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Abstract In this paper we survey the development of fast
iterative solvers aimed at solving 2D/3D Helmholtz prob-
lems. In the first half of the paper, a survey on some recently
developed methods is given. The second half of the paper
focuses on the development of the shifted Laplacian precon-
ditioner used to accelerate the convergence of Krylov sub-
space methods applied to the Helmholtz equation. Numer-
ical examples are given for some difficult problems, which
had not been solved iteratively before.

1 Introduction

The linear system arising from a discretization of the
Helmholtz equation in a 2D or 3D domain is typically char-
acterized by indefiniteness of the eigenvalues of the corre-
sponding coefficient matrix. With such a property, an itera-
tive method—either basic or advanced—encounters conver-
gence problems. The method usually converges very slowly
or diverges. While the Helmholtz equation finds applications
in many important fields, e.g., in aeroacoustics, under-water
acoustics, seismic inversion and electromagnetics, the abil-
ity to solve the Helmholtz equation efficiently may limit its
potential applications. For high frequency problems, e.g. in
seismic survey, and in 3D, the number of gridpoints grows
very rapidly in order to maintain accuracy; the error is pro-
portional to kp+1hp , if p is the order of discretization and
h the grid size [11, 73, 74]. The linear system becomes ex-
tremely large and highly indefinite. This makes the problem
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even harder to solve. Direct methods [58] easily suffer from
excessive fill-in (especially in 3D, due to the large band-
width) and inacceptable computational work (which grows
like N3, if N is the number of unknowns). While paral-
lel direct solvers for sparse linear systems have also been
quite advanced nowadays (see, e.g., PARDISO [107, 108]),
cheaper alternatives—less memory requirement and hope-
fully faster—are still sought.

The traditional counterpart for direct methods is iterative
methods. Known for its low memory requirement, an itera-
tive method usually consists only of a few (usually one or
two) matrix-vector multiplications, some inner products of
two vectors and vector updates per iteration. Among mod-
ern iterative methods are Krylov subspace iterative methods,
multigrid and domain decomposition methods.

Iterative solutions for the Helmholtz equation have been
an active research field since the 1980s (see, e.g., [10]
and [62]). Since then many attempts have been spent to de-
velop a powerful iterative method for solving it. So far, no
standard, well-known generic iterative methods work effi-
ciently for the Helmholtz equation.

For Krylov subspace methods, the main difficulty is
to find a good preconditioner for the indefinite Helmholtz
equation. Even a Krylov subspace method with a precondi-
tioner particularly designed for the indefinite linear systems,
e.g. [53], mostly fails to result in a satisfactory convergence.

For multigrid, indefiniteness arises difficulties in having
both good smoothing property and constructing appropriate
coarse-grid approximations of the problem, which are re-
sponsible for further reduction of low frequency errors.

In the recent years, however, some advances have been
made within the standard iterative method framework. This
paper reviews and highlights some advances in iterative
methods for the Helmholtz equation, in 2D and 3D. This is
the first part of this paper. In the second part, we particularly
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focus on Krylov subspace methods and the shifted Laplacian
preconditioner, a classification introduced in [41] but with
the original work going back to [10]. We give some of the
theories behind the shifted Laplacian preconditioner, moti-
vate its gradual evolution to the current version and present
some extremely difficult Helmholtz problems which are suc-
cessfully solved by this method.

In Sect. 2 we briefly discuss the Helmholtz equation,
boundary conditions required for computations and dis-
cretization methods. Krylov subspace, multigrid and do-
main decomposition methods are revisited in Sect. 3. Re-
lated to Krylov subspace methods, we discuss the develop-
ment of some modern ad hoc preconditioners in Sect. 4,
which will be focused on incomplete LU decompositions.
Section 5 is then devoted to the shifted Laplacian precon-
ditioner. Multigrid as the preconditioner solver within the
context of the Helmholtz equation and the shifted Laplacian
preconditioner is discussed in Sect. 6. In Sect. 7 numerical
results are presented for realistic problems. We end the pa-
per with concluding remarks in Sect. 8.

Complementary to this survey is a survey paper by
Turkel [124], to which the reader is also referred.

2 The Helmholtz Equation

In this section we discuss briefly the Helmholtz equation, the
computational boundary conditions and their discretization.

2.1 Derivation

The Helmholtz equation can be derived from the general
time-dependent two-way wave equation [17, 30, 31, 60] in
� ⊂ R

d , d = 1, . . . ,3:

∂2p(x, t)

∂t2
− 1

c2
∇ · ∇p(x, t) = 0, x = (x1, x2, x3), (1)

by assuming time-harmonic waves. This assumption allows
the time-dependent pressure p to be decomposed as

p(x, t) = u(x) exp(−ĵωwt), (2)

where ωw > 0 and ĵ = √−1 denote the angular frequency
and the imaginary unit, respectively. Substitution of (2)
into (1) yields

−∇ · ∇u(x) − k2u(x) = 0, k = ω

c
, (3)

where ω = 2πf is the angular frequency, f is the frequency
in hertz, and c the local speed of sound (in m/s). c in this
case may vary in space. Equation (3) is called the Helmholtz
equation.

In a more general formulation, one can also include a
forcing term in the right-hand side of (1). If this term is also

assumed to be time-harmonic, the resultant Helmholtz equa-
tion reads

−∇ · ∇u(x) − k2u(x) = g(x), (4)

with g(x) the forcing term.
For a scaled problem, i.e. problem defined in a unit do-

main � = (0,1)d , the Helmholtz equation can be made di-
mensionless by introducing a characteristic length l. The
nondimensional length is then determined as x̃1 = x1/l and
so on. Substitution of the nondimensional length into (4)
yields

−˜∇ · ˜∇u(̃x) − k
2
u(̃x) = g(̃x). (5)

Here, k is the wavenumber in the nondimensional domain
and can be related to the physical quantities in the physical
domain by the relation

k = 2πf l/c. (6)

k is sometimes also referred to as the reduced frequency.
In the discussion to follow we will use the notation k

for wavenumbers regardless the domain we are considering.
However, the meaning should be clear from the context. If
we consider a unit domain, the wavenumber should be di-
mensionless.

2.2 Boundary Conditions and Perfectly Matched Layer

In order to solve the Helmholtz equation (4) boundary con-
ditions have to be imposed on � = ∂�. If one is concerned
with waves propagating to infinite distance, the so-called ra-
diation or Sommerfeld condition is needed. See [60] for the
derivation of such a condition.

In practice one needs to limit the size of the compu-
tational domain. In this case the Sommerfeld condition is
no longer satisfied at finite distance. In order to mimic the
out-going waves and to ensure that there is no non-physical
reflection of the outgoing waves from this artificial bound-
ary the non-reflecting (absorbing) boundary conditions must
be used. There exist several formulations for the absorbing
boundary conditions [8, 9, 28, 40]. The first order absorbing
boundary condition reads as follows [40], defined for 3D
case:

B1u|face :=
(

∂

∂η
− ĵ k

)

u = 0, (7)

where η is the direction normal to the boundary, pointing
outwardly.

