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Abstract The Landau-Lifshitz (LL) equation of micromag-
netism governs rich variety of the evolution of magnetiza-
tion patterns in ferromagnetic media. This is due to the com-
plexity of physical quantities appearing in the LL equation.
This complexity causes also interesting mathematical prop-
erties of the LL equation: nonlocal character for some quan-
tities, nonconvex side-constraints, strongly nonlinear terms.
These effects influence also numerical approximations. In
this work, recent developments on the approximation of
weak solutions, together with the overview of well-known
methods for strong solutions, are addressed.

1 Introduction

We aim at an exhaustive survey on recent advances in the
numerics and computations of the problems coupled with
the micromagnetic equation, also known as the Landau-
Lifshitz equation of ferromagnetism. More general topic of
recent developments in the modelling, analysis and numer-
ics of ferromagnetism was discussed in a survey article [1].
However since then, many new ideas in numerics of micro-
magnetism appeared very recently and we feel necessary
to address these improvements. Besides its importance in
the modelling of ferromagnetic phenomena on micro- and
nanoscales, the Landau-Lifshitz equation is interesting also
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from a mathematical point of view. Numerical analysis of
several aspects such as sharp nonlinearity, transitions be-
tween different forms of the equation, and side-constraints,
is very challenging.

In this survey, we focus on numerical methods dealing
with various forms of the LL equation. We try to explain ba-
sic ideas of the schemes together with correct formulations
in such a way that the reader gains an insight into the prob-
lems arising from the numerical approximation of the LL
equation.

The text is organized as follows. In Sect. 1 (Introduc-
tion), we first present the micromagnetic model and list ba-
sic properties of the micromagnetic system. At the end of
this section we provide several applications of the LL equa-
tion in both the theoretical physics and the real world appli-
cations in magnetic recording industry.

The main text is devoted to numerical schemes. Accord-
ing to the level of theoretical knowledge about the conver-
gence behavior of the schemes, the text is split into two
parts: In Sect. 2, we study numerical schemes for which no
rigorous convergence analysis is known, and in Sect. 3, we
consider those methods for which convergence results were
successfully obtained.

Finally in Sect. 4, we show several computational studies
presenting the behavior of selected schemes. The last exam-
ple deals with adaptivity strategies for the LL equation.

1.1 Micromagnetism and Free Energy of Ferromagnetic
Body

For magnetic materials, the relation between the magnetic
field H and the magnetic induction B is expressed by B =
μ0(H + M), using the quantity magnetization denoted by
M. Magnetization is a property of materials that describes
to what extent they are affected by magnetic fields, and also
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determines the magnetic field that the material itself creates.
Magnetization is defined as the amount of magnetic moment
per unit volume. The origin of the magnetic moments creat-
ing the magnetization can be either microscopic electric cur-
rents corresponding to the motion of electrons in atoms, or
the spin of the electrons.

In some materials (e.g., ferromagnets), the magnetiza-
tion exists even without an external magnetic field (sponta-
neous magnetization). In other types of materials, the mag-
netization is induced when an external magnetic field only
is present. The magnetization is not always homogeneous
within a body, but rather a function of position.

For ferromagnetic materials at temperature far below the
so called Curie temperature TC , the modulus of the magne-
tization remains constant. Thus one can presume

M = Msm, (1)

where m is a unit vector.
Micromagnetism deals with the interactions between

magnetic moments on sub-micrometer length scales. These
are governed by several competing energy terms. The to-
tal energy involved, called free energy, consist of several
contributions describing different phenomena appearing in
ferromagnetic bodies.

Exchange energy. Orientation of the magnetization vector
can vary from point to point. Exchange energy will at-
tempt to make the magnetic moments in the immediately
surrounding space lie parallel to one another. Therefore it
costs additional energy to change the direction of the mag-
netization. We call this the exchange energy. This energy
can be measured by the gradient of m and its simplest ap-
proximation can be written as

Eexc =
∫

Aexc
[
(∇mx1)

2 + (∇mx2)
2 + (∇mx3)

2]

=
∫

Aexc|∇m|2, (2)

where Aexc is a material constant, see [2].
Anisotropy energy. The properties of a magnetic material
are in general dependent on the directions in which they are
measured. In the absence of all external forces, the magne-
tization M would align in one or more specific directions
in the crystal lattice. We call these directions easy axes of
the material.
To rotate the magnetization away from the easy axis in-
volves energy called anisotropy energy. For case of mater-
ial with uniaxial anisotropy (one easy axis of magnetization
is present, represented by vector p) the anisotropy energy
can be expressed as

Eani =
∫

Kani〈m,p〉2.

Zeeman’s energy. The magnetic system can be influenced
by an externally applied field. This type of field is called
applied field and we denote it by Happ. It interacts with
the magnetization and creates an energy called Zeeman’s
or applied field energy. This energy contribution describes
the tendency of the magnetization to align external applied
field. It is given by

Eapp =
∫

μ0〈Happ,M〉.

Magnetostatic energy. Magnetostatic interactions represent
the way the elementary magnetic moments interact over
long distances within the body. In fact, the magnetostatic
field at a given location within the body depends on the
contributions from the whole magnetization vector field.
Magnetostatic interactions can be taken into account by in-
troducing the appropriate magnetostatic field Hdem accord-
ing to static Maxwell equations for magnetized media

∇ · Hdem = −∇ · χΩM
∇ × Hdem = 0

}
in R

n, (3)

where χΩ is a characteristic function of the domain Ω oc-
cupied by ferromagnetic body. Then, the energy coupled
with magnetostatic interactions denoted by Edem will be
expressed as

Edem =
∫

1

2
μ0〈Hdem,M〉.

Magnetostrictive energy. Materials in which reversible de-
formation can be induced by an applied magnetic field and
in which applied stress results in a change of the magneti-
zation are called magnetostrictive materials. The so called
magnetostrictive energy linked to this behavior can be ex-
pressed in terms of magnetostriction field Hstr defined ac-
cording to tensor conventions as

Hstr = λmσ : M, (4)

where σ = σ(u,M) depends on the magnetization and the
displacement vector u via the relation

σ = λεε(u) − λελmMMT .

The strain tensor is defined as

εij (u) = 1

2
(∂xj

ui + ∂xi
uj ).

Tensors λε,λm describe the properties of the material. The
displacement vector u and the stress tensor σ are coupled
by the equation of elastodynamics

ρut t − ∇ · σ = 0,
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where ρ is the mass density. Thus the magnetostrictive en-
ergy can be expressed as

Estr =
∫

1

2
μ0〈Hstr,M〉.

Total free energy Efree of a ferromagnetic system can
be then expressed as sum of all contributions listed above.
Since the most efficient magnetic alignment (also known as
a configuration) is the one in which the energy is lowest,
these five energy terms will attempt to become as small as
possible at the expense of the others, yielding complex phys-
ical interactions. The competition of these interactions under
different conditions is responsible for the overall behavior
of a magnetic system. The system will reach an equilibrium
state when the configuration of the magnetization will cor-
respond to some local minimizer of the energy functional
Efree(m).

1.2 Dynamics in a Ferromagnetic Body

Considering the case of a ferromagnetic body, we deal with a
system whose free energy Efree has many local minima cor-
responding to metastable equilibria [2]. In this framework,
one can determine the equilibrium condition by imposing
that the free energy is stationary with respect to M. It is im-
portant to underline that, from this analysis, one can not say
which metastable state the system will reach, given an initial
state. The only way to determine this information is to intro-
duce dynamics. Therefore, an appropriate dynamic equation
must be considered to describe the evolution of the system.

First, we have to understand that any system can only feel
the magnetic field that results from an energy change. So we
have to derive a total effective field, denoted by Heff, act-
ing on the magnetization as derivative of the energy density
function efree for Efree defined by Efree = ∫

efree. Eventually,
the effective field takes form

Heff = Hexc + Hani + Happ + Hdem + Hstr

= −∂efree

∂m
, (5)

where Hexc = AexcΔM denotes the exchange field and
Hani = Kani〈m,p〉p stands for the anisotropy field. The
other symbols were explained before.

The first dynamical model for the precessional motion
of the magnetization was proposed by Landau and Lifshitz
in 1935 [3]. Basically, this model includes two types of
precession, rotational and dissipative. Rotational precession
describes the rotation of the magnetization vector around
the vector of the effective field. This movement perfectly
matches the theory of gyromagnetic precession, however it
is a conservative process. For modelling of real processes,
which are in their nature dissipative, a phenomenological

Fig. 1 The combination of
precessional and dissipative
movement of m around Heff.

The component denoted as b
represents the term
−m × (m × Heff) while a stands
for the component −m × Heff

term was introduced to describe the dissipation of the en-
ergy by pushing M towards Heff.

The combination of two movements is governed by the
so called Landau-Lifshitz (LL) equation

mt = −βLm × Heff − αLm × (m × Heff). (6)

We often refer to (6) as the Landau-Lifshitz form (or shortly
the LL form) of the micromagnetic equation.

Remark 1 The complete physical model encounters the fol-
lowing physical constants and parameters: γ the gyromag-
netic ratio, α the damping parameter and Ms the saturation
magnetization. The Landau-Lifshitz equation then reads as

Mt = −γ

(
M × Heff + α

M
Ms

× (M × Heff)

)
. (7)

However, for the purposes of mathematical analysis it is
more suitable to distinguish between the coefficients in front
of the terms in the equation separately. Therefore we use
αL and βL related to physical constants by βL = γ and
αL = αγ. Moreover we work with normalized magnetiza-
tion m and thus the time is scaled by a factor M−1

s .

The length of m does not change during the evolution
process described by the LL equation. The reader can check
this statement by scalar multiplication of (6) with m.

In Fig. 1 both terms appearing on the r.h.s. of (6) are il-
lustrated. The dissipative character represented by the sec-
ond term on the r.h.s. of (6) is characterized by condition
αL > 0.

It is not always necessary to include all contributions to
the effective field in (5). For example, when one does not ex-
pect large deformations of the working sample, the magne-
tostrictive part can be neglected. Or, in the case of uniformly
magnetized bodies, it is the exchange field that vanishes.

The mathematical properties of the LL equation are given
by the actual form of Heff. They vary significantly when
only some terms in (5) are considered. The contributions can
be divided according three main ingredients influencing ac-
tual type of the LL equation.
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1. Anisotropy—direct dependence on values of m. Includ-
ing the anisotropy field makes the LL equation an ODE.

2. Exchange—direct dependence on gradient of m. Includ-
ing the exchange field makes the LL equation a PDE.

3. Magnetostatics and magnetostriction—indirect depen-
dence on m or ∇m via an additional PDE. Including
the magnetostatic and the magnetostrictive field requires
another PDE to be coupled with the LL equation.

Also computational aspects are affected by the choice of
terms contributing to the effective field. We should distin-
guish between two major cases.

Local interactions. Energy terms including exchange, ani-
sotropy and Zeeman’s energy describe local (in space)
interactions. It means that local change of the magnetiza-
tion affects corresponding field only locally. Therefore,
e.g. during the assembling of the mass matrix one can
consider values only on the neighboring vertexes of the
mesh.

Long-distance interactions. On the other side, the magneto-
static and magnetostrictive energy characterize long dis-
tance interactions. As an example, the local change of
the magnetization changes locally the r.h.s. of (3). This
however results in the global change of Hdem. The same
can be said also for the magnetostrictive contribution. For
computations makes this quite a problem, mainly on the
amount of the computations.

A different approach for description of damped preces-
sion was proposed by Gilbert [4]. He introduced the follow-
ing equation

mt − αGm × mt = −βGm × Heff, (8)

which was later named as the Landau-Lifshitz-Gilbert
(LLG) equation. Here, the damping is incorporated implic-
itly as the precession direction is no longer perpendicular
to Heff.

We refer often to (8) as the Landau-Lifshitz-Gilbert form
of the micromagnetic equation (LLG form).

Although the previous equation seems to be different
from the LL form, it can be proved that for βL �= 0 they are
mathematically equivalent. To see this, compute the cross
product of (6) with m to get

m × mt = −βLm × (m × Heff)

− αLm × (m × (m × Heff)).

Using the identity m × Heff = −m × (m × (m × Heff)),

which holds true once |m| = 1, we get

−αL

βL

m × mt = αLm × (m × Heff) − α2
L

βL

m × Heff.

Summing up the previous equation with (6) leads to the LLG
form with coefficient transformation

αG = αL

βL

and βG = α2
L + β2

L

βL

.

Remark 2 Although the LL and the LLG forms are for
βL �= 0 mathematically equivalent and give the same solu-
tions, for numerics it makes difference. The schemes derived
from the LL form using, e.g., backward Euler approximation
of time derivative, can behave differently from those derived
from the LLG form. As an example, compare Algorithm 2
of Prohl and Bartels described in Sect. 3.4, which is based
on the LLG form, with Algorithm 7, which is based on the
LL form.

Remark 3 Comparing the LL form with the LLG form, we
can conclude that the LLG form is in general more suitable
for numerical schemes than the LL form. The reason for this
is that without the double cross term, the LLG form can dras-
tically simplify the treatment of damping in the algorithm.
One could object that the LL form has the advantage of ex-
plicitly expressed time derivative of m. However, since the
mid-point scheme is already implicit, the implicit nature of
the LLG form does not introduce any further complication.

We go further and derive another form of the micro-
magnetic equation different from the LL and the LLG form.
Using the similar calculus as before we end up with

mt + αCm × mt = −βCm × (m × Heff), (9)

where αC = α−1
G = βL/αL and βC = βGα−1

G = (α2
L +

β2
L)/αL.

1.3 Basic Properties of the Micromagnetic System

It is a classical dilemma: Which approach to use in the com-
putations. Which numerical scheme should be implemented
in order to get the best results? There are several approaches.
The method of “rude force” suggests to take the explicit
Euler method with tiny time-steps in order to get the trun-
cation error minimal. With a cleverer approach—however
sometimes not so efficient—we would use the highest order
scheme which can be computed with our computational fa-
cilities in a reasonable time. Both can eventually suffer from
numerical instabilities and from non-physical results.

Possible solution is to use such a numerical scheme
that follows physical properties of the system under con-
sideration. The previous two approaches were just general
schemes and thus it would be naive to expect the best re-
sults.

Let us list the most important physical features of the LL
system, proposed in [5], that can be taken under considera-
tion when developing a numerical scheme.
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Conservation of the modulus. From (1) we see that the
length of the magnetization is conserved in time at each
spatial location. It is a fundamental constraint on the evo-
lution of the magnetization that should be respected in
the time discretized version of the LL equation. Classic
schemes, like the backward Euler scheme, do not preserve
this feature. For some schemes, once the error estimates are
derived, also an asymptotic conservation of the length of
the magnetization can be verified, when the time-stepping
goes to zero [6, 7].
Other schemes are designed in such a way that the solution
is projected back on the sphere in every time step or after
a prescribed tolerance has been exceeded. This is a nonlin-
ear modification of the original LLG dynamics which may
cause troubles in the analysis of the scheme.
The third approach is to use a numerical scheme preserving
the length of the magnetization directly. A family of such
schemes use so called mid-point rule. We mention several
examples in Sects. 2 and 3.

Liapounov structure. As mentioned already in [8], in case
of constant applied field the LL equation has so called Li-
apounov structure, i.e., the free energy of the system is a
nonincreasing function of time. This can be derived from
scalar multiplication of (6) by Heff and integration over the
domain

−(mt ,Heff) + αL‖m × Heff‖2
2 = 0.

