
Arch Comput Methods Eng (2008) 15: 67–111
DOI 10.1007/s11831-007-9014-6

Development of an Efficient 3–D CFD Software to Simulate
and Visualize the Scavenging of a Two-Stroke Engine

Dirk Trescher

Received: 22 February 2007 / Accepted: 22 February 2007 / Published online: 6 December 2007
© CIMNE, Barcelona, Spain 2007

Abstract In this paper we want to describe in detail how the
task of numerically solving the flow through a two-stroke
engine with moving parts is solved in an efficient way. The
mathematical model behind the scenes is illuminated and
the used numerical schemes are specified. First, the com-
putation of the convective flux function is carried out by
the AUSMDV Riemann solver, which has been proven to
be very efficient in comparison to other schemes. Then the
introduction of the temperature dependency of the mater-
ial properties of the fluid has augmented the realistic setting
within the compression and expansion of the hot gas within
the cylinder. This temperature dependency of the heat ca-
pacity causes a change in the equation of state. The gas is
not polytropic any more but calorically imperfect. Thus, the
use of a relaxation method is necessary in order to retain our
Riemann solver. To account for the complex geometry, it
was necessary to realize a special mesh treatment. The com-
putational domain can be assembled by different meshes that
are connected in a mass conservative way. Furthermore, the
piston and crankshaft motion is obtained by very efficient al-
gorithms. In order to speed up the computation of the numer-
ical solution, different strategies have been followed. Adap-
tive local time-stepping has been implemented in a time con-
sistent manner. Additionally, a dynamic local mesh adaption
with hanging knots is used to reach a better resolution in
critical areas. A further reduction in computational time has
been obtained by the parallelization of the numerical scheme
and the mesh routines. To handle this parallelization of the
mesh treatment, an extended partitioning for the dynamic
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load balancing has been implemented. Finally, a simulation
of flow through a real-world geometry of an existing two-
stroke engine has been performed, the results have been val-
idated with measured pressure data for this engine, and the
flow has been qualitatively and quantitatively studied.

1 Introduction

The two-stroke engine is widely used in many different de-
vices. This is due to some important advantages as opposed
to four-stroke engines. Above all, the lack of valves al-
lows for a smaller size and weight. Additionally, a higher
power output is achieved by the firing once every revolu-
tion. But the environmentally problematic exhaust charac-
teristic is a big drawback of this type of engine. In the scav-
enging process, when the fresh charge displaces the exhaust
gas in the cylinder, lies the biggest opportunity to improve
the exhaust data by geometry optimization. In order to give
the engineer the opportunity to analyze the flow field and to
compare different engine geometries, we developed a soft-
ware package to efficiently simulate the three-dimensional,
time-dependent, Navier–Stokes equations within the com-
plex, real-world geometry of the two-stroke engine with
moving piston and rotating crankshaft.

1.1 Why Computational Simulations?

The measurement of the characteristics of a prototype is an
effective research and development tool. But for the early
stages of the development of a new engine it is very costly
and laborious to build many prototypes. In order to test dif-
ferent possibilities within a short period of time and with an
acceptable financial effort it is necessary to employ compu-
tational simulations.
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1.2 Why 3-D Fluid Dynamics?

The most efficient possibility for reducing the pollutant
emission is to minimize the loss of scavenging. By means
of the numerical simulation of gas motion in the cylin-
der, one can determine which changes of the geometry of
the cylinder, transfer ducts, and exhaust port can improve
these scavenging characteristics. One-dimensional models
cannot capture the complexity of the flow pattern within the
cylinder and are therefore not suited for geometrical opti-
mization. However, the analysis conducted with these one-
dimensional models can provide a good starting point for an
in-depth study.

Although three-dimensional computations usually take a
lot longer than a one-dimensional calculation, a further rea-
son in favor of the three-dimensional simulation is the pos-
sibility of visualizing each detail of the flow at an arbitrary
time. A detailed analysis of flow behavior is possible.

1.3 State of the Art

What has been done to quite an extent (see e.g. [1–6]), is
the analysis of two-stroke engines with commercial soft-
ware. The big drawback of this method is the “black-box”–
character of these software packages. The source code is ob-
viously not available and detailed description of the used
algorithms is sparse. Furthermore, this kind of software is
designed for a multitude of applications and special proper-
ties of the two-stroke engine cannot be taken into account.
A further disadvantage is the error tolerance of these prod-
ucts. Occurring errors are generally ignored and not taken
as an indication that something went wrong. The debugging
possibilities are therefore very limited and one is left with a
calculated flow pattern without any idea of convergence.

Although it has to be admitted that these commercial
codes have made quite an impressive progress during the
last few years, the user still has to be careful how to inter-
pret the obtained results. Usually, some comparison of char-
acteristics of the predicted flow and measurements is under-
taken, but whether the accuracy of the simulation, e.g. the
number of degrees of freedom, itself is sufficient is rarely
checked. Until now no software is able to obtain an accu-
rate solution for all flows. So it is always vital to analyze the
obtained results and study the effects of approximations one
had to introduce in order to be able to solve the underlying
system of equations. If, for example, one tries to simulate
the Navier–Stokes equations and is not using an appropri-
ate mesh with sufficient boundary refinement, one will not
obtain the desired flow structure. And if one does not know
about the approximations made it is difficult to estimate the
accuracy of the result.

Industrial users of commercial CFD codes should es-
pecially be careful, as the optimism of salesmen is leg-
endary. J.H. Ferziger, M. Perić [8]

On the other hand there are lots of very refined methods be-
ing developed to analyze fluid flow behavior in very idealis-
tic settings. Many research codes have emerged, and have
been thoroughly tested, to solve flow problems very effi-
ciently on simple geometries for model problems. These
techniques have also been analyzed on a theoretical math-
ematical basis. Methods like local adaptive time-stepping,
local adaptive grid refinement and parallelization have been
used to speed up calculations. Higher order schemes have
been constructed to achieve a higher accuracy of the simu-
lation.

The software engine_flow which we developed is an
approach to apply these new and refined methods of fluid
simulation to the complex, real-world problem of the two-
stroke engine.

2 The Two-Stroke Engine

2.1 The Different Parts of the Two-Stroke Engine

The two-stroke engine consists of several ports and cham-
bers (see Fig. 1). The ports (inlet, transfer, and exhaust ports)
are used to channel the flow from one chamber to the next.
They are opened and closed by the motion of the piston,
which acts as valves. In the chamber below the piston (the
crankcase), the fresh gas is compressed to enable the trans-
fer into the cylinder above the piston, where the combustion
and power process takes place.

2.2 Description of the Cycle of Operation

To clarify the processes taking place in a two-stroke engine,
we will follow the gas flow all the way through the engine.

The fresh gas coming from the carburator enters the
crankcase via the opened inlet port due to the upward motion
of the piston, which lowers the pressure inside the crankcase
below the atmospheric value (Fig. 2(a)).

Then the fresh charge is compressed in the crankcase
as the inlet port is closed by the lower edge of the piston
(Fig. 2(b)).

As soon as the piston has moved far enough downwards
the transfer ports are opened and the fresh charge enters
the cylinder since the pressure in the crankcase exceeds the
cylinder pressure (Fig. 2(c)). In the cylinder the fresh gas
displaces the burnt exhaust gas, referred to as the scavenge
process. This is a critical point in the two-stroke process. If
the transfer ports are badly directed then a part of the fresh
gas can exit from the cylinder directly into the exhaust port
(called “short-circuiting”). Therefore, this fresh gas is lost
for the next combustion and contributes heavily on the emis-
sion rate of unburnt hydrocarbons.

On its upward motion, the piston again closes the trans-
fer and exhaust ports, and the trapped gas is compressed in
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Fig. 1 Components of a
two-stroke engine

Fig. 2 Different phases in the
cycle of a two-stroke engine

the cylinder (compression stroke). Shortly before the piston

reaches its uppermost position (Fig. 2(d)) the combustion

begins with the ignition of the spark plug, producing a rapid

rise in temperature and pressure driving the piston down on

the power stroke.

When the exhaust port is opened, the still over-pressured

hot exhaust gas is released into the exhaust port as a pressure

shock-type wave and from there into the silencer (Fig. 2(b)).

On opening of the transfer ports the exhaust gas is re-

placed by the fresh charge (Fig. 2(c)). The reflection of the

pressure wave of the initial pulse of exhaust gas at the ta-

pered shape of the exhaust pipe can be used to push the fresh

gas, which has already arrived at the exhaust port, back into

the cylinder (not shown in Fig. 2). However, this is difficult

to achieve when there is not much space available for an ex-

tended exhaust pipe.
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2.3 Important Characteristics

To be able to measure the scavenge process quantitatively,
one needs to introduce some characteristic values.

Definition 2.1 (SR) The scavenge ratio SR is a function
of mf, the mass of fresh air supplied during the scavenge
process, and mev := ρat(Vs + Vc), the mass of air to fill the
entire cylinder volume (under atmospheric conditions),

SR := mf

mev
.

Definition 2.2 (TE) The trapping efficiency TE is the ratio
of the mass of fresh air that has been captured mtrf to that of
the air supplied mf:

TE := mtrf

mf
.

For a comparison of the scavenging process of two en-
gines it is favorable to use the SR–TE chart. Particularly, the
short-circuit (at low SR levels) is evident here (see also di-
agrams derived from the numerical simulation in the results
section).

For details concerning this section see also [7].

3 The Mathematical Model

3.1 The Navier–Stokes Equations

Now we can proceed to state the fundamental systems of
partial differential equations that describe a compressible
fluid.

3.1.1 The Euler Equations

From the conservation of mass, momentum and energy of
a compressible inviscid fluid (where we neglect heat con-
duction) the Euler equations of gas dynamics can be derived
(see also [8, 9]). In Eulerian coordinates they can be written
in the following conservative form:

∂U
∂t

+
3∑

j=1

∂

∂xj

fj (U) = 0,

x = (x1, x2, x3) ∈ R
3, t > 0, (3.1)

where the vector of conservative variables is

U =

⎛

⎜⎜⎜⎜⎝

ρ

ρv1

ρv2

ρv3

e

⎞

⎟⎟⎟⎟⎠
, e = ρE,

with U taking values in the set of states

� =
{
(ρ,ρv = (ρv1, ρv2, ρv3), e);ρ > 0,v ∈ R

3,

e − ρ

2
|v|2 > 0

}
, (3.2)

and the convective flux functions

f1(U) =

⎛

⎜⎜⎜⎜⎝

ρv1

ρv2
1 + p

ρv1v2

ρv1v3

(e + p)v1

⎞

⎟⎟⎟⎟⎠
, f2(U) =

⎛

⎜⎜⎜⎜⎝

ρv2

ρv1v2

ρv2
2 + p

ρv2v3

(e + p)v2

⎞

⎟⎟⎟⎟⎠
,

(3.3)

f3(U) =

⎛

⎜⎜⎜⎜⎝

ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(e + p)v3

⎞

⎟⎟⎟⎟⎠
.

In order to close the system an additional equation of
state for the pressure p has to be provided (see Sect. 3.3).

The Euler equations are a hyperbolic symmetrizable non-
linear system of conservation laws (refer to [10]).

3.1.2 The Navier–Stokes Equations

If we also take the viscosity and the thermal conductivity of
the fluid into account, the Euler equations (3.1) are replaced
by the Navier–Stokes equations:

∂U
∂t

+
3∑

j=1

∂

∂xj

fj (U) −
3∑

j=1

∂

∂xj

hj = 0,

x = (x1, x2, x3) ∈ R
3, t > 0, (3.4)

with U and the convective flux functions fj as in (3.1), and
the viscous flux functions

hj

(
U,

∂U
∂x1

,
∂U
∂x2

,
∂U
∂x3

)
=

⎛

⎜⎜⎜⎜⎜⎝

0
τj1

τj2

τj3∑3
l=1 τjlvl + λ ∂T

∂xj

⎞

⎟⎟⎟⎟⎟⎠
,

1 ≤ j ≤ 3,

with

τij = 2ηDij (U) − 2

3
ηδij div v,

Dij (U) = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
,
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the deformation tensor D(U) := (Dij (U)), the temperature
T , the dynamic shear viscosity η, and the thermal conduc-
tivity λ.

To close the system (3.4) it is necessary to add two equa-
tions of state for p and T (see Sect. 3.3).

3.2 Initial Conditions and Boundary Conditions

The time interval T and the region 	, in which the flow
problem is considered, are described next.

3.2.1 Initial Conditions

We want to observe the temporal development of the flow.
Therefore, we have to start at an initial instant Tstart := 0.
The physical problem that describes this procedure is given
by the following

Definition 3.1 (Initial value problem) Let U, fj , and hj be
defined as in Sect. 3.1. Then the following problem is called
initial value problem or Cauchy problem:

Find a weak entropy solution U(x, t) such that for
Tend ∈ R

+
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
U +

3∑

i=1

∂

∂xi

fi (U) +
3∑

i=1

∂

∂xi

hi (U) = 0

in R
3 × (0, Tend),

U(x,0) = U0(x) in R
3

(3.5)

with initial conditions U0 ∈ L∞(	) given.

Remark 3.2 With the help of characteristics it can be shown
that in general there exists no classical solution of (3.6). The
concept of weak solutions has to be introduced. These are
unique only if they satisfy an additional property, the en-
tropy condition. For further details refer to [10] and [11].

3.2.2 Boundary Conditions

If we have an open finite region 	 ⊂ R
3, which is occu-

pied by the medium under consideration, additional bound-
ary conditions have to be specified.

Definition 3.3 (Initial boundary value problem) Let U, fj ,
and hj be defined as in Sect. 3.1. Then the initial boundary
value problem can be stated as:

Find a weak entropy solution U(x, t) such that for open
finite 	 ⊂ R

3 and Tend ∈ R
+

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
U +

3∑

i=1

∂

∂xi

fi (U) +
3∑

i=1

∂

∂xi

hi (U) = 0

in 	 × (0, Tend),

U(x,0) = U0(x) in 	,

U(x, t) = g(x, t) on 
 ⊆ ∂	 × (0, Tend)

(3.6)

with initial conditions U0 ∈ L∞(	) and boundary condi-
tions g ∈ L∞(∂	 × (0, Tend)) given.

It can be shown that the initial boundary value problem
with a boundary condition respecting outgoing characteris-
tics admits a weak solution (cf. [12] or [13]).

3.2.3 The Different Types of Boundary Conditions

It follows a description of the different physical boundary
conditions which are encountered in our problem. These
boundary conditions arise mainly from physical consider-
ations as no practical rules have emerged so far from mathe-
matical investigations concerning existence theorems of the
initial boundary value problem of the Navier–Stokes equa-
tions.

But first the notion of Dirichlet and Von Neumann con-
ditions has to be introduced. The specification of an explicit
value at the boundary is said to be a Dirichlet boundary con-
dition. For example, if the velocity on a solid wall is im-
posed: v = 0. Whereas with a Von Neumann boundary con-
dition a normal derivative is prescribed. For example, the
heat flux at an adiabatic wall: ∂T

∂n
= 0.

• Inflow boundary: This is an artificial boundary condition,
since the real fluid extends beyond this boundary. But
as the calculation domain has to be finite, this bound-
ary, where the flow enters the numerical domain, is in-
troduced.
The boundary conditions are generally determined by the
physical experiment.

• Outflow boundary: The same is true for the outflow
boundary condition where the flow leaves the numerical
domain.

• Solid slip wall: The normal velocity of the fluid at the wall
is equal to the velocity of the wall in normal direction:
v · n = vwall · n with n the normal of the wall. Therefore,
we impose a zero mass flux at this wall.
Different types of temperature treatment are possible:
– adiabatic boundary condition: There is no heat flux

present between wall and fluid: ∂T
∂n

= 0.
– isothermal boundary condition: The temperature of the

wall is Twall. This temperature is imposed as boundary
condition: T = Twall.

• Solid no-slip wall: Here also the tangential velocity com-
ponent of the fluid is determined. Thus, the velocity of
the fluid at the wall is equal to the velocity of the wall:
v = vwall. Also, with this wall condition no mass flux is
possible.
Because of the induced friction at the wall a boundary
layer appears, where strong gradients of velocity and tem-
perature are present (cf. [14]).
Concerning the temperature, the same adiabatic or isother-
mal condition as in the case of the slip wall can be applied.
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• Symmetry boundary: This is also an artificial boundary
condition. It is used mainly for saving computational time
by cutting the numerical domain in half and assuming a
symmetric flow pattern. Thus, the flow has to be symmet-
ric at this boundary which implies that the normal com-
ponent of the velocity vanishes: v · n = 0.
For all other variables of the flow Von Neumann condi-
tions of zero flux apply.

Remark 3.4 Symmetry boundary conditions are not unprob-
lematic when simulating a viscous flow. Even at perfect
symmetric conditions a completely unsymmetrical flow pat-
tern can emerge as e.g. in the case of the Karman vortex
street, or, at higher Reynolds numbers, in the attempt to cap-
ture the larger turbulent structures of the flow. Thus, careful
testing has to be conducted before using this kind of bound-
ary condition.

3.3 The Equations of State

3.3.1 The Thermal Equation of State

An ideal gas satisfies the laws of Charles and Gay–Lussac
( V
T

= const with n, p = const), Boyle–Mariotte (pV =
const with n, T = const), and the Avogadro principle ( V

n
=

const with T , p = const), where V is the volume, T the
temperature, n the total number of moles of molecules, and
p the pressure of the gas. From these laws the ideal gas law
or thermal equation of state pV = nRT can be deduced. R
is the (molar) universal gas constant R. With the specific gas
constant R = R

M
in J

kg K (M being the molecular weight of

the gas under consideration) and the density ρ = 1
τ

with the
specific volume τ = V

nM
the thermal equation of state can be

written as

p = ρRT . (3.7)

One says that the ideal gas is thermally perfect (or perfect).

3.3.2 The Caloric Equation of State

The specific heat capacity cv(T ) is defined by cv(T ) = dε
dT

or dε = cv(T )dT with specific internal energy ε. By inte-
grating the last equation one obtains

ε =
∫ T

T0

cv(τ )dτ + ε0

with constants T0 and ε0. As these constants are in our set-
ting physically not of interest, one can set T0 = 0 and ε0 = 0.
The resulting caloric equation of state for a calorically im-
perfect gas is thus given by

ε =
∫ T

0
cv(τ )dτ. (3.8)

For a calorically perfect gas, also called polytropic gas,
cv is independent of the temperature T , the caloric equation
of state can then be stated as

ε = cvT . (3.9)

An equivalent formulation is given with help of (3.7):

p = (γ − 1)ρε (3.10)

with γ := R
cv

+ 1 = cp

cv
.