Less reflections from the computational boundary can be
produced by the second order absorption boundary condi-
tions, defined for 3D problems [40, 71]:
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• Faces:

B2u|face := ± ∂u

∂xi

− ĵ ku − ĵ

2k

3
∑

j=1,j �=i

∂2u

∂x2
j

= 0,

i = 1, . . . ,3. (8)

Here xi is the coordinate perpendicular to the face.
• Edges:

B2u|edge := −3

2
k2u − ĵ k

3
∑

j=1,j �=i

(

± ∂u

∂xj

)

− 1

2

∂2u

∂x2
i

= 0,

i = 1, . . . ,3, (9)

with xi the coordinate parallel to the edge.
• Corners:

B2u|corner := −2ĵ ku +
3

∑

i=1

± ∂u

∂xi

= 0. (10)

In (8–10) the ± sign is determined such that for out going
waves the non-reflecting condition is satisfied.

We note here that the inclusion of some boundary con-
ditions may lead to a nonsymmetric system (e.g., the BGT
condition [9]). In such a case, from an iterative method point
of view both nonsymmetry and indefiniteness of the system
may lead to even harder linear systems to solve.

Damping/Sponge Layer To further reduce the non-physical
reflections at the boundaries, one can add extra region �d

surrounding the original computational domain � as illus-
trated in Fig. 1. In �d the waves are modeled by the damped
Helmholtz equation:

−�u(x) − (1 − αĵ)k2(x)u(x) = g(x), (11)

with 0 ≤ α � 1 indicating the fraction of damping in the
medium. In geophysical applications, for example, α is re-
lated to the quality factor Q = 1/α, which is usually 20 <

Q < 100. Therefore, α can be set as high as 0.05. This ad-
ditional layer is sometimes called as “the damping layer” or
“the sponge layer”. In this case, however, α is set equal to

Fig. 1 Absorption layer

zero at the interface and increases quadratically outwardly.
So, the outgoing waves are gradually damped in the damp-
ing layer, and so are the non-physical reflections if any.

Perfectly Matched Layer Similar to the damping layer, a
more advanced technique to reduce the non-physical re-
flections is achieved by using Perfectly Matched Layers
(PML) [1, 2, 15, 16, 123]. The PML Helmholtz equation
reads, which is due to Tsynkov and Turkel [123] and shown
for 2D,

− ∂

∂x1

(

s2

s1

∂u

∂x1

)

− ∂

∂x2

(

s1

s2

∂u

∂x2

)

− ω2

c2
s1s2u = g,

in �p = � ∪ �d, (12)

with

s1 = 1 + σ1

ĵω
, s2 = 1 + σ2

ĵω
. (13)

In (13), σ1 and σ2 are real and non-negative, and are rep-
resented by piecewise smooth functions depending only on
x1 and x2 respectively. In �, σ1 and σ2 are equal to zero,
and (12) reduces to the standard Helmholtz equation. In �d ,
a linear function is often sufficient for σ1 and σ2, for exam-
ple

σ1 = α1x1, σ2 = α2x2, α1, α2 ∈ R+. (14)

Furthermore, the value of k = ω/c in �d is set equal to the
value of k on � = ∂�. In addition, the Dirichlet boundary
condition u = 0 is imposed on ∂�d .

Discretization of the damped Helmholtz equation or the
PML Helmholtz equation eventually leads to a symmetric
system; this is more favorable than the accurate radiation
condition (which is possibly nonsymmetry and non-local).
This, however, must be done in expense of extra work to
resolve solutions in this additional but only artificial layers.

2.3 Discretization

Either finite differences or finite elements can be used to
discretize the Helmholtz equation. Finite elements for the
Helmholtz equation are, among others, discussed in refer-
ences [5–7, 34, 73–75], and a survey paper [69]. In this pa-
per, we mostly base our numerical examples on finite differ-
ence discretizations of the Helmholtz equation. This is not
however the restriction of iterative methods explained here.

A general discussion on finite difference methods for par-
tial differential equations can be found, e.g. in [113]. The de-
velopment of a high order finite difference methods is given,
e.g. in [12, 87, 88, 117]. There exist different finite differ-
ence approximations for the Helmholtz equation (see e.g.
[70, 76, 109]).
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The prototype of a (compact) finite difference scheme is
usually written in the (nine-point) stencil notation:

Ah,δ
∧=

⎡

⎣

a7 a8 a9

a4 a5 a6

a1 a2 a3

⎤

⎦ , (15)

where the exact value of the entries ai, i = 1, . . . ,9 depends
on the type of discretization. A second order finite differ-
ence scheme for second order elliptic operators has a stencil
representation with a1 = a3 = a7 = a9 = 0, leading to the
five-point stencil. For higher order schemes the entries ai

are nonzero.
In particular to the Helmholtz equation, a good scheme

not only has to be high order accurate to reduce the required
minimum number of grid point per wavelength, but also has
to lead to minimal dispersion and anisotropy. For some of
the 9-point stencil finite difference schemes, see, e.g., [70]
and [109], or [76], which is not so often cited by mathemati-
cians but widely used in geophysical community. Studies
on a sixth-order accurate finite difference scheme which is
also applicable to the PML equation can be found in [123]
and [110].

For the PML Helmholtz equation, and as well the
Helmholtz equation with damping layers, however, it is not
necessary to apply a high order scheme in both � and �d ,
since the additional layers are only artificial, and a very ac-
curate solution in those layers are not needed. So, one can
for example use a nine-point stencil discretization in � and
the five-point stencil in �d .

3 Iterative Methods for the Helmholtz Equation

Discretization of the Helmholtz equation results in the linear
system

Au = g, A ∈ C
N×N, (16)

where N is the number of unknowns. The matrix A is
complex-valued because of the boundary conditions. Fur-
thermore, A is mostly indefinite. Only in a few cases which
are often not of practical interest A is definite. By “indef-
inite” we means that the real part of the eigenvalues of A

lie in both positive and negative half plane in the complex
plane. We should also note here that the dimension of A

increases if the frequency/wave number is increased. But,
since we use finite differences or finite elements A is sparse.

In the sequel we discuss briefly some iterative methods
meant for solving a linear system like (16).

3.1 Basic Iterative Methods

Basic iterative methods are fixed-point iterations which are
based on the splitting

A = F − G, F,G ∈ C
N×N.

After substitution into (16), we have

(F − G)u = g ⇐⇒ Fu = g + Gu. (17)

For uj−1 the approximate solution after the (j − 1)-th itera-
tion, the new approximation uj can be computed as

Fuj = g + Guj−1 =⇒ uj = F−1(g + Guj−1). (18)

Thus,

uj = F−1g + (I − F−1A)uj−1

= uj−1 + F−1rj−1, (19)

with rj−1 := g − Auj−1 the residual after the (j − 1)-th
iteration, and I the identity matrix. Equation (19) is called
the basic iterative method, and it is convergent if uj = uj−1,
meaning that rj−1 = 0.

The basic iteration is distinguished by the way the split-
ting is chosen. If the splitting is defined by A = D − E,
where D = diag(A), the Jacobi iteration results, namely

u
j
h = u

j−1
h + D−1

h r
j−1
h . (20)

The Gauss-Seidel iteration is obtained from the splitting
A = L − U , where L and U are lower and upper triangu-
lar matrices, respectively. This iteration is written as

uj = uj−1 + L−1rj−1. (21)

To improve the convergence of the fixed point iterations, a
relaxation factor ω can be introduced in (20) and (21). For
Jacobi iterations, for example, we then have

uj = uj−1 + 1

ωr

D−1rj−1. (22)

A standard approach to investigate the convergence of
this type of methods is by analyzing the amplitude of Fourier
modes between two successive iterations. For indefinite
Helmholtz problems, it can be shown that there exists no
ωr such that the error is reduced during the iterations. This
means that the Jacobi iteration always diverges if applied to
the indefinite Helmholtz equation [68]. Similar result holds
for the Gauss-Seidel iteration.