From (5) we have

(mt ,Heff) =
(

mt ,−∂efree

∂m

)
= −

∫
∂efree

∂t

= −∂Efree

∂t
,

which after time integration leads to the verification of the
Liapounov structure of the LL equation.
This property is also fundamental, because it guarantees
that the system tends toward stable equilibrium points,
which are minima of the free energy. It is thus natural to de-
mand that the time discretization preserves the Liapounov
structure.

Hamiltonian structure. Third property mentioned in [5] em-
phasize the fact that the LL equation was derived orig-
inally from a Hamiltonian system, which is conservative
with respect to the energy. The addition of the phenomeno-
logical damping term introduces the possibility to describe
real systems featuring dissipative mechanisms. However,
in many applications, the damping effects can be consid-
ered as a perturbation of the conservative motion, since the
ratio αL

βL
varies around 0.02. In this respect, the third impor-

tant property of the LL equation is the Hamiltonian struc-
ture when αL = 0.

Remark 4 Until now, the mid-point rule based numerical
schemes were very effective, however, for the case of ex-
change field included in the model, without a rigorous jus-
tification. Only so called asymptotic analysis argumentation
was used in order to determine the accuracy of the method.
This argumentation relies on the approximations of respec-
tive terms using expressions with certain order of accuracy.
This approach however does not serve for rigorous error es-
timates or at least convergence analysis of the scheme. It
is not straightforward that if respective terms in a PDE are
approximated with some order of accuracy then the solu-
tions of the approximate PDE will actually converge (with
the same of in some cases lower order) to the solution of
original PDE.

Very recent results of Bartels and Prohl however show
that it is possible to analyze the mid-point rule based
schemes rigorously.

1.4 Applications

We show several areas where the Landau-Lifshitz equation
plays a key role in an accurate description of the magnetic
processes.

1.4.1 Maxwell-LLG Model

To obtain a simple model problem for ferromagnetic calcu-
lations, we suppose that there is a bounded cavity Ωout ⊂ R

3

with perfectly conducting outer surface Γ out. Within the
cavity is a ferromagnetic material occupying a bounded sub-
domain Ω ⊂ Ωout. For simplicity we assume that outside
the ferromagnet is vacuum.

In order to model the electromagnetic behavior of the
ferromagnetic material, the basic Maxwell system must be
augmented by the Landau-Lifshitz equation describing the
influence of the ferromagnet. The electromagnetic field in
Ωout is described by four vector functions of position and
time: E the electric field, H the magnetic field, B the mag-
netic induction and M the magnetization. The magnetic vari-
ables are related as follows:

B = μ0(H + m) in Ωout,

where μ0 ≥ 0 is the magnetic permeability of free space.
Replacing the variable B in standard Maxwell equations
we arrive at the complete coupled Maxwell-Landau-Lifshitz
(M-LL) system

mt + αm × mt = (1 + α2)m × Heff

in ΩT := (0, T ) × Ω, (10)

ε0Et + ∇ × H + σχΩE = −J

in Ωout
T := (0, T ) × Ωout, (11)

μ0Ht − ∇ × E = −μ0mt in Ωout
T , (12)
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where βL = −1 and αL = α. Simplified effective field
Heff = Δm + H comprises main difficulties of the gen-
eral version, where more terms contributing to the effec-
tive field are taken in consideration, see Sect. 1.1. The mag-
netic field H corresponds to the magnetostatic field Hdem of
the micromagnetic system. Further, ε0 ≥ 0 denotes the elec-
tric permeability of free space, and σ ≥ 0 the conductivity.
Let J : Ωout

T → R
3 denote the applied current density, and

χΩ : Ωout → {0,1} the characteristic function of Ω . System
(10)–(12) is supplemented with initial conditions,

m(0, ·) = m0 in Ω,

E(0.·) = E0, H(0, ·) = H0 in Ωout,

and boundary conditions,

∂nm = 0 on ∂ΩT , E × n = 0 on Ωout
T .

In [9], stability of a semidiscrete scheme to numerically
solve (10)–(12) is verified, but its convergence was not stud-
ied. Recently, Baňas, Bartels and Prohl [10] propose an im-
plicit discretization of (10)–(12) and they succeed to prove
the convergence. We focus on this topic in Sect. 3.7.

1.4.2 Magnetic Recording

The development of new magnetic materials used for per-
manent magnets, data storage, or magnetic sensors asks for
realistic simulation of modern magnetic materials. Thus one
needs to make accurate predictions of their magnetic proper-
ties. The LL model describes magnetic phenomena on sub-
micron scales, thus it is well suited for the modelling. More-
over, advanced numerical micromagnetic simulations justi-
fied the ability to provide theoretical guidelines for the struc-
tural design of novel magnetic materials and devices.

The following topics employ the LL formalism in the de-
scription and simulations.

Discrete storage media comprise huge potential for future
advances in ultra-high density magnetic recording.

Perpendicular magnetic recording is a candidate to deal
with thermal instabilities in conventional longitudinal
recording.

Magnetic nano-wires. New developments of magneto-elect-
ronic devices may be based on the magnetoresistance of
domain walls moving in nano-wires.

Vortexes in nano-elements. The applications in sensors are
very sensitive for switching behavior and for the creation
of so called vortexes. Therefore a fine analysis of the be-
havior of such vortexes is of great interest. Recently, a
novel numerical scheme has been developed by Bartels and
Prohl [11] capable to trace the behavior of the vortexes very
accurate. The authors prove also the convergence of this
scheme, which is described later in Sect. 3.4.

1.4.3 Thermally Activated Micromagnetics

Thermally activated processes become increasingly impor-
tant in magnetic recording and sensor applications. Thermal
stability and fast writing are crucial for ultra high density
magnetic recording. With decreasing bit size, thermal effects
are relevant to high speed switching of the magnetization in
the write process and to the long term stability of the written
bit.

There exist more ways how to treat thermally activated
processes. We mention two of them: First way is to incorpo-
rate a stochastic thermal field Hthm to the effective field Heff.

Second way is to consider non-constant length of magneti-
zation Ms introduced by (1).

Stochastic thermal field Hthm. Inclusion of a stochastic
process in the effective field accounts for the interaction
of the magnetic polarization with the microscopic degrees
of freedom. This interaction causes the fluctuation of the
magnetization distribution. This approach was originally
introduced by Brown [12] for a single domain particle with
uniform magnetization.
The thermal field is assumed to be a random process with
the property that the average of Hthm taken over differ-
ent realizations vanishes in each direction of space, thus
〈Hi

thm(t)〉 = 0. This is so because a large number of micro-
scopic degrees of freedom contribute to this mechanism.
Further, due to the fluctuation-dissipation theorem [13] the
strength of the thermal fluctuations denoted by D is re-
lated to the dissipation via the damping of the system by
D = αGkBT

βGV
, where T is the temperature, kB is the so

called Boltzmann constant and V denotes the spatial cor-
relation length of the random field. Usually, V is taken to
be equal to the cell size of the computational grid. How-
ever, recent results from [14] suggest that the calculated
properties of the system are independent of the cell size if
the cell size is smaller than the thermal exchange length
(Aexc/Ms |Hthm|)1/2.

Further, the thermal field obeys

〈Hi
thm(t1)H

j

thm(t2)〉 = 2Dδij δ(t1 − t2).

The Kronecker δij expresses the property of Hthm that its
different components in space are uncorrelated, and the
Dirac δ expresses that the autocorrelation time of the ther-
mal field is much shorter than the response time of the sys-
tem.
Finally, after adding Hthm to the total effective field in the
LL equation and rearranging and regrouping deterministic
and stochastic terms, we end up with the following system
of Langevin equations

mt = A(m, t) +B(m, t)Hthm(t).
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It is a general system with multiplicative noise, since the
multiplicative factor B for the stochastic process Hthm is a
function of m.
A stochastic process representing the fluctuating field is as-
sumed to be Gaussian white noise, because the fluctuations
emerge from the interaction of the magnetization with a
large number of independent microscopic degrees of free-
dom with equivalent stochastic properties. As a result of
the central limit theorem, the fluctuation field is Gaussian
distributed.
In the calculus of stochastic differential equations (SDE)
there exist two different interpretations of actual SDE
called Itô interpretation and Stratonovich interpretation.
Garcia-Palacios and Lazaro [15] proved that the equation
has to be interpreted in the sense of Stratonovich, in order
to obtain the correct thermal equilibrium properties.
For the stochastic computations standard stochastic cal-
culus can be used, e.g. Euler-Maruyama method, which
is only a straightforward generalization of the determin-
istic Euler method, or Heun method, which is a predictor-
corrector based method. It turns out, that the Heun method
fits better since it naturally converges to the solution of
SDE in Stratonovich sense [16]. Recently, Monte Carlo
based methods were used for stochastic computations for
LLG including the thermal field [17].

Non-constant length of the magnetization. Thermomagnet-
ic recording uses local heating of ferromagnetic media to
locally decrease coercivity and change saturation magne-
tization Ms of the material and alleviate magnetization re-
versal. The long-term thermal stability of data/magnetic
regions depends on material properties like saturation mag-
netization Ms and uniaxial magnetocrystalline anisotropy
Kani. The magnitude of both monotonically drops towards
zero as the material temperature T is increased toward the
Curie temperature TC. For T close to TC, thermal energy
overcomes electronic exchange forces in ferromagnets and
produces a randomizing effect, leading to total disorder,
and hence zero length of the magnetization Ms .
The modelling of above mentioned thermomagnetic proc-
esses requires a model encountering the change of Ms dur-
ing the magnetic reversal. An promising idea is proposed
by Baňas, Prohl and Slodička in [18]. They suggest to con-
sider an extended Landau-Lifshitz equation allowing for
changes in the saturation magnetization. The subsequent
modified Landau-Lifshitz model uses mutual orthogonality
of m, m×Heff and m× (m×Heff) to describe temperature
dependent gyroscopic precession. The model reads as

mt = κm − βLm × Heff − αL

m
Ms

× (m × Heff)

in ΩT , (13)

∂nm = 0 on ∂ΩT , (14)

m(0, ·) = m0. (15)

The function κ is chosen in such a way that Ms evolves
according to the experimental values. Once Ms is known—
from experiments or from e.g. mean field theory—actual
determination of κ can be done from scalar multiplication
of (13) by m resulting in

Ms
2
t = 2κM2

s .

In classical form of the LL equation (6), the length of m
is conserved. Analytical studies regarding the existence
and regularity of the solutions rely on this fact. In the
present case, the target for solutions of (13)–(15) depends
on (t,x) ∈ ΩT which is an innovative approach. In [18],
the authors verify existence of locally strong and globally
weak solutions, for Ω ⊂ R

d, d = 2,3 being a bounded Lip-
schitz domain. More precisely, the first result uses abstract
results, where locally strong solutions are constructed as
proper limits of a sequence of smooth solutions. The exis-
tence of such smooth solutions follows from general in-
verse function theorem. The second result describes the
construction of weak solutions as proper limits of iterates
of a practical discretization in space-time.
From a numerical viewpoint, to construct convergent, fully
practical numerical schemes where iterates respect the con-
straint |m| = Ms > 0 in a proper sense is a nontrivial en-
deavor. Over the last decade, projection strategies have
been shown to converge in the context of (locally existing)
strong solutions for the LL equation, where Ms ≡ const,
and optimal convergence rates have been verified in this
case [6]. Unfortunately, convergence of these methods in
the case of only weak solutions is still not clear. It is only
recently that space-time discretizations of the LL equa-
tion for Ms ≡ const were found, where first iterates satisfy
|Mj | = const at all nodes of the triangulation being j in-
dex of the temporal discretization, and second, the iterates
construct weak solutions in the limit when all discretiza-
tion parameters tend to zero. Interestingly, both ansatzes
use different formulations of the problem in the continuous
setting, leading to different schemes, numerical analysis,
and properties as indicated.
The case of 0 < Ms ≡ Ms(t,x) makes the construction
of stable, convergent discretizations, which satisfy |Mj | =
Ms > 0 even only at mesh-points challenging. Authors
from [18] present two discretizations of (13)–(15), which
are also based on two different formulations: first formula-
tion uses the relation (20) and the second formulation de-
parts from the LLG form (8) and uses the idea of cross-
product type schemes described in Sects. 3.4–3.6.

1.4.4 Sensitivity Analysis of the LL Equation

The Landau-Lifshitz model is a complex model describing
wide variety of physical quantities and properties of the
medium. There are plenty constants, parameter functions
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Fig. 2 (a) Schematic model of
molecular lattice of two grains.
In the boundary region the
regularity of the lattice vanishes
which results in the drop of the
anisotropy parameter Kani.

(b) The profile of Kani having
value K1

ani inside grain 1, having
value close to zero in the
boundary region and again
rising to value K2

ani inside
grain 2

and coefficients appearing in the model determined by a par-
ticular problem. Some constants are the same and are known
in all cases, e.g. gyromagnetic factor γ . However, most pa-
rameters change from case to case. For some systems the
values of these parameters are known in forehand but many
times they have to be determined by an experiment. For ex-
ample, the anisotropy constant was measured already for
many materials. However, as soon as you deal with nonuni-
form materials, e.g. composites, the actual values can differ
from the values found in the books.

The determination of the parameters of PDE’s is a com-
plicated task and it is in general an inverse problem. That
means that from the measurements of the state variable, e.g.
the magnetization or the magnetic field, one has to deter-
mine the parameters of the PDE. Inverse problems are in
general ill-posed and the solution is highly sensitive on the
data. Therefore, a careful analysis of the sensitivity of the
LL equation on the parameters has to be performed in order
to design the algorithms for parameter identification.

The so called sensitivity analysis mentioned above, is im-
portant also to optimization problems. In this sort of prob-
lems one has to find optimal value of some parameters in
order to minimize in forehand known functional. The opti-
mization procedure often requires knowledge of how sensi-
tive the solution is to the change of some parameters.

We will provide several examples.

Non-constant anisotropy parameter. In the high-density
magnetic recording, so called grained media are used.
The material consists of many grains. Every grain features
an uniform anisotropy, i.e. the anisotropy parameter Kani

is known over every grain. The problem arises in region
where two grains touche. More specifically, going from
the middle of one grain towards the boundary with an-
other grain, the value of anisotropy parameter drops almost
to zero. When passing the boundary and moving towards
the middle of another grain, anisotropy parameter again
rises. This is due to the crystalline structure of material:
Anisotropy is connected with the regularity of molecular
lattice. When going from one grain to another, this reg-

ularity is broken (see Fig. 2a) and therefore the value of
anisotropy parameter drops and rises.
For accurate modelling of magnetic recording it is desir-
able to know exact profile of this drop-and-rise function.
When we denote distB(x) a space variable function mea-
suring the distance of x to the nearest boundary of the cur-
rent grain, the anisotropy parameter Kani becomes space
dependent function

Kani = Kani(distB(x)),

having the graph similar as depicted in Fig. 2b. However,
the exact shape of Kani(distB(x)) can not be measured di-
rectly since the current techniques are not capable of mea-
suring anisotropy of molecular lattice on such small scales.
Therefore the inverse problem has to come into play and
the shape of Kani(distB(x)) is determined indirectly from
the measurements of magnetic field around the boundary.

