uk

∂bi

)
+ ∂

∂xk

(
∂um

∂bi

)]

+ λδkm

∂

∂xl

(
∂ul

∂bi

)}(
∂	m+1

∂xk

+ um

∂	�

∂xk

)
d�

= −
∫

�

∂uk

∂bi

∂

∂xm

[
μ

(
∂	m+1

∂xk

+ um

∂	�

∂xk

+ ∂	k+1

∂xm

+ uk

∂	�

∂xm

)
+ λδkm

(
∂	l+1

∂xl

+ ul

∂	�

∂xl

)]
d�

+
∫

S

∂uk

∂bi

[
μ

(
∂	m+1

∂xk

+ um

∂	�

∂xk

+ ∂	k+1

∂xm

+ uk

∂	�

∂xm

)
+ λδkm

(
∂	l+1

∂xl

+ ul

∂	�

∂xl

)]
nmdS. (71)

The last term on the r.h.s. of (69) is also integrated by parts
to become
∫

�

∂qk

∂bi

∂	�

∂xk

d� =
∫

�

k
∂

∂xk

(
∂T

∂bi

)
∂	�

∂xk

d�

= −
∫

�

∂T

∂bi

∂

∂xk

(
k
∂	�

∂xk

)
d�

+
∫

S

∂T

∂bi

(
k
∂	�

∂xk

nk

)
dS. (72)

The second integral on the r.h.s. of (68) is written as

−
∫

S

	n

∂f vis
nk

∂bi

nkdS = −
∫

S

[
(	k+1 + uk	�)

∂τkm

∂bi

+ 	�τkm

∂uk

∂bi

+ 	�

∂qm

∂bi

]
nmdS.

(73)

The total first order sensitivities of the viscous stresses are
expressed using (37), for � = τkm. Also, the use of the iden-
tity τkmnknm = 0 leads to

δ(τkmnknm)

δbi

= δτkm

δbi

nknm + τkm

δ(nknm)

δbi

= 0. (74)

Using the equation of state p = RρT , the sensitivities of
temperature are written in terms of density and pressure sen-
sitivities as

∂T

∂bi

= − p

Rρ2

∂ρ

∂bi

+ 1

Rρ

∂p

∂bi

. (75)

Also, the sensitivities of the non-conservative flow vari-
ables [V1,V2,V3,V4,V5] = [ρ,u1, u2, u3,p] are expressed
in terms of those of the conservative ones Um as

∂Vk

∂bi

= ∂Vk

∂Um

∂Um

∂bi

. (76)
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Using (69) to (76), the variation in the viscous term, (68), is
finally given by

−
∫

�

	n

∂

∂bi

(
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nk
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)
d�

=
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+
∫

S

δuk

δbi

[
μ

(
∂	m+1

∂xk

+ um

∂	�

∂xk

+ ∂	k+1

∂xm

+ uk

∂	�
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)]
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+
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∫
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where

K1 = −T

ρ

∂

∂xj

(
k
∂	�

∂xj

)
,

Ki+1 = ∂

∂xj

[
μ

(
∂	j+1

∂xi

+ uj

∂	m

∂xi

+ ∂	i+1

∂xj

+ ui

∂	m

∂xj

)

(78)

+ λδkm

(
∂	k+1

∂xk

+ uk

∂	m

∂xk

)]
− τij

∂	�

∂xj

,

i = 1, . . . ,� − 2,

K� = 1

Rρ

∂

∂xj

(
k
∂	�

∂xj

)
.

The sensitivities of the inviscid and viscous parts together
with that of the objective function lead to the total sensitiv-
ity of Faug . Using (52), (53) and (77), the expressions for

the viscous fluxes and their variations and taking also into
account that the inlet/outlet nodal sensitivities δxl

δbi
are zero

as well as uk = 0 and δuk

δbi
= 0 over the walls, one gets

δFaug
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+
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+
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−
∫

Sw

	k+1

nk
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δ(nknm)

δbi
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+
∫

Sw
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nk
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nkdS

+
∫

Sw

	�

δ(qmnm)
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dS
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+
∫
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+
∫
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k
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nkdS
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+
∫

Si,o
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dS
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−
∫

Si,o
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The field integrals that depend on the variation in the flow
variables (FAE) produce the field adjoint equations

∂	m

∂t
− Anmk

∂	n

∂xk

− ∂Vk

∂Um

Kk = 0. (80)

The wall boundary integrals that depend on flow variable
sensitivities produce the adjoint boundary conditions. The
terms marked with SWCR1 lead to the adjoint velocity
boundary conditions. So, the elimination of the first two
SWCR1 integrals is possible by satisfying (58). On the
other hand, the third SWCR1 integral vanishes if the condi-
tions

	k+1 = cnk (81)

(k = 1, . . . ,� − 2) where c is a constant, are satisfied. The
satisfaction of both (58) and (81) leads to the boundary con-
ditions for the adjoint velocities (i.e. 	2, 	3 and 	4 in 3D)

	k+1 = −(p − ptar )nk. (82)

The boundary condition for the last adjoint variable (	�) is
derived by the elimination of those SWCR2 boundary inte-
grals that depend on δUk

δbi
. If, along the solid wall, the temper-

ature is fixed, the first term marked with SWCR2 vanishes,
since δT

δbi
= 0. For the second SWCR2 integral to vanish,

the condition 	� = 0 over the wall boundary should be im-
posed. For adiabatic walls, δ(qmnm)

δbi
= 0 and the second inte-

gral is zero, so the elimination of the first integral leads to
Neumann conditions for 	�, i.e. ∂	�

∂xi
ni = 0. We may sum-

marize these conditions as follows

T = const. ⇒ 	� = 0,

∂T

∂n
= 0 ⇒ ∂	�

∂n
= 0.

(83)

The adjoint boundary conditions at the inlet and outlet of
the domain result from the elimination of the five integrals
marked with IOBC in (79). These conditions are practically
determined by the first IOBC integral, as in the inviscid in-
verse design problems. The other integrals can be eliminated
since the spatial derivatives of the flow and adjoint variables
over the inlet and outlet vanish (flow uniformity).

The expression for the functional sensitivities is, finally,
given by
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= 1
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∫
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+
∫
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−
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nmdS

−
∫
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)
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nkdS

−
∫

Sw
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δ(nknm)

δbi

dS

+
∫

Sw

	n
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nk

∂xl
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δbi

nkdS +
∫

Sw

	�qm

δnm

δbi

dS.

(84)

Similarly to the equations governing inverse designs based
on the Euler equations, the expression of the sensitivity
derivatives is still free of field integrals. The use of (84) for
the computation of the gradient does not require auxiliary
grid generations to numerically compute field integrals. The
lack of field integrals of geometrical sensitivities and the ex-
clusive presence of boundary integrals considerably lowers
the CPU cost.

3.4 Shape Optimization for Minimum Viscous Losses

3.4.1 Minimization of Entropy Generation

A different functional which is appropriate for use in opti-
mization problems in internal aerodynamics (design of ducts
or turbomachinery cascades) is the one expressing the en-
tropy generation, throughout the flow domain due to viscous
stresses. This is expressed as

F =
∫

�

ρui

∂s

∂xi

d�, (85)
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where s is the (specific) entropy. Through the Gauss diver-
gence theorem and by taking into account the continuity
equation for compressible flows, F can be transformed to

F =
∫

Si

ρunsdS −
∫

So

ρunsdS, (86)

where un is the normal to the inlet/outlet boundary velocity.
Note that other integrals along the solid walls or periodic
boundaries, if any, vanish. As expected, (86) expresses the
difference in entropy between the inlet and outlet of the flow
domain.

According to [56–58], F can be transformed to a field
integral in terms of temperature T , stresses τkm and velocity
gradients, as follows

F =
∫

�

1

T
τkm

∂uk

∂xm

d�. (87)

The continuous adjoint formulation for this functional has
been presented by the authors in [59]. According to (87),
the sensitivity of F is written as

δF

δbi

=
∫

�

δ

δbi

(
1

T
τkm

∂uk

∂xm

)
d�

+
∫

�

1

T
τkm

∂uk

∂xm

δ(d�)

δbi

. (88)

The last integral on the r.h.s. of (88) can be treated in two
different ways. A first way is to keep it as a field integral.
A more appealing way of handling it is by transforming it
in such a way that the final expression of δF

δbi
does not de-

pend on sensitivities of internal grid coordinates, although
F itself is a field integral. This can be done by means of the
following equation

δ(d�)

δbi

= ∂

∂xl

(
δxl

δbi

)
d�. (89)

The proof of (89), for a 2D grid, follows. Although the
proof makes use of metrics, (89) is metrics-free and can
be generalized to any type of grid, either structured or un-
structured. d� is written in terms of the volume d�ξ de-
fined in the computational or transformed domain (ξ1, ξ2)
or (ξ1, ξ2, ξ3) as

d� = Jd�ξ , (90)

where J is the Jacobian of the grid transformation, given by

J = 1

6

∂xm

∂ξr

∂xp

∂ξj

∂xq

∂ξk
εrjkεmpq, (91)

where εrjk is the sign of the permutation (rjk) of (123). The
computational or transformed domain is absolutely invariant

to any variation in the design variables. From (91),
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which, using the identity
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becomes
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or, finally,
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= J
∂