3.4 Gas Mixtures

3.4.1 Notations

In a multi-component system of N different species the total
number of moles is given by

nm :=
N∑

i=1

ni

with ni being the number of moles of each species. Hence,
the mole fractions are

yi := ni

nm

, i = 1,2, . . . ,N with
N∑

i=1

yi = 1.

The total mass of the mixture is similarly defined as

mm :=
N∑

i=1

mi,

where mi := Mini is the mass of species i and Mi the com-
ponents’ molecular weight. Therefore, the mass fractions
are

zi := mi

mm

, i = 1,2, . . . ,N with
N∑

i=1

zi = 1.

3.4.2 The Equations of State

In the case of non-reacting mixtures of gases Dalton’s law
states that

p =
∑

i

pi,

the total pressure is the sum of the partial pressures of each
gas in the mixture. With this result the thermal equation of
state (3.7) becomes

p =
∑

i

yiρRT (3.11)

with yi the mole fraction of component i.
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The heat capacity cvm of a mixture of ideal gases follows
the exact mixing formula (see Sect. 3.5)

cvm =
∑

i

zicvi

with the heat capacity cvi of component i. Therefore, the
caloric equation of state (3.8) is transformed to

ε =
∫ T

0

∑

i

zicvi(τ )dτ. (3.12)

In the setting of the two-stroke engine, we have to deal
with air and exhaust gas, which are themselves mixtures of
nitrogen N2, oxygen O2, hydrogen H2, carbon monoxide
CO, carbon dioxide CO2 and water steam H2O.

Remark 3.5 We have stated above that the constant ε0 is not
of physical interest. In our case, where the different gases
do not interact, this remains true for gas mixtures. The con-
stant ε0 would be, e.g., necessary for reacting gases or phase
transitions.

3.4.3 Fresh Gas, Exhaust Gas

In our application of the two-stroke engine we use the afore-
mentioned gas mixture formulas for modeling the fresh gas,
assumed to have the properties of air, and the exhaust gas.
Thus, we have to deal with two different species of gas (cf.
also [15]). Let z be the mass fraction of fresh gas then 1 − z

is the mass fraction of the exhaust gas. With σ and τ defined
as

σ := zρ and τ := (1 − z)ρ

the Navier–Stokes equations (see Sect. 3.1) are extended to

∂U
∂t

+
3∑

j=1

∂

∂xj

fj (U) −
3∑

j=1

∂

∂xj

hj = 0,

x = (x1, x2, x3) ∈ R
3, t > 0, (3.13)

U =

⎛

⎜⎜⎜⎜⎜⎜⎝

σ

ρ

ρv1

ρv2

ρv3

e

⎞

⎟⎟⎟⎟⎟⎟⎠
,

f1(U) =

⎛

⎜⎜⎜⎜⎜⎜⎝

σv1

ρv1

ρv2
1 + p

ρv1v2

ρv1v3

(e + p)v1

⎞

⎟⎟⎟⎟⎟⎟⎠
, f2(U) =

⎛

⎜⎜⎜⎜⎜⎜⎝

σv2

ρv2

ρv1v2

ρv2
2 + p

ρv2v3

(e + p)v2

⎞

⎟⎟⎟⎟⎟⎟⎠
,

f3(U) =

⎛

⎜⎜⎜⎜⎜⎜⎝

σv3

ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(e + p)v3

⎞

⎟⎟⎟⎟⎟⎟⎠
,

hj

(
U,

∂U
∂x1

,
∂U
∂x2

,
∂U
∂x3

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0

τj1

τj2

τj3∑3
l=1 τjlvl + λ ∂T

∂xj

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

1 ≤ j ≤ 3,

with

τij = η

(
∂vi

∂xj

+ ∂vj

∂xi

)
− 2

3
ηδij div v.

3.5 Temperature Dependency of the Material Properties

The material properties, namely the heat capacity at constant
volume cv(T ), the heat capacity at constant pressure cp(T ),

the adiabatic exponent γ (T ) := cp(T )

cv(T )
, the dynamic viscosity

η(T ), and the thermal conductivity λ(T ), are temperature-
dependent.

There are two possibilities of calculating the constants:
one can interpolate tabulated values or evaluate an explicit
formula.

For the heat capacity cp and cv it is difficult to find a for-
mula which is accurate enough, on the other hand tabulated
data is readily available (see e.g. [16]). So in this case inter-
polations of tabulated data for cp is used. For mixtures of
ideal gases the exact mixture formula

cpm :=
∑

i

zicpi

with mass fraction zi is applied. The heat capacity at con-
stant volume cv can be deduced with the above cited equa-
tion.

For the viscosity η and the thermal conductivity λ empiric
formulas recommended in [16] are used.

4 The Numerical Scheme

The Euler equations (3.1) and Navier–Stokes equations (3.4)
are analytically solvable for only a limited number of special
cases. For more complex applications the solutions have to
be approximated by the use of a discretization method. Usu-
ally, for the space discretization a mesh is fitted to the geom-
etry and on each cell of the mesh an algebraic system of
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equations for the values of the unknowns at the mesh points
is solved. Also, in time-dependent problems, the time inter-
val of interest is discretized into several small time-steps.

Furthermore, the equations themselves have to be dis-
cretized. The most important methods to approach the dif-
ferential equations by a system of algebraic equations are
the finite difference (FD), finite element (FE), and finite vol-
ume (FV) methods. As FD methods are especially suited
for structured meshes they are ruled out for our application,
which consists of a complex geometry that cannot be han-
dled by a structured mesh. The FV methods are known to
be very well suited for the treatment of conservation laws.
This is founded in the fact that they ensure the conservation
property, which is the underlying principle of the system of
equations (3.1), at the discrete level by discretizing the inte-
gral form of the conservation laws. Furthermore, they take
full advantage of arbitrary meshes. Therefore, the FV ap-
proach is used here.

4.1 The Mesh Structure

Here we treat the three-dimensional case.

Remark 4.1 The case of curvilinear element faces with non-
constant outer normals νj l and nj l is covered in Sect. 5.3.

Definition 4.2 (Unstructured conformal mesh) Let I ⊂ N

be a finite set of indices. The set

T := {Ti |Ti is a compact polyhedron for i ∈ I},

is called an unstructured conformal mesh of 	 ⊂ R
3, if

1. 	 = ⋃
i∈I Ti ,

2. ∀Ti, Tj (i �= j) we have

• Ti ∩ Tj = ∅ or
• Ti ∩ Tj is a common vertex, edge, or face of Ti and

Tj .1

Remark 4.3 In a conformal mesh no hanging knots, edges,
or faces are possible. With local refinement of a grid consist-
ing of hexahedrons, such hanging faces occur. Therefore, we
need the following definition.

Definition 4.4 (Unstructured non-conformal mesh) In an
unstructured non-conformal mesh constraint (2) in Defini-
tion 4.2 reduces to

2′. ∀Ti, Tj (i �= j) we have
◦
T i ∩ ◦

T j = ∅.

1With vertex, edge, and face defined in the obvious way (cf. also [17]).

4.2 The Finite Volume Scheme

We want to derive the finite volume scheme of first order for
the initial boundary value problem (3.6).

Remark 4.5 The scheme will be deduced for the Navier–
Stokes equations (3.4). An extension to the equation sys-
tem governing the gas mixture of fresh-gas and exhaust-gas
(3.13) is straightforward.

For the motivation of the finite volume scheme we as-
sume that U and the functions f and h of (3.6) are suffi-
ciently smooth. We start our motivation with the integral
form of (3.6)

d

dt

∫

Tj

U +
∫

∂Tj

f(U) · n −
∫

∂Tj

h(U) · n = 0 (4.1)

which one obtains from the system of Navier–Stokes equa-
tions (3.4) by integration over a control volume Tj and then
applying the integral theorem of Gauss.

Now, for a cell-centered2 first order scheme we define
for each element Tj (j ∈ I) and for each time t the average
values

Uj (t) := 1

|Tj |
∫

Tj

U(·, t)

and a grid function

Uh(x, t) := Uj (t) for x ∈ Tj .

This we use to approximate (4.1) with

d

dt
Uj (t) = − 1

|Tj |
(∫

∂Tj

f(Uh(·, t)) · n

−
∫

∂Tj

h(Uh(·, t)) · n
)

= − 1

|Tj |

( kj∑

l=1

∫

Sjl

f(Uh(·, t)) · nj l

−
kj∑

l=1

∫

Sjl

h(Uh(·, t)) · nj l

)
.

The grid function Uh is not necessarily continuous over
the cell boundaries, therefore, the flux functions f(Uh) and
h(Uh) are not well defined on Sjl and have to be approxi-
mated by numerical flux functions gj l and Gj l respectively
(see Sect. 4.2.2, and Sects. 4.3 and 4.4).

2The data is located in the cell center and not on the vertices.



Development of an Efficient 3–D CFD Software to Simulate and Visualize the Scavenging 75

4.2.1 The Time Derivative

The time derivative is an ordinary differential equation and
can be approximated by a first order explicit Euler scheme
(see [11]).

Let Un
j be the approximation of the exact solution U(x, t)

at time level tn with n ∈ N0 such that

U0
j := 1

|Tj |
∫

Tj

U0(·),

Un+1
j := Uj (t) for tn < t ≤ tn+1.

It follows for the grid function Uh:

Uh(x, t) = Un+1
j for x ∈ Tj , tn < t ≤ tn+1.

The explicit Euler scheme is then given by

Un+1
j = Un

j − �tn

|Tj |

( kj∑

l=1

∫

Sjl

gj l

(
Un

j ,Un
jl

) · nj l

−
kj∑

l=1

∫

Sjl

Gj l

(
Un

j ,Un
jl

) · nj l

)

with tn+1 = tn + �tn and gj l , Gj l defined in Sect. 4.2.2.

4.2.2 The Numerical Fluxes

The numerical flux functions gj l and Gj l are approxima-
tions of the integral of the flux functions f(Uh) and h(Uh)

over the face Sjl . These fluxes are influenced by the values
on both sides of the face Sjl , therefore, the numerical fluxes
gj l and Gj l depend on the approximate solution Uj and Uj l :

gj l

(
Un

j ,Un
jl

) ≈ |Sjl |f(Uh(zj l, t
n)) · nj l

≈
∫

Sjl

f(Uh(·, tn)) · nj l,

Gj l

(
Un

j ,Un
jl

) ≈ |Sjl |h
(
Uh(zj l, t

n)
) · nj l

≈
∫

Sjl

h(Uh(·, tn)) · nj l,

where the integral over the face Sjl is approximated by the
value at its center zj l .

For details concerning the numerical flux functions see
Sects. 4.3 and 4.4.

Assumption 4.6 If Uh is continuous over the face Sjl

the flux functions f(Uh) and h(Uh) can be evaluated and
the numerical fluxes should be identical to the analytical

ones. Therefore, consistency is required for the numerical
fluxes:

gj l(U,U) = |Sjl |f(U) · nj l,

Gj l(U,U) = |Sjl |h(U) · nj l .
(4.2)

In order to get the conservation property on the discrete
level, the fluxes of two neighboring cells Ti and Tj cal-
culated from either side of the face Sij need to be identi-
cal:

gij (U,V) = −gkl(V,U),

Gij (U,V) = −Gkl(V,U)
(4.3)

with k being the index of the neighboring element, and l the
local number of the corresponding edge.

Furthermore, we assume that a third property, the local
Lipschitz condition, is satisfied by the numerical fluxes:

|gj l(U,V) − gj l(U′,V′)|
≤ c1(R)h(|U − U′| + |V − V′|),

|Gj l(U,V) − Gj l(U′,V′)|
≤ c2(R)h(|U − U′| + |V − V′|),

(4.4)

where R ∈ R
+, U, V, U′, V′ ∈ BR(0), c1(R) and c2(R)

are constants that depend only on R, and h the mesh-
size.

Now we are ready for the following

Definition 4.7 (Finite volume scheme of first order) For
given initial values U0 ∈ L∞(R3) let Un

j be given by:

U0
j := 1

|Tj |
∫

Tj

U0(·),

Un+1
j := Un

j − �tn

|Tj |

( kj∑

l=1

gj l

(
Un

j ,Un
jl

) −
kj∑

l=1

Gj l

(
Un

j ,Un
jl

)
)

with the numerical flux functions satisfying properties (4.2),
(4.3) and (4.4).

Remark 4.8 If the face Sjl is a boundary of the domain a
special boundary treatment, as described in Sect. 4.5, is nec-
essary.

Remark 4.9 Up to now there are no general existence results
for systems in three space dimensions. Therefore, no conver-
gence results for numerical schemes exist in this case. But if
the numerical scheme in Definition 4.7 defines a convergent
sequence the limit is a weak solution of the conservation
law.
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4.3 The Convective Flux

For the calculation of the convective flux function g =
g(U,V) in three space dimensions we use a one-dimensional
approach.3 The approximate solution Uj and Uj l of the el-
ements Tj and Tjl respectively are rotated by an orthogonal
matrix R(nj l) such that the outer normal nj l is transformed
into the unit vector e1 = (1,0,0)T . These rotations R(nj l)

affect only the velocity vector v in Uj and Uj l , the scalar
quantities density ρ and total energy e are not concerned.
Now it is possible to apply a one-dimensional scheme to the
rotated values

Ûj = R(nj l)Uj , Ûj l = R(nj l)Uj l

to calculate the numerical flux function g(Ûj , Ûj l). This flux
is then rotated back into its original orientation. Therefore,
we have

gj l(Uj ,Uj l) = |Sjl |R−1(nj l)g(Ûj , Ûj l).

To calculate the numerical fluxes for the one-dimensional
scheme mentioned above, we use the AUSMDV scheme
proposed by Liou and Steffen in [18] and enhanced by
Wada and Liou in [19] (see also [20, 21]). We extended this
scheme to the handling of the fresh-gas component σ that
we present now. As mentioned in Sect. 4.2.2, the numerical
convective flux function should approximate

g(Ûj , Ûj l) ≈ f(Ûh) =

⎛

⎜⎜⎝

σu

ρu

ρu2 + p

(e + p)u

⎞

⎟⎟⎠ ,

with f analogous to the function defined in Sect. 3.4.3 for the
rotated discrete solution Ûh, and u the rotated velocity vec-
tor v as described above. Now, the numerical flux function
is defined by the AUSMDV scheme

g(Ûj , Ûj l) :=

⎛

⎜⎜⎜⎜⎜⎝

(σu) 1
2

(ρu) 1
2

(ρu2)AUSMDV
1
2

+ p 1
2

(ρu) 1
2
(
e+p
ρ

) 1
2

⎞

⎟⎟⎟⎟⎟⎠
,

with the fresh-gas flux (σu) 1
2

and the mass flux (ρu) 1
2

given
by

(σu) 1
2

:= u+
j σj + u−

j lσjl,

(ρu) 1
2

:= u+
j ρj + u−

j lρjl,

3This is possible due to the rotational invariance of the Euler and
Navier–Stokes equations.

where

u+
j :=

⎧
⎨

⎩
αj

(uj +cm)2

4cm
+ (1 − αj )

uj +|uj |
2 if |uj | ≤ cm,

uj +|uj |
2 otherwise,

u−
j l :=

⎧
⎨

⎩
−αjl

(ujl−cm)2

4cm
+ (1 − αjl)

ujl−|ujl |
2 if |ujl | ≤ cm,

ujl+|ujl |
2 otherwise,

αj := 2pj/ρj

pj/ρj + pjl/ρjl

, αjl := 2pjl/ρjl

pj /ρj + pjl/ρjl

,

cm := max(cj , cjl).

(ρu2)AUSMDV
1
2

is defined as

(ρu2)AUSMDV
1
2

:= 1

2
(1 + s)(ρu2)AUSMV

1
2

+ 1

2
(1 − s)(ρu2)AUSMD

1
2

,

with

(ρu2)AUSMV
1
2

:= u+
j ρjuj + u−

j lρjlujl,

(ρu2)AUSMD
1
2

:=
{

(ρu) 1
2
uj if (ρu) 1

2
> 0,

(ρu) 1
2
ujl otherwise,

s := min

{
1,K

|pj − pjl |
min{pj ,pjl}

}
, K := 10.

For the pressure flux p 1
2

we have

p 1
2

:= p+
j + p−

j l,

p+
j :=

⎧
⎨

⎩
pj

(uj +cm)2

4c2
m

(
2 − uj

cm

)
if |uj | ≤ cm,

pj
uj +|uj |

2uj
otherwise,

p−
j l :=

⎧
⎨

⎩
pjl

(ujl−cm)2

4c2
m

(
2 + ujl

cm

)
if |ujl | ≤ cm,

pjl
ujl+|ujl |

2ujl
otherwise.

And finally (
e+p
ρ

) 1
2

is defined by

(
e + p

ρ

)

1
2

:=
⎧
⎨

⎩

ej +pj

ρj
if (ρu) 1

2
> 0,

ejl+pjl

ρjl
otherwise.

This AUSMDV flux has the above required properties
(4.2), (4.3) and (4.4), as can be seen by a direct calculation. It
is a hybrid flux vector–flux difference–splitting scheme and
has good shock capturing capabilities with little numerical
viscosity. Therefore, it is especially adapted for the treat-
ment of the convective flux in a simulation of the Navier–
Stokes equations. For details of the scheme and numerous
numerical experiments confer [19, 22].
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4.4 The Viscous Flux

In order to be able to calculate the viscous flux G = G(U,V)

we need an approximation of the derivatives of Uh at the
face Sjl . Therefore, a gradient has to be extracted from
the element-wise constant Uh. This is done with a central
discretization since shear stress and heat conduction corre-
spond to diffusive effects. The advantage of a central dis-
cretization is furthermore that it meets property (4.3) and
therefore is conservative.

An easy approach to calculate the discrete gradient of the
numerical solution between elements Tj and Tjl would be to
use (u being the quantity in question, either the temperature
T or a component of the velocity v)

∂u

∂xi

:= �xi

�u

|�x|2
with the numerical approximation of the gradient �u :=
(u)j − (u)jl and, analogously �xi and �x (cf. also [23]).