Non-constant damping parameter. For a composite materi-
als, the damping constant α can be a space dependent func-
tion. This phenomenon results from the fact that there are
regions where the density of the particles from one material
is higher than in other places. This is difficult to capture by
standard methods and must be again determined indirectly
from measurements of magnetic field.

Shape optimization of the working domain. In recording in-
dustry, the efficiency of writing data onto thin films is sig-
nificantly influenced by the actual shape of the writing
head. The writing process can be described by the Landau-
Lifshitz formalism where the part of the working domain
is the head self. For the optimal writing and reading one
has to find the optimal shape of the writing head. Thus the
parameters describing the shape of the head are to be de-
termined from the optimization process.

Core optimization in MRAM-type memories. New advances
in nanotechnologies gives a good hope that the Magnetore-
sistive Random Access Memories will become competi-
tive alternative to existing solutions like Flash RAM or
DRAM. One of the approaches leading to better properties
of MRAM is the design of the ferromagnetic core in one
cell.
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Fig. 3 Schematic model of MRAM. Writing in the working cell af-
fects the information written in the neighboring cells along the working
bit line and digit line

Fig. 4 Single cell occupying
domain Ω . Area Ωf

characterized by γ > 0
describes shape of the core

Very simplified model of MRAM is depicted in Fig. 3.
A ferromagnetic layer (FL) is divided in a grid of cells.
Each cell is capable to hold a bit information 0 or 1 by
magnetizing the core of the cell in one of two possible di-
rections. Above the FL a grid of wires called bit lines is
placed. Similarly, below the FL occurs a perpendicular grid
of wires called digit lines. Writing of one bit in a particular
working cell is done in the following way. Electric current
passes through the digit line and the bit line located above
and below the working cell, see Fig. 3. The current induces
a field that changes the magnetization of the working cell
to the final state representing written bit.
However, induced field acts also on the other cells located
along the working bit line and digit line. Thus this phenom-
enon must be included in the shape optimization design.
One single cell occupying domain Ω consists of two parts.
The core Ωf is made of a ferromagnetic material and the
rest of the cell denoted by Ω \Ωf is made of nonmagnetic
material separating cells from each other, see Fig. 4. The
main aim of this work is to optimize the shape of Ωf .

For the description of the dynamics during writing process
the LL equation (6) can be used where αL(x) = CβL(x)

and moreover we allow αL to be a space dependent func-
tion. The reason for this is to flexible describe the shape of
magnetic core in MRAM. Notice that if αL = 0 then the
LL equation reduces to trivial mt = 0, which means that m
does not change in the part of the domain where αL = 0.

On the other side, in the part of Ω where αL is positive, we
obtain classical LL equation, see Fig. 4. Of course, it would
be ideal if αL is a two-valued function having value 0 on

Ω \ Ωf and having a constant value αconst
L on Ωf . How-

ever we accept a continuous function αL and later we try to
force it to be an approximation of a two-valued function.
Thus in this case, αL is the parameter function that has to
be optimized in order to get the best writing properties.

General Framework for Sensitivity Analysis

We describe a general framework used for optimization and
inverse problems in micromagnetics.

We begin with notations. Model based on the LL equation
in quite general form reads as

LL(m,P) = 0, (16)

equipped with corresponding initial and boundary condi-
tions which we do not specify here. The expression LL de-
pends on parameter (or set of parameters) P and on state
variable m which is also dependant on P . The relation (16)
consists of the LL equation, possibly coupled with other
equations such as magnetoelastic equation or Maxwell’s
equations.

Dependence of m on P is due to the fact that m is a solu-
tion of (16), so knowing the value P we are able to compute
m(P) from (16).

Let us consider the following abstract problem.

Problem 1 Find a set of parameters P∗ form a suitable
space Q, which minimizes a cost functional F(m), i.e,

P∗ = argmin
P∈Q

F(m),

where P∗ are parameters in the LL equation (16).

Concrete definitions of Q and F characterize the particu-
lar optimization or inverse problem. Typically, the cost func-
tional F is written in terms of m = m(P) as the solution
to the LL equation with corresponding parameter set P . In
the case of inverse problems, F can express e.g. the differ-
ence between the computed solution m(P) and the measure-
ments.

Many iterative minimization strategies, such as Steepest
Descend Method or Newton-like methods, require knowl-
edge of the derivative of F(m) with respect to P in every
step of their iterations.

The working scheme can be as follows.

1. The differentiation of F(m) leads to

∂F(m)

∂P = ∂F(m)

∂m
∂m
∂P , (17)

which means we have to find the derivation of m(P) with
respect to P .
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2. The total differentiation of (16) gives the following equa-
tion for m

DLL(m,P) = ∂LL(m,P)

∂m
∂m
∂P + ∂LL(m,P)

∂P = 0

(18)

equipped with adapted initial and boundary conditions.
So the solution of (18) gives us ∂m

∂P .
3. Knowing ∂m

∂P one can perform one step in the iterative
minimization procedure.

We present an example of the application of general
framework described above. The example deals with the
shape optimization of magnetic core in MRAM memories,
mentioned already before in this section. It is one part of
the work [19] where the authors consider the case when
αL(x) = CβL(x) and the set of parameters is P = αL. They
derived the expression for the Gâteaux derivative of F with
respect to αL using the primal-dual approach. Together with
existence and uniqueness results for the Gâteaux derivative
it creates the first application of sensitivity analysis of the
LL equation. Further extension of this work can be found in
[20].

Example 1 (Shape optimization of MRAM) We discuss
the simplified model of MRAM mentioned before in this
section. Let us continue in the description of the writing
process. Writing process consists of a switching process
when overall magnetization of the core is switched by an ex-
ternal magnetic field to the different direction. Three types
of applied field occurs during the writing: H45

app is induced
by both the digit and the bit lines above the working cell,
and H0

app,H90
app are induced by just one of the digit or the bit

line above the neighboring cells. One has to take care that
H45

app actually switches the direction of the magnetization in

the working cell, while the influence of the fields H0
app,H90

app
on the neighboring cells will be minimal.

The construction of the cost functional mentioned in the
definition of Problem 1 will follow the latter reasoning. We
distinguish 2 different phenomena.

Quality of writing process. Data must be written correctly,
so that after the writing process it is clear if 0 or 1 is writ-
ten. This will be achieved by controlling that the average
magnetization of the core is aligned with the direction of
written bit. Consequently, if e.g. bit 1, represented by direc-
tion p1, should be written then, during the writing process,
the change of m in the direction of p1 should be maximal.
Therefore we aim at maximizing the quantity

F1 =
∫ T

0
〈mt

45,p1〉.

The superscript 45 indicates, that m45 is computed from the
LL equation when H45

app is in the play. Normally, directions
p1 and p2 for bits 0 and 1 are the following ones p1 =
2− 1

2 (1,1,0) and p2 = 2− 1
2 (−1,1,0).

Influence on neighboring cells. Of course, writing process
in the working cell can not influence the neighboring cells
much. Thus the overall change of the magnetization in the
neighboring cells must be minimal. This can be controlled
by minimizing

F2 =
∫ T

0
‖mt

φ‖2
2,

where φ ∈ {0,90} indicates that m is computed from the
LL equation considering just one of H0

app, H90
app.

Notice that F1 is maximized while F2 is minimized. We
treat F1,F2 simultaneous and we put F1 as the denominator
and F2 as the nominator of a fraction

F = F2

F1
.

Fraction F is now minimized.

Remark 5 In fact, the actual form of F is slightly differ-
ent. For term F2 describing the influence on the neighboring
cells one has to take into account four realizations:

– bit 1 is written and is affected by H90
app,

– bit 1 is written and is affected by H0
app,

– bit 0 is written and is affected by H90
app, and

– bit 0 is written and is affected by H0
app.

Thus, in computational implementation, F takes the form of
a sum over all realizations mentioned. For sake of simplicity,
we stick to the case when F is a simple fraction.

Our final aim is to derive Gâteaux derivative of F with
respect to αL in order to use gradient-type methods for min-
imization of F . In [19] the authors derived ∂Fi

∂αL
, i = 1,2 in

terms of solutions ξi of two dual problems (denoted by DPi )
defined as linear PDE’s with m as coefficients. Then, one
evaluation of ∂Fi

∂αL
consists of four steps:

Input: αn
L

(a) Compute m∗ from the LL equation for αn
L.

(b) Use m∗ to form two dual problems DP1 and DP2.

(c) Compute χi as a solution of dual problem DPi, for
i = 1,2.

(d) Compute ∂Fi

∂αL
using χi. Thus ∂F

∂αL
can be evaluated.

(e) Upgrade αn
L by a suitable algorithm.

Output: αn+1
L

For details see the latter manuscript.
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Fig. 5 The evolution of
parameter function αL. (a), (b),
(c) and (d) depict the initial
approximation, the first, the
fourth and the sixth iteration,
respectively. Black line is
contour 0.1 which characterizes
the boundary of actual shape of
the ferromagnetic core. From
[19]

Once the explicit form of ∂F
∂αL

is known, it is just matter
of taste which minimization technique is used for final min-
imization algorithm. In [19] the steepest descend algorithm
was used taking the form

αn+1
L = αn

L − λn

∂F
∂αL

(αn
L), (19)

starting from some initial guess α0
L with variable step-size

λn. The value of λn was optimized by a line-search algo-
rithm in every step.

The authors verified the conditions of a general theo-
rem stating the convergence of steepest descend algorithm
in real reflexive Banach spaces with F being Gâteaux-
differentiable functional bounded below and increasing,
having Lipschitz continuous gradient.

This result guarantees local existence of the minimum
only. It would be however too optimistic to find the global
minimum, having in mind the complex structure of micro-
magnetic dynamics.

Actual results of the optimization process are depicted
in Fig. 5. The authors used standard W 1,2(Ω)-conforming
Lagrange finite elements for the approximation of αL. The
final distribution of αL is such, that mass is greatly reduced
along the writing wires where negative effect on the neigh-
boring cells are the most significant, and slightly shifted to

the corners of the domain where positive effects of writing
by superposed field are dominant.

The representation of γ involving Lagrange finite ele-
ments from Fig. 5 does not favor any particular profile of
γ. However, in our case we actually seek for a two-valued
function γ. Therefore a so called Level Set Method can be
used for the representation of γ. This method is aimed for
the approximation, in general, of a piecewise constant func-
tion, in our case of a step function with two values.

For the description of the method see, e.g. [21].
The results from [22] including the Level Set Method

are depicted in Fig. 6. They are comparable to the results
in Fig. 5, obtained using Lagrange representation of γ. In
both cases, the mass is reduced along the writing wires and
slightly shifted to the corners of the domain. However, the
resulting distributions are different. In the latter case, the in-
terface between the ferromagnetic core and the nonmagnetic
background is rendered quite sharply and has different pro-
file.

2 Efficient Numerical Schemes

In the following two sections we provide an overview of
known and some new numerical schemes. We focus mainly
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Fig. 6 The parameter function
γ ; results with LSM
representation; (a), (b), (c) and
(d) depict the initial
approximation, the first, the
third and the 76th iteration of
the steepest descend algorithm,
respectively. From [22]

on the case when the exchange field is included in the model
and the effective field takes the form Heff = Δm. If we con-
sider a different scenario we emphasize this explicitly.

From the title of this section one can guess that the ef-
ficiency will be main advantage of the schemes discussed
in current section. Indeed these schemes have been used al-
ready for couple of years giving good results. However, the
common disadvantage of these schemes is the lack of reli-
able convergence results. Schemes, for which convergence
results have been obtained, will we addressed in Sect. 3.

The outline of this section is as follows. After couple
words about fully implicit backward Euler scheme for the
LL equation in Sect. 2.1, we mention a projection scheme of
E and Wang. This scheme is quite interesting, because the
nonlinear term |∇m|2 is considered as a Lagrange multiplier
for the sphere constraint |m| = 1. Therefore, the projection
replaces the above mentioned term in the formulation of the
LL equation.

Next, in Sect. 2.3, we discuss so called mid-point rule
based schemes. We show how a general class of magnitude
preserving schemes can be derived using Cayley transform
and we provide two particular examples of temporal dis-
cretizations according to mid-point rule. We call this time
discretization a classical mid-point and a classical extrapo-
lated mid-point rule.

For the beginning let us settle few basic facts. All
schemes are based on an equidistant time discretization.
This assumption is however not crucial and can be relaxed.
Time interval (0, T0) is split into J time steps of a size
τ = T0/J and we denote tj = jτ for j = 0, . . . , J.

A crucial observation is that |m| = 1 for almost all t ∈
〈0,∞) provided that the modulus of the initial condition is
equal to one too, and that the solution to the LL equation
is sufficiently smooth. This comes from a scalar multiplica-
tion of the LL equation with m. Then we get 0 = ∇|m|2 =
2〈m,∇m〉 and consequently we arrive at

0 = ∇ · 〈m,∇m〉 = |∇m|2 + 〈m,Δm〉.
Finally, using the previous relation, the term m×(m×Δm),

arising in the LL equation when considering the exchange
field, according to the vector calculus, can be transformed
to

m × (m × Δm) = 〈m,Δm〉m − |m|2Δm

= −|∇m|2m − Δm. (20)

This transformation is a classical approach used for example
in [6, 23, 24] and gives rise to new ideas when designing
numerical schemes.
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2.1 Fully Implicit Backward Euler Scheme

Besides standard explicit schemes such as Euler, linear
multi-step methods (e.g. Adams-Bashforth, Adams-Moul-
ton, Crank-Nicholson, Backward Differentiation Formulas
(BDF)) or Runge-Kutta methods, one can think of a more
stable implicit scheme. The first idea that comes on mind is
to consider the following fully implicit scheme

δmj+1 = −βLmj+1 × Hj+1
eff

− αLmj+1 ×
(

mj+1 × Hj+1
eff

)
. (21)

Of course, this scheme suffers from several problems: It
does not conserve the magnitude of mj , its implicit charac-
ter, after space discretization, implies solving of a nonlinear
system, and the last but not least, there has not been proved
any convergence results nor error estimates for this scheme.

In fact, this scheme does not belong to this section, since
it is not reliable (in the sense that there are no error esti-
mates) and is not even efficient (in the sense that it is nec-
essary to solve a nonlinear system). We added this scheme
only for the sake of completeness.

2.2 Projection Based Schemes

A very natural but naive manner how to keep the magni-
tude of mj constant is to renormalize it after each step of
time discretization or after a prescribed tolerance has been
exceeded, see Fig. 7a. This approach is however a nonlin-
ear numerical modification of the LL time evolution which
might have relatively strong effect on the subsequent com-
putation of magnetostatic field [25] and for this reason it is

Fig. 7 (a) Naive projection schemes use in the first step some numer-
ical scheme giving an intermediate solution m∗ that no longer lives on
the unit sphere S. In the second step this intermediate solution is pro-
jected back onto sphere S by mi+1 = m∗|m∗|−1. (b) Another approach
uses classical backward Euler to get out of the sphere S obtaining vec-
tor m∗ with modulus bigger than one. Then using vectorial calculus
based on the reflection with respect to axis p one returns m∗ back to
the sphere S and thus mi+1 has again modulus one. The problem is
that while computing mi+1 one has to gain vector v which is possible
only by a multiplication of m∗ with a coefficient including the length of
m∗ in denominator. In this stage, it becomes analogue to the projection
scheme

not recommended, especially when long time regimes have
to be studied.