A convergent Jacobi iteration can be designed by using
two stages Jacobi iteration with different relaxation factors.
This method is proposed by Hadley in [68]. In this case, we
have fixed point iteration like

uj− 1
2 = uj−1 + 1

ωr,1
D−1rj−1, (23)

uj = uj− 1
2 + 1

ωr,2
D−1rj− 1

2 , (24)
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where ωr,1 �= ωr,2 ∈ C. From Fourier analysis in order to
have definite eigenvalues of the Helmholtz equation, we
must set ωr,1 = −ω∗

r,2. Furthermore, to obtain a convergent
method it is required that Im(ωr,1) < 0. The largest conver-
gence rate is reached if ωr,1 = √

3 − ĵ . While the resulting
algorithm is very simple, the convergence, however, is still
considered somewhat slow; see numerical examples in [68,
132, 133].

3.2 Krylov Subspace Methods

The Krylov subspace iteration methods are developed based
on a construction of consecutive iterants in a Krylov sub-
space, i.e. a subspace of the form

Kj (A, r0) = span
{

r0,Ar0,A2r0, . . . ,Aj−1r0}, (25)

where r0 := g − Au0 is the initial residual related to the
initial guess u0. The dimension of Kj is equal to j and in-
creases by one at each step of the approximation process.

The idea of Krylov subspace methods can be outlined as
follows [63, 105, 127]. For an initial solution u0, approx-
imations uj to the solution u are computed every step by
iterants uj of the form

uj ∈ u0 +Kj (A, r0), j > 1. (26)

The Krylov subspace Kj is constructed by the basis
v1, v2, . . . , vj , where

V j = [v1, v2, . . . , vj ] ∈Kj . (27)

With residual rj = g −Auj , (26) gives an expression for the
residual at the j -th step

rj = r0 − AV jyj , (28)

where yj ∈ C
N and uj = u0 +V jyj . From (28) we observe

that Krylov subspace methods rely on constructing the basis
of V j and the vector yj . In general we identify two methods
that can be used for constructing the basis of V j : Arnoldi’s
method [4] and Lanczos’ method [83, 84]. The vector yj

can be constructed by a residual projection or by a residual
norm minimization method.

Among methods which are based on construction the
Krylov subspace methods are Conjugate Gradient (CG) [72],
COCG [128], GMRES [106], CGS [112], Bi-CGSTAB
[126] and QMR [54].

CG can be derived from the symmetric analogue of
Arnoldi’s method. The resultant process is characterized by
short-recurrences and can be realized in an algorithm con-
sisting only of one multiplication of a vector with the ma-
trix A. The residuals produced during the iterations satisfy
the orthogonality condition based on the true inner product,
i.e.,

(rj+1, rj ) = (rj )∗rj = 0, (29)

where x∗ means the transpose conjugate of a vector x. Dur-
ing the iteration, CG minimizes the A-norm of the error for
A a symmetric positive definite (SPD) matrix. In fact, for
symmetric positive definite A we have the following bound:

‖u − uj+1‖A ≤ 2

(
√

κ − 1√
κ + 1

)j

‖u − uj‖A, (30)

for u the exact solution of Au = g, κ the condition number
(of A), and ‖x‖A = (Ax,x)1/2. In case A is indefinite the
method does not converge.

We notice, however, that A∗A is symmetric positive def-
inite, where A∗ is the transpose conjugate of A. Thus we
can apply CG on A∗A, and an algorithm called CGNR re-
sults. CGNR, however, requires two matrix-vector multipli-
cations (which is one more than required by CG), and in
general converges too slowly. Therefore, CGNR is not used
so widely in practice. Only for few problems does CGNR
find its applications.

A short recurrence algorithm can be constructed for sym-
metric but non-Hermitian systems. This is achieved, for ex-
ample, by replacing the true inner product (29) by (x, y) =
x∗y = x∗y by (x, y) = xT y. The new orthogonality condi-
tion is defined according to this inner product:

(rj+1, rj ) = (rj )T rj = 0. (31)

An algorithm called conjugate orthogonal-conjugate gradi-
ent (COCG) [128] results. COCG is very similar to CG.
COCG, however, does not have a minimization property. It
is typical for COCG that the convergence is characterized
by an erratic behavior of the residuals. One can smooth the
convergence by, e.g., applying residual smoothing [142].

For nonsymmetric linear systems, the Krylov subspace
can be built from Arnoldi’s process, which leads to, e.g.,
GMRES [106]. GMRES is an optimal method; it reduces the
2-norm of the residual at every iteration. GMRES, however,
requires long recurrences, which is usually limited by the
available memory. A remedy is by restarting, which some-
times leads to slow convergence or stagnation.

Some algorithms for solving nonsymmetric systems
can be constructed from the Lanczos bi-orthogonalization
process. The original version is called BiCG [50]. In addi-
tion to a multiplication of a vector with A, BiCG requires an-
other one vector multiplication with AT . If a solution related
to AT is also needed, then BiCG may be a good method,
because the algorithm solve the linear system AT x = y as
well. Sonneveld [112] observes that if pm is any polyno-
mial, then (pm(A)x,pm(AT )y) = (p2

m(A)x, y). This leads
to a transpose-free version of BiCG called CGS. Both Bi-
CG and CGS have no optimality property, and convergence
is often characterized by an erratic behavior. If BiCG con-
verges, then the convergence of CGS is faster than BiCG. In-
troducing stabilization in CGS results in Bi-CGSTAB [127].
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Bi-CGSTAB is a short recurrence algorithm, but, likewise
CGS, it requires two matrix-vector multiplications with A,
i.e. one multiplication more than needed by GMRES. Fur-
thermore, it is lack of optimality property. Nevertheless, Bi-
CGSTAB is often considered as an alternative to GMRES.
Methods based on Lanczos process however are susceptible
to break down. One cure for breakdown is by implementing
look-ahead-strategies [25, 65].

To have a rather smooth convergence and at the same
time to maintain short recurrences, the Lanczos process can
be replaced by another sequence of approximate solutions
with associated with residuals satisfying quasi-minimal
property. This leads to a process called QMR [54].

Numerical Example To show convergence of various
Krylov subspace methods applied to the Helmholtz equa-
tion, we consider the 2D Helmholtz equation defined in
� = (0,1)2, with the first order absorbing conditions (7) on
� = ∂�. We compute the approximate solution with CGNR,
COCG, Bi-CGSTAB, QMR and GMRES, starting with an
initial guess. The iteration is terminated at the j -th iteration
if the relative residual is less than 10−7.

Convergence results are presented in Table 1. Notice that
with k increasing, the performance of all methods deterio-
rates. In this case, COCG seems to be the method of choice
(short recurrence and with comparable convergence as GM-
RES). It also appears that the convergence of GMRES is
slightly faster than QMR.