This would yield a good approximation for an orthogonal
mesh, i.e. wj − wj l = cnj l , c ∈ R. However, in unstructured
meshes for complex geometries this condition is usually vi-
olated. Therefore, it is better (cf. the simulation of the flow
over a flat plate in [24, 25]) to calculate the gradient by using
a hyperplane that satisfies

∂u

∂tj l

= 0

with the tangential vector tj l · nj l = 0.
In order to construct this hyperplane we take four lin-

early independent points Pim ∈ R
4 as supporting points. Let

Points P̃11 = (x11, y11, z11) and P̃21 = (x21, y21, z21) be the
centers of gravity of Tj and Tjl and two further points P̃i1 =
(xi1, yi1, zi1), i ∈ {1,2} satisfying (P̃i1 − P̃i2) ·nj l = 0, such
that these four points do not belong to a plane E ∈ R

3.
Let furthermore pim = (xim, yim, zim,ui), i,m ∈ {1,2} with
u1 = (u)j and u2 = (u)jl . Then, the gradient Dj l(u) of the
so defined hyperplane is given by

Dj l(u) = 1

detKjl

⎛

⎝
d1

d2

d3

⎞

⎠ (4.5)

with

Kjl =

⎛

⎜⎜⎝

x12 y12 z12 1
x11 y11 z11 1
x22 y22 z22 1
x21 y21 z21 1

⎞

⎟⎟⎠ ,

d1 = det

⎛

⎜⎜⎝

(u)j y12 z12 1
(u)j y11 z11 1
(u)jl y22 z22 1
(u)jl y21 z21 1

⎞

⎟⎟⎠ ,

d2 = det

⎛

⎜⎜⎝

x12 (u)j z12 1
x11 (u)j z11 1
x22 (u)jl z22 1
x21 (u)jl z21 1

⎞

⎟⎟⎠ ,

d3 = det

⎛

⎜⎜⎝

x12 y12 (u)j 1
x11 y11 (u)j 1
x22 y22 (u)jl 1
x21 y21 (u)jl 1

⎞

⎟⎟⎠ ,

as can be verified by direct calculation.
With this gradient Dj l the numerical viscous flux Gj l can

be constructed as an approximation of the analytical viscous
flux defined in (3.4):

Gj l(Uj ,Uj l) := |Sjl |
3∑

k=1

Hk
j l(Uj ,Uj l) · nj l

≈
∫

Sjl

h(Uh(·, tn)) · nj l

with

Hk
j l(Uj ,Uj l) :=

⎛

⎜⎜⎜⎜⎝

0
τk1

τk2

τk3∑3
l=1 τkl v̄l + λDk

j l(T )

⎞

⎟⎟⎟⎟⎠
,

τrs := η(Dr
j l(vs) + Ds

j l(vr )) − 2

3
ηδrs

3∑

i=1

Di
j l(vi),

r, s ∈ {1,2,3},
Dk

j l(T ) gradient of temperature T over face Sjl

in direction xk,

Dk
j l(vi) gradient of velocity component vi over face Sjl

in direction xk,

v̄i := 1

2
((vi)j + (vi)j l).

Remark 4.10 Comparisons with a reconstruction technique,
similar to the one used in the MUSCL approach for higher
order schemes (cf. [11]) to obtain a linear solution function
Uj on each element as described in [26–28], did not show
improved results. To compute the gradient with this recon-
struction technique is computationally more complex, thus
we use the above described, more efficient, approach (4.5).

4.4.1 The Time-Dependent Integral Form of the
Navier–Stokes Equations

As in Sect. 4.2 we now want to derive equations for the nu-
merical flux in time-dependent geometries. For this we use
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the identity (as in [29])

d

dt

∫

V (t)

φ(t,x)dx =
∫

V (t)

∂

∂t
φ(t,x)dx

+
∫

∂V (t)

φ(t,x)w(t,x) · n (4.6)

with an arbitrary time-dependent volume V (t), a scalar
function φ(t,x), w(t,x) the velocity of ∂V (t), and n the
outer normal of ∂V (t).

As in the motivation of the numerical scheme (cf.
Sect. 4.2), we use the integral form of the system of Navier–
Stokes equations (3.4), with the numerical flux functions f1,
f2, and f3 as defined in (3.3), that is obtained by integration
over a control volume Tj and then by applying the integral
theorem of Gauss. But in the case of time-dependent geome-
tries, the additional boundary term

∫
∂V (t)

φ(t,x)w(t,x) · n
from (4.6) has to be taken into account. This boundary term
can be combined with the numerical flux functions f1, f2,
and f3, resulting in the new flux functions f̃1, f̃2, and f̃3.
Thus, we have the integral form of the conservation laws for
a time-dependent domain V (t):

d

dt

∫

Tj

U +
∫

∂Tj

f̃(U) · n −
∫

∂Tj

h(U) · n = 0 (4.7)

with

f̃1(U) =

⎛

⎜⎜⎜⎜⎝

ρ(v1 − w1)

ρ(v2
1 − w1) + p

ρ(v1v2 − w1)

ρ(v1v3 − w1)

(e + p)(v1 − w1)

⎞

⎟⎟⎟⎟⎠
,

f̃2(U) =

⎛

⎜⎜⎜⎜⎝

ρ(v2 − w2)

ρ(v1v2 − w2)

ρ(v2
2 − w2) + p

ρ(v2v3 − w2)

(e + p)(v2 − w2)

⎞

⎟⎟⎟⎟⎠
,

f̃3(U) =

⎛

⎜⎜⎜⎜⎝

ρ(v3 − w3)

ρ(v1v3 − w3)

ρ(v2v3 − w3)

ρ(v2
3 − w3) + p

(e + p)(v3 − w3)

⎞

⎟⎟⎟⎟⎠
,

and h as defined in (3.4).

4.5 The Boundary Conditions

For the calculation of the approximate solution Un+1
j of the

next time step in element Tj the finite volume scheme relies
on the numerical fluxes. These are evaluated on the basis of
the values of Un

j and Un
jl on the neighboring elements. If the

element Tj is situated on a boundary of the computational

domain 	 there are faces Sjl where Tj has no neighbor. In
this case we use the method of ghost cells. A ghost cell Ťj l

of Tj is a mirror image of Tj over the face Sjl . Its values Ǔn
jl

depend on the type of boundary and are either specified by
a physical boundary condition or obtained by extrapolation
from the element Tj itself. This ghost cell Ťj l can then be
used to calculate the numerical flux over the face Sjl with
the interior finite volume scheme as described above. There-
fore, this method closes the system of discrete equations on
the calculation domain. It also enables the influence of the
boundary condition on the flow by the upwind flux of the
numerical flux function.

As seen in Sect. 3.2 there are actual boundary conditions
like fixed or moving walls, and artificial boundary condi-
tions, like inflow or outflow conditions, where the physical
domain is unbounded and which has to be truncated in order
to get a finite domain. In both types of boundaries Dirichlet
(e.g. p = p0, prescribed pressure) and Von Neumann bound-
ary conditions (e.g. ∂T

∂n
= 0, no heat flux) (or a mixture of

these) can be prescribed:

• The numerical realization of Dirichlet boundary condi-
tions is accomplished by an extrapolation of the bound-
ary data into the ghost cell. For example, the pressure p̌

on the ghost cell Ťj l is calculated as

p̌ = 2p0 − (p)j

with a prescribed pressure p0 and the pressure (p)j from
within Tj .

• Von Neumann boundary conditions are implemented as
an extrapolation of the data from the element Tj . In the
above example of ∂T

∂n
= 0 the temperature Ť of the ghost

cell would be given by

Ť = (T )j

with the temperature (T )j of element Tj .

The treatment of the boundary conditions is normally not
a trivial task. As stated in Sect. 3.2.2, it is usually not pos-
sible to specify conditions for all variables. Depending on
the type of boundary (e.g. subsonic inflow, subsonic outflow,
no-slip wall condition) only a certain number of physical
boundary conditions can be given. The remaining variables
have to be supported by numerical boundary conditions:

• For numerical boundary conditions for a first order
scheme the values are extrapolated constantly from within
the domain.

With these facts in mind we can now describe the imple-
mented boundary conditions in detail:
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4.5.1 Inflow

As inflow boundary condition we use a mass-flow condi-
tion. Thus, density ρ0 and velocity v0 are prescribed at this
boundary. As we are in the case of a subsonic flow at the
inlet the last variable has to be taken from inside the do-
main. The temperature T is therefore treated as a numerical
boundary condition. With these quantities given, p can then
be calculated via the thermal equation of state and the total
energy e by the caloric equation of state:

Ǔj l =
⎛

⎝
ρ0

ρ0v0

e((T )j )

⎞

⎠ .

4.5.2 Outflow

At the outflow boundary the pressure p0 is imposed. Density
ρ and velocity v are taken from the inside:

Ǔj l =
⎛

⎝
(ρ)j
(ρv)j

e(T ((ρ)j ,p0))

⎞

⎠ .

4.5.3 Slip (Fixed)

As this is a solid wall condition, no mass flux should be
present and the normal components of the velocity have to
vanish on the boundary. Depending on the thermal proper-
ties of the wall (adiabatic or isothermal) the condition for
the temperature T is either a Von Neumann or a Dirichlet
condition:

adiabatic: Ǔj l =
⎛

⎝
(ρ)j

(ρ)j ((v)j − 2((vj ) · nj l)nj l)

e((T )j )

⎞

⎠

isothermal: Ǔj l =
⎛

⎝
(ρ)j

(ρ)j ((v)j − 2((vj ) · nj l)nj l)

e(T0)

⎞

⎠

4.5.4 No-Slip (Fixed)

The difference to the slip boundary condition is that here
also the tangential component of the velocity has to vanish
on the boundary:

adiabatic: Ǔj l =
⎛

⎝
(ρ)j

−(ρv)j
e((T )j )

⎞

⎠

isothermal: Ǔj l =
⎛

⎝
(ρ)j

−(ρv)j
e(T0)

⎞

⎠

4.5.5 No-Slip (Moving)

The Moving Wall Boundary Condition can be deduced from
the descriptions given in Sect. 4.4.1. As the velocity of the
fluid at a no-slip boundary is given by v = vwall the equa-
tion (4.6) for the convective flux over face Sjl of element Tj

results in

∫

Sjl

f̌ (Uj )nj l = −|Sjl |

⎛

⎜⎜⎜⎜⎝

0
(p)j (nj l)1

(p)j (nj l)2

(p)j (nj l)3

(p)j nj l · vwall

⎞

⎟⎟⎟⎟⎠
=: gj l(Uj ,Uj l)

with (nj l)i the ith component of the outer normal of face
Sjl and f̌ defined in (4.6) (cf. [27–30]).

For the viscous flux the ghost cell approach, similar to
the fixed no-slip condition, is used:

adiabatic: Ǔj l =
⎛

⎝
(ρ)j

(ρ)j (2vwall − (v)j )

e((T )j )

⎞

⎠

isothermal: Ǔj l =
⎛

⎝
(ρ)j

(ρ)j (2vwall − (v)j )

e(T0)

⎞

⎠

Remark 4.11 The choice of the prescription of boundary
conditions is by no means trivial, and one has to be careful
not to get an ill-posed problem. Especially the interaction of
inflow and outflow boundary has to be kept in mind. In the
special case of subsonic inflow and outflow conditions one
can impose two out of three independent variables at the in-
flow and, at the outflow boundary the remaining third one
should be given (cf. [31, 32]).

4.6 The CFL-Condition

For the discretization of the time derivative we use an ex-
plicit first order Euler scheme.

Remark 4.12 One of the reasons why we apply an explicit
scheme, is that we need a high temporal resolution for our
time-dependent problem. Thus, an implicit scheme which
allows us to use big time-steps would not be advantageous.
Additionally, it has been shown (see e.g. [11, 33]) that for
time exact simulations an explicit time discretization is more
efficient than an implicit one. The reason for this is that
the error accumulates at large time-steps with the implicit
scheme and hence, the mesh size has to be smaller in or-
der to attain the same numerical error as with an explicit
scheme.

However, stability and convergence conditions impose
restrictions on the maximum admissible time-step for an ex-
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plicit scheme. This can be motivated as follows (cf. [11,
34]).

4.6.1 The Convective Part

Remark 4.13 An explicit finite difference scheme for a
scalar conservation law in one space dimension is stable if
the time-step �tn is restricted by the, so-called, Courant–
Friedrichs–Levi condition (or CFL condition) (cf. e.g. [35]):

�tn < CFL
h

maxx∈	 f ′(un(x))

with minimum mesh size h and a constant CFL < 1.
Similarly, an explicit finite volume scheme for a scalar

conservation law on an unstructured triangulation T is
monotone if

�tn < CFL min
Tj ∈T

{ |Tj |∑3
l=1 max{νjlf ′(un

j ),0}
}
,

with a constant CFL < 1 (see [36]).
Analogously, we define the time-step restriction for the

convective part of our finite volume scheme (cf. [29, 33,
37]).

Definition 4.14 (Finite volume time-step restriction for the
convective part) For a given constant CFL < 1 let

�tnconv := CFL min
Tj ∈T

{�tnj,conv},

�tnj,conv := |Tj |
maxl=1,...,kj

{|Sjl ||λjl(Un
j )|}

,

with λjl (l = 1, . . . , kj ) defined (motivated by the eigenval-
ues of the system of Euler equations (3.1) (see [11])) by

λjl(Un
j ) := |vn

j · nj l | + cn
j ,

where vn
j is the velocity of element Tj at time-step tn and cn

j

its local speed of sound.

Remark 4.15 In other words, the time-step has to be small
enough so that information can not travel further than one
cell during this time-step.

4.6.2 The Viscous Part

As the flow in our two-stroke simulation is strongly convec-
tion dominant, the viscous part of the finite volume scheme
is mainly dominated by the convective one. Thus, a CFL-like
condition for the viscous discretization is not as relevant.
We base our choice on the partly empirical results obtained

in [38] for dual meshes in two dimensions. Applied to our
situation, we get

�tnvisc := CFL min
Tj ∈T

{�tnj,visc},

�tnj,visc := χ
|Tj |2ρj

αpartη
∑kj

l=1 |Sjl |
with

αpart := γ
3
2

partκpart

cpartρpartLpartCp,part
,

where (·)part is the average of the respective value in the
part of the geometry (inlet with crankcase and transfer ports,
cylinder, outlet with silencer) where element Tj is situated,
Lpart is a characteristic length scale of this part of the geom-
etry, and χ = 1

4 specifies the relative weight of the viscous
to the convective part of the time-step �tn.

4.6.3 The Overall Time-Step

The time-step �tn is composed of the above-defined con-
vective and viscous parts (see [26, 28]):

�tn := CFL min
Tj ∈T

{
�tnj,conv�tnj,visc

�tnj,conv + �tnj,visc

}

with �tnj,conv and �tnj,visc as defined in Sects. 4.6.1 and 4.6.2
respectively.

Remark 4.16 For a more efficient, local handling of this
time-step restriction see Sect. 6.1.

4.7 The General Equation of State

In the case of a (thermally and calorically, i.e. polytropic)
perfect gas the Euler equations, and therefore the convective
part of the Navier–Stokes equations, can be discretized with
the AUSMDV Riemann solver, which was developed for
this specific problem. In the case of a calorically imperfect
gas (that results from taking into account the temperature-
dependent material constants (cf. Sect. 3.5)), the caloric
equation of state is given by (3.8) instead of (3.10). Thus,
the prerequisites for the usage of the AUSMDV solver are
not valid any more. This problem can be handled by the en-
ergy relaxation scheme first described in [39]. The idea of
this scheme is based on the splitting of the internal energy
ε = ε1 + ε2 in a part ε1 that defines the polytropic equa-
tion of state p1 = (γ − 1)ρε1 for a polytropic gas analogous
to (3.10), and a part ε2, which contains the disturbing non-
linearities of the caloric equation of state of the imperfect
gas. The flux determined by the polytropic part of the in-
ternal energy ε1 can be handled by the standard Riemann
solver (AUSMDV). The second part ε2 is only advected in
this first step. In a second step, the relaxation step, the influ-
ence of the nonlinearities in ε2 are taken into account.
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4.7.1 The Relaxation System

The following relaxation system for λ ∈ R
+ is studied

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρλ + ∇ · (ρλvλ) = 0,

∂

∂t
(ρλvλ) + ∇ · (ρλvλ(vλ)T + pλ

1I ) = 0,

∂

∂t
eλ

1 + ∇ · ((eλ
1 + pλ

1 )vλ) = λρλ(ελ
2 − �(ρλ, ελ

1 )),

∂

∂t
(ρλελ

2 ) + ∇ · (ρελ
2 vλ) = −λρλ(ελ

2 − �(ρλ, ελ
1 )),

(4.8)

with the total energy density

eλ
1 = ρ

(
ελ

1 + |vλ|2
2

)
, (4.9)

the polytropic equation of state pλ
1 = (γ1 − 1)ρελ

1 with a
constant γ1 > 1 and the energy function �(ρ, ε). It can
be shown that in the equilibrium limit λ → ∞ the original
Euler equations are obtained:

Theorem 4.17 Consider a family of classical solutions

(ρλ,ρλvλ, eλ
1 , ρλελ

2 )λ>0

of the relaxation system (4.8), with (ρλ,ρλvλ, eλ
1)T ∈ � as

defined in (3.2), that is uniformly bounded with respect to λ.
Assume that the equilibrium limit

U(x, t) := lim
λ→∞

⎛

⎝
ρλ

ρλvλ

eλ
1 + ρλελ

2

⎞

⎠ (x, t)

exists. Then U is a solution of the Euler equations (3.1) if we
choose

�(ρ, ε1) = ε(ρ,p1(ρ, ε1)) − ε1, (4.10)

where ε(ρ, ·) is the inverse of p(ρ, ·): p(ρ, ε(ρ, p̄)) = p̄ for
fixed ρ.