An other idea, trying to avoid the renormalization that
keeps the magnitude constant, is explained in Fig. 7b. It uses
special symmetry projection to get back on the sphere in-
stead of simply renormalizing of the out-of-the-sphere vec-
tor. However, it turns out that in actual computations of the
symmetry projection a kind of renormalization has to be
used, so this idea does not bring any improvement.

An interesting trick, actually using the renormalization,
is suggested by E and Wang [26]. The clever idea is to view
the term |∇m|2 in (20) as the Lagrange multiplier for the
pointwise constraint |m| = 1. They start from the equation
(9) considering Heff = Δm with the term m × (m × Δm)

transformed according to (20)

mt + αCm × mt = βC(Δm + |∇m|2m).

The proposed scheme consists of two steps. First, the term
|∇m|2, since it is considered as the Lagrange multiplier, is
removed from the equation and a simple linear equation

m∗ − mj

τ
+ αCmj × m∗ − mj

τ
= βCΔm∗

accompanied by corresponding BC’s is solved to obtain an
intermediate magnetization field m∗. The intermediate field
m∗ is then projected to the sphere to obtain the numerical
solution at the next time step

mj+1 = m∗

|m∗| .

In such a way the projection actually replaces the term
|∇m|2 in the original equation.

For the latter scheme E and Wang proved that the scheme
is unconditionally stable and convergent in L∞(I,L∞(Ω))

with first order accuracy. The price the authors have to
pay for quite easy proof, was the assumption on existence
of the exact solution, with quite high regularity, namely
L∞(I,W 3,2(Ω)).

Further, they present also a modification with second or-
der accuracy which is no more unconditionally stable.

Remark 6 The idea of viewing the term |∇m|2 as a La-
grange multiplier was later discussed also in the framework
of weak solutions for the harmonic map heat flow. For more
details see Sect. 3.5.2.

2.3 Mid-Point Based Schemes

The LL equation can be rewritten in the following form

mt = m × a, (22)
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which is obtained by taking a = βLHeff + αLm × Heff. In
such a form, the evolution on the sphere becomes even more
evident. A classical explicit intergator will update m at time
tj using the approximation

mj+1 = mj + F(mj , tj , τ ).

The particular form of F depends on the scheme. However,
such an update correspond to translations of mj , not rota-
tions. Thus a classical explicit integrator does not account
for the fact that m evolves on a sphere.

Another observation is that the component of a parallel to
m does not influence the solution. However, this component
does alter the discrete trajectories generated by numerical al-
gorithms. An appropriate selection of the normal component
can improve the performance of the scheme.

An interesting idea is to seek methods that in effect de-
couple the accuracy of an integrator from the property of
conservation of magnitude of magnetization. This approach
uses Cayley transform to construct a lifting of the LL equa-
tion to a space of fields with values in skew symmetric ma-
trices [25, 27, 28]. A brief sketch of the approach follows.

2.3.1 Cayley Transform

Any spatial discretization of (22) leads to the following sys-
tem of ODE’s

Ṁi = Mi × Ai , (23)

where Mi = Mi (t) and Ai = Ai (t) are vectors resulting
from the space discretization of m and a. Consider the stan-
dard isomorphism between vectors in R

3 and 3 × 3 skew
symmetric matrices skew[ · ] : R

3 → so(3) where so(3) de-
notes Lie algebra of 3×3 skew symmetric matrices, defined
by

x =
⎛
⎝x1

x2

x3

⎞
⎠ → skew[x] =

⎛
⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠ .

Using the elementary identity x × y = skew[x]y, we can
rewrite (23) as

Ṁi = −skew[Ai]Mi . (24)

Knowing that Mi (t) evolves on the sphere S2, there is a
curve Φi(t) evolving on the Lie group of 3 × 3 rotation ma-
trices satisfying

Mi (t) = Φi(t)Mi (0),

and Φi(0) = I, the 3×3 identity matrix. We end up with the
following system for Φi(t) obtained from (24)

Φ̇i(t) = −skew[Ai]Φi(t). (25)

Given any element Φ of so(3) not within the set of measure
zero {P ∈ so(3) : −1 ∈ spectrum(P )}, one can write

Φ = (I − 1/2Ψ )−1(I + 1/2Ψ ), (26)

where the unique Ψ belongs to so(3).

The actual idea of lifting is very straightforward: derive a
differential equation for Ψi in (26) where Φi satisfies (25).

We remark that the Lie bracket [·, ·] is defined as a matrix
commutator satisfying

[skew[x], skew[y]] = skew[x × y]
= skew[x]skew[y] − skew[y]skew[x].

Introducing the notation cay(Ψ ) = (I−1/2Ψ )−1(I+1/2Ψ )

we can show

Ψ̇i = −skew[Ai] + 1

2

[
Ψi, skew[Ai]

] + 1

4
Ψiskew[Ai]Ψi,

(27)

where

Mi (t) = cayΨi(t)Mi (0). (28)

Each of the ODE’s in (27) evolves in a flat space of 3 × 3
skew symmetric matrices and we call it the Cayley lift of the
space discretized LL dynamics.

The Cayley lift has effectively decoupled the conserva-
tion property from the question of accuracy. Indeed, the dis-
crete dynamics (27) can be integrated using methods of re-
quired accuracy and unconditional stability will be achieved
by suitable implicit schemes (with corresponding computa-
tional costs, of course). Simultaneously, the function evalu-
ations (28) automatically conserve magnitude of magnetiza-
tion.

One possibility to integrate the Cayley lift is to use Cay-
ley transform implicit scheme

Mj+1
i =

(
I + τ

2
skew[Aj+1/2

i ]
)−1

×
(

I − τ

2
skew[Aj+1/2

i ]
)

Mj
i ,

where the upper index j correspond to temporal discretiza-
tion with time-step τ.

The previous scheme yields the same numerical scheme
as the widely used mid-point rule scheme for (22). We de-
note the backward Euler approximation of time derivative
by δm, and the arithmetic mean of two in time consequent
approximations steps by mj+1/2, namely take

mt ≈ δmj+1 := mj+1 − mj

τ
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and

mj+1/2 := mj + mj+1

2
.

Using the previous notation, the mid-point scheme reads as

δMj+1
i = Mj+1/2

i × Aj+1/2
i ,

having the property of conserving the modulus of the mag-
netization. This property can be verified by scalar multipli-
cation of the previous equation with M which results in

〈δMj+1
i ,Mj+1/2

i 〉 = 1/2τ−1(|Mj+1
i |2 − |Mj

i |2) = 0.

Lewis and Nigam [25] study the LL lifting in more gen-
eral setting. The crucial ingredient in their work is a trivial
observation: The solutions of system (24) are not affected by
the component of Ai parallel to Mi . For numerics, however,
it plays a significant role when a correction term parallel to
Mi is added to Ai .

Lewis and Nigam use this observation and instead of con-
sidering (24) they depart from the following equation

Ṁi = −skew[ωi]Mi ,

where ωi = Ai + σ(Mi )Mi . The freely-to-choose function
σ is used for the minimization of the discretization error. In
[25] the authors illustrate the influence of the choice for σ

on the discrete trajectories determined by the forward Euler
algorithm when applied to the LL model. In more detail,
where damping plays a crucial role in the long-term dynam-
ics, large values of σ cause the trajectories to sharply diverge
from those of the ordinary forward Euler; however, the final
state is the same. A closer look at the LL equation shows
that a larger value of σ corresponds to the inclusion of more
precession in the trajectory. These statements are verified by
numerical results presented in [25]. The authors present also
a general geometric approach for selecting values for σ and
show that when used with the forward Euler method, this
choice of σ minimizes the discretization error.

2.3.2 Mid-Point Rule

The methods based on the Cayley lift preserve the magne-
tization amplitude, but they do not generally preserve other
important physical features of the LL equation mentioned
in Sect. 1.3 such as the Liapounov and the Hamiltonian
structure. Therefore we will focus on one particular scheme
called mid-point rule which does preserve the Liapounov
and the Hamiltonian structure. When considering only tem-
poral discretization, the mid-point rule scheme reads as

δmj+1 = mj+1/2 × aj+1/2. (29)

Monk and Vacus [29] use the mid-point rule scheme for
the LL part of the coupled Maxwell-Landau-Lifshitz sys-
tem mentioned in Sect. 1.4.1. However, they study a sim-
plified case when only anisotropy field is included in the LL
model. Then, the LL equation becomes an ordinary differen-
tial equation. The authors show that their scheme conserves
the magnitude of m and verify the Liapounov structure of
the scheme.

In Table 1 with comparison of several schemes we refer
this scheme as classical mid-point rule.

In their later work [9] they go further and add the ex-
change field into consideration. However, for fully discrete
scheme involving the temporal discretization they do not
show any convergence results nor they prove error estimates.

A wide numerical study of the mid-point rule scheme
(29) is performed by d’Aquino, Serpico and Miano [5]. They
consider full version of the effective field, i.e., anisotropy,
exchange, applied and demagnetizing fields are involved in
the LL model. Especially the last one, due to its nonlocal
character, can cause problems in actual computations.

Remark 7 This work, however, considers strong solutions of
the LL equation. That means that when the exchange field is
involved, the solution m must exist in W 2,2(Ω) space. This
is not always the case, e.g. for less regular initial data. In
that case, one has to switch to weak formalism and use the
schemes of Prohl and Bartels, see Sects. 3.3–3.7.

The authors suggest space discretization by finite dif-
ferences or finite elements and show that fully discretized
scheme conserves the magnitude of m, preserves the Lia-
pounov structure of the LL system, and in case of αG = 0
preserves the Hamiltonian structure.

The above mentioned properties are strongly related
to the implicit nature of fully discretized mid-point rule
scheme. This implicit nature results in the necessity of solv-
ing a nonlinear system of equations on each time step.

d’Aquino et al. circumvent this problem by using special
and reasonably fast quasi-Newton iterative technique.

The slightly modified version of mid-point rule scheme is
used also by Serpico, Mayergoyz and Bertotti [30]. Instead
of taking aj+1/2 they extrapolate the value in time tj + τ/2
by the formula 3/2aj − 1/2aj−1 which is accurate up to the
second order. They eventually obtain a numerical scheme
with the truncation error of second order of smallness with
respect to τ,

δmj+1 = mj+1/2 ×
(

3

2
aj − 1

2
aj−1

)
. (30)

In Table 1 with comparison of several schemes, we refer this
scheme as classical extrapolated mid-point rule.
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Table 1 Overview of the properties of particular numerical schemes.
The second column informs about the conservation of |mi | on each
time step. Term asympt. means that the modulus is asymptotically con-
served in some norm when time-step τ tends to zero. Information about
the convergence analysis of the scheme is provided in the third column.
Term asympt. anal. stands for the asymptotic analysis mentioned in Re-

mark 4. Term converg. means that there were derived convergence re-
sults to the solution, whereas error est. means that error estimates are
available. In the fourth column we mention if corresponding conver-
gence analysis was done assuming existence and regularity of strong
solutions or only weak solutions. In the last column we inform in which
section the particular scheme was mentioned

Type of the scheme |mi | = const Convergence Week/strong Section

analysis solutions

Fully implicit backward
Euler scheme (21)

No Asympt. anal. Strong 2.1

Projection scheme
of E and Wang

Yes Asympt. anal. Strong 2.2

Classical
mid-point rule (29)

Yes Asympt. anal. Strong 2.3.2

Extrapolated classical
mid-point rule (30)

Yes Asympt. anal. Strong 2.3.2

Semi-implicit with
penalization terms (31)

Asympt. Error est. Strong 3.1

Semi-implicit with exact
formula on one time level

Asympt. Error est. Strong 3.1

Alouges-Jaisson
Algorithm 1

Yes Converg. Weak 3.3

Bartels-Prohl
Algorithm 3

Yes Converg. Weak 3.4

Bartels-Prohl Algorithm 8
for LL form

Yes Converg. Weak 3.6

3 Reliable Numerical Schemes

After the presentation of methods suffering from the lack of
reliability in Sect. 2, we go on and we review schemes for
which convergence results or error estimates has been ob-
tained. The schemes described in this section can be divided
into two groups. In the first group, we have two schemes:
Semi-implicit scheme (31) and semi-implicit scheme with
exact formula for the solution on one time level from
Sect. 3.1. Both schemes require the existence of strong solu-
tions with some regularity. Schemes in the second group
deal with weak solution and therefore are of more prac-
tical use. The second group consists of Alouges-Jaisson
Algorithm 1 from Sect. 3.3, of Bartels-Prohl Algorithm 3
from Sect. 3.4 and modified Bartels-Prohl Algorithm 8 from
Sect. 3.6.

We will focus on the latter group since the methods
guaranteeing convergence to weak solutions are much more
practical than those dealing with strong solutions. Usually
it is mathematically more difficult—and therefore also more
interesting—to deal with weak solutions since they have less
regularity than strong solutions. A significant step forward
in the convergence theory of mid-point based schemes has
been done only recently in 2006 by Alouges and Jaisson and
a short time later by Prohl and Bartels. The latter couple

propose fully discrete schemes, using reduced integration,
for which they showed convergence to the weak solutions in
corresponding functional spaces. We discuss these methods
in more detail in Sects. 3.3–3.7.

The outline of this section is as follows. First, in Sect. 3.1
we describe semi-implicit methods dealing with strong so-
lutions. In the next subsection we provide the definition of
weak solutions to the LL equation together with some no-
tations. We introduce reduced integration and we list sev-
eral interpolation estimates for reduced integration. Further
we define a discrete Laplace operator acting on less regu-
lar functions from W 1,2(Ω) and we also provide some basic
properties of this operator.

In Sect. 3.3 we discuss the first numerical scheme deal-
ing with weak solutions for which convergence results have
been obtained. However, the convergence was obtained for
two limit processes one after the other: First for time-step τ

going to zero and then for mesh size h going to zero.
Further in Sect. 3.4 we examine the cross-product type

schemes introduced by Bartels and Prohl. For this schemes,
limit was obtained simultaneously for (τ, h) → 0. This
scheme is however nonlinear and thus subsequent lineariza-
tion is provided.

In Sect. 3.5 we discuss slightly different topic of har-
monic map heat flow, however it turns out that the ideas from
this area can be repeated in the LL setting, see Sect. 3.6.



A Survey on the Numerics and Computations for the Landau-Lifshitz Equation of Micromagnetism 293

Finally, we provide recent results on the full Maxwell-
LL system. The coupling of Maxwell equations with the LL
equation is a nontrivial task and we present a successful at-
tempt to design a numerical scheme dealing with weak so-
lutions to the Maxwell-LL system in Sect. 3.7.

3.1 Semi-Implicit Schemes

The transformation leading to (20) suggests the time dis-
cretization

δmj+1 − αLΔmj+1

= −βLmj × Δmj+1 + αL|∇mj |2mj+1. (31)

We can directly observe that the scheme is linear so no im-
plementation of a nonlinear solver is needed. Further, in [6]
for 2D and in [7] for 3D, the authors have obtained the er-
ror estimates in the case of the existence of strong solutions
for the single LL equation. They also state the conditions
when strong solutions exist. The order of convergence ob-
tained is o(τ) for the L∞(I,L2(Ω)) norm and is o(τ 1/2) for
the L2(I,W 1,2(Ω)) norm. The case of coupled Maxwell-LL
system was discussed in [31–33].