∂xl

(
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. (95)

Then, according to (90), the sensitivity of d� is written as

δ(d�)

δbi

= δJ
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d�ξ = ∂
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(
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)
Jd�ξ

as was to be proved.
The two integrals on the r.h.s. of (88) can be developed

as follows
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and, based on (89),
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Through integration by parts and the Gauss divergence theo-
rem applied to the second and third terms of the first integral
on the r.h.s. of (96) and by taking into account the no-slip
condition, (88) can be written as
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Equations (98), (52) and (77) lead to the final expression for
δF
δbi

, namely

δF

δbi

= −
∫

�

1

T 2
τkm

∂uk

∂xm

∂T

∂bi

d�

︸ ︷︷ ︸
FAE

− 2
∫

�

∂

∂xm

(
1

T
τkm

)
∂uk

∂bi

d�

︸ ︷︷ ︸
FAE

− 2
∫

Sw

1

T
τkm

∂um

∂xl

δxl

δbi

nkdS

+
∫

Sw

1

T
τkm

∂uk

∂xm

δxl

δbi

nldS

−
∫

�

Anmk

∂	n

∂xk

∂Um

∂bi

d�

︸ ︷︷ ︸
FAE

+
∫

Si,o

	n

∂f inv
nk

∂bi

nkdS

︸ ︷︷ ︸
IOBC

+
∫

Sw

	k+1nk

δp

δbi

dS

︸ ︷︷ ︸
SWCR1

+
∫

Sw

(
	k+1p − 	nf

inv
nk

) δ (nkdS)

δbi

−
∫

Sw

	n

∂f inv
nk

∂xl

δxl

δbi

nkdS −
∫

�

∂Vk

∂Um

Kk

∂Um

∂bi

d�

︸ ︷︷ ︸
FAE

+
∫

Si,o

δuk

δbi

[
μ

(
∂	m+1

∂xk

+ um

∂	�

∂xk︸ ︷︷ ︸
IOBC...

+ ∂	k+1

∂xm

+ uk

∂	�

∂xm

)

︸ ︷︷ ︸
...IOBC...

+ λδkm

(
∂	l+1

∂xl

+ ul

∂	�

∂xl

)]
nmdS

︸ ︷︷ ︸
...IOBC

−
∫

Sw

(
∂uk

∂xl

δxl

δbi

)[
μ

(
∂	m+1

∂xk

+ um

∂	�

∂xk

+ ∂	k+1

∂xm

+ uk

∂	�

∂xm

)

+ λδkm

(
∂	l+1

∂xl

+ ul

∂	�

∂xl

)]
nmdS

+
∫

Sw

δT

δbi

k
∂	�

∂xk

nkdS

︸ ︷︷ ︸
SWCR2

+
∫

Sw

	k+1

nk

δ(τkmnknm)

δbi

dS

︸ ︷︷ ︸
SWCR1

−
∫

Sw

(
∂T

∂xl

δxl

δbi

)
k
∂	�

∂xk

nkdS

−
∫

Sw

	k+1

nk

τkm

δ(nknm)

δbi

dS

+
∫

Sw

	n

∂f vis
nk

∂xl

δxl

δbi

nkdS

+
∫

Sw

	�

δ(qmnm)

δbi

dS

︸ ︷︷ ︸
SWCR2

+
∫

Sw

	�qm

δnm

δbi

dS

+
∫

Sw

δT

δbi

k
∂	�

∂xk

nkdS

︸ ︷︷ ︸
IOBC

+
∫

Si,o

	k+1

nk

δ(τkmnknm)

δbi

dS

︸ ︷︷ ︸
IOBC

−
∫

Si,o

	�

δ(qmnm)

δbi

dS.

︸ ︷︷ ︸
IOBC

(99)

Integrals marked with FAE can be eliminated by satisfying
the field adjoint equations, namely

∂	m

∂t
− Anmk

∂	n

∂xk

− ∂Vk

∂Um

Kk − ∂Vk

∂Um

Lk = 0, (100)

where

L1 = − 1

ρT
τij

∂ui

∂xj

,

Li+1 = 2
∂

∂xj

(
μ

T
τij

)
, i = 1, . . . ,� − 2,

L� = 1

pT
τij

∂ui

∂xj

.

The elimination of terms marked with SWCR1 leads to ho-
mogeneous Dirichlet conditions for the adjoint velocity vari-
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ables over the solid walls

	i+1 = 0, i = 1, . . . ,� − 2 (101)

which are equivalent to the no-slip condition for the veloc-
ities (ui = 0). The boundary conditions for 	� at the wall
and all 	i ’s at the inlet and outlet boundaries result from the
elimination of terms marked with SWCR2 and IOBC, re-
spectively, and are the same to those used for inverse design
problems at viscous flows.

The remaining terms express the sensitivity derivatives of
F or Faug with respect to the design variables,

δFaug
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∫
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(102)

Once more, the gradient expression is free of field integrals,
leading to a more accurate and less computationally de-
manding algorithm, compared to adjoint formulations that
maintain the field integrals.

3.4.2 Minimization of Total Pressure Losses
in Ducts/Cascades

Aiming at the minimization of viscous losses, another suit-
able functional for shape optimization problems in internal
aerodynamics is the difference in total pressure between the
inlet and outlet of the flow domain, [60]. In [61, 62], com-
parisons of the two functionals that quantify viscous losses

(entropy generation and total pressure losses), using the dis-
crete and continuous approaches, have been presented by the
present authors.

The total pressure losses functional is defined as

F =
∫

Si

ptdS −
∫

So

ptdS. (103)

This form of F is not “directly” associated with any change
in the body shape, since the direct sensitivity of the inlet
and outlet boundary shapes (sensitivity of their nodal coor-
dinates) with respect to the design variables is zero. How-
ever, any change in the design variables and, thus, the aero-
dynamic shape results to changes in the flow variables (total
pressure) at the outlet which, certainly, affect F .

The sensitivity of F , (103), depends only on the sensi-
tivity of the outlet total pressure, since the inlet pt value is
fixed. Consequently, (103) becomes

δF

δbi

= −
∫

So

δpt

δbi

dS. (104)

Using (104), (52) and (77), the sensitivity of the new aug-
mented function can be expressed as
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(105)

It can be shown that the field adjoint equations and all
boundary conditions, apart from those imposed at the inlet
and outlet, are identical to those derived in the case of op-
timization targeting at minimum entropy generation. At the
inlet and outlet, the second IOBC integral is transformed
to

∫

Si,o

	n

∂f inv
nk

∂bi

nkdS =
∫

Si,o

	nAnmk

∂Um

∂bi

nkdS

=
∫
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	nPnq�qr P̄rm

∂Um

∂bi

dS

=
∫

Si,o

	nPnq�qr

∂Wr

∂bi

dS, (106)

where Pnq and P̄rm are formed by the right and left eigen-
vectors of Anmknk , respectively (PnqP̄qm = Inm) and �qr is
the diagonal matrix with the eigenvalues of Anmknk (with
Anmknk = Pnq�qr P̄rm). Wr denotes the characteristic flow
variables with δWr = P̄rmδUm.

The first IOBC integral along the outlet can be written
as
∫

So

δpt

δbi

dS =
∫

So

∂pt

∂Vn

Lnr

∂Wr

∂bi

dS, (107)

where Lnr is the matrix formed by the right eigenvectors of

the Jacobian matrix of
∂f inv

nk

∂Vn
nk . In 3D flows,

∂pt

∂V1
= g

u2
k

2
,

∂pt

∂Vi

= gρuk, i = 1, . . . ,� − 2,

∂pt

∂V�
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1 − Rρu2
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2(γ − 1)cpp

)
g, (108)

where g = γR
(γ−1)cp

(1 + u2
k

2cp

Rp
ρ

)
1

γ−1 .
Neglecting any other IOBC integral in (105), the inte-

gral that defines the boundary condition at the outlet is
∫

So

(
	nPnq�qr − ∂pt

∂Vn

Lnr

)
δWr

δbi

dS = 0. (109)

If Q characteristic flow variables are defined at the inlet to
the flow domain, their sensitivities are zero and Q adjoint
variables are extrapolated from the interior of the flow do-
main. The remaining � − Q adjoint variables, i.e. as many
as the characteristic flow variables that are extrapolated from
the interior of �, are computed by solving

	nPnq�qr − ∂pt

∂Vn

Lnr = 0. (110)

Along the inlet, where ∂pt

∂bi
= 0, the corresponding boundary

condition for 	n is derived from

	nPnq�qr
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= 0. (111)

The final expression for the objective function gradient is
given by
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(112)
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3.4.3 Viscous Losses Minimization—Applications

The application of the continuous adjoint approach to the
redesign of a turbine cascade (the same that was previously
used to demonstrate the inverse design application) so as to
give minimum total pressure losses is presented herein. Con-
straints related to the minimum allowed airfoil thickness are
also imposed. The thickness of the airfoil at several points
along the chord was not allowed to reduce more than 10%.
To do so, the augmented Lagrange multipliers method, [8],
was used with the constraint defined as the airfoil thickness
at several points along the cascade. The Reynolds number
is equal to 5 × 105 and the Spalart–Allmaras model, [47],
is employed to account for turbulence. An H-type structured
grid is used with 201 × 101 = 20301 nodes. The computa-
tional grid and the total pressure iso-surfaces for the initial
and optimal airfoil are shown in Figs. 7 and 8.