For the proof of this theorem cf. [40].
In order to construct the numerical scheme for the relax-

ation step we need the following

Theorem 4.18 Let the energy � be given by (4.10) and as-
sume that � is monotone increasing in ε1. Consider the sys-
tem of ODEs
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρλ = 0,

∂

∂t
(ρλvλ) = 0,

∂

∂t
eλ

1 = λρλ(ελ
2 − �(ρλ, ελ

1 )),

∂

∂t
(ρλελ

2 ) = −λρλ(ελ
2 − �(ρλ, ελ

1 )),

(4.11)

with the initial conditions given by

(ρ0, (ρv)0, (e1)0, (ρε2)0).

Denote with (ε1)0 the internal energy of the initial data de-
fined through the relation (4.9). Then the solution of (4.11)
for λ → ∞ is
(

ρ0, (ρv)0, ρ0

(
ε∗

1 + 1

2
|v0|2

)
, ρ0ε

∗
2

)
.

The constants ε∗
1 and ε∗

2 are defined by the algebraic rela-
tions

p(ρ0, (ε1)0 + (ε2)0) = p1(ρ0, ε
∗
1),

ε∗
1 + ε∗

2 = (ε1)0 + (ε2)0.

If p1(ρ, ε1) = (γ1 − 1)ρε1 then ε∗
1 and ε∗

2 are given by the
explicit relations

ε∗
1 := p(ρ0, ε0)

(γ1 − 1)ρ0
,

ε∗
2 := ε0 − ε∗

1

with ε0 := (ε1)0 + (ε2)0.

The proof of this theorem can also be found in [40].

4.7.2 The Numerical Scheme

Now in order to use our initial AUSMDV Riemann solver
the following scheme is constructed. For given left and right-
hand states Ul/r = (ρl/r , (ρv)l/r , el/r )

T we construct the
numerical flux gj l(Ul ,Ur ) consisting of a relaxation step,

the employment of the standard Euler flux gperf
j l (Ũl , Ũr ), fol-

lowed by a pure advection of the remaining internal energy
ε2. The solution of the relaxation step can be analytically
defined by using Theorem 4.18

ε2,l/r := �2(Ul/r ) := εl/r − pl/r (ρl/r , εl/r )

ρl/r (γ1,l/r − 1)
,

Ũl/r := �1(Ul/r ) := (ρl/r , (ρv)l/r , el/r − ρl/rε2,l/r )
T .
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The constant γ1,l/r has to fulfill the additional restriction

γ1,l/r > max{γ (ρl, εl), γ (ρr , εr ),
(ρl, εl),
(ρr , εr )}

with γ (ρ, ε) := ρc2(ρ,ε)
p(ρ,ε)

, 
(ρ, ε) := 1 + 1
ρ
∂εp(ρ, ε) (as

shown in [40]). However, in our case the definition of

(ρ, ε) reduces to


(ρ, ε) = 1 + R

cv(T )
= γ (T ) = γ (ρ, ε)

resulting in the attenuated restriction

γ1,l/r > max{γ (ρl, εl), γ (ρr , εr )}.

Now the convective numerical flux function gperf
j l (Ũl , Ũr ),

i.e. the AUSMDV Riemann solver, can be used to compute
the fluxes for Ũ = (ρ,ρv, e1)

T .
Then the advection is calculated with the help of the mass

flux approximation (gperf
j l )1 ≈ ρv on face Sjl . In the case that

it is positive ε2 should be advected to the left otherwise to
the right:

gε2
j l (Ul ,Ur ) :=

{
gperf
j l (Ũl , Ũr )ε2,l for gperf

j l (Ũl , Ũr ) ≥ 0,

gperf
j l (Ũl , Ũr )ε2,r for gperf

j l (Ũl , Ũr ) < 0.

Thus, the convective numerical flux according to the energy
relaxation scheme is given by

gj l(Ul ,Ur ) := gperf
j l (Ũl , Ũr ) + (0,0,gε2

j l (Ul ,Ur )).

For a detailed description and analysis of this method
see [40]. It is also shown that a higher efficiency is attained
by using this technique as opposed to the standard FVS.

The application of this relaxation scheme to the extended
finite volume scheme that accounts for the two gas mix-
ture species fresh-gas and exhaust-gas (see Sect. 3.4.3) is
straightforward.

4.7.3 Tabularized Equation of State

To calculate the pressure p from the vector U of conserv-
ative variables, the temperature T has to be evaluated from
the calorical equation of state (3.8). As this temperature is
only given implicitly, a tabularized version of this equation
is computed, thus making T (ε) available. As the heat ca-
pacity at constant volume cv(T ) is assumed to be constant
for n ≤ T < n + 1, for n ∈ Z, this table is easy to compute.
The step size is chosen as 1 000 J. This corresponds approx-
imately to the one degree-step size of the table ε(T ). These
step sizes have been chosen according to the slope of the
functions under consideration.

With this temperature T and the given density ρ one can
then easily evaluate the thermal equation of state (3.7) in
order to obtain the pressure p.

5 Special Mesh Treatment

5.1 Grid Merging

As meshes consisting of hexahedrons are better suited to re-
solve boundary layers we use meshes this kind of meshes.
Additionally, hexahedron meshes are needed for the Snap-
per algorithm (introduced in Sect. 5.2), that is responsible
for the movement of the piston. But it is more difficult to
generate hexahedron meshes than tetrahedral ones, espe-
cially for complex geometries in three space dimensions.
Therefore, it is usually a great benefit to assemble a mesh
from different parts and “glue together” these composite
meshes on their interfaces. The advantages are the facili-
tation of the mesh generation and the better quality of the
resulting mesh due to less topological constraints on the in-
terfaces of the different building blocks and the absence of
restrictions to the shape of the ports that connect to the cylin-
der and the crankcase (for details refer to Sect. 9.1).

5.1.1 The Overlapping Grid Scheme

There are two main ideas to approach the problem of assem-
bling grids. One is the overlapping (or overset) grid scheme.
We have in this case two or more grids that overlap. On each
grid the system of partial differential equations is solved.
The values on boundary points are obtained by an interpo-
lation procedure from the data on inner points of the other
grid (see [41, 42]). Sometimes holes have to be cut out of a
mesh in order to exclude these elements from the flow field
calculation as described in [43]. The big drawback of this
method of overlapping grids is its non-conservativeness if no
special precautions are undertaken. The conservation prop-
erty, as set forth in the numerical scheme (see Sect. 4.2.2),
is very important, e.g. in order to capture shock waves pass-
ing through the boundary. For maintaining the conservation
it is necessary to solve an additional system of equations to
balance the interpolation coefficients (cf. [44]). This com-
putational effort is avoided by using the second approach
described now.

5.1.2 The Patched Grid Scheme

Here, the different parts of the mesh are constructed so that
they share common boundary interfaces. But still the single
element faces usually join discontinuously. In this situation
it is possible to avoid the need for interpolation of data from
the different grids. The interfaces are split into several facets
and the flux over each facet is calculated and accounted for
on either side of the facet. Therefore, we preserve the con-
servation property over the mesh interface without the need
for any additional computation. The only effort has to be
put into the calculation of the facets between two elements
of the two adjacent meshes. This is described now in further
detail.
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5.1.3 Matching Interfaces with the Patched Grid Scheme

As mentioned before, the faces of the boundary elements of
the two meshes under consideration generally do not match
each other. Thus, a direct calculation of the fluxes is not
possible. Our approach now consists in splitting up the face
Sjl of element Tj into several facets Sjlk such that each of
these facets is shared by two neighboring elements Tj and
Tjlk for 0 ≤ k ≤ kjl with kjl being the number of neigh-
bors of element Tj over the boundary face Sjl . With this
method an element therefore not only has one neighbor Tjl

per face Sjl anymore but kjl neighbors. In order to evaluate
the corresponding numerical convective and viscous fluxes
gjlk and Gjlk of these two elements Tj and Tjlk through
their common facet Sjlk , the only additional information we
need to calculate is the area of the common facet Sjlk . How-
ever, apart from this modification the standard scheme as de-
scribed in Sect. 4 can be applied. As the neighbors Tjlk and
the area of the corresponding common facets Sjlk can be
calculated beforehand and saved in a special structure (see
the next Sect. 5.1.4), this method needs very little computa-
tional time.

5.1.4 The Structure

When the calculation of the numerical fluxes reaches a face
on an inter-mesh interface a special treatment of this face is
necessary. Thus, we need a new boundary condition as an
indicator of such an interface.

Then, in order to calculate these fluxes, the area of each
facet Sjlk , its outer normal nj lk , and the pointer to the corre-
sponding neighbor Tjlk are used. Therefore, this information
has to be stored in the grid merging structure in the initial-
ization phase and can then be used at each iteration step.
As the number of neighbors kjl of element Tj on such an
interface is not bounded, a linked list is employed.

5.1.5 Initialization

In the initialization phase the neighbors of each inter-mesh
boundary element Tj have to be detected. For the first neigh-
bor Tjl0 a heuristic approach is used. It is assumed that the
connecting faces have a similar size. Then we want to find a
boundary element Tm from a different part of the mesh that
satisfies

|zj l − zmn|2 < 2|Sjl |,
where zj l is the center of gravity of Sjl . If such an element
is found it is used as a starting point for an iterative depth
search of all the neighboring elements of Tj . Depth level
d = 0 is the starting element itself, elements of depth level
d = 1 are the neighbors of the starting element, elements of
level d = 2 are the neighbors of these neighbors, and so on.

The common area Ajlk of the boundary faces of these el-
ements with face Sjl is calculated. As this area calculation
is a 2D problem, it can be handled by fast 2D algorithms to
decide if a point is inside a face, to calculate the intersection
point of two line segments, to sort vectors, and finally, to cal-
culate the area Ajlk of the common facet. If Ajlk > 0 a facet
Sjlk is created and the grid merge structure is filled with this
information. The recursive search is stopped if there are no
new facets Sjlk when advancing from depth level d to depth
level d + 1. If

kjl∑

k=0

|Sjlk| = |Sjl |

then element Tj is an inner element and all neighbors over
boundary face Sjl have been found. Otherwise, element Tj

is situated at a corner of the composite mesh and a part of
the face Sjl is a boundary.

5.1.6 Time Iteration

On each face Sjl of each element Tj the fluxes are calculated
as described in Sect. 4. If a boundary to another part of the
mesh is encountered, each facet Sjlk of face Sjl is handled
in turn in the same manner as a normal face. Only |Sjl | is
replaced by |Sjlk|, nj l by nj lk , and Tjl by Tjlk . If

Abnd := |Sjl | −
kjl∑

k=0

|Sjlk| > 0, (5.1)

then the residual face of area Abnd is calculated as a wall
boundary condition with convective numerical flux

gjlk =
⎛

⎝
0

pnj l

0

⎞

⎠

and viscous numerical flux Gjl as described in Sects. 4.4
and 4.5.

5.2 The Piston Motion

The vertical position of the piston is determined by an ex-
plicit formula derived from geometrical properties of the en-
gine (namely stroke and connecting rod length). In order to
realize this position the mesh has to be changed dynamically
after each iteration step. This mesh changing affects also the
connection to other parts of the grid, namely the transfer
ports, the inlet and the outlet duct. This dynamic changing
has to be applied in the cylinder as well as in the crankcase.
In the crankcase we have the additional problem that the pis-
ton bottom is not a flat surface but has extensions that are
necessary for a correct timing of the inlet duct opening.
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5.2.1 Different Techniques

For this dynamic piston motion several methods of mesh
changing have been proposed. Some of these are described
here.

5.2.2 Grid Compression

A first approach is to compress and stretch the whole grid as
the piston moves up and down, called ICED-ALE ([45]), as
applied e.g. in [46] for unstructured meshes. But, as the com-
pression ratio in two-stroke engines is usually very high, this
would lead to many very small cells as the piston reaches
tdc, decreasing the time step dramatically.

5.2.3 Re-Meshing

To solve this problem one could re-mesh the area under con-
sideration with bigger cells. The data on these new cells
would be obtained by interpolation of the old mesh (see
e.g. [45, 46]). But still the whole grid must be moved in
each step, which is computationally costly, and an addi-
tional interpolation from the old to the new mesh during
the re-meshing process can be very complicated and time-
consuming and introduces a further interpolation error. Fur-
thermore, the generation of a new grid might not be that easy
for the irregular lower surface of the piston.

5.2.4 The Collected Cell Algorithm

With this approach, a cutting technique (cf. [29]) intersects
all elements with the piston crown. Only the part of the ele-
ment above the piston is retained. If an element happens to
be too small (and the CFL condition would imply too small
a time step) it is merged with other neighboring cells by
the collected cell algorithm. This method results in complex
case differentiation and many different types of elements,
depending on the orientation of the element that has been
cut by the piston, even more so if the piston is not flat any-
more. However, the advantage is that an arbitrary tetrahedral
mesh can be used to discretize the cylinder and crankcase.
In addition, the calculation of less and less elements in the
cylinder is necessary as the piston moves its way upwards,
reducing computational time for the flow simulation.

5.2.5 The Snapper Algorithm

The requirement of the snapper algorithm (see e.g. [47]) is
an equal distribution of hexahedrons or prisms oriented par-
allel to the piston surface. If the piston moves, e.g. upwards,
the lowest layer of elements in the cylinder (above the pis-
ton) is reduced in size as long as this does not result in too
small elements. If too small elements occur the lowest layer

of elements is merged with the next upper one, which now
becomes the lowest layer. This process is reversed in the
case of the downwards motion of the piston. The elements in
the crankcase (below the piston) are treated in an analogous
manner. The advantage of this algorithm is its easy applica-
tion and therefore its low cost with respect to computational
time. And as with the Collected Cell Algorithm there are al-
ways many layers of deactivated cells, which can therefore
be neglected for the flow calculation.

5.2.6 Detailed Description of the Snapper Algorithm

Because we decided to use a hexahedral mesh, the snap-
per algorithm is a natural choice. It is not difficult to as-
sure that we have a prescribed parallel orthogonal layering
within the lower part of the cylinder and the upper part of
the crankcase.

In the initialization step we first build a list of all layers
in the cylinder and crankshaft to grant a fast and easy ac-
cess to all elements of the lowest and second lowest layer
at all times. Within the time iteration the exact position
hnew = hp(�) of the piston above bdc is calculated via an
explicit formula. This new position hnew is compared to the
old position hold. For the following description we assume
an upward motion of the piston, i.e. hnew > hold. Therefore,
above the piston the elements of the lowest layer have to
shrink. Their lower face rises to position hnew and identifies
the new boundary to the piston crown (see the upper part of
Fig. 3) if their new relative height lrel is not smaller than a
certain prescribed threshold t , where lrel is defined as

lrel := lact

lorig
:= hu − hl,act

hu − hl,orig
,

with relative height lrel of the lowest layer, actual height lact,
original height lorig, hu position of the upper face, hl,act the
actual position of the lower face, and hl,orig the original posi-
tion of the lower face. The data in these cells is then adapted
according to the conservation of mass, impulse and energy:

unew = Vold

Vnew
uold,

where u is the conserved variable ρ, ρv, and e.
If lrel < t , i.e. the new cells would be too small, the low-

est layer “snaps” back to its original position, is deactivated,
and the lower face of the elements of the former second low-
est layer is set to position hnew. The boundary condition of
these faces is changed in order to identify the piston bound-
ary (Fig. 3 (middle)). Now the data in the cells has to be
matched to fulfill the conservation properties:

unew = Vl,old

Vnew
ul,old + Vs,old

Vnew
us,old
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Fig. 3 The snapper algorithm,
moving (top), merging (middle),
and splitting (bottom)

Fig. 4 Two different pistons:
layering possible (left) and
impossible (right)

with (·)l,old and (·)s,old the former value of the element in
the lowest and second lowest layer, respectively.

In the case of downward motion of the piston the faces
of the lowest elements are lowered to the new position hnew.
The data on the elements is adjusted in the same manner as
in the compression of the cells. The elements are split into
two layers if the height of the new layer is larger than the
threshold percentage of its original size. In this case the ele-
ments of the new layer are activated, the boundary condition
is shifted down one layer, the now second lowest layer is
restored to its original size, and the lower face of the just
activated elements is moved to represent the piston position
hnew (as displayed in Fig. 3 (bottom)). Also the data in the
cells is split into the two new layers:

ul,new = us,new = Vold

Vl,new + Vs,new
uold

5.2.7 The Extended Snapper Algorithm

With the above described approach the piston surface does
not need to be flat as long as a layering of the elements along
the piston surface is possible. However, the bottom side of
the piston does not allow for this layering as one can see in
Fig. 4. Therefore, the snapper algorithm has to be extended
to this case. On the upper part of the mesh (area a on Fig. 4)
the standard algorithm can be applied. Just on the lower part
of the mesh (area b on Fig. 4) special care has to be taken
of the neighboring cells, which are affected by the motion
of the upper faces of the elements at the piston boundary (as
seen in Fig. 5).

We have to deal with three cases to handle the data in
these neighbors:
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Fig. 5 The neighboring cells
get affected by the piston
motion

• The lowest layer elements are only changed in size, no
merging or splitting occurs (case a in Fig. 5):

uu,new = Vu,old

Vu,new
uu,old + Vu,new − Vu,old

Vu,new
ul,old,

ul,new = ul,old

for uu,· being the conserved variable of the upper element
and ul,· the one for the lower element.4 These equations,
as well as the ones stated below, result from the transport
flux from the lower element to the upper element to com-
pensate for the grid motion.

• The lowest and second lowest layers are merged while the
piston moves downwards (case b in Fig. 5):

uu,new = uu,old,

um,new = Vm,old + Vl,old − Vl,new

Vm,new
um,old

+ Vu,old − Vu,new

Vm,new
uu,old,

ul,new = Vl,old

Vl,new
ul,old + Vl,old − Vl,new

Vl,new
um,old

with uu,· being the conserved variable of the upper ele-
ment, um,· the one for the middle element, and ul,· for the
lower element.

• The lowest level is split into two layers on the upward
motion of the piston (case c in Fig. 5):

uu,new = Vu,old

Vu,new
uu,old + Vu,new − Vu,old

Vu,new
um,old,

um,new = Vu,old + Vm,old − Vu,new

Vm,new
um,old

+ Vl,old − Vl,new

Vm,new
ul,old,

ul,new = ul,old.

4Here we stated the equations governing the downward motion of the
piston. The upward motion is handled in the same manner.