However, this scheme fails to conserve the modulus of
mj . Indeed, the only information about the length of mj is
asymptotic, namely the difference

max
0≤j≤J

‖1 − |mj |2‖2

is of order o(τ).

The strategy to obtain better error estimates is to intro-
duce penalization terms. The idea of penalization in order to
satisfy some constraint is not new and has appeared in many
areas. Prohl [6] has added a penalization term Φ(mi ,mi+1)

to the scheme (31) arriving at

δmj+1 − αLΔmj+1 + 1

ε
Φ(mi ,mi+1)

= −βLmj × Δmj+1 + αL|∇mj |2mj+1.

In the overview Table 1 we call this scheme as semi-implicit
scheme with penalization terms.

To satisfy the constraint |mj | = 1 there exist more
choices for Φ,

Φ1(mi ,mi+1) = |mj+1|2 − 1,

Φ2(mi ,mi+1) = 1 − |mj+1|−2,

Φ3(mi ,mi+1) = 1 − |mj+1|−1.

The first choice called Ginzburg-Landau approximation was
already helpful for the proof of existence of weak solu-
tions to LL equation in 3D [34, 35]. For all three choices
Φ1,Φ2,Φ3 Prohl has proved in 2D setting the convergence

rate o(τ 1/2ε1/4) in L4(I,L4(Ω)) together with estimate for
the asymptotic conservation of the modulus guaranteeing
that

max
0≤j≤J

‖1 − |mj |2‖2

is of order o(τ 1/2ε1/2).

The differences between particular choices of Φ were
only in the dependence of ε on τ. For Φ1 it is necessary
that ε−1 = o(τ−1), for Φ2 was the estimate sharpened to
ε > 1.9τ and finally for Φ3 it is ε ≥ τ.

It would be somehow straightforward to extend the re-
sults to 3D setting.

An interesting approach in numerics leaves from the spe-
cial structure of the LL equation (22). The following lemma
[36] gives the explicit solution of (22) when a is known.

Lemma 1 Let a and u0 be any vectors in R
3. Then the

unique solution of mt = m×a, t > 0, for u(0) = u0, is given
by

m(t) = exp(at) × m0

= m‖
0 + m⊥

0 cos(|a|t) + sin
a
|a| × m⊥

0 sin(|a|t)

for m0 = m⊥
0 + m‖

0 where m‖
0 is parallel to a and m⊥

0 is
perpendicular to a.

The previous lemma suggests to use an alternative way
of the time discretization. Namely, one does not have to ap-
proximate the time derivative in the LL equation by back-
ward Euler approximation. Instead, we reformulate the LL
equation into the form mt = m × a, with the initial con-
dition m(0) = mj and for the computation of mj+1 we
use Lemma 1 which provides the exact formula for the so-
lution on one time level. For the evaluation of a we use
the values obtained from the previous time step putting
a = βLHeff(tj ) + αLm(tj ) × Heff(tj ).

Disadvantage of this scheme is that it is an explicit
scheme. So it would be difficult to obtain any error esti-
mates for the case when the exchange field is included in
the model.

For the case of single Landau-Lifshitz equation without
the exchange field, in [37] the authors derive the error esti-
mates inL∞(I,L2(Ω)) obtaining rate of convergence o(τ 2).

For the case of the coupled Maxwell-Landau-Lifshitz
system the exchange field, a numerical study was performed
[36, 38–40]. The authors implemented the above men-
tioned idea and showed the error estimates in L∞(I,L2(Ω))

and in L2(I,H(curl,Ω)) for the magnetic field and in
L∞(I,L2(Ω)) for the magnetization. The rate of the con-
vergence was o(τ 1/2) for the full Maxwell system and o(τ)

for the quasi-static case of Maxwell equations.
In the overview Table 1 we refer this scheme as semi-

implicit scheme with exact formula on one time step.
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3.2 Weak Solutions to the LL Equation and Some
Preliminaries

Since in this section we address the convergence of numer-
ical schemes to the weak solution of the LL equation, we
recall the definition taken from [34].

Definition 1 Given m0 ∈ W 1,2(Ω) such that |m0| = 1 al-
most everywhere in Ω , a function m is called a weak
solution of (8) if for all positive T there holds (i) m ∈
H 1(ΩT ,R

3) with m(0, ·) = m0 in the sense of traces,
(ii) |m| = 1 almost everywhere in ΩT , (iii) for almost all
T ′ ∈ (0, T ) there holds

1

2

∫
Ω

|∇m(T ′, x)|2dx + αL

α2
L + β2

L

∫ T ′

0
‖mt‖2

2dt

≤ 1

2

∫
Ω

|∇m0(x)|2dx, (32)

and, (iv) for all φ ∈ C∞(ΩT ,R
3) there holds

∫ T

0
(mt , φ)dt − αG

∫ T

0
(m × mt , φ)dt

= βG

∫ T

0
(m × ∇m,∇φ)dt. (33)

Further, all schemes discussed in this section use finite
element approach. For clarity we briefly outline the basic
notations and preliminaries.

We assume that Th is a quasi-uniform regular triangu-
lation of the polygonal or polyhedral bounded Lipschitz
domain Ω ∈ R

n into triangles or tetrahedrons for n = 2
or n = 3, respectively. The diameter of Th is denoted by
h = min{diam(K) : K ∈ Th}. We define the lowest order
finite element space Vh ⊂ W 1,2(Ω) containing continuous
functions that elementwise are polynomials of total degree
less or equal to one. We denote Nh the set of all nodes z of
the triangulation Th and we introduce the nodal interpolation
operator Ih : C(Ω,R

3) → Vh satisfying Ihφ(z) = φ(z) for
all z ∈Nh. By 〈·, ·〉 we denote the inner product of two vec-
tors in R

m and we let (·, ·) denote the L2 scalar product of
two vector functions. By ‖ · ‖p we understand the Lp norm
for 1 < p ≤ ∞.

The main tool enabling the convergence analysis of mid-
point rule methods is so called reduced integration. For con-
tinuous functions θ,φ ∈ C(Ω,R

3) we define

(θ,φ)h =
∫

Ω

Ih(〈θ,φ〉)dx =
∑
z∈Nh

βz〈θ(z),φ(z)〉, (34)

for certain weights βz. More specific, if for each z ∈ Nh we
denote by ϕz ∈ C(Ω) the nodal basis function which is Th-

elementwise affine and satisfies ϕz(y) = δzy for all y ∈ Nh,
then we have βz = ∫

Ω
ϕzdx. We define ‖φ‖2

h = (φ,φ)h.

Basic interpolation estimates yield

∣∣(φh,ψh)h − (φh,ψh)
∣∣ ≤ Ch‖φh‖2‖∇ψh‖2, (35)

for all φh,ψh ∈ Vh, where C > 0 denotes an (h, τ )-
independent constant.

Further, we define a discrete Laplace operator Δ̃h :
W 1,2(Ω) → Vh by

−(Δ̃hφ,χh)h = (∇φ,∇χh) for all χh ∈ Vh.

We list some properties of operator Δ̃h taken from [11]. De-
note h the maximal mesh-size of Th defined as a maximal
diameter of all elements in Th. It holds

‖∇φh‖2 ≤ c1h
−1‖φh‖2, (36)

‖Δ̃hφh‖h ≤ c1h
−1‖∇φh‖2, (37)

|Δ̃hφh(z)| ≤ c2h
−2‖φh‖∞, (38)

for some positive c1, c2. Piecewise constant interpolations of
ui are defined for 0 ≤ t ≤ Jτ such that if t ∈ [iτ, (i + 1)τ )

for some i then u(t) := ui+1/2 and u+(t) := ui+1. Piecewise
linear approximation reads as

û(t) := t − iτ

τ
ui+1 + (i + 1)τ − t

τ
ui .

3.3 Alouges-Jaisson Scheme

First numerical scheme dealing with weak solutions to the
LL equation was proposed by Alouges and Jaisson [41]. Be-
side the notations introduced in Sect. 3.2 we denote Mh the
subset of Vh containing those vector fields that have mod-
ulus one in all vertexes of the mesh. Further, for a given
discrete magnetization mj we introduce the tangent space

Fj = {w ∈ Vh|〈w(z),mj (z)〉 = 0, for all z ∈ Nh}.
First step in the construction of the AJ scheme is to rewrite
(33) in the definition of weak solution. Taking φ = m×w in
(33) where w ∈ W 1,2(ΩT )3 ∩L∞(Ωt )

3 satisfies 〈w,m〉 = 0
a.e., we get

αG

∫ T

0
(mt ,w)dt +

∫ T

0
(m × mt ,w)dt

= −βG

∫ T

0
(∇m,∇w)dt. (39)

The original weak formulation can be re-obtained by taking
w = m × φ for any φ ∈ C∞

0 (ΩT ).
A straightforward discretization of (39) leads to the fol-

lowing problem: mj being given, find mj+1 ∈ Mh solution
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to

αG

∫ T

0
(δmj+1,w)dt +

∫ T

0
(mj × δmj+1,w)dt

= −βG

∫ T

0
(∇mj+1/2,∇w)dt, for all w ∈Fj . (40)

Due to the constraint on mj+1 it is an uneasy task to solve
the latter equation. Alouges and Jaisson suggest the follow-
ing: On account of the constraint on mj+1, the quantity
δmj+1 almost belongs to Fj . By replacing δmj+1 by an
unknown s which belongs to Fj we will approximate (40)
by

αG

∫ T

0
(s,w)dt +

∫ T

0
(mj × s,w)dt

= −βG

∫ T

0
(∇mj ,∇w)dt, for all w ∈ Fj . (41)

The algorithm for the AJ scheme proposed by Alouges
and Jaisson consists of two steps:

Algorithm 1

1. mj being given, solve (41) obtaining sj as a solution.
2. Compute mj+1 from

mj+1 = mj + τ sj

|mj + τ sj | .

The main contribution of this scheme is that although a
renormalization takes place in the algorithm, still it is possi-
ble to obtain the convergence to the weak solutions.

Note that (41) is only a kind of perturbation of (40). Thus
the first step of the AJ algorithm will not actually solve (40).
But since in the second step of the algorithm we compute
mj+1 by re-normalizing, we actual get closer to the solu-
tion of (40). After all, it can be shown by examining the
residual r = mj+1 − mj − τvj , that first passing to the limit
τ → 0, and second passing to the limit h → 0 will lead to
the convergence (up to subsequence) to the weak solution
of the LL equation. Namely, Alouges and Jaisson obtained
weak convergence in W 1,2(ΩT ) and strong convergence
in L2(ΩT ).

Remark 8 The AJ scheme is a first successful attempt to de-
sign a scheme actually constructing the weak solutions to
the LL equation. The way how the convergence was proved,
however, is not of the full practical use. Showing the conver-
gence by examining two limit processes one after the other
gives a weaker tool for practical implementations than con-
sidering τ and h going to zero simultaneously. Bartels, Ko
and Prohl in [42] do prove the convergence of the AJ scheme

by passing to the double limit (τ, h) → 0. Due to the explicit
character of the AJ scheme, τ and h are not allowed to go to
zero freely. An extra condition

τh−1−n/2 → 0

has to be put in order to show the convergence. In case of
three dimensions the condition becomes τh−5/2 → 0, which
is quite restrictive for the computations.

Remark 9 The idea of the AJ scheme can be used for dif-
ferent topics too. Namely, the authors of [43] adapted the
AJ scheme for the p-harmonic flow into spheres, see also
Sect. 3.5.

3.4 Cross-Product Type Schemes—LLG Form

For the Alouges-Jaisson scheme described in Sect. 3.3,
the bound τ = o(h1+n/2) is identified to be sufficient for
stability and convergence; sharpness of these restrictions
is evidenced by computational studies in [42]. From this
background, Bartels and Prohl look for an implicit scheme
exempt from restricting requirements for numerical para-
meters, and with higher flexibility with respect to (small)
choices of αL > 0. The construction of a discretization
studied in [11] is a mid-point rule based scheme departing
from the LLG form (8). They propose the following algo-
rithm.

Algorithm 2 Given mj ∈ Vh, find mj+1 ∈ Vh such that for
all φh ∈ Vh there holds

(δmi+1, φh)h − αG(mj × δmi+1, φh)h

= −βG(mi+1/2 × Δ̃hmi+1/2, φh)h. (42)

We call this scheme the Bartels-Prohl scheme, see Table 1
for comparison with other schemes.

Remark 10 The linear second term in (42) is motivated by
the identity

1

τ
mj × mj+1 = mj × δmj+1

=
(

mj+1/2 − τ

2
δmj+1

)
× δmj+1

= mj+1/2 × δmj+1.

From [11] we have the following convergence result.

Theorem 1 Let τ be a positive number, and (Th)h>0 be a
family of regular triangulations of Ω with maximal mesh-
size h. Suppose that (i) |m0(z)| = 1 for all nodes z ∈ Nh,
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Fig. 8 A typical proof of convergence result consists of three steps:
First, the discrete counterparts of the energy inequality from the defi-
nition of weak solutions are derived and proved. Second, convergence
of a subsequence of the linear interpolants is verified, with some limit
function. Third, the limit function is identified to be the weak solution
of the particular problem

(ii) for all 0 ≤ i ≤ J − 1 and for all φ ∈ Vh the relation (42)

holds.
Then the modulus of mi is preserved, that is,

|mj (z)| = 1

for all nodes z ∈ Nh and for 0 ≤ i ≤ J . If Jτ > T and
m0 → m0 in W 1,2(Ω) for h → 0 then, taking m̂h,τ as a
piecewise linear approximation of mi , there exists a subse-
quence of (m̂h,τ ) as (h, τ ) → 0 which converges weakly in
W 1,2(ΩT ) to a weak solution of the LL equation.

The proof of the convergence relies on three ingredients,
see Fig. 8. First, the discrete counterparts of (iii) and (iv)
from Definition 1 are proved for the approximate solutions
mj , so that

|mj+1(z)| = 1 for all z ∈Nh, (43)

1

2
δ‖∇mj+1‖2

2 + αL

α2
L + β2

L

‖δmj+1‖2
2 = 0. (44)

Then, using the notations from Sect. 3.2, the following
types of convergence to some m can be proved, up to the
subsequence

m̂ ⇀ m in W 1,2(ΩT ),

m → m in L2(ΩT ),

∇m ⇀ ∇m in L2(ΩT ),

m+ ⇀∗ m in L∞((0, T ),W 1,2(Ω)).

(45)

Third, one has to identify the limit m. Departing from
(42) it is possible to show by combining of the properties
of (·, ·)h, W 1,2(Ω)-stability of Ih, convergence results (45),
and interpolation estimates (36)–(38) that m, as a limit of
{m̂h,τ }, is a weak solution to the LL equation.

Algorithm 2 however involves solving of a nonlinear sys-
tem. In [11] the authors suggest the following fixed-point
iteration to solve the nonlinear system

Algorithm 3 Given mj ∈ Vh, set mj+1,0 = mj and l = 0.