The reduction in total pressure losses achieved during the
optimization is shown in Fig. 9. The loss coefficient is re-
duced by almost 6.7% within the first 180 cycles; although
the corresponding optimization cost appears to be high, it
should be stressed that a “simple” (i.e. non-optimized with
respect to the stepsize value used) steepest descent algorithm
was used. A great part of this reduction is, in fact, achieved
within the first 40 cycles but during these cycles, the con-
straint on the minimum allowed airfoil thickness was often
violated compared to the reference airfoil. This constraint
violation during the first cycles is shown, also, in Fig. 9. Af-
ter the 40th cycle, the constraint was satisfied, which means
that the thickness in all chosen positions is more than 90%
of the initial thickness at the same positions.

The change in the values of the objective function gra-
dient is shown in Fig. 10. It can be seen that the sensitivi-
ties with respect to the suction side control points (first half
values) are greater than the sensitivities with respect to the
pressure side ones. So, at first, changes in the suction side
control points is greater than that in pressure side ones. Also,
the positive values of the suction side sensitivities drives the

Fig. 7 Minimization of total pressure losses in a 2D turbine cascade.
H-type computational grid

steepest descent algorithm towards thinner blades. After the
very first cycles, the constraint starts being violated and the
gradient of the constraint function is added to that of the ob-
jective function causing the movement of both the suction
and pressure side control points towards a thicker airfoil.

The whole procedure leads to the progressive movement
of the control points along both sides towards the (fixed)
chord of the airfoil, reducing thus the camber angle, as
shown in Fig. 11. It should become clear that, in Fig. 10,
the gradient of F , before being penalized by the (gradient
of the) constraint function, is plotted. This explains why the
gradient is not zeroed at the optimum.

The pressure coefficient for the initial and optimal con-
figurations are shown in Fig. 12.

The adjoint formulations for minimum total pressure
losses and for minimum entropy generation are compared
on the following case which is concerned with the opti-
mization of a compressor cascade airfoil. The Reynolds
number is equal to 106 and an H-type structured grid with
161 × 91 = 14651 nodes is used. The steepest descent algo-
rithm is employed and the airfoil thickness is not allowed to
reduce more than the 90% of its initial thickness, measured
at several chordwise positions. The computational grid as
well as the total pressure isolines for the initial and optimal
airfoil (using the total pressure losses functional) are shown
in Figs. 13 and 14.

The progressive reduction in total pressure losses, (104),
and entropy generation, (87), are shown in Fig. 15. Results
from two studies are shown. In the first study, the minimiza-
tion of total pressure losses was used as target but, at the end
of each cycle, the value of the function expressing entropy
generation, (87), was also computed and plotted. In the sec-
ond, the optimization was based on the reduction of entropy
generation and the difference in total pressure between the
inlet and outlet was simultaneously recorded, by just com-
puting and plotting the value of F , (103).

Similar behaviours can be observed in all four curves,
demonstrating, thus, the equivalence of the two functionals
and the corresponding adjoint formulations. Note that the
two functionals are defined over different parts of the flow
domain and none of them is defined along the solid walls
which are controlled by the design variables.

Some oscillations in the convergence of both functionals
are due to the violation of constraints on the minimum al-
lowed airfoil thickness. This violation is shown in Fig. 16.
Using either functional, the constraint is violated during the
early cycles of the optimization loop but, later on, the viola-
tion decreases and, finally, disappears.

In Fig. 17, the evolution (during the optimization) of the
sensitivities of the total pressure losses functional, left, and
the entropy generation one, right, is shown. It can be seen
that the gradient values are higher at the suction side control
points. As a consequence, along with the imposition of the
minimum allowed thickness constraint, the optimization al-
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Fig. 8 Minimization of total
pressure losses in a 2D turbine
cascade. Non-dimensional total
pressure distribution at the
initial and optimal turbine
cascades. Blow-up view of the
airfoil suction side

gorithm moves both blade airfoil sides towards the chord of
the airfoil.

This tendency is shown in Fig. 18 where the initial and
optimal sets of control points and the corresponding airfoil

contours, using either of the two functional, are shown. Note
that the optimal geometries are much alike.

Finally, the pressure and friction coefficients for the ini-
tial and optimal configurations are shown in Fig. 19. In both



Aerodynamic Shape Optimization Using First and Second Order Adjoint and Direct Approaches 469

Fig. 9 Minimization of total
pressure losses in a 2D turbine
cascade. Left: reduction in the
objective function value. Right:
sum of violated geometrical
constraints on minimum
allowed airfoil thickness at
several chordwise positions.
A zero constraint value
corresponds to fully satisfied
(geometrical) constraints

Fig. 10 Minimization of total pressure losses in a 2D turbine cascade.
The objective function gradient components for the initial and optimal
airfoil shapes are plotted. The gradient of the constraint function is not
included

figures, it is obvious that the flow separation region has been
reduced with either objective function.

3.5 Other Objective Functions

The adjoint formulation for first order sensitivities presented
in the previous section can be used with other objective func-
tions as well. For instance, in external aerodynamics, the op-
timization is often carried out based on the lift and/or drag
coefficients which, for a 2D aerodynamic body, are defined

by

cd =
∫

Sw

p (n1 cosa∞ − n2 sina∞) dS,

cl =
∫

Sw

p (n1 sina∞ + n2 cosa∞) dS,

(113)

where (n1, n2) is the normal to the wall unit vector and α∞
is the infinite flow angle.

Several studies in which an adjoint formulation is devel-
oped for the computation of the sensitivities of drag and/or
lift coefficients with respect to the design variables parame-
terizing an aerodynamic shape can be found in the litera-
ture, [63, 64]. Quite often, the functional to be minimized
is a combination of the two coefficients. Such a generalized
functional can be defined as

F = w1

2

(
cd − cd,tar

)2 + w2

2

(
cl − cl,tar

)2
, (114)

where w1 and w2 are user defined weight functions and
cd,tar and cl,tar are the target drag and lift coefficients, re-
spectively. Equation (114) also governs the minimization of
drag coefficient constrained by a desired cl value, by just
setting cd,tar = 0.

A continuous adjoint formulation can be developed for
(114), based on what exposed thus far. In the interest of
space, the detailed formulation is omitted. It is easy to show,

Fig. 11 Minimization of total
pressure losses in a 2D turbine
cascade. Initial and optimal set
of control points (at zero
stagger) and initial and optimal
turbine airfoil contour (at the
desired stagger angle). Not in
scale



470 D.I. Papadimitriou, K.C. Giannakoglou

Fig. 12 Minimization of total pressure losses in a 2D turbine cascade.
Pressure coefficient for the initial and optimal turbine cascade airfoil

Fig. 13 Minimization of total pressure losses or entropy generation in
a 2D compressor cascade. H-type computational grid

however, that the corresponding compatibility relation takes
the form

n1 cosa∞ − n2 sina∞ + 	k+1nk = 0 (115)

by maintaining the same inlet/outlet conditions for the ad-
joint variables as in inverse design problems. Considering
inviscid flows, the sensitivity derivatives of F , (114), are ex-
pressed as

δFaug

δbi

= 1

2

∫
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p

[
δ(n1dS)

δbi

cosa∞ − δ(n2dS)

δbi

sina∞
]

+
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(
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inv
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) δ (nkdS)

δbi

−
∫

Sw

	n

∂f inv
nk

∂xl

δxl

δbi

nkdS (116)

which is also free of field integrals. In a similar manner, the
planform design of a wing is also possible using the objec-

tive function defined as

F = w1cd + w2cw, (117)

where cw is the normalized wing structure weight, [65–68].

3.6 Adjoint Approaches for Transonic and Supersonic
Flows

In shocked flows, a discontinuity in flow variables appears at
the shock. However, as shown in [69, 70], the adjoint vari-
ables are continuous at the shock position. Thus, an addi-
tional condition for the adjoint variables at the shock is not
required.

The reduction and elimination of the shock produced by
transonic wings through an adjoint formulation has been
presented in [71], where the functional is a weighted sum
of the lift and drag coefficients. A shock exists in the initial
configuration and the reduction of the drag coefficient leads
to the reduction of the shock, giving rise to shock-free flow
over the optimal wing.

On the other hand, in supersonic flows, relevant optimiza-
tion efforts are mostly concerned with sonic boom reduc-
tion. In such a case, the objective function is defined over
a different part of the flow domain boundary than the one
controlled by the design variables. From this viewpoint, this
case presents certain similarities with the already presented
problem of minimizing the total pressure losses. So, a simi-
lar technique can be devised so as to profit of the advantages
of the proposed method.