5.2.8 The Update of the Window Area to the Ducts

As the piston acts as a valve for the inflow, transfer, and out-
flow ports by covering them at certain positions, this also af-
fects the grid merging algorithm, described in Sect. 5.1. This
is due to the feature that all ports connecting to the cylin-
der and crankcase can be realized as self contained meshes
that are connected to the cylinder and crankcase by the grid
merging method. It has been stated there that the connectiv-
ity information for each element Tj on an inter-mesh bound-
ary can be calculated at the initialization phase before the
time iteration starts. Now, if Tj is a cylinder or crankcase
element that changes its size by the snapper algorithm this
has to be accounted for in the grid merging structure. Thus,
the area of a boundary element Tj with all its neighbors Tjlk

(1 ≤ k ≤ kjl) over the boundary face Sjl has to be updated
dynamically if its size was changed. But as there do not ex-
ist many boundary elements whose size is changed during
a time step, and no new neighbors have to be found, this
dynamic area update is not too computationally costly.

5.3 The Crankshaft Motion

The crankshaft, which rotates in the crankcase, possesses a
complex three-dimensional structure. For the investigation
of its influence on the flow behavior a three-dimensional
simulation is therefore indispensable.

We described different merging methods for a composite
mesh in Sect. 5.1. The same possibilities are given for the
rotating mesh of the crankshaft within the outer mesh of the
crankcase. Because of conservation issues we also decided
here to use a patched grid approach. But due to the rotat-
ing motion of the crankshaft and the cylindrical shape of
the mesh the straightforward implementation failed. The ex-
haustive search for new neighbors was too computationally
expensive, and the approximation of the cylinder by planar
cell faces produced too big errors because of the violation of
the conservation property. Therefore, a new approach had to
be found.
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5.3.1 The Curved Interface Method

This method treats the interface of the two meshes as a true
cylinder Z := S1 × [z1, z2]. Thus, the faces of the boundary
elements are not planar any longer but curved in one direc-
tion. This also ensures the conservation property and a con-
stant changing of face locations is overcome. As a further
advantage the outer face of the crankshaft itself is simulated
with its real round shape.

To avoid the thin outer layer of elements around the
crankshaft, it is admitted that the outer layer of the inner grid
has holes. With this method this does not pose a problem
since no points need to be projected to the faces of the in-
ner elements. In order to handle elements with curved faces
some modifications to standard elements have to be consid-
ered. We describe now the treatment for an element in the
outer mesh with inwards curved face. The elements in the
inner mesh with outwards curved faces are handled in an
analogous manner.

Thus, all elements at the crankcase-crankshaft interface
are adapted at initialization, as follows. The area of the
curved face Sjl0 increases whereas the area of the front and
rear face, Sjlf and Sjlr respectively, and the volume VTj

de-
crease. In our case (cf. Fig. 6) these changes can be calcu-
lated easily:

|Sjl0 | = α0Rcslz,

|Sjlf ,new| = |Sjlf ,old| −
(

α0

2
R2

cs − d

2
Rcs cos

(
α0

2

))
,

|Sjlr ,new| = |Sjlf ,new|,
VTj

= |Sjlf ,new|lz,

where α0 := αP2 − αP1 , with αP1/2 as in Fig. 6 in degrees,
Rcs the radius of the crankshaft, lz the length of the cell in
z-direction, and d := |p2 − p1| = 2Rcs sin(

α0
2 ) the distance

between points P1 and P2. The normal nj l0 of face Sjl0 is
now not constant anymore but depends, in our case, i.e. the

Fig. 6 Round element faces in the crankcase and crankshaft meshes

center of rotation is the origin and the axis of rotation is the
z-axis, on α(x), x ∈ Sjl0 :

nj l0(α(x)) =
⎛

⎝
− cosα(x)

− sinα(x)

0

⎞

⎠ .

In the finite volume scheme given in Sect. 4.2 |Sjl |nj l is
assumed to be an approximation of

∫
Sjl

nj l(·) which is not
correct in the case of an evaluation of the normal nj l0(x) in
a single point. But because of the explicit representation of
the normal nj l0(x) and the rectangular shape of Sjl0 an exact
integration of nj l0(x) on Sjl0 is possible:

∫

Sjl0

nj l0(x)dx = lzRcs

∫ αP2

αP1

nj l0(α)dα

= lzRcs

⎛

⎝
− sinαP2 + sinαP1

cosαP2 − cosαP1

0

⎞

⎠ .

Now, if in the finite volume scheme we replace nj l0 by

n̄j l0 := 1

|Sjl |
∫

Sjl

nj l0(x)dx

= 1

α0

⎛

⎝
− sinαP2 + sinαP1

cosαP2 − cosαP1

0

⎞

⎠ (5.2)

the standard algorithm can be applied to treat such elements
with curved faces.

Lemma 5.1 For the curved face Sjl0 let n̄j l0 be given
by (5.2) and n̄j l = nj l for l �= l0. Then

kj∑

l=1

|Sjl |n̄j l = 0. (5.3)

Proof It is sufficient to show that |Sjl0 |n̄j l0 = |S̃j l0 |ñj l0 with
S̃j l0 being the planar face and ñj l0 its constant outer nor-
mal vector. Then the proposition follows from the according
property for elements with planar faces.

The extension in z-direction of Sjl0 and S̃j l0 is identical.
Therefore, we only have to show that

lRn̄j l0 = dñj l0 (5.4)

with lR := 2π
360α0Rcs the arc length from P1 to P2 and d :=

|p2 − p1| = 2Rcs sin(
α0
2 ) the distance between P1 and P2.

Equation (5.4) is true since
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Rcs

⎛

⎝
− sinαP2 + sinαP1

cosαP2 − cosαP1

0

⎞

⎠

= 2Rcs sin

(
αP2 − αP1

2

)
⎛

⎜⎝
− cos(

αP2 +αP1
2 )

− sin(
αP2 +αP1

2 )

0

⎞

⎟⎠ ,

which can be seen by applying the addition theorems for
sine and cosine. �

Remark 5.2 The property (5.3) is a necessary requirement
for the convergence of the finite volume method. The fol-
lowing example illustrates this fact.

Assuming constant data U for element Tj and all neigh-
bors Tjl (1 ≤ l ≤ kj ), one would expect the data to stay con-
stant: Un+1

j = Un
J . However, in the finite volume scheme we

obtain

Un+1
j = Un

j − �tn

|Tj |
kj∑

l=1

gj l(U,U)

= Un
j − �tn

|Tj |
kj∑

l=1

|Sjl |f(U) · nj l

= Un
j − �tn

|Tj | f(U) ·
kj∑

l=1

|Sjl |nj l,

thus if f(U) does not vanish (i.e. pressure p > 0) and (5.3)
does not hold then Un+1

j �= Un
J .

Now we have described the changes to the boundary ele-
ments to handle the curved surface at the initialization phase.
On the inner mesh the orientation of the normals has to be
updated after every movement of the cells during the time
iteration but the sizes of the faces and the volume of the el-
ements stays the same as well as all properties on the outer
mesh. What we also have to consider is the possible chang-
ing of neighbors while the inner mesh rotates.

5.3.2 Exploitation of the Quasi 2D Structure

In order to speed up the neighbor search, a new struc-
ture was created that exploits the quasi 2D structure of the
crankshaft-crankcase interface. A pointer to each element of
the boundary is stored such that an element on the cylinder
Z := S1 ×[z1, z2] can be accessed by its position on the cir-
cle S1 and its layer nz. A search for an element is then per-
formed by first looking for an element whose range on the
S1 is admissible, starting with the first element to the left of
a former neighbor.5 If this is found the z-range is checked

5The inner mesh rotates counter clockwise, therefore, the first element
to the left has the highest probability of being the sought element.

for the elements in the correct layers. The worst-case com-
plexity of this algorithm is O(N) as opposed to O(N2) of
the naive neighbor search. Because the inner mesh can have
holes (the crankshaft itself) not every element in the outer
mesh has a full set of neighbors. If a neighbor Tjlk of ele-
ment Tj is found the area of the common facet Sjlk has to
be determined. This is straightforwardly solved as

|Sjlk| = lz(Tj , Tjlk)lα(Tj , Tjlk),

lz(Tj , Tjlk) := min
{

max
i∈Kj

{(Pi)z}, max
i∈Kj lk

{(Pi)z}
}

− max
{

min
i∈Kj

{(Pi)z}, min
i∈Kj lk

{(Pi)z}
}
,

lα(Tj , Tjlk) := min
{

max
i∈Kj

{(Pi)α}, max
i∈Kj lk

{(Pi)α}
}

− max
{

min
i∈Kj

{(Pi)α}, min
i∈Kj lk

{(Pi)α}
}
,

with lz being the interval of the overlap of Tj and Tjlk in z

direction, and lα the interval of the overlap on the circle S1,
where Kj is an index set such that Pi (i ∈ Ki ) is a vertex of
element Tj , and (Pi)z is the z coordinate of the point Pi , and
(Pi)α is its α coordinate with respect to the S1 used above.
Now, all entities of the grid merging structure are filled and
the finite volume scheme can be calculated as usual.

5.3.3 Compensation of the Artificial Transport

Because of the rotation of the elements in the crankshaft
mesh, also the data on these cells is rotated. However, this
is unphysical as the rotation of a mesh without obstacles
should leave the flow unchanged. Therefore, this artificial
transport has to be compensated for. This is done by calcu-
lating a transport of all data in the opposite direction of ro-
tation (motivated by the time-dependent formulation of the
integral form of the Navier–Stokes equations in Sect. 4.4.1).

Thus, starting from the standard conservation law of
transport

∫

Tj

∂

∂t
U −

∫

∂Tj

vgrid · n U = 0,

vgrid = 2π
rpm

60

⎛

⎝
x2

−x1

0

⎞

⎠ ,

with rpm being the rotations per minute of the crankshaft
mesh, we get for the discrete explicit upwind finite volume
scheme of first order (cf. Sect. 4.2)

Un+1
j = Un

j − �tn

|Tj |
kj∑

l=1

g̃j l(Un
j ,Un

jl)
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with

g̃j l(Un
j ,Un

jl) =

⎧
⎪⎨

⎪⎩

|Sjl |vgrid · nj lUn
jl if vgrid · nj l ≥ 0,

|Sjl |vgrid · nj lUn
j if vgrid · nj l < 0,

0 if Sjl is wall boundary.

Therefore, we can write

Un+1
j = Un

j −
kj∑

l=1

vgrid · nj l�tn|Sjl |
|Tj |

×

⎧
⎪⎨

⎪⎩

Un
jl if vgrid · nj l ≥ 0,

Un
j if vgrid · nj l < 0,

0 if Sjl is wall boundary.

Now, Vswept := vgrid · nj l�tn|Sjl | is the volume swept by
the face Sjl from time-step n to time-step n + 1 as shown
in Fig. 7. This volume Vswept can be calculated easily if one
stores the coordinates of the mesh points from the last time-
step. As we assumed a layered mesh, the front and back
faces of the elements are parallel to the x–y axis, therefore,
vgrid · nj l = 0 for such faces Sjl . They do not account for
any transport terms. Summarizing, our resulting compensa-
tion scheme, combined with the finite volume scheme for the
discretization of the Navier–Stokes equations, can be calcu-
lated as

Un+1
j = Un

j − �tn

|Tj |

( kj∑

l=1

gj l(Un
j ,Un

jl) −
kj∑

l=1

Gj l(Un
j ,Un

jl)

)

−
kj∑

l=1
vgrid·nj l �=0

Vswept

|Tj |

⎧
⎪⎨

⎪⎩

Un
jl if vgrid · nj l > 0,

Un
j if vgrid · nj l < 0,

0 if Sjl is wall boundary,

or equivalently

Ūn
j = Un

j −
kj∑

l=1
vgrid·nj l �=0

Vswept

|Tj |

⎧
⎪⎨

⎪⎩

Un
jl if vgrid · nj l > 0,

Un
j if vgrid · nj l < 0,

0 if Sjl is wall boundary,

Fig. 7 Swept volume of a face
Sjl at crankshaft rotation

Un+1
j = Ūn

j − �tn

|Tj |

( kj∑

l=1

gj l(Un
j ,Un

jl) −
kj∑

l=1

Gj l(Un
j ,Un

jl)

)
,

with gj l and Gj l being the convective and viscous numeri-
cal fluxes of the Navier–Stokes discretization as defined in
Sects. 4.3 and 4.4. (For the treatment of moving grids com-
pare also [8].)

5.3.4 The Crankshaft-Transfer Port Interface

Another problem that arises, is the interface between the ro-
tating crankshaft mesh and the transfer port mesh. So far,
we just discussed the search and area computation for the
crankshaft-crankcase interface. As there is no special grid
structure to profit from, the standard grid merging algorithm,
as described in Sect. 5.1, is used. It is just extended by the
ability to update the facet area of active neighbors, to look
for new neighbors starting from the neighbor on the leading
edge of the rotating mesh, and to respect the adapted area of
the round faces. Especially the latter extension needs further
consideration. As the frontal face Sjlf of an element with
rounded face Sjl0 is bigger (for a cell in the inner mesh)
or smaller (for a cell in the outer one), this has to be kept in
mind at the calculation of the common area of the facet Sjlf k

(see Lemma 5.1 and Remark 5.2). Thus, the arc segment of
the frontal face Sjlf has to be calculated and intersected with
the element faces of the neighbors Tjlf in the transfer port
mesh. This calculation is of basic geometrical nature and is
straightforward.

6 Reducing Computational Time

In computational fluid dynamics computational time is al-
ways a topic. A mesh size that would be small enough to
capture even the smallest feature of the flow field is still far
beyond reach. In three dimensions, this problem is even in-
tensified as the number of mesh cells rises with the order
of N3 with N being the number of cells in one dimension.
As one is also interested in an accurate solution with respect
to the time scale, this also implies a restriction on the time
step, which results in an increased number of time steps for
a fixed time interval. This number also increases with the
order N , resulting in a total complexity of the simulation of
O(N4).

With the techniques described in the following, it is pos-
sible to reduce this cost in the temporal as well as in the
spacial respect and keep the high accuracy of the fine mesh
and small time-step.

6.1 Temporally Consistent Adaptive Local Time-Stepping

Especially in dealing with complex geometries it is some-
times inevitable to have a mesh consisting of elements of
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largely differing size. The time-step �tn from the finite vol-
ume scheme as given in Definition 4.7 depends, for sta-
bility reasons as stated in Sect. 4.6, on the data Uj and
element sizes of Tj . To assure the temporal consistency
of the elements among themselves the smallest time-step
�tn := minj∈I{�tnj } of all elements is chosen. Thus, small
elements in the mesh force the time-step to be very small.

The idea of the adaptive local time-stepping is now to
guarantee this temporal consistency by a different mecha-
nism (see also [48, 49]).

6.1.1 The Time-Step Level

Therefore, the time iteration is split up into time cycles of
fixed duration. At the beginning of each cycle, at time tn0 ,
the elements are sorted into a time level table according to
their actual �t

n0
j as follows. The element Tj is in time level

lj if its time-step �t
n0
j is in the slice

2ll�tmin ≤ �t
n0
j < 2lj +1�tmin

with 0 ≤ lj ≤ lmax and �tmin := minj∈T {�t
n0
j }. Thus, at the

beginning of the time cycle the values for �tmin and lmax

are calculated. Within the cycle, all elements belonging to
time level ltimestep = 0 are calculated each time-step with
�t = �tmin, the elements of level ltimestep = 1 every sec-
ond time-step with 2�tmin, the elements of level ltimestep = 2
every fourth one with 4�tmin, and so on. During this time
stepping process the minimum time-step �tmin is fixed, but
the classification of the �tnj of element Tj to its time level
lj is checked after each update of element Tj . I.e. if after
the calculation of Tj the new �tn+1

j is found to have de-

creased below the bound 2lj �tmin its time level lj is reduced
by one, and on the other hand if �tn+1

j ≥ 2lj +1�tmin the
time level lj is increased by one. If the time level lj of ele-
ment Tj has to be decreased below level ltimestep = 0 a new
level ltimestep = −1 is created. Thus, the next time-step is
conducted for the level ltimestep = −1 with �t = 1

2�tmin and
the restriction on lj has to be replaced by lmin ≤ lj ≤ lmax.
The time level lj can only be raised by one when the ele-
ments of time level ltimestep = lj + 1 have been updated in
this step, because only then is element Tj consistent with
the other elements Ti being in this higher time level.

By this method it is assured that every element is updated
by the finite volume scheme with a �t that is smaller than or
equal to the �t required by the CFL-condition. Furthermore,
the temporal link between the elements is respected, since
after the time cycle all elements advance to

tn = 2lmax�tmin + tn0 = (n − n0)�tmin + tn0 ,

due to the duration of a complete time cycle of 2lmax�tmin.

Remark 6.1 It has to be noted that, in order to save com-
putational time, the flux between two neighboring elements
Tj and Tjl is only computed once, since it is required to be
identical for conservation reasons. In addition to the speedup
of the calculation, this is a crucial property for the local time
stepping method to work. The reason being that after an up-
date of the element Tj with time level lj < ljl the data Un−1

j

of time-step n − 1 would be lost for the computation of the
flux of element Tjl with Tj . Thus a complete history of data
Uñ for n0 ≤ ñ ≤ n would need to be stored, which is im-
possible in the case of large grids. Due to the one sided flux
calculation, only data of not yet updated elements is needed
which implies that only Un−1 and Un have to be stored.

6.1.2 Forced Update of an Element

It can occur that an element, or all elements, have to be up-
dated. For instance, if an element has to be refined or coars-
ened (see the next Sect. 6.2) or if the data on all elements is
written into a file. Then, the element under consideration has
to be calculated up to the actual time tn. Therefore, it has to
be determined when the element Tj was last updated, which
is basic calculus knowing the time level lj of the element,
the minimum level lmin, the starting point of the time cycle
n0, and the actual step n. This enables us to find the number
of steps nj and the corresponding �tj = nj�tmin to update
the element using the standard finite volume scheme. Now
the data Uj of the element can be accessed. The new time
level lj of the element is set to lj = lmin and is adaptively
raised during the next time-steps.

6.1.3 Time Level Restrictions

Not all elements can be in every time level. If the data of
an element is changed by a mesh movement the element
has to be updated at this moment. Therefore, if the geom-
etry is adapted in each time level lgeom to the actual situ-
ation, then this would also be the maximum level to be in
for the elements affected by the geometry movement, i.e. all
elements involved in the extended snapper algorithm of the
piston (described in Sect. 5.2) and all elements on the con-
necting crankcase-crankshaft interface. This restriction has
to be verified each time an element tries to increase its time
level due to a large enough �tnj .