(a) Compute mj+1,l+1 ∈ Vh, such that for all φ ∈ Vh there

holds

1

τ
(mj+1,l+1, φ)h + αG

τ
(mj × mj+1,l+1, φ)h

+ βG

4
(mj+1,l+1 × Δ̃hmj+1,l , φ)h

+ βG

4
(mj+1,l+1 × Δ̃hmj , φ)h

+ βG

4
(mj × Δ̃hmj+1,l+1, φ)h

= −βG

4
(mj × Δ̃hmj , φ)h + 1

τ
(mj , φ)h.

(b) If ‖mj+1,l+1 −mj+1,l‖h ≤ ε, then stop and set mj+1 =
mj+1,l+1.

(c) Set l := l + 1 and go to (a).

Using an (h, τ,αG,βG)-independent constant c depend-
ing only on the geometry of Th one can show the following
property

‖mj+1,l+1 − mj+1,l‖h ≤ 1

c
τh−2βG‖mj+1,l − mj+1,l−1‖h.

If we require that τ ≤ ch2/βG then, according to the previ-
ous inequality, the sequence {mj+1,l}∞l=1 becomes contrac-
tive and consequently we can apply the Banach fixed-point
theorem. This means that if |mj (z)| = 1 for all z ∈Nh, than
a unique mj+1,∗ ∈ Vh exists, which solves also Algorithm 2.

Remark 11 The obvious disadvantage is that in the compu-
tations, when applying the fixed-point technique from Algo-
rithm 3, we get only an approximation of the unique mj+1,∗,
so Algorithm 2 is not satisfied exactly. For practical com-
putations, however, at most five iterations were needed to
reach quite sharp stopping criterion ε = h4. The computa-
tions [11] were performed on an example with discontinu-
ity in W 1,2(Ω) norm, which was designed for a numerical
tracement of the blow-up.

The above mentioned disadvantage has been overcome
by Bartels [44]. He uses the idea from Algorithm 5 of intro-
ducing a small perturbation with an appropriate vector prod-
uct structure, see Sect. 3.5.

An alternative approach to the LL equation departs from
the approximation of the LL form instead of the LLG form.
We describe this approach later in Sect. 3.6 since it uses
the idea appearing in the work [45]. Therefore we jump
into the topic of the harmonic map heat flow into spheres
to introduce the above mentioned idea. Then, we will come
back and we provide Algorithm 7 with the corresponding
fixed-point Algorithm 8, which is designed in such a way,
that fixed-point iterations actually preserve the magnitude
of mj,l .
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3.5 Harmonic Map Heat (HMH) Flow into Spheres

The structure of the LL equation has an interesting property:
For the effective field, consider the exchange field only, so
Heff = Δm. Then, when taking the limit βL → 0 one gets
the following equation

mt = −αLm × (m × Δm), (46)

which, according to (20), is equivalent to the so called har-
monic map heat flow (HMH flow) into spheres

mt − αLΔm = αL|∇m|2m, subject to |m| = 1, (47)

equipped with the zero Neumann conditions and appropriate
initial conditions.

Stability and convergence of several different finite ele-
ment approximation schemes for harmonic maps was stud-
ied in [46].

3.5.1 Cross-Product Type Algorithm for HMH Flow

The study of (47) as the limit case of the LL equation for
βL = 0, is challenging because of the different nature of
(47) and the LL equation (6). For the LL equation we have
the equivalence with the LLG form and for the LLG form,
we have successfully shown the convergence results for Al-
gorithm 2. However, the proof of the convergence strongly
relied on the actual form of the LLG equation. In the case of
(46) we do not have any form similar to the LLG form. So
when designing a finite element approach, we must depart
directly from (46). The following scheme was proposed in
[45].

Algorithm 4 Given mj ∈ Vh find mj+1 ∈ Vh such that for
all φ ∈ Vh there holds

(δmj+1, φ)h

+ αL(mj+1/2 × (mj+1/2 × Δ̃hmj+1/2),φ)h = 0. (48)

We can directly see that the above mentioned scheme
conserves the magnitude of mj in the nodes of the mesh.
Existence of a solution in each step of Algorithm 4 can be es-
tablished with Brouwer’s fixed point theorem independently
of the discretization parameters. Since in practice the dis-
crete scheme requires the solution or approximation of a
nonlinear system of equations in each time step Prohl and
Bartels [45] decided to analyze a larger class of schemes
by allowing a (small) right-hand side with an appropriate
vector product structure. They propose and analyze an it-
erative method, see Algorithm 5, for the approximation of
the system of equations in (48) that converges provided that
τ = o(h2) and which introduces a residual that does not sig-
nificantly influence the properties of discrete solutions.

So instead of solving (48) they suggest to solve the equa-
tion

(δmj+1, φ)h + αL(mj+1/2 × (mj+1/2 × Δ̃hmj+1/2),φ)h

= (mj+1/2 × rj+1),φ)h, (49)

for rj+1 ∈ Vh satisfying ‖rj‖h ≤ ε, where the role of typi-
cally small parameter ε is specified later in Algorithm 5.

Remark 12 The idea of introducing the residual with an ap-
propriate vector product structure deserves an emphasis. As
presented above, the idea was used for the harmonic map
heat flow; however, it can be used also for the LL equa-
tion [44]. This approach elegantly overcomes the problem of
fixed-point iterations from Algorithm 3. Originally, the steps
from Algorithm 3 do not preserve the length of magnetiza-
tion. So the effort made in order to design the norm preserv-
ing Algorithm 2 was actually degraded by the fact, that the
nonlinear system was then solved by the norm nonconserv-
ing fixed-point iterations from Algorithm 3. For more details
we refer to [44].

Provided we have the sequences {mj }j=0,...,J and
{rj }j=0,...,J solving (49), the following result has been
shown in [45].

Theorem 2 Let τ and ε be positive numbers, and (Th)h>0

be a family of regular triangulations of Ω with maximal
mesh-size h. Suppose that (i) ri ∈ Vh satisfies ‖ri‖h ≤ ε,

for 0 ≤ i ≤ J, (ii) |m0(z)| = 1 for all nodes z ∈ Nh, (iii) for
all 0 ≤ i ≤ J − 1 and for all φ ∈ Vh the relation (49) holds.

Then the modulus of mi is preserved, that is,

|mj (z)| = 1

for all nodes z ∈ Nh and for 0 ≤ i ≤ J . If Jτ > T and
m0 → m0 in W 1,2(Ω) for h → 0 then, taking m̂h,τ,ε as a
piecewise linear approximation of mi , there exists a subse-
quence of (m̂h,τ,ε) as (h, τ, ε) → 0 which converges weakly
in W 1,2(ΩT ) to a weak solution of the harmonic map heat
flow problem.

To be exhaustive, we provide the definition of weak solu-
tion to the harmonic map heat flow problem, which is almost
identical to the definition of weak solutions to the LL equa-
tion. The only difference is the relation (51).

Definition 2 Given m0 ∈ W 1,2(Ω) such that |m0| = 1 al-
most everywhere in Ω , a function m is called a weak solu-
tion of harmonic heat flow problem if for all positive T there
holds (i) m ∈ H 1(ΩT ,R

3) with m(0, ·) = m0 in the sense of
traces, (ii) |m| = 1 almost everywhere in ΩT , (iii) for almost
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all T ′ ∈ (0, T ) there holds

1

2

∫
Ω

|∇m(T ′, x)|2dx + αL

∫ T ′

0
‖mt‖2

2dt

≤ 1

2

∫
Ω

|∇m0(x)|2dx, (50)

and, (iv) for all φ ∈ C∞(ΩT ,R
3) there holds

∫ T

0
(mt ,m × φ)dt + αL

∫ T

0
(∇m,∇(m × φ))dt = 0. (51)

Remark 13 The key ingredients of the proof of Theorem 2
are the approximation estimates (36)–(38). Thanks to them
we can get rid of the troublesome terms including the second
space derivatives. Of course, one has to pay for this, namely
by the dependence of the time step τ on the space discretiza-
tion step h. Notice, however, that this dependence does not
involve the dimension of the domain. So all results are valid
in 2D as well as in 3D.

The proof of the previous theorem is again threefold. The
main steps are illustrated in Fig. 8. In the first step the fol-
lowing a priori estimates for the approximate solution are
derived

1

2
‖∇mJ ′ ‖2

2 + (αL − ε)τ

J ′−1∑
i=0

‖mi+1/2 × Δ̃hmi+1/2‖2
h

≤ 1

2
‖∇m0‖2

2 + 1

4
J ′τε,

1

2
‖∇mJ ′ ‖2

2 + (αL − ε)2τ

J ′−1∑
i=0

‖δmi+1‖2
h

≤ 1

2
‖∇m0‖2

2 + 5

4
J ′τε.

These estimates are obtained by different choices of test
function in (49).

Then, using these a priori estimates, the existence is
showed of a subsequence of {m̂h,τ,ε} such that for
(h, τ, ε) → 0 the following convergence results can be veri-
fied

m̂t ⇀ mt in L2(ΩT ),

m → m in L2(ΩT ),

∇m ⇀ ∇m in L2(ΩT ),

m+ ⇀∗ m in L∞((0, T ),W 1,2(Ω)).

Finally, we have to find out what m the sequence {m̂h,τ,ε} is
converging to. Departing from (49) it is possible to show by
combining of the properties of (·, ·)h, W 1,2(Ω)-stability of
Ih, convergence results mentioned above, and interpolation
estimates (36)–(38) that m, as a limit of {m̂h,τ,ε}, is a weak
solution to the harmonic map heat flow problem.

Having the results on the convergence of Algorithm 4 it
seems that all necessary work has been done. Unfortunately,
Algorithm 4 involves the solution of a nonlinear system of
the equations. One approach is to use the standard methods,
such as Newton method or Broyden method. Disadvantage
of this approach is that we loose the hardly obtained property
of conservation of the modulus of mj . The classical iteration
methods do not look at the structure of the problem. In the
inner iterations, represented by, e.g., index l, would no more
be valid that |mj+1,l+1| = |mj+1,l |.

Bartels and Prohl suggest a reasonable fast and reliable
solver giving the sequences {mj }j=0,...,J and {rj }j=0,...,J

satisfying the assumptions of the previous theorem and still,
the modulus of magnetization in the inner iterations is pre-
served.

Algorithm 5 Input: parameters h, τ, ε, J as from Theo-
rem 2, m0 ∈ Vh such that |m0(z)| = 1 for all nodes z ∈Nh.

(a) Set i = 0, r0 = 0.

(b) Set wi+1,0 = mi .

(b1) Set l = 0.

(b2) Compute wi+1,l+1 ∈ Vh such that

2

τ
(wi+1,l+1, φ)h

+ αL(wi+1,l+1 × (wi+1,l × Δ̃hwi+1,l), φ)h

+ βL(wi+1,l+1 × Δ̃hwi+1,l , φ)h

= 2

τ
(mi , φ)h, (52)

for all φ ∈ Vh. Set ei+1,l+1 = wi+1,l+1 − wi+1,l

and

ri+1 = αL(wi+1,l+1 × Δ̃hei+1,l+1

+ ei+1,l+1 × Δ̃hwi+1,l) + βLΔei+1,l+1.

(b3) Go to (c) if ‖ri+1‖h ≤ ε; set l = l +1 and continue
with (b2) otherwise.

(c) Set mi+1 = 2wi+1,l+1 − mi .

(d) Stop if i + 1 = J ; set i = i + 1 and go to (b) otherwise.

Output: Sequences (mi )i=0,...,J and (ri )i=0,...,J .

Remark 14 The efficiency of the method is guaranteed by
the clever choice of a unknown wj+1,l+1 in (52). Without in-
troducing wj+1,l+1, the equation (52) would have contained
far more terms due to the cross-product structure with three
terms. When using wj+1,l+1, which actually approximates
the quantity mj+1/2, one gets only few terms when assem-
bling the matrix of the final linear system.

The reliability of the presented algorithm is verified first
by checking if all steps in Algorithm 5 are well-defined. This



A Survey on the Numerics and Computations for the Landau-Lifshitz Equation of Micromagnetism 299

can be seen by realizing that the left-hand side of (52) de-
fines a continuous bilinear form. The ellipticity of the bi-
linear form can be shown by the choice of the test function
φ = wj+1,l+1.

Further, subtracting two subsequent equations in (b2),
choosing φ = e(j+1,l+1), and using the approximation es-
timates (36)–(38), leads to

‖ej+1,l+1‖h ≤ c1τh−2‖ej+1,l‖h,

which is valid for l ≥ 1. Choosing τ < c−1
1 h2 ensures that

‖rj+1‖h, defined in (b2), will eventually descend under the
beforehand known ε.

Finally, it is necessary to verify that mj+1 defined in (c)
actually satisfies (49), which is only a straightforward com-
putation.

3.5.2 Lagrange Multipliers for HMH Flow

A different convergent discretization for the HMH flow
problem (47) was introduced in [47]. The authors use ap-
proximate discrete Lagrange multipliers. To motivate their
approach, recall that to describe the gradient flow for energy
requires mappings m : ΩT → R

m, and a Lagrange multi-
plier λ : ΩT → R

+, such that

mt − Δm = λm and |m| = 1 ΩT ,

where coefficient αL from (47) is taken to be equal one. In
fact λ = |∇m|2.

The authors propose a scheme using an approximate dis-
crete Lagrange multiplier to enforce both the discrete sphere
constraint, i.e., unit length of (iterates of) finite element
functions at nodes of a triangulation Th, and a discrete en-
ergy law.

Algorithm 6 For n ≥ 0, let mj ∈ Vh be given, and find
mj+1, λj+1 ∈ (Vh,Vh), such that for all φ ∈ Vh and for all
z ∈Nh there holds

(δmj+1, φ)h + (∇mj+1/2,∇φ)

= (λj+1mj+1/2, φ)h, (53)

λj+1(z) =
⎧⎨
⎩

0 if mj+1/2(z) = 0,
(∇mj+1/2,∇(mj+1/2(z)ϕz))

βz|mj+1/2(z)|2 else.
(54)

Notice, that the actual explicit expression for λj+1 is
chosen in such a way that the discrete sphere constraint
|mj+1(z)| = 1 is satisfied. This expression comes from the
equality obtained when φ = mj+1/2(z)ϕz is put into (53).
The parameter βz is from the definition of reduced integra-
tion, see (34) and ϕz are the Lagrange finite element base
functions defined in Sect. 3.2.

The well-posedness of the Algorithm 6 is verified under
the condition τ = O(h2) for quasi-uniform meshes consist-
ing of triangles in 2D and tetrahedra in 3D. The system is
nonlinear and Brouwer’s fixed-point theorem was used to
prove the existence of solutions on every time level satisfy-
ing (53)–(54) and discrete versions of the sphere constraint
and the energy law.

From the just obtained sequence {mj } one can form
piecewise constant and piecewise linear approximations
in time domain mτ,h(t),m+

τ,h(t) and m̂τ,h(t) which are
now (τ, h)-dependent. Finally, from discrete versions of the
sphere constraint and the energy law one can verify weak
(sub)convergence of {mτ,h} to the weak solutions of HMH
flow.

3.5.3 p-harmonic Flow

The idea of cross-product type schemes can be applied also
for the p-harmonic flow into spheres governed by the fol-
lowing equation

ut − Δpu = |∇u|pu, (55)

with the same side-constraints and boundary conditions as
for the harmonic map heat flow (47). Here, Δpu = ∇ ·
(|∇u|p−2∇u), where 1 < p < ∞. Special choice p = 2
gives the harmonic map heat flow.