Convergence history for k = 20 is displayed in Fig. 2. An
erratic convergence behavior typical for COCG is observed.
Superlinear convergence [129] is clearly seen for GMRES
and CGNR. A long, slow converging part of CGNR conver-
gence is due to many small eigenvalues related to the normal
equations A∗A.

The effect of increasing the number of gridpoints per
wavelength on the number of iterations for k = 20 is pre-
sented in Table 2. For all algorithms, the convergence slows
down if h is decreased, with CGNR the most sensitive algo-
rithm in this regard. Typically similar convergence behaviors
are observed in GMRES and QMR.

Since the matrix A is complex symmetric, one can re-
place QMR by the symmetric QMR (SQMR) as described
in [52].

Efficient Krylov subspace methods can be obtained if
preconditioning is included. This is discussed in Sect. 4.

Table 1 Number of iterations of several Krylov subspace methods to
reach convergence for the Helmholtz equation with constant wavenum-
bers. kh = 0.625 (∼10 gridpoints per wavelength)

k CGNR COCG Bi-CGSTAB QMR GMRES

10 49 33 35 32 32

20 208 80 136 80 79

30 492 154 429 154 143

40 943 255 816 255 241

Fig. 2 Convergence history for
several Krylov subspace
methods. k = 20, and
kh = 0.625
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Table 2 Number of iterations of several Krylov subspace methods for
different numbers of gridpoints per wavelength. k = 20

kh CGNR COCG Bi-CGSTAB QMR GMRES

0.6250 208 80 136 80 79

0.3750 775 165 356 165 161

0.1875 1907 260 627 261 252

3.3 Multigrid Methods

Multigrid is known for its efficiency and robustness when
it is applied to elliptic equations with self-adjoint opera-
tors [21, 26, 67, 122, 139]. A multigrid method exhibits fast
convergence independent of grid size, h, and with a com-
plexity of O(N logN). To achieve such a convergence, how-
ever, requires a careful design of all components in a multi-
grid method.

The efficiency of multigrid methods to solve a linear
system arising from an elliptic partial differential equation
comes from two facts. First of all, many classical itera-
tive methods have a strong smoothing effect on the error of
any approximation. The error is not necessarily small, but
smooth. This is called smoothing, which is the first principle
of multigrid. The second principle is the so called coarse-
grid correction (CGC). Any smooth quantity on a fine grid
can be well approximated on a coarse grid by a suitable pro-
cedure.

A multigrid method can be explained by considering a
two-grid method, with a grid sequence �h,�H , where �h

is the fine grid and �H the corresponding coarse grid ob-
tained by doubling the grid size, i.e. H = 2h, which is called
standard coarsening of �h. (When we discuss multigrid, we
will use the subscript h and H to indicate vectors and matri-
ces related to the fine and coarse grid, respectively.)

To see how the two multigrid principles work on two
grid levels, we consider the Poisson equation: −�u = g,
with Dirichlet boundary conditions, discretized by the five-
point finite difference stencil. This leads to a linear system
Lhuh = gh, with Lh = −�h, the discrete negative Lapla-
cian. The domain is the unit square. If u

j
h is an approxima-

tion of uh after the j -th iteration, the error between these
two quantities can be written as

v
j
h := uh − u

j
h =

n−1
∑

1,2=1

α1,2 sin(π1x1) sin(π2x2). (32)

For (x1, x2) = �h, the discrete operator �h has eigenfunc-
tions

φ
1,2
h (x1, x2) = sin(π1x1) sin(π2x2),

1, 2 = 1,2, . . . ,
√

N − 1, (33)

with N the total unknowns. We consider four eigenfunctions

φ
1,2
h , φ

√
N−1,n−2

h ,

φ

√
N−1,2

h , φ

√
N−1,2

h .

(34)

On the coarse grid �H , we observe that

φ
1,2
H = −φ

√
N−1,2

H = −φ
−1,

√
N−2

H

= φ

√
N−1,

√
N−2

H . (35)

This means that the four eigenfunctions (34) cannot be dis-
tinguished on �H . Since the high frequencies coincide with
the low frequencies on �H , only low frequencies are visible
on �H . An iterative method with good smoothing proper-
ties is one that annihilates the high frequency components
quickly.

Now the residual is determined by

r
j
h := gh − Lhu

j
h, (36)

which is equivalent to the defect equation:

Lhv
j
h = r

j
h . (37)

To solve the defect equation, the two-grid method benefits
from the smooth error and uses the approximation of this
smooth error on the coarse grid to solve this defect equation
approximately. Thus, instead of solving (37), in the two-grid
method one solves

LH v̂
j
H = r

j
H . (38)

The size of the matrix LH is substantially smaller than the
size of the matrix Lh. Therefore, the solution of the defect
equation is cheap to obtain. Since r

j
H and v̂

j
H are functions

defined on the coarse grid �H , two transfer operators are
required to relate the fine-to-coarse grid functions. The first
transfer operator is used to restrict r

j
h to �H , such that

r
j
H := IH

h r
j
h , IH

h : G(�h) → G(�H ). (39)

The second operator is used to interpolate (prolongate) the
correction v̂

j
H back to �h:

v̂
j
h := Ih

H v̂
j
H , Ih

H : G(�H ) → G(�h). (40)

Using this correction, the new approximation can then be
computed:

u
j+1
h = u

j
h + v̂

j
h. (41)

This is called the coarse-grid correction. The coarse-grid
correction by itself is, however, not a converging method,
as high frequency errors are not annihilated.
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A two-grid cycle is a cycle consisting of presmooth-
ing, coarse-grid correction and postsmoothing. In pre- and
postsmoothing, a classical iterative method with a smooth-
ing property is used. In the coarse-grid correction, the defect
equation is solved on �H .

In multigrid methods we consider more than two grid lev-
els given in a sequence of grids �h,�2h,�4h, . . . ,�h0 , with
�h0 is the coarsest grid, and recursively apply the same prin-
ciples as in the two-grid case. Here, the solution of the defect
equation on �2h is approximately computed by the two-grid
method, and so on. On �h0 exact solution of the problem can
take place. This in general leads to a very efficient iterative
for some classes of problems.

Multigrid is, however, not an effective method for the in-
definite Helmholtz equation. To see this, we consider the
eigenvalues of the discrete Helmholtz operator (with homo-
geneous Dirichlet boundary conditions) [23, 39, 43]:

λ
1,2
h = μ

1,2
h − k2

≡ 2

h2
(2 − cosπ1h − cosπ2h) − k2,

1, 2 = 1, . . . ,
√

N − 1. (42)

These eigenvalues are not equal to zero as long as k2 is not
equal to any of the eigenvalues of the corresponding discrete
Laplace operator μ

1,2
h . Otherwise, the matrix is singular

and its null-space is spanned by the eigenfunctions

ũ
12
h = sin(π1x1) sin(π2x2), (43)

with 1, 2 for which λ
1,2
h = 0. Denote by μ

1,1
h the min-

imum eigenvalue of the Laplace operator. For k2 > μ
1,1
h ,

the matrix has both positive and negative eigenvalues. Point-
wise Jacobi iteration with underrelaxation does not converge
in that case, but since its smoothing properties are satisfac-
tory, the multigrid convergence will deteriorate only grad-
ually for k2 increasing. By the time k2 approaches the 6th
eigenvalue μ

1,2
h (k2 ≈ 150), standard multigrid diverges.