6.1.4 Elements in the Rotating Crankshaft Mesh

In order to not restrict the time level for all elements situ-
ated in the rotating crankshaft mesh, and therefore reduc-
ing the efficiency of the local time-stepping algorithm, a
special treatment of the normals of these elements is nec-
essary. As said in Sect. 5.3, the normals of every element
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in the crankshaft mesh are updated according to the rota-
tional position of the crankshaft. Thus, if an element is cal-
culated only every nj th time-step with corresponding time
level lj > lgeom,crank (lgeom,crank being the update level of the
crankshaft mesh rotation) it has to use average normals

n̄j l := nnold
j l + nn

jl

2

with the normal nold of the last update of element Tj . Be-
cause of the one-sided update of the flux with the neighbors
Tjl of Tj , as noted in Sect. 6.1.1, this procedure does not vi-
olate the conservation property, and also Lemma 5.1 is sat-
isfied.

6.2 Dynamic Local Mesh Adaption

The idea behind the local mesh adaption is to approximate
the solution of the considered problem with an equal distri-
bution of the numerical error to reach a given accuracy with
minimum computational cost. Thus, in areas where the ap-
proximation error is large the mesh should be refined, and
where the error is small we can calculate on a coarse mesh
to save resources. In the case of a solution evolving in time
this adaption has to be dynamic.

Also, in the case of the dynamic mesh adaption it was
necessary to extend the standard method for the handling of
the moving meshes and the complex geometry.

6.2.1 Different Approaches

In the literature, it is distinguished between adaption tech-
niques that result in conformal meshes, i.e. meshes with-
out hanging edges (cf. Definitions 4.2 and 4.4) and non-
conformal meshes.

6.2.2 Conformal Adaption

One possibility is a re-meshing of the whole domain (as
done in [50]) with a prescribed refinement in the areas in-
dicated by the adaption criterion (see Sect. 6.2.7). This ap-
proach is ruled out for complex three-dimensional hexahe-
dral meshes, since an automatic mesh generation is not fea-
sible in this case.

Another technique consists in moving the points of the
discretization (cf. [51]) according to the adaption criterion,
resulting in small elements where more accuracy is needed
and large ones in areas of already good approximation. The
number of elements stays constant in this approach.

The difficulty in these two approaches consists in the in-
terpolation of the data Un

j for the changed elements. As with
the re-meshing and compression algorithms to realize the
piston motion (cf. Sect. 5.2.1) this can be very complex and
time consuming.

6.2.3 Non-Conformal Adaption

Therefore, a local adaption procedure is used. A local re-
finement of a hexahedral mesh always implies the presence
of nonconforming (hanging) edges, as opposed to a tetrahe-
dral one (see [52, 53]). If indicated by the adaption criterion
an element of the mesh is refined by splitting it up into sev-
eral smaller child elements. For coarsening an element this
process is reversed. Thus, a local interpolation of the data is
possible (see Sect. 6.2.6).

6.2.4 The Mesh Structure

A structure has to be devised which is able to handle the dif-
ficulty of non-conformal meshes. Therefore, the local mesh
adaption was realized with an underlying hierarchical mesh
structure (compare [54–57]). The macro grid consists of the
initially generated mesh. Each macro element can now be
refined into child elements, which themselves can be further
refined. Also, a coarsening is possible which is necessary for
time-dependent problems.

6.2.5 Geometrical Procedure

On refining, in our case, a hexahedron, it is divided into
eight child hexahedrons, where the new vertices of the chil-
dren are generated by the arithmetic mean of the vertices
of the parent hexahedron, i.e. the new vertex P12 on the
edges between vertices P1 and P2 of the parent element is
given by p12 = p1+p2

2 , the new vertex on the face by p1234 =
1
4

∑4
i=1 pi , and the volume vertex by p1...8 = 1

8

∑8
i=1 pi .

Each element is situated in a refinement level lref depending
on the depth in the hierarchical mesh. Macro elements are in
refinement level lref = 0, their children in level lref = 1,
and so forth. Elements of level lref > 0 can be coarsened
again if they do not have any child elements. The refine-
ment level difference of neighboring cells is restricted to
one. Therefore, in the case of hexahedrons the maximum
number of neighbors Tjlk of element Tj per side Sjl is four:
k ∈ {1, . . . ,4}. This is the case if the neighboring element
is on refinement level lj l = lj + 1. That implies that if an
element has to be refined all its neighbor elements have to
be on the same or a higher level: lj l ≥ lj for 1 ≤ l ≤ kj , kj

being the number of faces of element Tj . If this precondi-
tion is not fulfilled then all neighboring elements with lower
level have to be refined themselves. This has to be recur-
sively iterated until an admissible state is reached. Inversely
an element can only be coarsened if none of its neighbors
has a higher refinement level: lj l ≤ lj (1 ≤ l ≤ kj ).
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6.2.6 Prolongation and Restriction of the Data

At refinement the data Uparent
j of a parent element is just

constantly prolonged to the child elements

Uchild i
j := Uparent

j (1 ≤ i ≤ 8).

This is obviously conservative since |Tj | = ∑8
i=1 |T child i

j |.
When coarsening an element the data of the parent is ob-

tained by a volume weighted averaging of the child data, i.e.

Uparent
j := 1

|Tj |
8∑

i=1

|T child i
j |Uchild i

j .

Also, with this procedure the conservation property holds,
since

∫

Tj

Uparent
j = |Tj |Uparent

j =
8∑

i=1

|T child i
j |Uchild i

j

=
8∑

i=1

∫

T child i
j

Uchild i
j .

6.2.7 Mesh Adaption Criteria

Now we have to decide which elements of the grid are to be
refined and where a coarsened mesh is sufficient. Therefore,
we would need to know the numerical error on each cell at
each time-step (cf. [58]).

6.2.8 Error Estimator

For linear elliptic or parabolic partial differential equations
rigorous a-posteriori error estimates of the form

‖u − uh‖ ≤ Chαη(uh)

with an adequate norm ‖ · ‖, the exact and approximated so-
lution u and uh respectively, a constant C, α positive and a
term η(uh) depending on the problem, are well-established.
This implies that the numerical error can be reduced by de-
creasing the mesh size.

For the considered complex flow problem, i.e. the time-
dependent convection dominant Navier–Stokes equations on
a bounded domain in three space dimensions, no such a-
posteriori error estimations are available up to now. Al-
though for a model problem
{

ut + ∇ · f (u) − ε � u = 0 in R
2 × (0, Tend),

u(x, y,0) = u0(x, y) in R
2

with ε ≥ 0 as a diffusion parameter, a-posteriori error es-
timates have been established (see [59, 60]). Furthermore,
in [61] an a-posteriori error estimate has been given for the

boundary value problem in a multi dimensional setting for
the scalar case for a general conservation law. Thus, this is a
research field of special interest.

6.2.9 Error Indicator

Several approaches can be exploited to derive an error in-
dicator. First of all, the residual of the numerical approx-
imation gives a first hint of the location of the error (see
e.g. [29]). For finite difference schemes for a conservation
law in one space dimension a rigorous error estimator has
been derived by Tadmor et al. in [62]. However, the used
norms cannot be computationally evaluated.

Another method is to calculate the approximate solution
on two meshes, one of them having a smaller mesh size.
Then, in areas of large difference between the two solutions
a further refinement would be indicated.

A similar technique uses the difference of a numerical
solution of higher order to one of first order (as done e.g. in
[63]). Also, here a big difference is a sign for mesh refine-
ment. As the latter two ideas are very time consuming and
complex, heuristic criteria are used most often.

6.2.10 Heuristic Criteria

Heuristic indicators are usually based on local gradients. A
large part of the numerical error occurs normally at discon-
tinuities, i.e. the shocks and contact discontinuities, which
are badly resolved on a discrete mesh and induce numeri-
cal diffusion. These structures can be detected by the use
of gradients of key variables. This procedure is founded on
theoretical results ([60, 64]) and numerous numerical exper-
iments (see e.g. [33, 37, 65–67]).

6.2.11 The Marking Strategy

For marking an element to be refined or coarsened, we use a
heuristic strategy which is easy and fast to compute as it em-
ploys only readily available quantities (compare Sect. 6.2.7
and [33]).

Definition 6.2 (Local weighted flow quantity) Let un
j :=

x(Un
j )k , k ∈ {1, . . . ,5} being a scalar component of the vec-

tor of conservative variables of element Tj at time tn and
wj being the center of gravity of Tj . Then (for unrefined
neighbors)

ηn
j :=

(
|Tj |

((
un

j − un−1
j

�tn

)2

+
kj∑

l=1

(
un

j − un
jl

|wj − wj l |
)2)) 1

2

defines the local weighted flow quantity. In the case of a
refined neighbor Tjl the following definition
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ηn
j :=

(
|Tj |

((
un

j − un−1
j

�tn

)2

+
kj∑

l=1

(
1

kjl

kjl∑

k=0

un
j − un

jlk

|wj − wj lk|
)2)) 1

2

with kjl the number of facing Elements Tjlk on face Sjl with
values un

jlk and center of gravity wj lk is used.

The mesh adaption criterion is then the relative value,
which corresponds to an evenly distributed approximation
error.

Definition 6.3 (Local relative mesh adaption quantity) Let

η̄n := 1

�T
∑

j
Tj ∈T

ηn
j ,

be the average of ηn
j on the mesh T , with �T being the num-

ber of elements in T . Then

ζ n
j := ηn

j

η̄n

is the local relative mesh adaption quantity on element Tj at
time tn.

Now the mesh adaption criterion, when to refine or to
coarsen an element, can be stated.

Definition 6.4 (Local mesh adaption criterion) Let ζ n
j be

the local relative mesh adaption quantity of element Tj at
time tn from Definition 6.3. Then the element Tj is marked
for refinement or coarsening according to:

Tj marked for refinement if ζ n
j > Crefine,

Tj marked for coarsening if ζ n
j < Ccorsen

with positive constants Crefine > Ccoarsen.

Remark 6.5 (Choice of Crefine/Ccoarsen ) As described in
[33], the constants to control the mesh adaption
Crefine/Ccoarsen are chosen depending on the desired adaption
accuracy. They can lie between Crefine/Ccoarsen = 0.5/0.1
for a very sensitive mesh refinement up to Crefine/Ccoarsen =
1.3/0.7 if the mesh should only be refined at intense struc-
tures in the numerical solution.

Remark 6.6 (Used components for marking) As indicators
for the marking strategy we use the density ρ, the fresh-gas
concentration σ , and the pressure p.

6.2.12 Special Mesh Considerations

This standard algorithm now needs further extensions in or-
der to work with the above described mesh treatment for
complex geometries with moving parts.

6.2.13 Boundary Fitting

As the boundary of our domain is not planar but curved in
most parts, the new boundary vertices of refined elements do
not lie exactly on the boundary. These vertices can be pro-
jected onto the exact geometrical boundary if the surface of
this boundary is known. Thus, for a complete treatment of all
boundaries it would be necessary to use the CAD data of the
geometry. Since this data is a very complex structure, and as
an initial mesh of fine enough resolution approximates even
complex geometries quite well, such a projection is only
needed in critical areas. Especially at the inter-mesh inter-
faces where the ports connect to the cylinder and crankcase,
and at the crankshaft-crankcase interface, a high accuracy
is desired. But the exact geometry of the lower part of the
cylinder and the upper part of the crankcase is also known
without extraction from the CAD data. They are just cylin-
drical bodies with given radius. Therefore, a projection onto
these surfaces is a straightforward trigonometrical calcula-
tion.

6.2.14 Moving Mesh Interaction

Elements in the rotating crankshaft mesh are constantly
changed. Also, the newly created vertices of refined ele-
ments have to be included in the rotational movement and
the update of their outer normals nj l . An adaptive treatment
of the crankshaft-crankcase interface has been avoided by
initially refining this part of the mesh up to the maximum
refinement level and fixing it for the time iteration. This has
been done for efficiency reasons. It is too time consuming to
update the concerned structures with every refinement. Also,
a high accuracy is needed on this interface, thus justifying
the computation on the maximum refinement level.

At the moving boundary just above the piston crown, and
similarly on the uppermost layer below the piston in the
crankcase, the mesh is likewise refined to maximum depth.
The reason also being time considerations within the mov-
ing piston algorithm and the desired accuracy in this region
of high activity. But unlike in the case of the rotating crank-
shaft mesh, this refinement needs constant updating due to
the snapper algorithm described in Sect. 5.2. If, during the
upwards motion of the piston, a merging of two layers above
the piston occurs then a further refinement of the cells in the
second layer above the piston might be necessary. Inversely,
at the downward motion a refinement, induced by the pis-
ton motion, is not needed anymore after the splitting of two
layers. Therefore, a coarsening can be conducted if the local
mesh adaption criterion indicates this. Furthermore, special
care has to be taken at the neighbors of moved elements in
the crankcase mesh below the piston whose data is updated
during the snapper algorithm as described in Sect. 5.2.7.
These elements have to be refined to maximum level as
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well in order to treat them with the procedure described in
Sect. 5.2.7.

Remark 6.7 (Modified marking strategy) Due to the strong
influence of the mesh movement on the temporal part of the
marking strategy, this part is omitted in the two-stroke en-
gine simulation.

6.2.15 Merged Meshes

For the purpose of achieving a high accuracy on the inter-
mesh interfaces, and to avoid an excessive calculation of the
area of common facets of neighboring elements across the
contact boundary, we also decided in this case to refine these
boundaries up to the maximum refinement level. The update
of the merging grid structure therefore only has to be done
at initialization time and not dynamically during the time
stepping iteration.

7 Parallelization

Most applications have an unbounded appetite for
memory and processor time. The efficient use of com-
puting resources is, therefore, always a concern in sci-
entific computing. E.F. van de Velde [68]

This citation emphasizes the desire of every CFD simula-
tion to be as accurate as possible and to calculate problems
with ever-increasing complexity within a reasonable time.
By the use of parallel computers, the runtime of a problem
can be reduced considerably. Also, the available memory in
parallel computers is many times bigger.

7.1 Efficiency of a Parallel Algorithm

The reason for parallel computing is founded in the need
to execute an identical problem in less time (speed-up) or a
larger problem in the same time (scalability). The following
definitions are used to measure these quantities for a given
algorithm.

Definition 7.1 (Speed-up) The speed-up Sp(n) is defined as
the ratio of the sequential total execution time T (1) to the
time needed with n processors T (n):

Sp(n) := T (1)

T (n)
.

Definition 7.2 (Efficiency) The efficiency E describes the
ratio of actual speed-up Sp(n) to ideal speed-up Spopt(n) =
n (see Remark 7.4):

E(n) := Sp(n)

n
.

Definition 7.3 (Scalability) Let an n-scaled problem nP for
a problem P be given by TnP (1) = nTP (1), where TP (1) is
the serial execution time for P . Then the scalability Sc(n) is
defined by:

Sc(n) := TP (1)

TnP (n)
.

Remark 7.4 The theorem on the limitation of speed-up
states that Sp(n) ≤ n (see, e.g. [70]).6 Therefore, it follows
for the efficiency and scalability E(n) ≤ 1 and Sc(n) ≤ 1.

The speed-up and scalability of an algorithm are deter-
mined by the portion of the work load Tpar that can be dis-
tributed between the processors and the work load Tser that
needs to be executed by only one processor. An ideal speed-
up Sp(n) = n is obtained if Tser = 0, i.e. the algorithm is
fully parallelized and the whole load can be distributed be-
tween the n processors (see also Remark 7.6). This is, e.g.,
the case in Monte-Carlo simulations, where the single tasks
are completely independent of each other. But, in general,
Tser �= 0, thus it follows for the speed-up Sp(n) = Tser + Tpar

n
.

This is, if Tser and n are small, unproblematic, but it is criti-
cal if either Tser or n are bigger (Amdahl’s Law).

Example 7.5 In the case of Tser = 0.2 and n = 8 the total
execution time reduces to T (8) = 0.2 + 0.8

8 = 0.3 resulting
in a speed-up of Sp(8) = 3.3̄ which is far from the expected
ideal speed-up of Spopt(8) = 8.

Remark 7.6 In addition to the serial part Tser of the algo-
rithm the parallel overhead, such as synchronization and
data exchange, slows down the parallel execution of the pro-
gram.

But a gleam of hope is spotted in the fact that the non-
parallelizable part Tser generally decreases with increasing
size of the problem (Gustafson’s Law). Thus, even with bad
performance with respect to speed-up Sp(n) the algorithm
can still possess a good scalability Sc(n).

For further details cf. [68–71].

7.2 Parallelization Concepts

In recent years two different types of supercomputers have
become widely available, namely the shared memory archi-
tecture and the distributed memory architecture. As these
two types of architecture also influence the efficiency of the
parallelization strategy, they are now described in further de-
tail.

6A possible exception to this rule is the improved cache performance
for smaller problems.
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7.2.1 Distributed Memory Architectures

In this approach the parallel computer consists of many in-
dividual processors, each possessing its own memory. One
processor cannot access the memory of another. An exe-
cuted program and its processed data is split into n parts and
is distributed to the n processors. An exchange of informa-
tion is possible via a communication network connecting the
processors with each other (see e.g. [72]). A fast network,
with short length of path from one processor to any other
one, is essential for the performance of such a machine. This
is also the limiting factor of the size of such supercomput-
ers which can, nevertheless, consist of up to thousands of
processors.

For the information transfer on such architectures there
exists a widespread standard, the message passing interface
MPI (see [73]).

7.2.2 Shared Memory Architectures

This type of parallel computer also consists of individual
processors but each of them has access to the same memory.
An exchange of information is therefore easily realized by
the common memory, an explicit, time consuming, message
passing is not necessary. This advantage is diminished by
the risk of the, so-called, race condition, i.e. two processors
modifying the same storage position. The outcome of such
a situation is non-deterministic and has to be avoided by the
programmer. Also, after changing a common variable it is
necessary to update the cache of every processor keeping
this variable. For further details confer Sect. 7.3.