We have already pointed out in Remark 9 that the AJ
scheme defined in Algorithm 1 can be adapted also for the
case of the p-harmonic map heat flow [43]. An another ap-
proach, using the idea of cross-product type schemes, de-
parts from the following form of governing equation, which
is equivalent to (55)

ut − u × (u × Δpu) = 0.

The discretization of the previous equation leads to the sim-
ilar algorithm to Algorithm 4. For further details on the
analysis of such a scheme we refer to [48].

3.6 Cross-Product Type Schemes—LL Form

Although for the LL equation there exist two forms, the LL
form and the LLG form, all schemes from Sects. 3.3, 3.4
dealing with weak solutions, are based on the discretization
of the LLG form. There is however at least one good reason
why to study and to prove the convergence results for the
mid-point rule scheme derived directly from the LL form
and focus not only on schemes derived from the LLG form:

Study of the limit process βL → 0. Algorithm 2 is not suit-
able for the study of a sequence of the problems for de-
creasing values of βL to zero. Indeed, for βL → 0 we get
αG → ∞ and βG → ∞ and thus the time step in Algo-
rithm 2 must go to zero, which is impossible. On the other
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hand, Algorithm 7 behaves normally, no refinement of the
time discretization is needed for βL → 0. The only effect
is that the influence of the term m × Δm vanishes.
Moreover, taking Algorithm 7 and setting βL = 0 we get
directly Algorithm 4 by which we see a natural link be-
tween the LL equation and the harmonic map heat flow.

Motivated by the works on the constraint-preserving mid-
point rule derived from the LLG form [11] and by the
scheme for harmonic map heat flow [45] we obtained similar
convergence results for a mid-point finite element scheme
derived directly from the LL form. The algorithm reads as

Algorithm 7 Given mj ∈ Vh and rj satisfying

‖rj‖h ≤ ε

find mj+1 ∈ Vh such that for all φ ∈ Vh there holds

(δmi+1, φ)h + αL(mi+1/2 × (mi+1/2 × Δ̃hmi+1/2),φ)h

+ βL(mi+1/2 × Δ̃hmi+1/2, φ)h

= (mi+1/2 × rj+1, φ)h. (56)

We call this scheme Bartels-Prohl scheme for the LL
form, see Table 1 for comparison with other schemes.

For this algorithm it was proved the same theorem as is
Theorem 2, except that the validity of (56) is required in-
stead of (49).

Theorem 3 Let τ and ε be positive numbers, and (Th)h>0

be a family of regular triangulations of Ω with maximal
mesh-size h. Suppose that (i) ri ∈ Vh satisfies ‖ri‖h ≤ ε,

for 0 ≤ i ≤ J, (ii) |m0(z)| = 1 for all nodes z ∈Nh, (iii) for
all 0 ≤ i ≤ J − 1 and for all φ ∈ Vh the relation (56) holds.

Then the modulus of mi is preserved, that is,

|mj (z)| = 1

for all nodes z ∈ Nh and for 0 ≤ i ≤ J . If Jτ > T and
m0 → m0 in W 1,2(Ω) for h → 0 then, taking m̂h,τ,ε as a
piecewise linear approximation of mi , there exists a subse-
quence of (m̂h,τ,ε) as (h, τ, ε) → 0 which converges weakly
in W 1,2(ΩT ) to a weak solution of the LL equation.

The proof of the previous theorem relies basically on the
same arguments as the proof of Theorem 2 from [45], see
also Fig. 8. However, it requires more careful interplay be-
tween the constants, since in [45] the authors consider αL

being equal to one and on some places of the proof they
make use of the fact, that α2

L = αL for αL = 1.

As we already pointed out, the scheme (56), suffers from
the nonlinearity. In Theorem 3 we have stated the conser-
vation of the modulus |mi | for (56). Next we complete our
analysis by suggesting how to solve (56) on one time level.

We adapt Algorithm 5 for the harmonic map heat flow prob-
lem according to our needs.

Algorithm 8 Input: parameters h, τ, ε, J as from Theo-
rem 3, m0 ∈ Vh such that |m0(z)| = 1 for all nodes z ∈ Nh.

(a) Set i = 0, r0 = 0.

(b) Set wi+1,0 = mi .

(b1) Set l = 0.

(b2) Compute wi+1,l+1 ∈ Vh such that

2

τ
(wi+1,l+1, φ)h

+ αL(wi+1,l+1 × (wi+1,l × Δ̃hwi+1,l), φ)h

+ βL(wi+1,l+1 × Δ̃hwi+1,l , φ)h = 2

τ
(mi , φ)h,

for all φ ∈ Vh. Set ei+1,l+1 = wi+1,l+1 − wi+1,l

and

ri+1 = αL(wi+1,l+1 × Δ̃hei+1,l+1

+ ei+1,l+1 × Δ̃hwi+1,l) + βLΔ̃hei+1,l+1.

(b3) Go to (c) if ‖ri+1‖h ≤ ε; set l = l +1 and continue
with (b2) otherwise.

(c) Set mi+1 = 2wi+1,l+1 − mi .

(d) Stop if i + 1 = J ; set i = i + 1 and go to (b) otherwise.

Output: Sequences (mi )i=0,...,J and (ri )i=0,...,J .

We can say the same about the reliability and the effi-
ciency of Algorithm 8 as we have said for Algorithm 5 in
Remark 14.

3.7 Cross-Product Type Scheme for Coupled Maxwell-LL
System

The program elaborated in Sects. 3.4–3.6 was successfully
extended and applied in [10] for the coupled Maxwell-
Landau-Lifshitz system (10)–(12) introduced in Sect. 1.4.1.
Following the cross-product type schemes, one can suggest
a, for the reader already familiar, discretization of the LL
part analogical to (42). For the electric and magnetic part of
the M-LL system we use the discretization from [9]. Denote
by Xh and Yh finite element spaces approximating the func-
tions spaces of E and H . Both finite element spaces must be
chosen such that Xh ⊂ H0(curl,Ωout), Yh ⊂ L2(Ωout) and
∇ ×Xh ⊂ Yh. Note, that for the M-LL system we work on a
setting of two domains Ω and Ωout such that Ω � Ωout, see
the description of the M-LL system from Sect. 1.4.1. Com-
plete discrete system reads as follows.

Algorithm 9 Let (m0,E0,H0) ∈ Vh × Xh × Yh. For J ≥ 0
and (mj ,Ej ,Hj ) ∈ Vh×Xh×Yh let (mj+1,Ej+1,Hj+1) ∈
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Vh × Xh × Yh solve

(δmj+1, φ)h + α(mj × δmj+1, φ)h

= (1 + α2)(mj+1/2 × (Δ̃hmj+1/2 + PVh
Hj+1/2),φ)h

for all φ ∈ Vh, (57)

ε0(δEj+1, ϕ) − (Hj+1/2,∇ × ϕ) + σ(χΩEj+1/2, ϕ)

= −(Jj+1/2, ϕ) for all ϕ ∈ Xh, (58)

μ0(δHj+1, ζ ) + (∇ × Ej+1/2, ζ ) = −μ0(m
j+1
t , ζ )

for all ζ ∈ Yh. (59)

Here, PVh
: L2(Ω) → Vh, with (PVh

u, φ)h = (u,φ) for
all φ ∈ Vh denotes the L2-projection into Vh.

Finite element spaces Xh and Yh are defined according to
[49, Chap. 8] as Nédelec’s first and second family of edge
elements on tetrahedrons

Xh = {ϕ ∈ H0(curl,Ωout) : ϕ|K ∈P1(K,R
3),

for all K ∈ Th},
and

Yh = {ζ ∈ L2(Ωout) : ζ |K ∈P0(K,R
3),

for all K ∈ Th}.
For the above edge elements spaces, the following global
interpolants of sufficiently smooth functions (δ > 0,p > 2)

are available

IXh
: W 1/2+δ,2(Ωout) ∩ W 1,p(Ωout) → Xh,

and

IYh
: W 1/2+δ,2(Ωout) → Yh.

They satisfy the following interpolation properties

‖ϕ − IXh
ϕ‖2 + h‖∇ × (ϕ − IXh

ϕ)‖2 ≤ Ch2‖∇2ϕ‖2,

‖ζ − IYh
ζ‖2 ≤ Ch‖ζ‖W 1,2 .

In order to have a consistent set of initial conditions
which satisfy the physical constraint ∇ · B0 = 0, we require

∇ · (H0 + χΩm0) = 0 in Ωout,

〈H0 + χΩm0,n〉 = 0 on ∂Ωout,
(60)

where n is the outer unit normal to the boundary of Ωout.

We assume the initial data satisfy

m0 ∈ W 1,2(Ω), H0,E0 ∈ L2(Ωout), J ∈ L2(Ωout).

(61)

We provide the definition of a weak solution to the M-LL
system.

Definition 3 Suppose (60) and (61). Then (m,E,H) is
called weak solution to the Maxwell-LL system, if for all
positive T there holds (i) m ∈ L∞(0, T ;W 1,2(Ω)), such
that mt ∈ L2(ΩT ) with m(0, ·) = m0 in sense of traces, and
E,H ∈ L∞(0, T ;L2(Ω)), (ii) |m| = 1 almost everywhere in
ΩT , (iii) for almost all T ′ ∈ (0, T ) there holds

E(m,E,H)(T
′) +

∫
ΩT ′

(
αμ0

1 + α2
|mt |2 + σ |E|2

)
dx dt

≤ E(m,E,H)(0) −
∫

Ωout
T ′

(J,E)dx dt,

where

E(m,E,H)(T
′) = μ0

2

∫
Ω

|∇m(T ′, ·)|2dx

+
∫

Ωout

[
μ0

2
|H(T ′, ·)|2 + ε0

2
|E(T ′, ·)|2

]
dx

and, (iv) for all φ ∈ C∞(Ω), and ζ ∈ D([0, T );C∞(Ωout)∩
H0(curl,Ωout)) there holds
∫

ΩT

〈mt , φ〉dx dt + α

∫
ΩT

〈m × mt , φ〉dx dt

= −(1 + α2)

[∫
ΩT

〈m × ∇m,∇φ〉dx dt

−
∫

ΩT

〈m × H, φ〉dx dt

]
, (62)

−ε0

∫
Ωout

T

〈E, ζt 〉dx dt −
∫

Ωout
T

〈H,∇ × ζ 〉dx dt

+ σ

∫
ΩT

〈E, ζ 〉dx dt

= −
∫

Ωout
T

〈J, ζ 〉dx dt + ε0

∫
Ωout

〈E0, ζ(0, ·)〉dx, (63)

−μ0

∫
Ωout

T

〈H + χΩm, ζt 〉dx dt

+
∫

Ωout
T

〈E,∇ × ζ 〉dx dt

= μ0

∫
Ωout

〈H0, ζ(0, ·)〉dx + μ0

∫
Ω

〈m0, ζ(0, ·)〉dx. (64)

Existence of weak solutions has first been shown in [50].
The convergence result is summarized in the following

theorem. The proof basically follows the three-step proce-
dure depicted in Fig. 8, for more details we refer to [10].

Theorem 4 Let (60) and (61) be valid. Let τ be a positive
number, and (Th)h>0 be a family of regular triangulations of
Ωout with maximal mesh-size h. Suppose that (i) |m0(z)| =
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1 for all nodes z ∈ Nh, (ii) for all 0 ≤ i ≤ J − 1 and for all
φ ∈ Vh,ϕ ∈ Xh, ζ ∈ Yh the relations (57)–(59) hold.

Then the modulus of mi is preserved, that is,

|mj (z)| = 1

for all nodes z ∈ Nh and for 0 ≤ i ≤ J . For Jτ > T

assume m0 → m0 in W 1,2(Ω) and (Ĥ0, Ê0) → (H0,E0)

in L2(Ωout) for h → 0 such that (60) is fulfilled, and fix
T > 0. Then, taking (m̂, Ê, Ĥ)τ,h as a piecewise linear
approximation of (mi ,Ei ,Hi ) there exists a subsequence
of (m̂, Ê, Ĥ)τ,h as (h, τ ) → 0 which converges weakly∗ to
(m,E,H) in

[L∞(0, T ;W 1,2(Ωout)) ∩ W 1,2(ΩT )]
× [L∞(0, T ;L2(Ωout))]2,

and (m,E,H) is a weak solution of the M-LL system.

Baňas, Bartels and Prohl suggest a fixed-point iteration
to solve the nonlinear system arising in Algorithm 9. The
iterations are analogical to the ones appearing in Algo-
rithms 5 and 8: Given mj ,Hj ,Ej they aim at approxi-
mating w := mj+1/2,F := Ej+1/2,G := Hj+1/2. The time
derivative δmj+1 is replaced by 2

τ
(w − mj ) and similar

expressions for δEj+1 and δHj+1. A linearization of the
nonlinear term w × (Δ̃hw + PL2 G),φ)h and the identity
mj × δmj+1 = − 2

τ
mj+1/2 × mj lead to the following al-

gorithm.

Algorithm 10 Input: parameters τ,h, J, ε.

(a) Set (w0,F0,G0) := (m̃j , Ẽj , H̃j ) and l = 0.

(b) Compute (wl+1,Fl+1,Gl+1) ∈ Vh × X0
h × Yh such that

for all (φ,ϕ, ζ ) ∈ Vh × X0
h × Yh there holds

2

τ
(wl+1, φ)h − 2α

τ
(wl+1 × m). (65)

(c) Stop and set

(m̃j+1, Ẽj+1, H̃j+1) := 2(wl+1,Fl+1,Gl+1)

− (m̃j , Ẽj , H̃j ),

once

‖Δ̃h(wl+1 − wl)‖h + ‖Gl+1 − Gl‖2 ≤ ε.

(d) Set l = l + 1 and go to (b).

Output: Triple (m̃j+1, Ẽj+1, H̃j+1).

For ε → 0, the output of the iteration converges to the
solution of (57)–(59) provided that (m̃j , Ẽj , H̃j ) =
(mj ,Ej ,Hj ), and that τ ≤ Ch2

min/(1 + α2) with a factor
c > 0 that only depends on the geometry of Th.

Remark 15 The efficiency of the method is again guaranteed
by the clever choice of unknowns wj+1,Fj+1 and Gj+1.

The introduction of these unknowns rapidly decreases the
number of terms to be assembled into the matrix of the final
linear system.

The reliability of the method is controlled by the number
Θ = c1‖m̃j‖∞

√
15(1 + α2)τh2

min. It can be shown that the
L2-difference of two subsequent iterations in Algorithm 10
decreases with factor Θ . Thus one needs to keep Θ < 1.

4 Computational Studies

We provide three computational studies of methods pre-
sented in Sects. 2–3. First, we take over the results of Baňas
[51]. The computations were performed for the schemes
from Sect. 2 and for semi-implicit schemes.

Second, we show the results of the cross-product type
schemes for single LL equation from Sects. 3.3–3.6. Finally
we present a numerical study of the coupled Maxwell-LL
system from Sect. 3.7 taken over from [10].

4.1 Eddy Currents and the LL Equation without the
Exchange Field

Consider a conducting thin film subjected to an in-plane
circularly polarized magnetic field. This numerical exam-
ple was also suggested in [52]. The problem can be re-
duced to a 1D problem on the interval (0, δ) where δ is the
thickness of the film. In order to obtain the magnetic field
H = (H1,H2,H3), the LLG equation has to be coupled with
the following eddy current equation

μ0Hit − 1

σ
Hizz = −μ0mit , for i = 1,2, (66)

and H3 = −m3, equipped with boundary condition

H(t) = Hs(cos(ωt), sin(ωt),0), z = 0, z = δ.