The Jacobi relaxation now diverges for smooth eigenfre-
quencies ũ

1,2
h with μ

1,2
h < k2. Consequently, multigrid

will still converge as long as the coarsest level used is fine
enough to represent these smooth eigenfrequencies suffi-
ciently. So, the coarsest level chosen limits the convergence.
See also the similar observation in [61, 66]. When k2 gets
larger more variables need to be represented on the coars-
est level for standard multigrid convergence. Eventually, this
does not result in an O(N logN) iterative method.

Furthermore, eigenvalues close to the origin may undergo
a sign change after discretization on a coarser grid. If a sign
change occurs the coarse-grid solution does not give a con-
vergence acceleration to the finer grid problem, but a severe
convergence degradation (or even divergence) instead.

Elman et al. in [39] propose a remedy for the coarse-
grid correction related to these problematic eigenvalues. The
remedy includes GMRES preconditioned by multigrid, and
GMRES for reducing errors at the intermediate levels. The
convergence results achieved are impressive, but in order to
achieve that quite a number of GMRES iterations are needed
at the intermediate levels.

Standard multigrid will also fail for k2-values very close
to eigenvalues. In that case subspace correction techniques
should be employed [24].

An advanced multigrid based solution method for the
Helmholtz equation is the wave-ray multigrid method [23],
which has been developed for Helmholtz problems with
constant or smoothly varying wavenumbers. The method has
been adapted for a first-order system least-squares version
of the Helmholtz equation in [86], using coarse-grid basis
functions derived from plane waves, and in [135] within the
context of smoothed aggregations [134] in algebraic multi-
grid methods.

Fish and Qu [48, 49] proposed a method called the global
basis (GB) two-level method which is used to identify eigen-
values of the smoothing iteration matrix outside the region
of convergence. The coarse-grid approximation is then con-
structed based on the corresponding eigenvectors. The gen-
eralized global basis (GBB) method attempts to stabilize
the multilevel procedure [137]. GBB constructs additional
coarse-grid corrections spanned by the unresolved eigen-
modes by filtering the slow convergence modes.

3.4 Domain Decomposition Methods

For large problems, methods suitable for parallel machines
are necessary. One of methods which are suitable and mainly
developed by fully considering parallel machine architec-
tures is domain decomposition methods [100, 111, 121].
In domain decomposition methods, the computational do-
main � is decomposed or partitioned into m subdomains
�i , i = 1, . . . ,m, which may be overlapping. The basic idea
of domain decomposition methods (DDM) is to find a so-
lution in � by solving the local (subdomain) problems in
�j and then exchanging solutions in the interface between
two neighboring domains. Several classes of DDM exist,
e.g. multiplicative and additive (and as well hybrid) Schwarz
methods, Schur complement methods and FETI methods. In
practice, DDM can be used both as a solver or as a precon-
ditioner for Krylov subspace methods.

Some of the early work on the domain decomposition
method (DDM) to solve the Helmholtz equation are due
to Despres [37], which provide convergence analysis for
nonoverlapping DDM on the differential level. The well-
posedness is ensured by incorporating the consistency con-
dition in the form of the complex Robin condition at the
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interfaces:

∂ui

∂ηi

+ ĵ kui = −∂uj

∂ηj

+ ĵ kuj , i �= j. (44)

Convergence analysis on discrete level, e.g. is given by
Kim in [78] for the second order accurate discretization and
in [80] for finite element discretizations. This method, how-
ever, converges slowly. Enhancing the convergence of the
DDM can be done via a generalization of the Robin condi-
tion by replacing k with an arbitrary constant θ . The constant
θ is chosen such that the spectral radius of the iteration ma-
trix related to this DDM is much less than one, which can be
done automatically [78, 79]. See also [13, 29, 59, 115] for
similar work.

Larsson [85] approaches the problem by construct-
ing local problems via Schur complement of the related
Helmholtz matrix, after reordering the unknowns based on
the interior points and boundary points. The local subdo-
main problem is solved by using a fast Poisson precon-
ditioner [97]. Having identical problem on the subdomain
level, DDM can be solved combined with iterative methods.

Another class of domain decomposition methods is
called FETI methods, with extension to the Helmholtz equa-
tion called FETI-H method [47, 119]. The main concept
of the FETI method is based on expressing the discrete
elliptic operator in a discrete Lagrange multipliers form.
This allows the splitting of the complete formulae into two
parts: the classical Lagrange function and the interface quan-
tity.

This method is favorable not only in terms of compu-
tational performance but also from a numerical scalability
point of view. The method has been proved to be scalable
both with respect to mesh size and subdomain size. Lit-
erature [47] provides a concise discussion about the FETI
method and its extension to the FETI-H method.

4 Preconditioners for the Helmholtz Equation

The convergence of Krylov subspace methods can be im-
proved by incorporating preconditioners. By precondition-
ing we solve the following equivalent system:

M−1
1 AM−1

2 ũ = M−1
1 g, where ũ = M2u2. (45)

Usually, M = M1M2, but this is not necessary. For pos-
itive definite matrices, M1 and M2 are chosen such that
κ(M−1

1 AM−1
2 ) � κ(A). For general matrices, M1 and M2

are chosen such that M−1
1 AM−1

2 is close to identity. Note
that M1 and M2 must be easy to invert. Beside these two
requirements, there is no specific rule in choosing M1 and
M2, and there exist many ways of doing this.

One way to do this is by considering the product M1M2

as a sort of approximation to A. The simplest way is by set-
ting M2 = I , and M1 = diag(A); i.e., M is a matrix obtained
by dropping entries of A except those in the diagonal. This
preconditioner is referred to as the diagonal scaling. This
preconditioner gives only a very rough approximation to A,
and is not effective for the Helmholtz equation.

Among popular preconditioners are those based on in-
complete LU factorizations [91, 92], and sparse approximate
inverse factorizations, e.g. [64]. It is worth mentioning here
that for some classes of problems, multigrid and domain de-
composition methods can be used as effective precondition-
ers for a Krylov subspace method.

In the sequel we discuss ILU preconditioners. A special
preconditioner for the Helmholtz equation, called the shifted
Laplacian preconditioner, is discussed in Sect. 5.

4.1 ILU Preconditioners

We distinguish two incomplete LU (ILU) preconditioners:
algebraic and analytical ILU.

4.1.1 Algebraic ILU

A better approximation to A can be obtained if M1 and M2

are constructed based on an incomplete LU factorization of
A [27, 32, 38, 46, 89, 104, 105]. The incomplete LU factors
are obtained by performing Gaussian elimination and then
dropping some elements. Thus, in this case M1 and M2 are
the lower and upper triangular matrices resulted from such a
process.

The degree of approximation of LU = M1M2 depends
on the number of fill-in elements allowed in the LU factors.
The simplest one is the so-called ILU(0), wherein the same
non-zero structure as A is retained in ILU.

A more accurate approximation can be obtained by in-
creasing the level of fill-in. Two scenarios exist. The first
is more structure-oriented, and is done by adding more off-
diagonals in the LU factors. We denote this as ILU(nlev),
which nlev > 0 is a reasonably small integer, indicating the
level of fill-in. This scenario will result in a structured linear
system for L and U . The second scenario is related to a drop
tolerance of fill-in. So, this scenario is more value-oriented.
If during an LU factorization the value of an element falls
below a prescribed tolerance ε, which is small, this element
is set to zero. We denote this incomplete LU decomposition
as ILUT(ε), with ε the drop tolerance. An ILUT(ε) process
often leads to unstructured L and U matrices. There are sev-
eral others variants of ILU, for example, by including pivot-
ing (ILUTP [104, 105]).