For the sonic boom reduction, the target is to minimize
a functional which measures the sonic boom impact such
as overpressures, impulses, etc. [72–76]. The functional can
be defined either in a near field boundary, [73, 74], or at
the ground level. The flow equations are solved over the do-
main defined between the aircraft and the near field bound-
ary while the flow analysis at the domain between the near
field boundary and the ground plane is based on principles of
geometrical acoustics and nonlinear wave propagation. The
problem of finding the optimal shape that produces desired
pressure signature at the ground is addressed in [75].

4 Other Algorithms Based on the Adjoint Approach

4.1 One-Shot Algorithms

Standard adjoint-based optimization algorithms rely on the
sequential solution of the flow and adjoint equations fol-
lowed by an equation for updating the design variables. This
procedure may become costly enough if the flow and adjoint
equations converge to machine accuracy (although this is not
necessary especially during the first optimization cycles).
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Fig. 14 Minimization of total
pressure losses or entropy
generation in a 2D compressor
cascade. Non-dimensional total
pressure distribution at the
initial and optimal compressor
cascade. Blow-up view of the
airfoil suction side

As a faster alternative to the sequential solution, the three
sets of equations can be solved at once, giving rise to the
so-called one-shot algorithms. The one-shot algorithm was
first presented in [77, 78], where a multigrid strategy was
employed for the solution of the flow and adjoint equations,
while the design process was embedded within the multigrid
cycles. In any grid, only the design variables, which produce
high-frequency perturbations in the flow field, are changed.

A different one-shot approach can be found in [79–81]. It
is based on the simultaneous pseudo-timestepping approach.
If

RU = 0,

R	 = 0,

Rb = 0

(118)

is the system of the state, adjoint and sensitivity equations,
the pseudo-time embedded evolution equations yield

dU
dt

+ RU = 0,

d	
dt

+ R	 = 0,

db
dt

+ Rb = 0.

(119)

A reduced SQP algorithm is used in [79–81], so, instead of
solving the stiff system of (119), the preconditioned system

⎡

⎢⎣

dU
dt
db
dt
d	
dt

⎤

⎥⎦ =
⎡

⎢⎣
0 0 A∗

0 B C∗

A C 0

⎤

⎥⎦

−1 ⎡

⎢⎣
−R	

−Rb

−RU

⎤

⎥⎦ (120)

is solved, where A is the Jacobian matrix of the flow equa-
tions, A∗ is the adjoint Jacobian matrix, B is an estimation
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Fig. 15 Minimization of total
pressure losses or entropy
generation in a 2D compressor
cascade. Top: first computation
based on the minimization of
total pressure losses. Bottom:
second computation based on
the minimization of entropy
generation. The reduction of the
objective function values are,
thus, shown in the top-left and
bottom-right figures

Fig. 16 Minimization of total
pressure losses or entropy
generation in a 2D compressor
cascade. Sum of violated
geometrical constraints on
minimum allowed airfoil
thickness at several chordwise
positions. Left: first computation
aiming at total pressure losses
minimization. Right: second
computation aiming at entropy
generation minimization

Fig. 17 Minimization of total pressure losses or entropy generation
in a 2D compressor cascade. Gradient of the objective function with
respect to the design variables, without taking into account the gradi-

ent of the constraint function for the initial and optimal airfoils. Left:
first computation aiming at total pressure losses minimization. Right:
second computation aiming at entropy generation minimization

of the Hessian matrix and C and C∗ are the derivatives of
the flow equations with respect to the design variables.

Other variations of the standard one-shot approach can
be found in the literature; for instance, in [82] divided dif-
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Fig. 18 Minimization of total
pressure losses or entropy
generation in a 2D compressor
cascade. Initial and optimal set
of control points (at zero
stagger) and initial and optimal
turbine airfoil contour (at the
desired stagger angle), using the
total pressure losses and the
entropy generation functionals.
Not in scale

Fig. 19 Minimization of total
pressure losses or entropy
generation in a 2D compressor
cascade. Pressure coefficient,
left, and friction coefficient,
right, of the initial and optimal
turbine cascade airfoils, using
the total pressure losses and the
entropy generation functionals

ferences are used instead of the adjoint approach and in [83,
84] a progressive algorithm is used, where the design vari-
ables are updated after a partially converged flow solution
followed by a partially converged adjoint solution.

The gain from the one-shot approach is the reduction of
the total computational cost for the convergence of the opti-
mization algorithm to almost three to five times the cost of
solving the flow equations.

It is important to stress that the one-shot approach may
be combined with the adjoint formulation presented in this
paper. The gain would then be cumulative, since the pre-
sented adjoint formulation increases the efficiency of com-
puting the gradient while the one-shot approach accelerates
the optimization procedure itself.

4.2 Other Expressions for the Exact/Inexact Gradient

The continuous adjoint approach presented in this paper is
not the only one leading to objective function gradients free
of field integrals. To cover other possible formulations, the
so-called reduced method, [55] and the surface sensitivity
method, [85], are presented and discussed in brief.

In the reduced continuous adjoint formulation on struc-
tured grids, [55], all terms depending on the sensitivities
of grid metrics are transformed accordingly, leading to an
expression which is free of field integrals. This method is
presented in [55] and its extension to unstructured grids in
[86]. The method was used only for inviscid design prob-
lems, while its extension to viscous flows is discussed in

[87]. Although it is equivalent to the one proposed by the
authors, it is the authors’ opinion that our derivation of the
final expression is more general and straightforward.

In the metrics-based adjoint approach that was firstly pre-
sented by Jameson, [22], the sensitivities are computed by
the expression

δFaug = −
∫

�ξ

∂	n

∂ξk
δSkmf inv

nm

−
∫

Sξ

δS2k	k+1pdξ1dξ3, (121)

where let ξ2 = const. be the parameterized part of the do-

main and Skm = J
∂ξk

∂xm
the Jacobian of the transformation.

By means of the equation

∂(δSkmf inv
nm )

∂ξk
= − ∂

∂ξk

(
Ck

∂Un

∂xl

δxl

)
(122)

(121) is transformed to the final expression

δFaug = −
∫

Sξ

	n

(
δS2mf inv

nm + C2
∂Un

∂xl

δxl

)
dξ1dξ3

−
∫

Sξ

δS2k	k+1pdξ1ξ3, (123)

where Ck = SkmAm. It is a matter of transformations to
prove that (123) is equivalent to the expression proposed by
the authors.
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The approach proposed in [85] results to the gradient of
the objective function with respect to the normal displace-
ments of the grid nodes. The method is extended to internal
flows, [88], i.e. for maximizing the efficiency of the flow
through 3D complex ducts. It is a matter of postprocessing
to find the equivalence of this approach with the one pre-
sented herein. The difference in the adjoint formulation for
the inverse design using the approach presented in [85, 88]
is based on the fact that it computes the sensitivities of the
objective function with respect to normal displacements of
the grid nodes n instead of the components bi of the control
points that parameterize the shape. So, the first integral of
the r.h.s. of (47), with n instead of bi , becomes

∫

Sw

	n

δf inv
nk

δbi

nkdS =
∫

Sw

	n

δ(f inv
nk nk)

δn
dS

=
∫

Sw

	knk

δp

δn
dS. (124)

The second integral on the r.h.s. at the same equation is, sim-
ply, written as

∫

Sw

	n

∂f inv
nk

∂xl

δxl

δn
nkdS =

∫

Sw

	n

∂f inv
nk

∂xk

dS. (125)

So the adjoint equations and boundary conditions are the
same as those exposed above, whereas the sensitivity ex-
pression is given by

δFaug

δn
= 1

2

∫

Sw

(p − ptar )
2 δ(dS)

δn
+

∫

Sw

	n

∂f inv
nk

∂xk

dS. (126)

There is another similar category of methods, which are
named as incomplete gradient methods, [89–95], in which
the gradient values are not exact but less expensive to com-
pute. The simplest way to compute an approximate gradient
is to omit the second term on the r.h.s. of (11). Thus, the
gradient may be computed by the expression

dFl

dbi

∼= ∂Fl

∂bi

(127)

and is, certainly, expected to be of poor accuracy. However,
the solution of the adjoint equations is not required at all, so
the gradient is approximated by only solving the flow equa-
tions and substituting the flow variable values to (127). It is
proved, [89, 90], using some simple cases, that this approach
leads to sensitivity derivatives of at least the right sign. Thus,
a steepest descent algorithm driven by this approximate gra-
dient would possibly lead to the optimal solution.

This might be the case of inverse design or other prob-
lems in which the functional is collocated at the part of the
domain boundary which is controlled by the design vari-
ables. However, for functionals defined either over different
parts of the domain (such as the expression of F for total

pressure losses) or through the entire domain (such as the
field integral used for the minimization of entropy genera-
tion), (127) will produce zero sensitivities. In these cases,
such an incomplete gradient approach cannot be applied.