Here, μ0 denotes the permeability and σ the conductivity of
vacuum.

The LL equation, written using coefficients with good
physical meaning, reads as

mt = −γMs(m × Heff + αm × (m × Heff)), (67)

where γ is the gyromagnetic ratio, α denotes the damping
parameter, Ms stands for the magnetization saturation. The
link with original formulation (6) is expressed by βL = γMs

and αL = αγMs.

For the coupled system (66)–(67) we consider the effec-
tive field to be of the form

Heff = H
Ms

+ 2Aexc

μ0M2
s

mzz,

where Aexc is the exchange constant from (2).
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Example 2 For the above described model consider the fol-
lowing parameters γ = 2.211 × 105, α = 0.01, Ms = 8 ×
105, σ = 4 × 106, δ = 1.5 × 10−6, Aexc = 1.05 × 10−11,
ω = 2π ×109, Hs = 4.5×103, μ0 = 4π ×10−7. A uniform
initial condition for the LL equation is used m0 = (1,0,0).

Methods to be compared are the following: Semi-implicit
scheme (31) combined with the projection back onto sphere,
classical mid-point scheme (29), extrapolated classical mid-
point scheme (30), semi-implicit scheme with exact formula
on one time level departing from Lemma 1, and the classical
Runge-Kutta method of the fourth order.

In computational experiments, first the mesh parameter
h = δ/50 was fixed and the largest time step τmax was deter-
mined, for which an acceptable numerical solution without
oscillations could be computed. Then, the value of h was
decreased to see if the stability of the method was sensitive
to the mesh refinement.

The main outcome of the computations is the following:

Although the performance of the methods for the LL equa-
tion is influenced by the coupling with (66), the errors in-
duced by the discretization of (66) have minor influence on
the computation, when compared to the effect of the dis-
cretization of the LL equation.

The only scheme for which the choice of the time step
was independent of the mesh parameter h, was the semi-
implicit scheme (31) with projection back onto sphere.
However, the projection back onto sphere was essential
to obtain this stability. Experiments without projection
back onto sphere showed that the numerical approxima-
tion blows up for grater values of τ . Thus from all tested
schemes, the above mentioned scheme is most suitable for
the problems including the mesh adaptivity.

4.2 Blow-up Simulation of the LL Equation with
Cross-Product Type Schemes

We present the results from [42] and from [11] focusing on
singularity formation of (6). The formulation (9) shows that
static solutions of the LL equation are exactly those of the
harmonic map heat flow. So we prescribe the following ini-
tial condition motivated from the construction of the Struwe
solution carried out in [35].

Example 3 Let R
2 ⊃ Ω = (−1/2,1/2)2, and let βL = −1.

Further define m0 : Ω → S2 by

m0(x) =
{

(0,0,−1) for |x| ≥ 1/2,

(2xA,A2 − |x|2)/(A2 + |x|2) for |x| ≤ 1/2,

where A := (1− s|x|)4/s for some s > 0. The triangulations
Tl used in the numerical simulations are defined through a

positive integer l and consist of 22l+1 halved squares with
edge length h = 2−l . As discrete initial data we employed
the nodal interpolant of m0.

In [42] the authors ran Algorithm 1 where instead of stan-
dard explicit L2 integration they use reduced integration in
order to improve the performance of the algorithm. They
used

τ = 0.1h5/2(1 + α2
L)/αL,

following requirement mentioned in Remark 8.
The same example was computed by Algorithm 3 in [11].

In this computational study a relation

τ = 0.1h2(1 + α2
L)

was used.
Both algorithms were run with s = 1, l = 4, and αL =

1, 1/4. Figure 9 shows snapshots of the numerical solution
for αL = 1 at various times. The plots in Fig. 9 display the
orthogonal projection of the vector field m onto the plane
xy. Observe that for t ≈ 0.0529 the vector m(0.0529,0)

changes its direction from (1,0,0) to (−1,0,0). Figure 10
magnifies this change of direction. For the smaller αL the
vector at the origin changes its direction at a significantly
later time.

The following observations result from the comparison
of both simulations.

Stabilizing effect of reduced integration. Primal observation
is that the relation τ ∼ h2 is not sufficient to guaran-
tee stability and convergence of Algorithm 1. The results
show that reduced integration stabilizes the scheme. More-
over, reduced integration significantly increased the effi-
ciency of Algorithm 1, e.g., the CPU time is decreased
by 90%.

Behavior for h → 0. For fixed αL = 1 and s = 4 the space
discretization was refined putting l = 4,5,6. In Fig. 11 the
energy

E(m(t)) = 1

2

∫
Ω

|∇m(t, ·)|2dx,

and the W 1,∞ semi-norm ‖∇m‖L∞Ω are displayed as
functions of t for t ∈ (0,6/100) for l = 4, 5, 6. For
each l = 4, 5, 6, the function t → ‖∇m‖L∞Ω assumes
the maximum value 2

√
2h−1 (among functions φh ∈ Vh

with |φh| = 1 for all nodes). We observe that for decreas-
ing mesh-size h, the blow-up time (the time at which
‖∇m‖L∞Ω assumes its maximum) approaches t ≈ 0.03.

Dependence of blow-up time on αL. In order to study the
dependence of blow-up behavior on the parameter αL, both
algorithms were run for fixed l = 5 and s = 1. Algorithm 1
was not capable to give results for smaller αL than 1/16
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Fig. 9 Numerical approximation of magnetization vector m(t, ·)
in Example 3 with βL = −1, s = 1, l = 4 and αL = 1 for t =
0,0.0119,0.0295, 0.0529,0.0588,0.0646. Copyright © 2006 Society

for Industrial and Applied Mathematics. Reprinted from [11] with per-
mission from SIAM Journals

Fig. 10 Nodal values m(t, z) for nodes z close to the origin in Exam-
ple 3 with βL = −1, s = 1, l = 4 and αL = 1 for t = 0,0.0119,0.0295,

0.0529,0.0588,0.0646. Copyright © 2006 Society for Industrial and

Applied Mathematics. Reprinted from [11] with permission from
SIAM Journals

while Algorithm 3 ran even for values αL = 1, 1/4, 1/16,

1/64, 1/256. The plot in Fig. 12 shows that the blow-up
time approaches the time t ≈ 0.06 for decreasing αL. The
experimental values αL = 1/64 and αL = 1/256 almost
coincide.

Better performance of Algorithm 3 compared to Algorithm 1.
The results obtained for explicit Algorithm 1 in [42] are
similar to the results obtained for implicit Algorithm 3
in [11]. The implicit nature allows for the use of smaller
values for αL which lead to too restrictive conditions on
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Fig. 11 Energy and W 1,∞ semi-norm for decreasing mesh-sizes
h = 1/8,1/16, 1/32,1/64 in Example 3 with βL = −1, s = 1, l = 5
and αL = 1. Copyright © 2006 Society for Industrial and Applied
Mathematics. Reprinted from [11] with permission from SIAM Jour-
nals

Fig. 12 Energy and W 1,∞ semi-norm in Example 3 with βL = −1,
s = 1, l = 5 and αL = 1,1/4,1/16,1/64,1/256. Copyright © 2006
Society for Industrial and Applied Mathematics. Reprinted from [11]
with permission from SIAM Journals

the time step size for the explicit Algorithm 1. The total
runtimes of the explicit scheme (using reduced integra-
tion) and the implicit scheme are comparable. However,
for small values of αL or for three-dimensional problems,
the explicit Algorithm 1 from [42] is of limited practical
use.

4.3 Standard Problem #1 of μMAG

Next example is derived from a benchmarking problem [53,
Problem 1] of a thin uniaxial ferromagnetic film. The nu-
merical simulations taken from [10] are the first simulations

Fig. 13 Evolution of normalized total, anisotropy, exchange, magnetic
field and electric field energy in logarithmic scale for the coupled M-LL
model, Example 4. Reprinted from [10] with permission from the au-
thors

published in the existing literature modelling the three di-
mensional case.

The physical model coupling Maxwell equations and the
Landau-Lifshitz equation (10)–(12) considers the effective
field taking the form

Heff = AΔm + K〈m,p〉 + H,

with constants

A = 2Aexc

μ0M2
s

, K = 2Kani

μ0M2
s

.

Example 4 Let Ω = (0,2) × (0,1) × (0,0.02), and Ωout =
(−0.2,2.2) × (−0.2,1.2) × (−0.04,0.06). The domain di-
mensions are in μm. Further take

α = 0.5, γ = 2.2 × 109, Ms = 8 × 105, σ = 0,

Kani = 5 × 102, Aexc = 1.3 × 10−11, p = (1,0,0),

ε0 = 0.88422 × 10−11, μ0 = 1.25667 × 10−6.

The initial condition m0 is defined by assigning unit vectors
with random orientation to every vortex of the mesh.

More details on space discretization can be found in the
above mentioned manuscript. The authors made an inter-
esting comparison of the full Maxwell-LL model with the
single LL model. In Fig. 13 you can see the evolution of
particular energies for coupled system, whereas in Fig. 14,
the corresponding energies for single LL model are de-
picted. Snapshots of the magnetization at several time in-
stances are depicted in Fig. 15 for coupled M-LL model
and in Fig. 16 for single LL model. Clearly, the inclusion
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of Maxwell equations does influence the result. In the single
LL model, the magnetization is aligned over whole domain
while for coupled M-LL model, a formation of domain walls
occurred.

Fig. 14 Evolution of normalized total, anisotropy and exchange en-
ergy in logarithmic scale for the single LL model, Example 4.
Reprinted from [10] with permission from the authors

4.4 Adaptivity

Only recently there was done some work in the rigorous
analysis of adaptive methods for micromagnetics. Baňas
provides a posteriori estimates for the error indicators that
can be used for numerical schemes dealing with the LL
equation.

In [54] Baňas studies the LL equation for the case of ef-
fective field consisting of exchange field and applied field,
thus Heff = Δm + Happ.

Discretization of the time interval with n different time
steps τi gives an approximate solutions denoted by mi ,Hi .
For space discretization a regular triangulation Ti of the do-
main on every time step were used. Then a space of element-
wise linear functions was used for approximation of m.

The results from the computational tests from Sect. 4 sug-
gest, that semi-implicit scheme (31) with projection back
onto sphere is a good candidate for a reliable scheme dealing
with mesh adaptivity. We go further and since this scheme is
a semi-implicit scheme, we hope that fully-implicit scheme
will perform even better. Of course, we need to re-normalize
the computed approximate solution after each time step and
project it back onto sphere.

Fig. 15 Snapshots of the
magnetization pattern of the
coupled M-LL model at the time
instances t = 0, 100, 200, 2500,
5000, 8000. Reprinted from [10]
with permission from the
authors
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Fig. 16 Snapshots of the
magnetization pattern of the
single LL model at the time
instances t = 0, 10, 50, 100,
200, 2500. Reprinted from [10]
with permission from the
authors

For the comparison, we take recent Bartels-Prohl Algo-
rithm 3.

The following error indicators serve as good thresholds
for refinement or coarsening

μτ
i = ‖mi − mi−1‖2

H 1 +
∫ ti

ti−1
‖Happ − Hi‖2,

μh
K,i =

∑
e⊂K

he‖[∇mi · νe]e‖2
L2(e)

+ ‖hK |∇mi |2mi‖2
L2(K)

+
∥∥∥∥hK

mi − mi−1

τi

∥∥∥∥
2

L2(K)

+ ‖hK(Hi − Hi−1)‖2
L2(K)

,

where hK stands for the diameter of the element K and he

denotes the length of edge e. Further, νe is the unit outward
normal vector to the triangle K on e ∈ ∂K and [·]e denotes
the jump along the edge e. The a posteriori error estimates
for the error indicators were derived in [55] and read as

‖m(ti) − mn(ti)‖2 ≤ ‖m(0) − m0‖2 + ‖H(0) − H0‖2

+ C

i∑
j=1

τj (μ
τ
j + μh

j ),

where mn(t) is time-dependent linear interpolation of the
discretized solution mi for i = 0, . . . , n and m0,H0 denote
suitable approximations of initial data.

Using the previous error indicators Baňas proposed the
following adaptive algorithm

Algorithm 11

1. Set τi = τi−1,Ti = Ti−1.
2. Set ti = ti−1 + τi and compute the discrete solution by

one of the compared schemes. If μτ
i ≤ εr

τ TOL proceed
with the space refinement step 3, otherwise decrease τi

and repeat step 1.
3. For all K ∈ Ti , if μh

K,i > εr
hTOL/Ni mark K for refine-

ment, if μh
K,i < εc

hTOL/Ni mark K for coarsening.
4. Refine/coarsen mesh and compute new solution, if μτ

i ≤
εc
τ TOL increase τi and go to step 2 otherwise proceed

with next time level and go to step 1 of the algorithm.
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The constants εr
τ , ε

r
h, ε

c
τ are chosen according to perfor-

mance of the algorithm, Ni is number of elements from Ti .

Numerical Example

The problem of finite blow-up appeared in [11, 42] for uni-
form meshes was recomputed in [54] using adaptive strat-
egy described above. This particular example features a fi-
nite time blow-up of the solution and can therefore serve as
a good case study for adaptive algorithms.

Example 5 The domain is considered to be a square Ω =
(−1/2,1/2) × (−1/2,1/2) with vanishing applied field
Happ and following initial condition

m0(x) =
{

(0,0,−1) for |x| ≥ 1/2,

(2xA,A2 − |x|2)/(A2 + |x|2) for |x| ≤ 1/2,

where A = (1−2|x|)4/16. The magnetization vector evolves
in such a way that in finite time a singularity with respect to
‖∇m‖∞ occurs in the middle of the square and the direction
of m flips from upwards to downwards which results in the
jump of the energy measured by ∇m.

Results from [54] indicate that for both compared sche-
mes, the adaptive algorithm localized the position of the sin-
gularity and increased the efficiency of the performed com-
putations. Moreover, both methods were robust enough to
increase the time-stepping τ = O(h2) used in [11].

5 Conclusions and Outlook

Although a significant progress has been done in the last
three years in the field of numerical approximation of weak
solutions, there still remain open questions that need an an-
swer. To list some of them:

Design of a linear scheme conserving the length of mi ,

converging to the weak solution of the LL equation (for
the case when the exchange field is included). Nowadays,
the schemes mentioned in Sects. 3.3–3.7 are all nonlin-
ear and for all of them, inner iterations mostly based on a
contraction argument are needed in computational imple-
mentations.

Convergence of whole sequence to the weak solution. For
all schemes dealing with weak solutions, a subconvergence
to the solution has been proved. The question is if it is pos-
sible to prove convergence of the whole sequence or even
to derive error estimates. Alternatively, one can seek for a
new scheme for which this is possible.

Study of inverse problems in the micromagnetics. Rising
significance of magnetic recording demand better perfor-
mance of micromagnetic systems. This can be achieved by

optimization of different parameters or geometry. As al-
ready pointed out in Sect. 1.4.4, a key role in optimization
and inverse problems is sensitivity analysis of the LL equa-
tion. Therefore, its study can bring fruitful improvements
in the design of nanodevices.
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