Recall that the matrix A is indefinite. For indefinite ma-
trices straightforward LU factorizations and as well incom-
plete LU factorizations may not be stable. This may eventu-
ally lead to LU factors which are not good approximations
to A.
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Typical convergence results are shown in Tables 3 and 4
for COCG, Bi-CGSTAB, QMR and GMRES combined with
ILU(0) and ILUT(0.01) preconditioners. We again consider
the same problem as used in Sect. 3.2.

Compared to the unpreconditioned case, ILU precondi-
tioners improve the convergence significantly. With more
fill-in, a faster convergence can be achieved for small
wavenumber. With ILU preconditioners, COCG turns out
to be the worst method shown in this example. For k = 20
and with ILUT(0.01), COCG does not converge after 2,000
iterations; see Table 4.

GMRES and Bi-CGSTAB result in a comparable con-
vergence in terms of the number of iterations. Note that Bi-
CGSTAB requires two matrix-vector products and four pre-
conditioner solves (due to split form (45)). Thus, the over-
all performance of Bi-CGSTAB is not better than GMRES.
With increasing k the performance of QMR deteriorates
faster than Bi-CGSTAB and GMRES.

In Table 4 we also measure the number of nonzero ele-
ments in the L = M1 and U = M2 matrices for ILUT(0.01).
For increasing k, and thus N , the number of nonzero ele-
ments becomes unacceptably large. ILU(0), which results in
far less nonzero elements (similar to the nonzero elements of
A) in the L and U matrices compared to ILUT(0.01) seems
to be a more effective preconditioner for the Helmholtz
equation in this case.

Recently some more sophisticated approaches have been
proposed to construct more efficient ILU preconditioners.
This usually involves special preprocessing on the matrix
prior to implementing incomplete LU factorization strat-
egy. Benzi et al. [14], for example, apply a nonsymmet-
ric reordering strategy and scaling in order to obtain an
equivalent diagonal dominant matrix, which is more sta-
ble with respect to incomplete LU factorizations. Stabil-

Table 3 Number of iterations of Krylov subspace methods for a 2D
Helmholtz problem. The preconditioner is ILU(0). kh = 0.625 (∼10
gridpoints per wavelength)

k COCG Bi-CGSTAB QMR GMRES

10 25 22 25 24

20 73 102 75 63

30 155 194 150 124

40 267 296 267 199

ity of incomplete LU factorizations can be improved fur-
ther by taking into account the inverse triangular fac-
tors [18].

4.1.2 Analytical ILU

An incomplete LU factorization can also be constructed an-
alytically based on the underlying partial differential equa-
tion. This approach is proposed by Gander and Nataf called
analytic ILU or AILU [55] (see as well similar work by
Plessix and Mulder [98]). Applications of AILU on the
Helmholtz equation are presented in e.g. [56] and [57]. In
this case, the Helmholtz operator L(u) is factorized into two
operators:

L(u) = −(∂x1 + �1)(∂x1 − �2) (46)

with �1 and �2 positive, nonlocal operators. These non lo-
cal operators can be viewed as fill-in in the L and U matrix
in LU factorization analogue.

To obtain AILU, the non local operators are, in Fourier
space, then approximated by local operators depending on
the wavenumber k and some constants c1, c2 ∈ C, Re(c2) >

0, i.e. �
approx
1,2 = F−1

x2
(c1 + c2̂k

2), with ̂k the Fourier fre-
quency. Notice that

Lapprox(u) +L(u) = Lapprox(u) + f, (47)

or, in the view of fixed point iteration,

Lapprox(uj+1) = (Lapprox −L)(uj ) + f. (48)

The constants c1 and c2 are determined such that the con-
vergence factor of the fixed point iteration (48) is as small
as possible. Since ρ = ρ(c1, c2, k,̂k, kx1) and c1, c2 ∈ C this
requires optimization of four real parameters for a given k.

Because of (48) AILU can be used as an iterative solver.
This is a convergent method, but as reported in [57] the con-
vergence is not satisfactory. As a preconditioner AILU is
more superior than ILU(0) in terms of convergence speed
up and computational work. The convergence however de-
pends rather strongly on k and h.

Table 4 Number of iterations
of Krylov subspace methods for
a 2D Helmholtz problem. The
preconditioner is ILUT(0.01).
kh = 0.625 (∼10 gridpoints per
wavelength)

k nz(A) nz(L) nz(U) COCG Bi-CGSTAB QMR GMRES

10 1065 2023 2008 30 6 10 10

20 4681 10430 10224 >2000 11 19 18

30 10857 25355 24806 – 23 34 31

40 19593 46762 45700 – 53 65 48
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5 Shifted Laplacian Preconditioner for the Helmholtz
Equation

The first prototype of the shifted Laplacian preconditioner
for the Helmholtz equation was proposed by Bayliss, Gold-
stein and Turkel in [10] in the 1980s. It did not attract so
much attentions until the work of Giles and Laird [82] ap-
peared in 2002. Erlangga, Vuik and Oosterlee [41, 43, 44]
extended and generalized this work to a more robust and ef-
ficient preconditioner within this class. An analysis for gen-
eral setting (e.g., with possible finite element discretizations,
heterogeneity and damping layers) is described by van Gi-
jzen et al. in [131]. The generalized version is used to solve
large and difficult realistic 2D and 3D problems in [81, 101,
102], in either sequential or parallel machines.

This class of preconditioners is constructed from a dis-
cretization of the following operator:

M(β1,β2) := −∇ · ∇ − (β1 − ĵβ2)k
2, β1, β2 ∈ R, (49)

which is called “shifted Laplace operator”. The precondi-
tioners used in [10] and [82] belong to this class of pre-
conditioners, which can be recovered from (49) by set-
ting (β1, β2) = (0,0) (the Laplacian) and (β1, β2) = (−1,0)

(definite Helmholtz), respectively.

5.1 One-Dimensional Case

The motivation of the development of the shifted Laplace
preconditioners can be seen from a simple 1D Helmholtz
problem with constant wavenumber. The results of the
analysis, however, generally holds for nonconstant wave-
numbers and in 2D or 3D. We first start with a real shift, by
setting β2 = 0 in the next subsection.

5.1.1 Real Shift

We consider a 1D Helmholtz equation in a unit domain � =
(0,1):

−d2u

dx2
1

− k2u = 0, k = const., (50)

with Dirichlet boundary conditions u(0) = u(1) = 0. The
related continuous eigenvalue problem is

−
(

d2

dx2
1

+ k2
)

ũ = λũ, (51)

with the general solution ũ = sin(ax1), satisfying the con-
ditions at x1 = 0 and x1 = 1. By substituting this solution
in (51) we arrive at the following relation:

(k2
1

− k2) sin(π1x1)

= λ sin(π1x1) → λ1 = k2
1

− k2, (52)

where k1 = π1, 1 ∈ N/{0}. Thus, for large wavenumbers
k the eigenvalues change sign, indicating the indefiniteness
of the problem.