For hardware considerations this architecture is more dif-
ficult to realize than the distributed memory approach. The
requirements for the fast memory access via the memory
switch limit the size of such an architecture (nowadays) to
some hundred processors.

The accepted programming standard for the usage of
shared memory computers is the OpenMP standard, as de-
scribed in [74] and briefly in Sect. 7.3.

7.2.3 Hybrid Architectures

These are parallel computers sharing the characteristics of
both of the above described architectures. The largest super-
computers these days are of this type. They consist of many
nodes connected to each other by a communication network,
whereas each node is composed of processors accessing one
memory block within their node.

In the programming model both types of directives, MPI
as well as OpenMP, are used.

7.3 The OpenMP Parallelization

7.3.1 The Finite Volume Scheme

The parallelization of the main numerical finite volume
scheme is quite straightforward.

First, the mesh is divided into npart disjoint domains Di

(1 ≤ i ≤ npart), called partitioning. The objective for the cre-
ation of these domains is an equal distribution of elements.
This is necessary for the even distribution of the load be-
tween the processors (further clarified in Sect. 7.5). Fur-
thermore, small boundaries to other domains are desirable,
due to the fact that the data Uj on each element situated
on a domain-boundary can be modified by two processors.7

Thus, in order to avoid the above-mentioned race condition,
this element has to be locked before changing the content
of Uj and unlocked afterwards. As this locking/unlocking
needs time for itself, and might block the other processor,
this should be avoided as much as possible. The partition-
ing is performed by the recursive coordinate bisection algo-
rithm. It is fast, easy to implement, and efficient regarding
the above required attributes (cf. [70, 75]). In order to han-
dle the diverse add-ons to the main numerical scheme, this
recursive coordinate bisection had to be extended, which is
described in Sect. 7.4.

Then the OpenMP #pragma omp parallel-
directive is applied to create n different threads (each being
run on one processor) which execute the same code from
this point onwards. Thus, each thread i calculates the same
scheme on all elements Tj ∈ Di of the domain Di that has
been appointed to it.

For synchronization of the threads the directive
#pragma omp barrier is used. The threads wait at this
point for each other. This is, e.g., necessary at the end of
one time-step, before the threads use the data Un−1

j l of the
neighboring elements from the time-step before. It has to be
assured that this data is completely calculated.

For the update of global variables it is crucial that only
one thread at a time accesses this variable to avoid the race
condition. This is done by the #pragma omp criti-
cal-directive. E.g. for the new minimum time-step �tmin

each thread i calculates its own local minimum time-step
�ti,min on domain Di and compares it with the global �tmin.
If �ti,min < �tmin then �tmin := �ti,min, using this direc-
tive.

A similar case is given for instructions that only one
thread needs to execute. They are indicated by the #pragma
omp single.

And finally, the locking of the data Un
j that can be mod-

ified by more than one thread (if the element Tj is situated

7For the reason of the modification of the data Un
jl of neighbor Tjl see

Remark 6.1.
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at a domain boundary) is done by the OpenMP library func-
tions omp_set_lock() and omp_unset_lock().

The changes that need to be applied to the serial program
are minor, such that the same code can be used for serial and
parallel execution. The dedication is set at compilation time
by the compiler flag -OPENMP.

7.3.2 The Mesh Routines

The parallelization of the main scheme resulted in a code
which had a rather big serial part Tser, most importantly due
to the routines for the mesh movement and the dynamic local
mesh refinement. Therefore, the speed-up and efficiency of
this parallel code was not very impressive. To enhance the
performance two strategies were applied.

On the one hand, the absolute execution time of the mesh
related routines was optimized. This was achieved by profil-
ing and tuning the concerned program parts, and by chang-
ing the mesh not after each step but only after 2lgeom steps,
with lgeom as a given parameter (cf. Sect. 6.1).

On the other hand, these routines used for mesh treatment
were parallelized to the greatest possible extent. For this, we
used not just one partitioning of the mesh for the finite vol-
ume scheme, as described in Sect. 7.3.1, but in parallel also
several others for the mesh related routines (see Sect. 7.4).

7.4 The Extended Partitioning Algorithm

The load of a single processor during the execution of the
finite volume scheme is determined by the number of el-
ements being updated at the current time-step tn. Because
of the adaptive local time-stepping (cf. Sect. 6.1) this num-
ber is different for each time-step level ltimestep. An element
Tj1 belonging to time-step level lj1 = lmin is calculated every
time-step, one element Tj2 belonging to the next higher level
lj2 = lmin +1 every second step, and so on. Thus, for a time-
step in which only elements of level ltimestep = lmin are up-
dated, only these elements contribute to the load in this step.
In a time-step for level ltimestep = lmin + 1 all elements of
level lj ≤ lmin + 1 are to be considered, and so forth. There-
fore, we need for each level lmin ≤ ltimestep ≤ lmax a sepa-
rate partitioning in order to obtain a correct load balancing
for every single time-step. That means that the domains Dlk

i

(k = 1,2) can differ for l1 �= l2.
Additionally, the mesh routines need to work in parallel,

too. For the snapper algorithm, e.g., most of the time only
one layer of elements in the cylinder and the crankcase are
changed (see Sect. 5.2). Thus, the elements in this layer have
to be partitioned for the npart processors on the fly. Similarly,
for the treatment of the rotating crankshaft mesh we need a
balanced partitioning of this part of the mesh. The dynamic
local mesh adaption algorithm (described in Sect. 6.2) is op-
erating on every cell, thus a further partitioning of the whole

mesh is necessary. As the number of elements on domain
boundaries is not important in the case of the mesh rou-
tines (no data on neighboring elements needs to be changed,
thus no locking is necessary) a simple partitioning by el-
ement number is carried out. Summarizing this, we obtain
a whole family of partitions Pr := {Dr

i |1 ≤ i ≤ npart} with
1 ≤ r ≤ lmax − lmin + 4 with each partitioning having a par-
ticular role within the load balancing procedure.

This approach therefore uses the capabilities of the
shared memory architecture to its full extent, since a new
partitioning does not need any communication or data ex-
change as it would be the case in distributed memory ma-
chines. On this distributed memory architecture the above
described approach of using more than one partitioning
would be impossible.

7.5 Dynamic Load Balancing

The load balancing in our case is a very important issue.
As the mesh is changed by several different mechanisms,
the size of the partitioning domains Dr

i is also affected.
However, if these domains are not evenly balanced the per-
formance of the parallelization suffers, since some proces-
sors have a lower work load, waiting for the others to finish
(cf. [72]). Therefore, a dynamic load balancing is essential.

For this, a concept of work load has to be derived (see
also [70]). It is assumed that the work load is proportional to
the number of elements that a processor has to compute in
a certain time-step level. It follows for the cost per level for
each domain Di :

W(l, i) := mli 2−l

with mli being the number of elements Tj in domain Di with
lj ≤ l. The total cost for a complete level cycle is thus:

W :=
∑

lmin≤l≤lmax

max
i

(W(l, i)).

Every 2lpart steps, with lpart ∈ N a given constant, the even
distribution of the domains is verified by calculating the ra-
tio of the number of elements of the biggest to the smallest
domain:

ζ n
loadbal :=

∑
lmin≤l≤lmax

maxi W(l, i)
maxi (mli )
mini (mli )

W
.

In the case of exceeding a given threshold Cloadbal > 1 a new
partitioning, i.e. a re-distribution of the mesh to the proces-
sors, is created by the extended recursive coordinate bisec-
tion, as described in Sect. 7.4.

8 Validation of the Software

For simple model problems, the convergence properties of
a finite volume scheme can be studied analytically (see
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e.g. [11]). However, in our case of the three-dimensional
time-dependent Navier–Stokes equations, the numerical
scheme has to be evaluated by numerical experiments. The
results of these calculations can then be compared to known
exact solutions, calculations with other schemes found in lit-
erature, or physical experiments. All of these methods were
conducted and can be seen in detail in [76].

9 Results

Our final goal is the simulation of the flow through a two-
stroke engine. Apart from the general study of the flow struc-
ture in an existing two-stroke engine, we treat in this chapter
two problems of particular interest for the engineer. The first
one is the question of how much does the crankshaft motion
influence the flow situation in the cylinder and the exhaust
characteristics. Is it therefore really necessary to simulate
the moving parts in the crankcase. Finally, we want to study
the mechanism and the paths of the short-circuit flow from
transfer port to exhaust port with help of the enhanced fresh-
gas tracking.

9.1 Meshes

9.1.1 Generation

The quality of the underlying meshes is of vital importance
for the obtained solution. Bad quality meshes may result in a
very small time-step (in the case of elements with very small
volume) or in an oscillating solution (arising from strongly
skewed elements). It was pointed out that our meshes consist
of hexahedrons due to better performance. As we are in the
case of a complex real-world mesh based on CAD data, a
commercial mesh generator is necessary with this type of
mesh (as e.g. [77]).

The geometry of a two-stroke engine has a complex
topology, thus it is inevitable to use a composition of a fam-
ily of meshes assembled by the grid merging method to form
the whole geometry (as shown in Fig. 8). It would not be
possible to construct one single mesh meeting all the geo-
metrical restraints. With the grid merging technique, O-grids
can be used to mesh the inlet, transfer port and outlet duct,
thus accounting for their cylindrical shape and the possible
boundary refinement. Also, the upper edge of the transfer
ports connecting to the cylinder does not need to be hori-
zontal, as would be the case without grid merging due to the

Fig. 8 Meshes: the complete mesh is assembled by several different parts (left), on the right the 250 000 element mesh is displayed
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Table 1 The element number
of the different mesh families
for the two-stroke engine
simulation

Mesh family 15,000 30,000 60,000 120,000 250,000

Inlet duct 270 432 826 1,680 3,456

Crankcase 3,952 7,595 14,444 31,572 65,838

Crankshaft 1,920 3,420 7,916 14,313 26,848

Lower transfer ports 236 430 866 1,744 3,440

Transfer ports 2,144 4,272 8,032 17,522 34,048

Cylinder 5,271 10,206 20,922 41,300 82,548

Outlet duct 512 1,298 2,632 5,032 10,384

Silencer 1,160 2,592 5,190 10,507 20,736

horizontal layering of the cylinder elements, as needed by
the snapper algorithm (cf. Sect. 5.2).

9.1.2 Different Size Meshes

In order to check for the mesh dependency of our solution,
we need a whole series of families of meshes. Seven fam-
ilies of meshes have been generated. The element numbers
can be seen in Table 1. Further meshes with higher element
numbers are created by global or adaptive refinement of the
existing ones. Therefore, the number of elements of a family
of meshes is only limited by the computational time of the
simulation on the resulting mesh.

9.1.3 The Silencer—An Alternative to a Transparent
Boundary Condition

The handling of the outflow boundary is not easy. The
straightforward characteristics based approach reflects waves
back into the interior of the domain (if we are in the subsonic
regime, which is the case in most of the outflow duct).

One method to cover this problem is the usage of a trans-
parent or artificial boundary condition (ABC) at the end of
the outflow duct. These boundary conditions approximate
the flow that would continue in an infinitely long outflow
duct. They are an improvement to the characteristics based
boundary treatment in that they do not influence the inte-
rior flow by perturbations created at the boundary. Usually,
this kind of boundary condition is found in the simulation
of outer flow problems, e.g. airfoil calculations (cf. [78]). In
our case of the viscous three-dimensional time-dependent
duct flow with boundary layer, the transparent boundary
condition approach is not as well studied as the far field
boundary in an outer flow problem. But, more importantly,
in the two-stroke engine context the pressure wave, result-
ing from exhaust port opening, is reflected at the transition
of outflow duct to silencer. Therefore, in reality we have
a strong interaction between outflow boundary and interior
flow. This can only be simulated by adding the silencer to
our family of meshes and thus calculating the flow through
this part of the engine as well. The disturbing boundary is

Table 2 Geometrical data of the test engine

Variable Value

Bore db 47.0 mm

Stroke ls 34.0 mm

Connecting rod length lcr 58.0 mm

Trapped stroke lts 23.3 mm

Swept volume Vs 59.0 cm3

Trapped swept volume Vts 40.4 cm3

Rotations per minute rpm 9000 1
min

Crankcase compression ratio CRcc 1.35

Geometric compression ratio CRg 10.59

Trapped compression ratio CRt 7.57

now far away from the cylinder at the outlet of the silencer.
As can be seen from Table 1, only about 8% of the total
number of elements are needed for the mesh of the silencer
due to its basic geometry.

9.2 Configuration

9.2.1 Geometrical Data

The geometrical data of the two-stroke engine with which
we test our software are given in Table 2 (for the defini-
tions of these entities see Sect. 2.3). The values are extracted
from the CAD data of a real engine employed in a chain saw.
The port areas as functions of time of the different ports are
shown in Fig. 9. The timing for the opening and closing is
specified in Table 3. The piston motion is determined by ex-
plicit formulae for hp and vp . The rotation of the crankshaft
is given by the value for the rotations per minute. Thus, in
our case we have 9000 rpm, i.e. the crankshaft rotates 360◦
per 1

150 s .

9.2.2 Temperature-dependent Material Properties

In order to calculate the material properties of the fresh gas
and the exhaust gas, the formulae as stated in Sect. 3.5 with
the appropriate values for fresh air and the exhaust gas mix-
ture are used. (For further details see [76].)
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Fig. 9 Port areas by piston
control of the different ports

Table 3 Port timing for the test engine

Port Opens Closes
◦ crankshaft atdc ◦ crankshaft atdc

Inlet port 285 75

Main transfer port 130 230

Auxiliary transfer port 130 230

Outlet port 104 256

9.2.3 Combustion Data

As the combustion process itself is not simulated, we need
the actual state of the exhaust gas within the cylinder after
the combustion has terminated. This data is extracted from
an experimental measurement:

p(x, t) := 1092360 Pa

for t = 50◦ crankshaft angle atdc, x ∈ cylinder.

The density does not change during combustion, therefore,
the temperature can be calculated by the thermal equation of
state (3.7).

9.3 Initial and Boundary Data

9.3.1 Initial Conditions

The initial data for the coarsest mesh is set to ambient stan-
dard temperature and pressure for the inlet and crankcase:

ρ0 := 1.2039
kg

m3
,

p0 := 101325 Pa

and for the outlet and silencer:

ρ0 := 0.4100
kg

m3
,

p0 := 101325 Pa.

Whereas in the cylinder the trapped compression ratio is ap-
plied to these values based on a polytropic compression:

ρ
cyl
0 := ρ0CRt = 9.1135

kg

m3
,

p
cyl
0 := p0(CRt)

1.4 = 1723657 Pa.

The velocity field is assumed to vanish in the whole geom-
etry. The initial data does not influence the asymptotic so-
lution. The boundary conditions determine the converged
periodic solution. The initial values just influence the time
needed for the solution to reach a converged state.

For the subsequent meshes, the converged solution of the
previous mesh is used as initial data in order to speed up the
convergence.

9.3.2 Boundary Conditions

The numerical treatment of the boundary conditions is de-
scribed in Sect. 4.5. The outflow boundary condition has
also been discussed in Sect. 9.1.3. The inflow boundary is
the only one that needs further consideration. Two possi-
ble approaches are feasible to cover this boundary. If the
massflow data from a physical experiment is available, this
data can be used to impose a massflow condition at the in-
flow boundary. Otherwise, a the ambient standard pressure
pin := p0 and density ρin := ρ0 can be prescribed.

The advantage of the massflow condition is a better com-
parability of two different engine geometries. Because the
massflow through the engine is always the same (due to
the setting at the inflow boundary), the delivery ratio DR
is kept constant, and therefore also the scavenge ratio SR
(with the assumption of identical cylinder volumes). There-
fore, the trapping efficiency TE as main criterion is only in-
fluenced by the geometrical shape of the engine, and not by
the amount of delivered fresh gas.
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Fig. 10 Parallelization:
speed-up (upper left) and
associated efficiency (upper
right) for the simulations on the
1 million and 4 million element
meshes and the scalability
(bottom) for a computation on
the 500 000 (1 processor), 1
million (2 processors), 2 million
(4 processors), and 4 million (8
processors) element meshes

The advantage of the standard inflow condition, on the
other hand, is its ease of use. No time-dependent measure-
ments on a real engine need to be conducted, and no time-
dependent massflow value needs to be enforced at the in-
flow boundary. But an interaction of the flow with this kind
of boundary condition results in a variable massflow rate,
which makes it difficult to compare different geometries.

9.4 Parallelization

The code was executed on IBM Regatta p650 and p690+
with up to 32 Power 4+ processors with 1.7 GHz in shared
memory operation.

9.4.1 Partitioning

As stated in Sect. 7, the parallelization was performed using
the OpenMP standard for shared memory parallel architec-
tures. The concept of multiple simultaneous partitions of the
same mesh, explained in Sect. 7.4, relies on the shared mem-
ory concept.

9.4.2 Performance Analysis

Two types of studies can be conducted. One is to increase the
number of processors for the same problem. Thus, by dou-
bling the number of processors, the size of the problem per
processor is halved. This approach leads to the concept of
speed-up and efficiency (see Sect. 7.1). The other type con-
sists in increasing the problem according to the number of

processors such that the problem size per processor remains
constant. This is measured by the scalability (as defined in
Sect. 7.1). Both types of studies have been performed. The
results can be seen in Fig. 10. The speed-up (upper left) and
the associated efficiency (upper right) for the 1 million and 4
million element mesh is quite good for such a complex algo-
rithm. With 8 processors the larger mesh performs slightly
better. This trend continues probably on more processors.
The scalability (bottom) is based on simulations on 500 000,
1 million, 2 million, and 4 million elements meshes with 1,
2, 4, and 8 processors respectively. Also, here a relatively
good performance is demonstrated.