There is another incomplete gradient approach, which is
proved to compute more accurate sensitivities, increasing,
however, the CPU cost. This approach is based on the con-
tinuous adjoint formulation but it avoids the solution of the
adjoint equations. In [91], the augmented function is first
written in terms of the normal and tangential projection of
the flow equations’ residual, taking into account only the
residual of the momentum equations, assuming that the main
contribution of the adjoint term to the gradient of F at the
boundary is controlled by the design variables as follows

Faug = F +
∫

Sw

	k+1 (Rm+1nmnk + Rm+1tmtk) dS, (128)

where k = 1, . . . ,� − 2 and tk are the components of the
tangent to the boundary unit vector. The tangential contribu-
tion is omitted, whereas the adjoint variables along the solid
walls are computed using the compatibility relation for the
inverse design problem, (58), derived from the continuous
adjoint formulation. Thus, the functional is computed by the
expression

Faug = F −
∫

Sw

(p − ptar )Rm+1nmdS. (129)

The design variables’ perturbation is used to move the
boundary, Faug is reevaluated and finite differences are used
to compute the desired sensitivities. The extension of this
approach to viscous flows is found in [94], where the prob-
lem tackled is that of drag minimization with desired lift and
smooth pressure gradient. In this paper, the partial discrete
adjoint solution is also introduced, which allowed to take
into account, in an incomplete manner, all the adjoint con-
tribution to the sensitivities. The extension of this approach
to turbulent flow is found in [95].

Similarly, several discrete adjoint algorithms have been
presented for handling mesh sensitivities. In this case, the
gradient formula is not reduced to a boundary expression
and the mesh sensitivities are not eliminated using closed
form expressions. In [96], the mesh sensitivities are com-
puted limited to a region near the parameterized body. In
[97] the mesh sensitivities are eliminated by solving an ad-
ditional set of adjoint equations. A more generalized ap-
proach for the discrete adjoint approach in unstructured
grids, which efficiently handles mesh sensitivities is shown
in [98, 99], for 2D and 3D flows.

Concerning mesh sensitivities, the discrete adjoint for-
mulation has no major difficulties for unstructured grids
compared to the use of structured grids. Several relevant
studies can be found in the literature for 2D or 3D, invis-
cid or viscous flows, [100–104]
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4.3 Adjoint Approaches for Multiobjective, Multipoint
or Multidisciplinary Optimization

In multi-objective optimization problems, the adjoint ap-
proach can be used to compute the gradient of the objec-
tive functions. A conventional way to cope with more than
one objectives is by introducing appropriate weights wl ,
[105]. Through them, a scalar F is defined as the following
weighted sum

F = wlFl (130)

with sensitivities

δF

δbi

= wl

δFl

δbi

. (131)

To compute elements of the Pareto front of non-dominated
solutions in a multi-objective optimization problem, a series
of different wl values can be chosen and a descent algorithm
can be used driven by the gradient of (131). The quality of
the so-obtained Pareto front is not ensured, as the values
have been selected at random. Of course, such a computa-
tion is very costly.

In a multi-objective problem with a single discipline (for
instance, aerodynamics) there is often a single set of field
(flow) equations and boundary conditions. So, with the func-
tional of (130), a single set of adjoint equations has to be
solved. However, this is not the case in multipoint opti-
mization where, in most cases, due to the different bound-
ary (flow) conditions at each operating point, the discretized
flow equations are different. Thus, an adjoint problem is
solved for each functional, the derivatives δFl

δbi
are computed

and the total derivative δF
δbi

results from (131). Applications
of the adjoint based multipoint optimization can be found in
[68, 106].

In multidisciplinary optimization, different functionals
and types of design and state variables exist for each dis-
cipline. Therefore, as many systems of adjoint equations as
the number of disciplines must be solved. For instance, in
aerostructural optimization, let Ra = 0 and Rs = 0 be the
fluid and structure state equations, Ua the flow state vari-
ables, Us the structural displacements and bi the design vari-
ables. The gradient of F with respect to bi is computed by,
[67, 107–109],

δF

δbi

= ∂F

∂bi

+ 	a

∂Ra

∂bi

+ 	s

∂Rs

∂bi

, (132)

where, to compute the adjoint variables 	a and 	s , the sys-
tem of flow and structural adjoint equations

[
∂Ra

∂Ua

∂Ra

∂Us

∂Rs

∂Ua

∂Rs

∂Us

][
	a

	s

]
=

[
∂F
∂Ua

∂F
∂Us

]
(133)

must be solved. In [107], the lagged-coupled adjoint method
is used, in which, for the calculation of the adjoint variables
of any discipline, the adjoint variables of the other discipline
from the previous iteration are used, as follows

∂Ra

∂Ua

	new
a = ∂F

∂Ua

− ∂Rs

∂Ua

	old
s ,

(134)
∂Rs

∂Us

	new
s = ∂F

∂Us

− ∂Ra

∂Us

	old
a .

4.4 Optimization in Unsteady Flows

There are several approaches to deal with optimization prob-
lems in unsteady inviscid or viscous flows, [110–112]. The
simplest approach is based on the solution of the unsteady
flow equations, post-processing to get a time-averaged flow
field and a single adjoint computation based on averaged
state variables. A more accurate approach is to solve the
unsteady flow equations and the steady adjoint equations
for each time step within the period. The most accurate ap-
proach is the fully unsteady calculation, in which both flow
and adjoint unsteady equations are solved. The comparison
of the computational cost associated with each method and
their efficiencies are discussed in detail in [110], where the
three possible approaches are also compared with multipoint
optimization. Also, in [111], the optimal design in unsteady
flows using the non-linear frequency domain approach, is
presented. The discrete harmonic adjoint approach is pre-
sented in [113–115]. It is based on a single frequency of un-
steadiness and the functional used for the design of turboma-
chinery blades is the generalized force acting on the blades
due to arbitrary incoming time-periodic gusts. The adjoint
formulations presented in this paper can be combined with
all these unsteady flow optimization methods in a straight-
forward manner.

4.5 Dealing with Turbulence

With either the discrete or continuous adjoint approach, the
computation of accurate sensitivities in turbulent flow is of
great importance. The majority of published works is based
on the so-called frozen turbulence model. Although the tur-
bulence model is included in the state equations, sensitivities
of the eddy viscosity coefficient are neglected during the de-
velopment of the adjoint equations. No extra Lagrange mul-
tipliers are introduced for the turbulence model equations
and the sensitivity of turbulent viscosity with respect to de-
sign variables is zero, [22, 49, 116]. This, of course, reduces
the cost for the computation of sensitivities but it also re-
duces their accuracy, since the adjoint equations are no more
the exact adjoints to the flow equations.

There are just a few studies in the literature that utilize the
exact discrete adjoint formulation for turbulent flows. The
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adjoint equations to the Spalart–Allmaras turbulence model
equations are solved together with the mean flow equations
in [117–119], while in [69], an equivalent formulation of
the turbulent adjoint equations is presented using the k–ε

turbulence model.

5 Direct, Adjoint and Mixed Approaches in
Aerodynamic Shape Optimization for the
Computation of Second Order Sensitivities

Since Newton or Newton-like iterative optimization algo-
rithms, [8],

bnew
j = bold

j + δbj , (135)

where

δ2F

δbiδbj

δbj = − δF

δbi

(136)

are more efficient than any algorithm based on first order
sensitivities only, the development of an efficient approach
for the computation of (exact) second order sensitivities of
the objective function with respect to the design variables is
important.

Starting from the direct differentiation or the adjoint vari-
able approach which have been presented for the computa-
tion of first order sensitivities, the second order ones can
be obtained by re-employing any of the aforementioned ap-
proaches. Thus, four different approaches can be devised;
these will be referred to as the direct–direct, direct–adjoint,
adjoint–direct and adjoint–adjoint ones. To make this ter-
minology as clear as possible, the direct–direct algorithm
employs the direct differentiation method to compute first
order sensitivities and, then, once more the same method to
compute second order ones. In contrast, in the direct–adjoint
method, second order sensitivities are obtained using the ad-
joint approach and so forth.

A literature survey shows that there are only a few stud-
ies on the computation and use of second order sensitivities
in optimization problems. In [120], the computation of the
second order sensitivities in aerodynamic optimization us-
ing automatic differentiation is presented. The discrete ap-
proach for inviscid and viscous turbomachinery flow is pre-
sented in [121], while its continuous counterpart for inviscid
flows in [122]. Even in disciplines other than aerodynamics,
the relevant literature is quite poor. The Hessian matrix com-
putation using all possible discrete approaches for structural
optimization has been presented in [123], while continuous
approaches for the Hessian computation for heat conduc-
tion problems can be found in [124]. A different view of
the same problem can be found in [125–127], for variational

data assimilation problems in meteorology with the shallow-
water equations as state equations. The importance of ex-
actly computing the Hessian is discussed in [128], where
the condition number influence on the convergence of the
optimization algorithm is addressed.

In the next subsections, the four approaches will be pre-
sented in both discrete, [120, 121], and continuous, [122],
forms; note that, although the discrete approach is general
and applies to either the inviscid or viscous flow equations,
the continuous one will be restricted to the Euler equations
and, in particular, to inverse design problems.