In 1D the preconditioning operator (49) reads

Mβ1 := − d2

dx2
1

− β1k
2. (53)

Here, we assume that β1 ≤ 0. Later we will relax this as-
sumption. So matrices related to operator (53) are symmet-
ric positive definite. Then, we have the following precondi-
tioned (generalized) eigenvalue problem:

(

− d2

dx2
1

− k2
)

ũ1 = λ1
r

(

− d2

dx2
1

− β1k
2
)

ũ1 . (54)

By assuming a solution of the form ũ = sin(ax1), the
eigenvalues are found to be

λ1
r = k2

1
− k2

k2
1

− β1k2
= 1 − (k/k1)

2

1 − β1(k/k1)
2
, (55)

where k1 = π1, 1 ∈ N/{0}. For 1 → ∞, λ
1
r → 1, i.e.,

the eigenvalues are bounded above by one. For 1 → 0, the
low eigenmodes, we have λ

1
r → 1/β1. The modulus of this

eigenvalue remains bounded unless −1 ≤ β1 ≤ 0. The max-
imum eigenvalue can therefore be written as

|(λ1
r )max| = max

(∣

∣

∣

∣

1

β1

∣

∣

∣

∣

,1

)

. (56)

The smallest eigenvalue is estimated as follows. Assume
that the minimum eigenvalue is very close (but not equal)
to zero. From (55) this implies that k1 = k + ε, 0 < ε � 1.
Substituting of this relation into (55), we find that

(λ1
r )min = 2

1 − β1

(

ε

k

)

. (57)

From (57), the minimum eigenvalue can be very close to
zero as β1 goes to infinity. The condition number of the pre-
conditioned Helmholtz operator now reads

κ =
{

1
2 (1 − β1)k/ε if β1 ≤ −1,

1
2|β1| (1 − β1)k/ε if − 1 ≤ β1 ≤ 0.

(58)

In the limit we find from (58) that

lim
β1↓−1

κ = lim
β2↑−1

κ = k/ε, (59)

which is the minimum value of κ for β1 ≤ 0 ∈ R. The rela-
tion (58) tells us that taking the leading part of the Helmholtz
equation (i.e. the Laplacian, β1 = 0) is generally advisable
for high wavenumbers, as advocated in [90]. However, this
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Fig. 3 Eigenvalues of the preconditioned 1D Helmholtz equation, k = 30. Left: M(0,0), Mid: M(−1,0), Right: M(0,1)

is no longer true for small wavenumbers, for which the con-
dition number of the preconditioned linear system may be-
come very large. From the convergence bound of CG (30)
the result (58) also gives an indication that setting β1 = −1
in (53) leads to a fast converging preconditioned iterative
method for the Helmholtz equation.

5.1.2 Generalization to Complex Shift

In order to improve the minimum eigenvalue but at the
same time keep the upper bound, a complex shift is in-
troduced [41]. For that purpose, we consider the complex
shifted Laplace operator (49), which is written for 1D as

M(β1,β2) := − d2

dx2
− (β1 − ĵβ2)k

2, β1 ≤ 0, β2 ∈ R. (60)

In this case by setting β1 ≤ 0 (as in the previous section)
we ensure that the real part of the discrete representation of
M(β1,β2) is positive.

Eigenvalues of the premultiplied equation, denoted by
λ

1
c , are

λ1
c = k2

1
− k2

k2
1

− (β1 − ĵβ2)k2
⇒ |λ1

c |2

= (k2
1

− k2)2

(k2
1

− β1k2)2 + β2
2k4

. (61)

Evaluating (λ
1
c )max and (λ

1
c )min as in (56) and (57) one

finds

|(λ1
c )max|2 = max

(

1

β2
1 + β2

2

,1

)

,

(62)

|(λ1
c )min|2 = 4

(1 − β1)2 + β2
2

(

ε

k

)2

.

These results give the following condition numbers

κ2 =
{

1
4

(

1 + 1−2β1

β2
1 +β2

2

)

(k/ε)2, β2
1 + β2

2 ≤ 1, β1 ≤ 0,

1
4

(

(1 + β1)
2 + β2

2

)

(k/ε)2, β2
1 + β2

2 ≥ 1.

(63)

By evaluating (63) [41], it can be concluded that κ2 is mini-
mal if β1 = 0 and β2 = ±1.

Figure 3 shows the spectra of the 1D Helmholtz prob-
lem (50) preconditioned by operators M(β1=0,β2=0),
M(β1=−1,β2=0), and M(β1=0,β2=+1). For simplicity, we de-
note these preconditioning operators by M(0,0), M(−1,0),
and M(0,1), respectively.

Figure 3 shows that M(0,1) clusters the eigenvalues
stronger than the other two and pushes the eigenvalues in the
negative real plane towards the imaginary axis. This clus-
tering may improve the performance of the preconditioned
iterative methods. Note that with M(0,1) there is still a pos-
sibility that some eigenvalues lie very close to zero, causing
an unsatisfactory numerical performance. But in this case
we have the estimate:

Re((λ1
(0,1))min) = ε/k, (64)

which is the same as the estimate for M(−1,0) and smaller
than that for M(0,0). However, the modulus |(λ1

(0,1))min| =√
2(ε/k) > |(λ1

(−1,0))min| = ε/k because of the imaginary
shift. Because of the same upper bound as M(−1,0), we
can expect that M(0,1) will perform better than M(0,0) and
M(−1,0).

The above analysis implies that if CGNR is applied to
M−1

h Ah, with Mh coming from either M(0,0), M(−1,0)

M(0,1), the preconditioner related to M(0,1) may lead to a
faster convergence than the others.

5.2 Spectral Properties and CGNR Convergence

We extend the analysis for constant wavenumbers to the dis-
crete formulation of (50) and relate the results to the conver-
gence of CGNR.
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Discretization of (50) with the second-order finite differ-
ence scheme results in the linear system

Au = (L − K2) = g, K = diag(ki), i = 1, . . . ,N. (65)

At this moment we assume Dirichlet or Neumann conditions
at the boundaries. In this case the matrix A is real-valued.
We discretize the operator Mβ1,β2 with the same boundary
conditions as (50) and obtain

M(β1,β2) = L − (β1 − ĵβ2)k
2Ih.

This gives the preconditioned system:

(

L − (β1 − ĵβ2)k
2I

)−1
(L − k2I )u

= (

L − (β1 − ĵβ2)k
2I

)−1
g. (66)

The generalized eigenvalue problem related to (66) is ac-
cordingly

(L − k2I )̂u =̂λ
(

L − (β1 − ĵβ2)k
2I

)

û, (67)

with û the eigenvector corresponding to the discrete eigen-
value ̂λ. Since both (65) and (66) are indefinite for k2 >

λmin(L), convergence properties of (66) are difficult to es-
timate. Therefore, the analysis will be based on a normal
equations formulation of the preconditioned matrix system
(as in [82]).

Suppose that the eigenvalues of L are ordered
increasingly as 0 < μ1 ≤ · · · ≤ μN . Furthermore, denote the
normal equations A∗A, (M−1

(0,0)A)∗(M−1
(0,0)A),

(M−1
(−1,0)A)∗(M−1

(−1,0)A) and (M−1
(0,1)A)∗(M−1

(0,1)A) by QA,
Q(0,0), Q(−1,0) and Q(0,1), respectively. We find the eigen-
values in the four following cases as:

λ(QA) = (μm − k2)2, (68)

λ(Q(0,0)) =
(

1 − k2

μm

)2

, (69)

λ(Q(−1,0)) =
(

1 − 2k2

μm + k2

)2

, (70)

λ(Q(0,1)) = 1 − 2μmk2

μ2
m + k4

. (71)

We have several possibilities.