9.5 Visualization and Characteristical Diagrams

The visualization of large data is a very important issue in
analyzing the flow through a complex geometry. The vi-
sualization software, that is part of our software package,
is based on the library GRAPE (for GRAphics Program-
ming Environment) (see [54–57, 79–81]) and provides an
interface for our mesh structures. The visualization software
reuses large parts of the code of the main simulation soft-
ware, e.g. to move the piston and crankshaft and to cal-
culate the grid merging. Additionally, several visualization
routines have been implemented to display certain aspects
of the special algorithms used in the simulation. These in-
clude the visualization of the local time-step levels, the par-
titioning for the parallel algorithm with the ghost cells, and
the opaque clipping routine to enhance the clarity of the
presentation. Already present in GRAPE is a wide variety
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Fig. 11 Convergence of the flow structure for the meshes from 15 000 to 4 000 000 elements (line-by-line) at 200◦ crank angle atdc

of display methods, e.g. the level display method (as seen
in Figs. 16 and 17), the particle trace method (in Figs. 14
and 15), and multiple-isoline and vector field clipping dis-
plays (e.g. Fig. 19). All of these routines can be used in a
time-dependent context, thus taking into account the varia-
tions in the flow with time (compare also the presentation of
the results in the next Sect. 9.6). With the help of these very
powerful routines an exhaustive analysis of the flow struc-
ture in the two-stroke engine is made possible.

Furthermore, for the quantitative study of the exhaust
characteristics of the engine several output files are created
during the simulation. This data can be used to generate,
e.g. massflow and trapping efficiency diagrams (as displayed
e.g. in Figs. 21 and 20). In this manner the quality of two or
more geometries can be compared with each other.

9.6 The Simulation

9.6.1 Convergence in Time

The difference of the numerical solution, measured in a suit-
able norm, between two consecutive rotations vanishes. This
has to be verified within the simulation. We continue the cal-
culation as long as the influence of the initial data is still
above a certain threshold. As the scavenge ratio SR and the
trapping efficiency TE are the main characteristic values to
assess the engine geometry, the difference of the SR and the

TE of two consecutive rotations is taken as indicator for a
convergence in time. The difference after three periods is
for the scavenge ratio less than 1% and even less than 0.5%
for the trapping efficiency.

9.6.2 Convergence for Mesh Width h → 0

When the convergence in time is assured, the calculated nu-
merical solution can be checked for mesh dependency. This
is done by comparing the solutions from different meshes
with each other. Here the isoline images on the meshes as
well as the scavenge ratio SR–trapping efficiency TE graph
are taken as indicators for convergence. As the mesh width
h decreases, the solutions, and consequently the associated
SR–TE graphs, should converge to a mesh independent so-
lution. This is studied for the flow structure of our simu-
lation in Fig. 11. The flow pattern of the solution on the
coarse meshes is clearly distinct from the one on the finer
meshes. The loop structure is visible only with the finest res-
olutions. Although there are still differences in details of the
looping structure, the general flow pattern converges on the
finest meshes. This sequence of images demonstrates very
impressively how important it is to calculate a solution on
several different size meshes. For an analysis of the flow it
is indispensable to know how much influence of the mesh
resolution is still present in the numerical solution.
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Fig. 12 Convergence of the
scavenge ratio–trapping
efficiency graph depending on
the mesh size

In Fig. 12 the effect of this converging flow structure is
shown in the SR–TE diagram. The convergence for the scav-
enge ratio SR is clearly visible even on the coarser meshes
from 120 000 elements onwards. This is not surprising, be-
cause we force the delivery ratio DR to a fixed value due
to the massflow condition at the inflow boundary. The con-
vergence for the trapping efficiency TE starts to show on
the finest meshes. Thus, the trapping efficiency is also as-
sumed to not change much any more on higher resolutions.
(For an in depth analysis of the characteristical diagrams see
Sect. 9.6.5.)

9.6.3 Comparison with Measured Data

As we are simulating an existing two-stroke engine, experi-
mental measurements are available. The simulated pressure
in the cylinder during the scavenging process and the simu-
lated pressure in the crankcase during the whole period are
compared to this experimental data. The result is shown in
Fig. 13. As the numerical pressure is an average from the
whole cylinder and the whole crankcase respectively, the
plot is smoother than the measured data that is gathered at
one point. But the otherwise very good agreement of this
data confirms the high quality of our numerical simulation.

9.6.4 Visualization of the Flow Structure

The analysis of the large data sets of many million numbers
calls for powerful visualization strategies. With our visual-
ization software many time-dependent display methods are
at hand to study the flow structure of the scavenging process.

First, the main problem of two-stroke engines, the short
circuiting, can be demonstrated quite impressively by the
particle trace method shown in Fig. 14. Here, the blue par-
ticles represent the exhaust gas, the orange and red ones the
fresh gas. The dark blue exhaust particle stays in the cylin-
der during the next combustion, but more importantly, the
red fresh gas particle is not trapped in the cylinder but leaves
through the exhaust port before it is closed by the upwards
moving piston. In Fig. 15, the intake flow into the crankcase
is visualized. The light green particles start at the opening of
the inlet port at 285◦ crank angle atdc (after top dead center),
and at tdc they are already in the upper part of the crankcase
(Fig. 15 (left)). The dark green particles are released at tdc
and are pulled into the lower part of the crankcase by the
suction of the crank shaft, whereas the earlier particles stay
in the upper crankcase (Fig. 15 (middle and right)).

A very good method to display the scavenging process in
detail is the three-dimensional iso-level routine. All points
with a given value are connected to form a surface. Fig-
ures 16 and 17 display two different fresh gas concentra-
tions (0.5 and 0.8) at two different times during the scav-
enging (180◦ and 220◦ crank angle atdc). The scavenging
loss by short-circuiting is clearly visible in Fig. 16 (left). In
this figure, a “tongue” pattern is evident. This leads not to
an optimum scavenging, a high concentration of fresh gas
reaches the exhaust port before it is closed (see also [82]).

Objects, that move with the flow and are deformed by it,
visualize the time-dependent structure of this flow very in-
tuitively (as shown in the series of pictures in Fig. 18). Here,
the main problems of the geometry are demonstrated as well.
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Fig. 13 Comparison with
measured data: cylinder
pressure during the scavenging
process (top) and crankcase
pressure (bottom)

A portion of the exhaust gas (transporting the blue ball) is
left in the cylinder, and the short-circuiting transports a part
of the red ball out of the exhaust port. The horseshoe-like
shape of the blue exhaust object again reveals the “tongue”
pattern of the scavenging flow.

With the isoline display, a more in detail view is possible.
Figure 19 shows the possibilities of this kind of visualization
technique. Also, in this figure the “tongue” pattern of the
flow at 180◦ crank angle (middle part of the figure) is visible,
resulting in a loop scavenging loss towards the end of the
scavenging process (lower part of the figure). But this is not

as damaging as the short-circuit flow from the main transfer
port at the beginning of the scavenge process until bdc.

9.6.5 Characteristical Diagrams

Apart from the visualization of the flow through the two-
stroke engine, it is important to quantitatively analyze the
quality of the geometry by the study of characteristical val-
ues. These can be plotted into diagrams to give a better
impression of temporal development of the flow. One of
the most important diagrams is the scavenge ratio (SR)–
trapping efficiency (TE) diagram. Furthermore, the temporal
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Fig. 14 Visualization of the
flow structure: Particle traces at
100◦ (left), 170◦ (middle), and
240◦ crankshaft angle atdc
(right). Exhaust gas particles (in
the cylinder) and fresh gas
particles (from the transfer
ports) on their way through the
engine, the leftmost exhaust
particle does not leave the
cylinder, the most advanced
fresh gas particle reaches the
outlet port (short-circuiting)

Fig. 15 Visualization of the
flow structure: Particle traces at
0◦ (left), 40◦ (middle), and 360◦
crankshaft angle atdc (right).
The darker particles start at
identical positions but 75◦ crank
angle later. Their path is
completely distinct from the
earlier ones

Fig. 16 Visualization of the
flow structure: iso-surfaces of
fresh gas concentration at 180◦
crank angle atdc for values of
0.5 (left), and 0.8 (right)

development of the massflow of the fresh and exhaust gas at
the transfer ports and the outlet port is very useful.

In the following diagram in Fig. 20, the scavenge ra-
tio value is measured during one rotation. It is therefore a
temporal parameter and does not represent different engine
loads. What can be seen in the trapping efficiency graph in
Fig. 20 is that a short-circuit flow reaches the outflow port
very fast. The trapping efficiency falls rapidly to a value of
about .976 due to this short-circuiting. (For a detailed inves-
tigation to this short-circuiting see Sect. 9.8.) The vertical

part at the upper end of the scavenge ratio in the diagram is

caused by the closing of the transfer ports prior to the outlet

port.

Figure 21 displays the two situations at the transfer port–

cylinder connection (left) and the outlet port entry (right).

Here a more detailed view of the development of the mass-

flow can be obtained. On the right diagram one can see the

loss of fresh charge through the outlet port which has a peak

at 194◦ crank angle atdc (red curve).
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Fig. 17 Visualization of the
flow structure: iso-surfaces of
fresh gas concentration at 220◦
crank angle atdc for values of
0.5 (left), and 0.8 (right)

Fig. 18 Visualization of the flow structure: Objects moving with the
flow at 90◦ (left), 180◦ (middle), and 210◦ crankshaft angle atdc
(right). The ball in the cylinder moves with the exhaust gas flow, the

right small ball starts in the main transfer port, and the left small one
in the auxilliary transfer port

9.7 The Effect of the Crankshaft Rotation

The crankshaft rotation has a profound effect on the flow
field in the crankcase itself (compare Fig. 15 with Fig. 22).
But the interesting part is the flow field in the cylinder at
the scavenging process. Is the rotating crankshaft changing
the characteristic values which determine the quality of the
engine, namely scavenge ratio (SR) and trapping efficiency
(TE) as defined in Sect. 2.3? Thus, does the engineer have
to worry about an altered scavenging process due to design
changes made in the crankcase?

9.7.1 Setup of the Comparison

We examine this question with our real engine geometry.
For this, the engine is simulated with the data as given in
Sects. 9.1, 9.2, and 9.3. However, the crankshaft of the en-
gine is fixed, and not rotating, in this second simulation. The
piston motion is not affected by this procedure.

9.7.2 Results

In Fig. 23 it is made clear that there is hardly any dif-
ference between the scavenging process with the rotating
crankshaft and the one with fixed crankshaft. Thus, the

big difference in the flow field in the crankcase has al-
most no influence on the scavenging process in the cylin-
der. The only driving force for the scavenging seems to
be the pressure difference between crankcase and cylinder
which is not altered by the crankshaft rotation. This might
possibly change for configurations for which the port win-
dow of the transfer ports is partly shadowed by the crank-
shaft at certain angles. This obstruction for the flow from
crankcase to cylinder can have a measurable influence on
the scavenging process. But in our geometry this is not the
case.

9.8 The Study of Short-Circuiting

The problem of short-circuiting is the main reason for the
bad exhaust characteristic in a two-stroke engine. Unburnt
hydrocarbons escape the combustion process and reach the
exhaust, polluting the environment. Thus, the main task of
the engineer is to minimize this short-circuiting. Therefore,
it is advantageous to know which transfer port causes how
much loss of fresh gas.

9.8.1 Enhanced Fresh-Gas Tracking

In order to derive the origin of the escaped fresh gas, four
different fresh gas species σi , 1 ≤ i ≤ 4, that do not interact
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Fig. 19 Visualization of the
flow structure: horizontal
clipping planes of iso-lines of
the fresh gas concentration at
180◦ (top) and 220◦ (bottom)
crank angle atdc

Fig. 20 Characteristical diagram: the scavenge ratio SR–trapping ef-
ficiency TE graph

with each other, are introduced. This extension of the numer-
ical scheme as described in Sect. 4, is straightforward. In the
crankcase, the fresh charge is composed homogeneously of

these four fresh gas species (σi := 1
4σ , 1 ≤ i ≤ 4). But as

soon as a transfer port is reached, all the fresh gas is shifted
to one species depending on the transfer port: σj := ∑4

i=1 σi

where j depends on the port number. Now, if the fresh gas
enters the cylinder it can be exactly traced back to its port of
entry (see Fig. 25). If some fresh gas reaches the outlet duct,
it can be quantitatively attributed to the single transfer ports
(as shown in Fig. 24).

This fresh-gas tracking is applied to the engine simula-
tion with the data as given in the Sects. 9.1, 9.2, and 9.3.

9.8.2 Results

In Fig. 25 it can be guessed that the main transfer ports are
the principal source of short-circuit losses. Design recom-
mendations to improve the scavenging process might be de-
rived from these figures.

In the diagrams shown in Fig. 24 a further detailed analy-
sis of the scavenging losses is possible. These losses can be
classified into three distinct mechanisms (cf. [4]). The first
one is the short-circuit loss. This occurs at the beginning
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Fig. 21 Characteristical diagrams: the massflow and integrated massflow of fresh gas at the transfer port–cylinder connection (left), and the
massflow and integrated massflow of the total charge (upper curves) and of the fresh charge (lower curves) at the outlet port entry (right)

Fig. 22 Effect of crankshaft
rotation: Particle traces at 0◦
(left), 40◦ (middle), and 360◦
crankshaft angle atdc (right)
with non-rotating crankshaft.
The darker particles start at
identical positions but 75◦ crank
angle later. Their path is
particularly strongly influenced
by the fixed crankshaft

Fig. 23 The effect of the
crankshaft rotation: difference
in the scavenge ratio–trapping
efficiency graph
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Fig. 24 Fresh-gas tracking: the fresh charge massflow at the transfer port–cylinder connection (left) and at the exhaust port entry (right) attributed
to the single transfer ports

Fig. 25 Fresh-gas tracking:
shown is the iso-surface of 0.3
fresh-gas concentration coming
from the single transfer ports

of the scavenging. In the right graph of Fig. 24 the main

transfer ports (red/orange curve) account for this loss up to

165◦ crank angle atdc. The second mechanism is the central

loss between 165◦ and 225◦ crank angle atdc. Here the main

transfer port also causes this kind of scavenging loss. And

finally, from 225◦ crank angle atdc until the closing of the

exhaust port, the loop scavenge loss, produced by all trans-

fer ports, is the main cause for fresh charge loss at the end

of the scavenging process (barely visible in the bottom left

image of Fig. 17).

What also can be seen, are the completely symmetrical

losses of fresh charge.

10 Summary and Outlook

10.1 Conclusion

A software package has been implemented, which is able to
efficiently simulate and analyze the viscous flow through a
time-dependent two-stroke engine geometry.

The used numerical scheme is based on the Navier–
Stokes equations, which describe a viscous time-dependent
fluid and include thermal conductivity. In order to apply this
scheme to the real-world problem of the two-stroke engine
in motion, certain mesh-related algorithms had to be real-
ized. It is very difficult to represent the complex geometry
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of the engine by one single mesh. Thus, the assembling of
the mesh from several partial meshes is made possible by the
grid merging technique. The piston motion is realized using
the snapper algorithm. This algorithm was extended to han-
dle the lower part of the piston as well. The rotational mo-
tion of the crankshaft is treated with the help of the curved
interface method.

Because an accurate simulation has a big need for re-
sources, it was essential to incorporate several techniques
to reduce the computational time. A temporally consis-
tent adaptive local time-stepping method is very efficient if
meshes with different size elements are used, as is the case
in real-world applications. The dynamic local mesh adaption
with all the special mesh considerations, as the grid merg-
ing, the moving parts of the mesh, and a boundary fitting of
refined elements, saves computational time by refining ele-
ments in regions where a higher resolution is needed. The
temporal convergence to a periodical solution is accelerated
by an enhanced initial data approach. Finally, the software
was parallelized for the shared memory architecture using
the OpenMP standard. Dynamic load balancing is achieved
by an extended partitioning algorithm to account for the
mesh manipulating routines. The different parts of the de-
veloped software have been rigorously validated on several
test problems. The efficiency of the local time-stepping, the
adaptive mesh refinement, and the parallelization have been
proved by the simulation of an existing two-stroke engine.

Three important questions of the engineer have been in-
vestigated with the resulting software package. The simula-
tion has been analyzed by the developed visualization tech-
niques, and the characteristic exhaust data has been pre-
sented.

Thus, a software tool has been created that can be used to
make an in depth analysis of the flow through a given two-
stroke engine geometry within a reasonable time. It is also
possible to quantitatively compare two or more geometries
regarding their efficiency and exhaust characteristics.

10.2 Further Steps

There are several ways to further improve the quality of the
simulations. What can already be included in the simula-
tion, is the treatment of ring crevice volumes and rounded
port corners (cf. [3, 47]). If the engine geometry incorporates
these features, the finer meshes can be constructed accord-
ingly. No changes need to be made in the actual software.

To enhance the properties of the two-stroke engine, fur-
ther studies of the impact of an asymmetrical transfer port,
especially in its upper part, could be conducted. For this
analysis, the software can be used without modification.

One further promising approach to reduce the short-
circuiting in the scavenge process is the “layering” of the
fresh gas supply. At the onset of the scavenge process, pure

air displaces the exhaust gas. Only later in the process the
fuel charged fresh gas enters the cylinder, thus decreasing
the possibility of a short-circuit flow. Two possibilities are
thinkable to integrate this approach into the simulation. The
underlying engine geometry could be meshed to incorporate
the supply duct of fresh air to the transfer ports, or the com-
position of the gas within the transfer ports could be modi-
fied prior to transfer port opening. An adaption of the code
is easily feasible.

To increase the accuracy of the numerical (discrete) ap-
proximation of the (continuous) Navier–Stokes equations,
new higher order methods have been developed, namely
the Discontinuous Galerkin methods, which seem to be
very promising, regarding their efficiency. But higher order
schemes are more time consuming than first order schemes
on the same mesh. Their advantage is the accelerated con-
vergence on finer meshes. But, generally, a certain mesh size
has to be reached in order to experience the improved accu-
racy of higher order schemes (cf. [83, 84]). This is especially
true for calculations with the complex mesh routines that
need to be raised to this higher order as well, which adds to
the cost of such an approach.

A further extension of the used numerical scheme would
be the application of a turbulence model (cf. e.g. [85]).
As the computational power is, despite our accelerating
methods, far from performing a direct numerical simulation
(DNS) of the small scale turbulences (at Reynolds numbers
as high as 105 in our application), a turbulence model would
account for these small scale effects on the flow. Unfortu-
nately, up to now, no rigorous approach has been proposed
to deal with this problem in an exhaustive manner. But nev-
ertheless, to include a heuristic turbulence model would be
an improvement for the accuracy of the simulation.

And finally, in order to extend the software towards a tool
for analyzing the combustion process, and optimizing the
combustion chamber, a detailed three-dimensional combus-
tion model could be integrated. Even though this is a difficult
task due to the different time scales in combustion processes,
this would increase the versatility of this software package
even more.
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