5.1 The Direct–Direct Approach

Starting from (11) and (12), the Hessian matrix of F can be
computed using

δ2F

δbiδbj

= ∂2F

∂bi∂bj

+ ∂2F

∂bi∂Uk

δUk

δbj

+ ∂2F

∂Uk∂bj

δUk

δbi

+ ∂2F

∂Uk∂Um

δUk

δbi

δUm

δbj

+ ∂F

∂Uk

δ2Uk

δbiδbj

. (137)

The Hessian of the residual of the discretized flow equations
is zero, so

δ2Rn

δbiδbj

= ∂2Rn

∂bi∂bj

+ ∂2Rn

∂bi∂Uk

δUk

δbj

+ ∂2Rn

∂Uk∂bj

δUk

δbi

+ ∂2Rn

∂Uk∂Um

δUk

δbi

δUm

δbj

+ ∂Rn

∂Uk

δ2Uk

δbiδbj

= 0. (138)

To compute δ2F
δbiδbj

using (137), the numerical solution of
N(N+1)

2 systems of equations, (138), for δ2Uk

δbiδbj
, is required.

In addition, since δUk

δbj
must be computed as well, N equiv-

alent flow solutions should be carried out. Consequently,
1 + N + N(N+1)

2 system solutions per Newton’s step are
needed. Unambiguously, this cost is high and renders the
so-called (discrete) direct–direct approach inappropriate for
use in optimization problems with many design variables.

The continuous direct–direct approach is based on the
continuous direct approach for the computation of first and
second order sensitivities. In inverse design problems, where
the objective function is given by (31), the second order sen-
sitivities of F are given by

δ2F

δbiδbj

=
∫

Sw

δp

δbi

δp

δbj

dS +
∫

Sw

(p − ptar )
δ2p

δbiδbj

dS

+
∫

Sw

(p − ptar )
δp

δbi

δ(dS)

δbj

+
∫

Sw

(p − ptar )
δp

δbj

δ(dS)

δbi

+ 1

2

∫

Sw

(p − ptar )
2 δ2(dS)

δbiδbj

. (139)
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To compute the second order sensitivities of the state vari-
ables, one may start from (recall that the flow is considered
to be inviscid)

∂2

∂bi∂bj

(
∂f inv

nk

∂xk

)
= 0 (140)

which, by neglecting the sensitivities of the Jacobian matrix

(
∂2Anmk

∂bi∂bj
= 0), takes the form

∂

∂xk

(
Anmk

∂2Um

∂bi∂bj

)
= 0. (141)

The 1
2N(N + 1) resulting pde’s can be discretized using the

Roe-like scheme for the corresponding fluxes crossing the
boundaries of the finite volumes (as already mentioned in
Sect. 3) and, then, numerically solved.

The boundary conditions imposed to (141) are based on
the following equations

∂2pt

∂bi∂bj

∣∣∣∣
I

= 0,

∂2Tt

∂bi∂bj

∣∣∣∣
I

= 0, (142)

∂2α

∂bi∂bj

∣∣∣∣
I

= 0

at the inlet and

∂2p

∂bi∂bj

∣∣∣∣
O

= 0 (143)

at the outlet and the corresponding no-penetration condition
at solid walls. Equations (142) and (143) express that (in 2D
problems) three flow variables (pt , Tt and the flow angle
α) are fixed at the inlet and the static pressure p is fixed
at the outlet. In 3D flows, the second derivative of an extra
flow angle at the inlet must also be zeroed. Once ∂2Um

∂bi∂bj
have

been computed by means of (141), the corresponding total

variations δ2Um

δbiδbj
can be derived using

δ2�

δbiδbj

= ∂2�

∂bi∂bj

+ ∂

∂xl

(
∂�

∂bi

)
δxl

δbj

+ ∂

∂xl

(
∂�

∂bj

)
δxl

δbi

+ ∂2�

∂xl∂xm

δxl

δbi

δxm

δbj

+ ∂�

∂xl

δ2xl

δbiδbj

(144)

for � = Um. The total CPU cost is as high as that of the dis-
crete direct–direct approach. A practical difference between
the discrete and the continuous direct–direct approach is that

the former is based on the computation of δUk

δbj
and δ2Uk

δbiδbj

(N + N(N+1)
2 system solutions) whereas the latter computes

∂Uk

∂bj
(by solving (36)) and ∂2Uk

∂bi∂bj
; both have the same CPU

cost. Partial and total derivatives are transformed to each
other using (37) and (144).

5.2 The Direct–Adjoint Approach

In the direct–adjoint approach, a new augmented functional
F̂ (a new symbol, F̂ , is used to distinguish it from Faug

which was used to compute first order sensitivities), with
new adjoint variables 	̂n, is defined as follows

δ2F̂aug

δbiδbj

= δ2F

δbiδbj

+ 	̂n

δ2Rn

δbiδbj

, (145)

where δ2F
δbiδbj

and δ2Rn

δbiδbj
are given by (137) and (138), re-

spectively. Rearranging, we get

δ2F̂aug

δbiδbj

= ∂2F

∂bi∂bj

+ 	̂n

∂2Rn

∂bi∂bj

+ ∂2F

∂Uk∂Um

δUk

δbi

δUm

δbj

+ 	̂n

∂2Rn

∂Uk∂Um

δUk

δbi

δUm

δbj

+ ∂2F

∂bi∂Uk

δUk

δbj

+ 	̂n

∂2Rn

∂bi∂Uk

δUk

δbj

+ ∂2F

∂Uk∂bj

δUk

δbi

+ 	̂n

∂2Rn

∂Uk∂bj

δUk

δbi

+
(

∂F

∂Uk

+ 	̂n

∂Rn

∂Uk

)
δ2Uk

δbiδbj

.

(146)

The last term in parenthesis, which denotes the dependency

of δ2F
δbiδbj

on δ2Uk

δbiδbj
is eliminated by satisfying the adjoint

equations

∂F

∂Uk

+ 	̂n

∂Rn

∂Uk

= 0. (147)

Thus, the Hessian matrix elements are given by

δ2F̂aug

δbiδbj

= ∂2F

∂bi∂bj

+ 	̂n

∂2Rn

∂bi∂bj

+
(

∂2F

∂Uk∂Um

+ 	̂n

∂2Rn

∂Uk∂Um

)
δUk

δbi

δUm

δbj

+
(

∂2F

∂bi∂Uk

+ 	̂n

∂2Rn

∂bi∂Uk

)
δUk

δbj

+
(

∂2F

∂Uk∂bj

+ 	̂n

∂2Rn

∂Uk∂bj

)
δUk

δbi

. (148)

The CPU cost to obtain δ2F̂aug

δbiδbj
derivatives is the sum of the

cost of N system solutions to compute δUn

δbj
via (12) plus
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one more to solve the single adjoint equation, (147) (N + 1
system solutions in total).

The corresponding continuous direct–adjoint approach is
based on the second order sensitivity of an augmented ob-
jective function, defined as

δ2F̂aug

δbiδbj

= δ2F

δbiδbj

+
∫

�

	̂n

∂2

∂bi∂bj

(
∂f inv

nk

∂xk

)
d�, (149)

where the adjoint variables have been multiplied with the
second order direct sensitivities of the state (Euler) equa-

tions. Here, ∂
∂xk

and ∂2

∂bi∂bj
can be interchanged to give

δ2F̂aug

δbiδbj

= δ2F

δbiδbj

+
∫

�

	̂n

∂

∂xk

(
∂2f inv

nk

∂bi∂bj

)
d�. (150)

The integral on the r.h.s. of (150) is integrated by parts as
follows

∫

�

	̂n

∂

∂xk

(
∂2f inv

nk

∂bi∂bj

)
d� =

∫

�

(
Anmk

∂	̂n

∂xk

)
∂2Um

∂bi∂bj

d�

+
∫

S

	̂n

∂2f inv
nk

∂bi∂bj

nkdS. (151)

Multiplying (144), for � = f inv
nk , with the normal unit vector

at the solid walls, we obtain

∂2f inv
nk

∂bi∂bj

nk = δ2f inv
nk

δbiδbj

nk − ∂2f inv
nk

∂bi∂xl

δxl

δbj

nk − ∂2f inv
nk

∂bj ∂xl

δxl

δbi

nk

− ∂2f inv
nk

∂xl∂xm

δxl

δbi

δxm

δbj

nk − ∂f inv
nk

∂xl

δ2xl

δbiδbj

nk.

(152)

Also,

δ2f inv
nk

δbiδbj

nk = δ2
(
f inv

nk nk

)

δbiδbj

− δf inv
nk

δbi

δnk

δbj

− δf inv
nk

δbj

δnk

δbi

− f inv
nk

δ2nk

δbiδbj

(153)

and, along the solid walls, the no-penetration condition for
the velocity, gives

δ2
(
f inv

nk nk

)

δbiδbj

= Nn

δ2p

δbiδbj

+ δ2Nn

δbiδbj

p + δNn

δbi

δp

δbj

+ δNn

δbj

δp

δbi

, (154)

where Nn is defined by (49). By appropriately rearranging
its terms, (151) becomes
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∂xk

(
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Combining (139) and (155), we get

δ2F̂aug

δbiδbj

=
∫
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δp

δbi
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+
∫
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)
dS. (156)

Integrals marked with FAE, SWCR and IOBC are elim-
inated by satisfying appropriate field adjoint equations
and the boundary conditions over the wall and inlet/outlet
boundaries. It can be seen that these are given by the same
equations as those solved for the computation of first order
sensitivities. Finally, the remaining terms in (156) yield an

expression for δ2F̂aug

δbiδbj
, which is as follows
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∫

Sw

δp

δbi

δp

δbj

dS +
∫
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∫
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(157)

For (157) to be computable, first order flow sensitivities
must be known; these are computed using (36); so, the to-
tal CPU cost corresponds to N + 1 system solutions. Since,
among other, eq, (157) includes boundary integrals writ-
ten in terms of the second order sensitivities of geometri-
cal quantities such as xk , it is important to stress that, in
some frequently used parameterizations (such as the Bézier–
Bernstein polynomials), these terms automatically vanish,
since the shape coordinates are linear functions of the de-
sign variables.

5.3 The Adjoint–Direct Approach

A scheme based on the adjoint formulation for the computa-
tion of the gradient and the direct approach for the computa-
tion of the Hessian matrix will be referred to as the adjoint–
direct approach. By differentiating (19) (for a single objec-
tive, L = 1), we get

δ2Faug

δbiδbj

= ∂2Faug

∂bi∂bj

+ ∂2Faug

∂bi∂Uk

δUk

δbj

+ 	m

∂2Rm

∂bi∂bj

+ 	m

∂2Rm

∂bi∂Uk

δUk

δbj

+ δ	m

δbj

∂Rm

∂bi

. (158)

The required derivatives δ	m

δbj
are computed by zeroing

the gradient of the residual of the adjoint equations, (18),
namely

δR	
n

δbj

= ∂2Faug

∂Un∂bj

+ ∂2Faug

∂Un∂Uk

δUk

δbj

+ 	m

∂2Rm

∂Un∂bj

+ 	m

∂2Rm

∂Un∂Uk

δUk

δbj

+ δ	m

δbj

∂Rm

∂Un

= 0. (159)

The CPU cost for computing δFaug

δbi
and δ2Faug

δbiδbj
through the

adjoint–direct approach is 1 + 2N system solutions; among
them, N must be spent to compute δUk

δbj
, (12), and N more to

compute δ	m

δbj
, (159).

The continuous adjoint–direct approach employs the con-
tinuous adjoint method to compute the gradient of the objec-
tive function (a method which has already been presented
in detail) and the direct differentiation approach to compute
the Hessian matrix. In an inverse design problem, the first
order sensitivities of F are given by (59) whereas the ad-
joint field equations and solid wall boundary conditions by
(56) and (58).

The sensitivity of (59) with respect to bj yields

δ2Faug

δbiδbj

= 1

2

∫

Sw

(p − ptar )
2 δ2(dS)

δbiδbj

+
∫

Sw

(p − ptar )
δp

δbj

δ(dS)

δbi
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−
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δbi
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)
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+
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(
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δbj
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δbj
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δ(nkdS)
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+
∫
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(
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nk

δbj

)
δ(nkdS)

δbi

. (160)

Equations (160) includes quantities such as δ
δbj

( ∂Um

∂xk
) (or

∂
∂xk

( δUm

δbj
)) and δ	n

δbj
which are to be computed beforehand.

Note that, although the adjoint method is used to compute
δF
δbi

, we still need the gradient of Um and 	n with respect to
the design variables. Hence, (36) along with its counterpart
for 	n, must be solved. It can easily be shown that, as in the
discrete formulation, each Newton cycle costs as many as
2 + 2N equivalent flow solutions, being almost twice more
expensive than the direct–adjoint approach.

5.4 The Adjoint–Adjoint Approach

The fourth possible scheme to compute δ2F
δbiδbj

is the adjoint–
adjoint approach which introduces extra adjoint variables,

denoted by 	im and 	in. A twice–augmented objective
function is first defined as

δ2Faug

δbiδbj

= δ2Faug

δbiδbj

+ 	im

δRm

δbj

+ 	in

δR	
n

δbj

(161)

which, after substituting (158) for the Hessian of Faug and
appropriate expressions for the gradient of the flow and ad-
joint equations, yields

δ2Faug

δbiδbj

= ∂2Faug

∂bi∂bj

+ 	m

∂2Rm

∂bi∂bj

+ 	im

∂Rm

∂bj

+ 	in

∂2Faug

∂Un∂bj

+ 	in	m

∂2Rm

∂Un∂bj

+
(

∂2Faug

∂bi∂Uk

+ 	m

∂2Rm

∂bi∂Uk

+ 	im

∂Rm

∂Uk

+ 	in

∂2Faug

∂Un∂Uk

+ 	in	m

∂2Rm

∂Un∂Uk

)
δUk

δbj

+
(

∂Rm

∂bi

+ 	in

∂Rm

∂Un

)
δ	m

δbj

. (162)

In (162), the two terms in parenthesis are eliminated by sat-
isfying the adjoint system of equations, namely

∂2Faug

∂bi∂Uk

+ 	m

∂2Rm

∂bi∂Uk

+ 	im

∂Rm

∂Uk

+ 	in

∂2Faug

∂Un∂Uk

+ 	in	m

∂2Rm

∂Un∂Uk

= 0 (163)

to be solved for 	im and

∂Rm

∂bi

+ 	in

∂Rm

∂Un

= 0 (164)

to be solved for 	in; (164) should be solved first since (163)
requires the knowledge of 	in. The Hessian matrix is, then,
given by

δ2Faug

δbiδbj

= ∂2Faug

∂bi∂bj

+ 	m

∂2Rm

∂bi∂bj

+ 	im

∂Rm

∂bj

+ 	in

∂2Faug

∂Un∂bj

+ 	in	m

∂2Rm

∂Un∂bj

. (165)

The adjoint–adjoint approach requires 1 + 2N system solu-
tions for the computation of the first and second derivatives,
i.e. as many as those required by the adjoint–direct one. This
cost is much higher than that of the direct–adjoint approach.

In the continuous adjoint–adjoint approach, the twice-
augmented objective function Faug is again defined by in-

troducing two sets of Lagrange multipliers, one (	in, i =
1, . . . ,N ) for the flow and the other (	im, i = 1, . . . ,N ) for
the adjoint equations. The second order sensitivity of Faug

is written as

δ2Faug

δbiδbj

= δ2Faug

δbiδbj

+
∫

�
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∂bj

(
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∂xk

)
d�

+
∫

�
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(
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∂	n

∂xk

)
d�. (166)

Both field integrals in (166) are integrated by parts to yield
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nkdS
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+
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S
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nkdS, (167)
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where δ2Faug

δbiδbj
is given by (160). In (167), terms depending on

∂Um

∂bj
are eliminated, giving rise to the first set of field adjoint

equations in terms of 	in. A second set of adjoint equa-
tions in terms of 	im is then derived which, when satisfied,
eliminate integrals expressed in terms of ∂	n

∂bj
. As in the dis-

crete adjoint–adjoint method, the CPU cost of the adjoint–
adjoint method is equal to 2 + 2N equivalent flow solutions
per Newton cycle.

5.5 Further Discussion on the Computation of the Hessian

In [120], the authors have shown that an alternative formula-
tion can directly lead to the direct–adjoint resulting expres-
sion for the Hessian. Based on the augmented function Faug ,
(158), let us define the new, twice-augmented function F̂aug

as follows

δ2F̂aug

δbiδbj

= δ2Faug

δbiδbj

+ δUn

δbi

δR	
n

δbj

(168)

by using, instead of adjoint variables, the total sensitivities
of the state variables δUn

δbi
.

If (158) and (159) are substituted into (168), the follow-
ing expression is obtained
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,

(169)

where the two terms marked with DDE vanish, since

δ	m

δbj

(
∂Rm

∂bi

+ δUn

δbi

∂Rm

∂Un

)
= δ	m

δbj

δRm

δbi

≡ 0.

Equation (169) is an alternative expression of the computa-
tion of second order sensitivities. Surprisingly, this expres-
sion is free of the sensitivities of the adjoint variables; all
we need to compute the Hessian of F is the adjoint vari-
able 	 and the first order sensitivities of the state variables
δUk

δbj
. Therefore, this alternative method is equivalent to the

direct–adjoint approach (compare (169) and (148)).

Likewise, we may also devise the corresponding contin-
uous adjoint formulation. Let us define
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δbiδbj

= δ2Faug

δbiδbj

+
∫
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∂bj

(
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)
d�, (170)

where, with the assumption that ∂Anmk

∂bj
= 0,
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∂bj
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which finally leads (inverse design problems for inviscid
flows) to (157).

5.6 Hessian Computation and Parallel Computing

Summarizing, the most efficient approach for the computa-
tion of the objective function second order sensitivities is
the direct–adjoint approach. The gain from the combina-
tion of the direct and adjoint approach is great, since the
1 + N + N(N+1)

2 equivalent flow solutions per Newton iter-
ation are reduced to only 2 +N . At each optimization cycle,
one system of flow equations, one system of adjoint equa-
tions and as many direct differentiation systems as the num-
ber of design variables must be solved. Although the CPU
cost of the direct–adjoint approach appears to be the mini-
mum possible, it is still proportional to the number of design
variables.

An approach to lower the CPU time for the computation
of the Hessian matrix is the use of parallel computing. The
flow and the adjoint solvers can be parallelized in the ordi-
nary way, dividing the domain into a number of subdomains,
usually equal to the number of available processors. The
CPU time is almost reduced by the number of the proces-
sors, depending on the grid partitioning and other program-
ming issues.

On the other hand, the solution of the direct differenti-
ation systems can be implemented in parallel by assigning
the solution of the linearized flow equations with respect to
each design variable to a single processor. Such a way of par-
allelization is straightforward, since the direct differentia-
tion system solutions are independent from each other. If the
number of available processors is greater than that of the de-
sign variables, each of these systems may be solved through
additional parallel subdomaining, according to a parallel-in-
parallel coding structure.
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Fig. 20 Parallelization of the
flow and adjoint equations
through subdomaining and the
direct differentiations through
concurrent computations using a
different processor for the flow
sensitivities per design variable

Fig. 21 Inverse design of a 2D
turbine cascade, top, and a 2D
compressor cascade, bottom.
Hessian matrix values computed
using the direct–adjoint
approach and a central finite
difference scheme. Top-left:
8 × 8 = 64 Hessian matrix
values in a row. The 8 first
correspond to the first column of
the Hessian and so forth.
Top-right: 3D plot of the same
values. Bottom: same figures for
the compressor case

The overall parallel optimization algorithm is illustrated
in Fig. 20. The flow and adjoint equations are solved by di-
viding the grid to as many subdomains as the number of the
available processors and the direct differentiation equations
are solved separately using a different processor for each de-
sign variable. Of course, as explained, the extra paralleliza-
tion of each direct differentiation system is still possible, if
more processors are available.

5.7 Hessian-Based Optimization—Applications

The inverse design of the compressor and turbine cascades,
namely those presented in a previous section using first or-
der sensitivities, is repeated here with the aid of second or-
der sensitivities. The comparison of the second order sen-

sitivities computed using the direct–adjoint approach (i.e.
the most efficient among the four examined algorithms) and
central finite differences is shown in Fig. 21. For the turbine
case, the cost of central finite differences is equal to 128
equivalent flow solutions: 2 × 8 = 16 solutions for the main
Hessian matrix diagonal and 7×8

2 ×4 = 112 solutions for the
non-diagonal terms, without considering the analysis of the
current configuration (computation of F ). The cost of the
direct–direct approach would be equal to 7×8

2 = 28 equiva-
lent flow solutions which is still high enough compared to
the 8 + 1 = 9 solutions required by the direct–adjoint ap-
proach. The same analogy exists in the compressor case. De-
spite these huge differences in CPU cost, Fig. 21 shows that
the direct–adjoint approach and the finite differences com-
pute the Hessian matrix with the same accuracy.
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Fig. 22 Inverse design of a 2D
turbine cascade, top, and a 2D
compressor cascade, bottom.
Reduction rate of the inverse
design objective function value
using four different optimization
algorithms; steepest descent, the
Fletcher–Reeves conjugate
gradient, the BFGS quasi
Newton and the exact Newton
algorithms

The three gradient-based optimization algorithms are
compared to the exact Newton algorithm which makes use
of both the first and the second order sensitivity derivatives,
Fig. 22. In this case, the Hessian matrix components are
computed exactly using the direct–adjoint approach, in con-
trast to the BFGS algorithm in which these are approximated
using the exact first order sensitivities of the previous itera-
tion.

The comparison is firstly made with respect to the num-
ber of optimization cycles and, then, with respect to the CPU
cost. For the latter, the x-axis is multiplied by two in the
first three approaches while, in the exact Newton approach,
it is multiplied by ten in the turbine design and eight in the
compressor design. Methods based on the exact or approxi-
mated Hessian matrix are more efficient that gradient-based
ones. In addition, the exact Newton approach needs less cy-
cles to converge than the BFGS approach, which however
seems to be faster, since it requires less equivalent flow so-
lutions.

The need, however, of the exact second order sensitivities
is demonstrated in Fig. 23. In this figure, the first two curves
are exactly the same as in Fig. 22 corresponding to the stan-
dard quasi and exact Newton approaches. The third curve,
however, is based on the computation of the exact second
order sensitivities only once, i.e. at the first optimization cy-
cle. The computed Hessian values are kept constant during
the next cycles, where only the first order sensitivities are
updated. In this case, due to the fact that the Hessian ma-
trix value is kept frozen (i.e. it is not exact after the first
cycle) more cycles than the exact Newton method but less

than BFGS are needed. The great CPU cost for the repeti-
tive computation of the Hessian matrix is avoided, leading
to a lower number of equivalent flow solutions than the ex-
act Newton approach, being, however, comparable to those
required by the quasi Newton approach. A final remark on
this algorithm is that, in more complex cases, in which the
change in the Hessian matrix values cannot be neglected, the
convergence rate is expected to deteriorate.

This is not the case, however, for the last curve in Fig. 23,
which is a mixed exact-quasi Newton approach. The exact
second order sensitivities are computed only at the first cy-
cle using the direct–adjoint approach. At the next cycles, the
so-computed Hessian values are updated using the BFGS
update formula. It seems that the required cycles are even
more reduced (only 15 cycles are needed for 26 orders of
magnitude reduction in the objective function value). How-
ever, the most important remark is that the CPU cost is less
than halved compared to the quasi Newton or the constant
Hessian approach. Likewise the constant Hessian approach,
this cost is almost independent of the number of design vari-
ables; ten equivalent flow solutions are required at the first
cycle and only two during each of the subsequent cycles.
From the second and fourth curve in Fig. 23, similar conver-
gence behaviours (same slopes) are observed; the two rates
of reduction differ only at the first part, due to the inexact
(and probably poor guess of the) Hessian, if the quasi New-
ton approach is used from the very beginning.

The corresponding reduction rate of the first order sensi-
tivity vector norm is shown in Figs. 24 and 25. Same com-
ments are valid for these figures, as well.
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Fig. 23 Inverse design of a 2D
turbine cascade, top, and a 2D
compressor cascade, bottom.
Reduction rate of the inverse
design objective function value
using four different optimization
algorithms that make use of the
approximate and/or exact
second order sensitivities. The
first two curves correspond to
the standard quasi and exact
Newton algorithms. The third
curve corresponds to the
computation of the exact
Hessian matrix only at the first
cycle which is then kept
constant during the subsequent
cycles, where the Newton
method is employed. The last
curve corresponds to the
computation of the exact
Hessian matrix at the first
iteration and the use of the
BFGS Hessian matrix update
formula at the following cycles

Fig. 24 Inverse design of a 2D
turbine cascade, top, and a 2D
compressor cascade, bottom.
Reduction rate of the first order
sensitivity values of the inverse
design objective function using
four different optimization
algorithms; the steepest descent,
the Fletcher–Reeves conjugate
gradient, the BFGS quasi
Newton and the exact Newton
algorithms. The first three of
them are based on first order
sensitivities while the third one
uses an approximation of the
Hessian matrix. The exact
Hessian matrix is employed
only in the last algorithm

Changes in the first and second order sensitivities us-
ing the exact Newton approach are shown in Fig. 26. The
first order sensitivity values drop by almost fourteen orders
of magnitude within thirty cycles (fifteen cycles using the
mixed approach) while the Hessian matrix changes only a
little within these cycles. This explains why, in this case, the
constant Hessian Newton approach performs quite well.

6 Conclusions

Discrete and continuous adjoint approaches to compute
first and second order sensitivities and support aerodynamic
shape optimization methods have been presented. For the
purpose of method demonstration, the inverse design or the
optimization of cascade airfoils for minimum viscous losses
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Fig. 25 Inverse design of a 2D turbine cascade, top, and a 2D compressor cascade, bottom. Reduction rate of the first order sensitivity values of
the inverse design objective function, using the four Newton-like algorithms also used in Fig. 23

Fig. 26 Inverse design of a 2D turbine cascade, top, and a 2D compressor cascade, bottom. First (absolute values, semi-log scale) and second
order sensitivities at the first and 30th optimization cycle, using the mixed Newton approach



486 D.I. Papadimitriou, K.C. Giannakoglou

(measured as either total pressure losses or entropy genera-
tion) have been used. The key points of the proposed meth-
ods, which include (a) the possibility of setting up continu-
ous adjoint approaches without field integrals in the gradi-
ent or Hessian expressions, (b) the ability to compute exact
Hessian matrices with either the discrete or the continuous
adjoint approach, (c) a very efficient optimization method
which starts by computing the exact Hessian of the objec-
tive function and continues by updating it as in the BFGS
method, can be transferred to other applications based on
the adjoint approach, as discussed in detail in this paper.
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