5.2.1 Cases 0 < k2 < μ1

In this case, by using (68–71) the minimum and maximum
eigenvalues for all cases are given in Table 5.

Using Table 5 we conclude the following:

• For k2/μ1 < 1, λ(Q(0,0))min > λ(Q(−1,0))min

• Also, λ(Q(0,0))min > λ(Q(0,1))min

Table 5 Minimum and maximum eigenvalues for 0 < k2 < μ1

QA Q(0,0) Q(−1,0) Q(0,1)

λmin
(

μ1 − k2
)2 (

1 − k2

μ1

)2 (

1 − 2k2

μ1+k2

)2 1 − 2μ1k2

μ2
1+k4

λmax
(

μN − k2
)2 (

1 − k2

μN

)2 (

1 − 2k2

μN +k2

)2 1 − 2μN k2

μ2
N +k4

• limμN→∞ λ(Q(0,0))max = limμN→∞ λ(Q(−1,0))max =
limμN→∞ λ(Q(0,1))max = 1, for m → ∞

As the consequence, for k <
√

μ1, κ(Q0,0) < κ(Q−1,0) and
κ(Q0,0) < κ(Q0,1). Thus, For k small, M(0,0) is more effec-
tive than M(−1,0) and M(0,1).

5.2.2 Cases μ1 < k2 < μN

We have for QA:

λ(QA)min = (μm1 − k2)2,

where |μm1 − k2| ≤ |μm − k2|, ∀m, (72)

λ(QA)max = (μN − k2)2,

and the eigenvalues are unbounded either for large μN or
large k.

For Q(0,0), we have

λ(Q(0,0))min =
(

μm2 − k2

μm2

)2

, where

∣

∣

∣

∣

μm2 − k2

μm2

∣

∣

∣

∣

≤
∣

∣

∣

∣

μm − k2

μm

∣

∣

∣

∣

, ∀m,

λ(Q(0,0))max = max

((

μN − k2

μN

)2

,

(

μ1 − k2

μ1

)2)

.

(73)

In this case, for μN → ∞, λN = 1 as long as k is finite
(because limk→∞((μm − k2)/(μm))2 = ∞). Furthermore,
limμ1→0((μ1 − k2)/(μ1))

2 = ∞. Therefore, λmax can be-
come extremely large, which makes M(0,0) less favorable
for preconditioning.

For Q(−1,0), we have

λ(Q(−1,0))min =
(

μm3 − k2

μm3 + k2

)2

, where

∣

∣

∣

∣

μm3 − k2

μm3 + k2

∣

∣

∣

∣

≤
∣

∣

∣

∣

μm − k2

μm + μm3

∣

∣

∣

∣

, ∀m,

λ(Q(−1,0))max = max

((

μN − k2

μN + k2

)2

,

(

μ1 − k2

μ1 + k2

)2)

,

(74)

which lead to
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lim
μN→∞

(

μN − k2

μN + k2

)2

= lim
μ1→0

(

μ1 − k2

μ1 + k2

)2

= lim
k→∞

(

μm − k2

μm + k2

)2

= 1.

The preconditioned system M−1
(−1,0)A is always bounded

above by one, i.e. the eigenvalues are always clustered.
Moreover, M(−1,0) provides a better condition number than
M(0,0). For large k, M(−1,0) is more effective than M(0,0).

Finally, for Q(0,1), we have

λ(Q(0,1))min = (μm4 − k2)2

μ2
m4

+ k4
, where

∣

∣

∣

∣

(μm4 − k2)2

μ2
m4

+ k4

∣

∣

∣

∣

≤
∣

∣

∣

∣

(μm − k2)2

μ2
m + k4

∣

∣

∣

∣

, ∀m,

λ(Q(0,1))max = max

(

1 − 2μ1k
2

μ2
1 + k4

,1 − 2μNk2

μ2
N + k4

)

,

(75)

which lead to

lim
μN→∞λ(Q(0,1))max = lim

μ1→0
λ(Q(0,1))max

= lim
k→∞λ(Q(0,1))max = 1.

Hence, the eigenvalues of Q(0,1) are bounded above by one.
Typically, preconditioning with M(0,1) gives a better condi-
tion number than with M(0,0).

The lower bound of the eigenvalues can be estimated by
assuming that λmin ≈ 0, implying μm = k2 + ε, ε > 0. This
leads to

λ(Q(0,1))min = 1

2

ε2

k4
and λ(Q(−1,0))min = 1

4

ε2

k4
. (76)

With respect to the condition number, we then have

κ(Q(0,1)) = 2

(

k4

ε2

)

and κ(Q(−1,0)) = 4

(

k4

ε2

)

.

Thus, we can expect that M(0,1) is more effective as the pre-
conditioner than M(−1,0).

5.2.3 Numerical Experiments

To show the implication of the analysis in the preceding sub-
sections, we solve the following 2D Helmholtz problem:

⎧

⎪

⎨

⎪

⎩

(−∇ · ∇ − k2)u = (5π2 − k2) sin(πx1) sin(2πx2),

in � = (0,1)2,

u = 0, on � = ∂�.

(77)

The exact solution of (77) is u = sin(πx1) sin(2πx2). The
numerical solutions are obtained by GMRES and are shown

Table 6 Performance of GMRES to reduce the relative residual by 7
orders for Problem (77). The preconditioners are inverted by using a
direct solver

k M(0,0) M(−1,0) M(0,1)

Iter Time (s) Iter Time (s) Iter Time (s)

5 8 0.01 9 0.01 9 0.03

10 13 0.03 16 0.04 15 0.11

20 28 0.35 30 0.38 26 1.13

30 56 1.77 58 1.84 47 6.54

40 106 7.36 102 7.19 82 26.44

50 149 19.31 142 18.15 114 67.95

Table 7 Number of iteration of GMRES, Bi-CGSTAB and QMR to
reduce the relative residual by 7 orders for Problem (77). The precon-
ditioner M(0,1) is inverted by using a direct solver

GMRES QMR Bi-CGSTAB

10 15 15 11

20 26 26 24

40 82 90 94

in Table 6 for various wavenumbers. A mesh of 10 grid-
points per wavelength (kh = 0.625) is used. Note that in this
case M is inverted exactly.

For low frequencies, all preconditioners show a very sat-
isfactorily comparable performance. M(0,0) becomes less ef-
fective for increasing values of k, where the number of iter-
ations increases somewhat faster than for M(−1,0) or M(0,1).
For large k, preconditioning with M(0,1) gives the fastest
convergence. This behavior is in accordance with the the-
ory. The effectiveness of M(0,1) for large k makes this choice
more attractive than M(−1,0) or M(0,1).

In Table 6 we however observe that the computation us-
ing M(0,1) requires more work than the others. This is due
to complex arithmetics involved in M(0,1), which is not nec-
essary for Problem (77). For this problem, A and as well
M(0,0) and M(−1,0) are real valued.

A comparison of convergence of the same problem for
GMRES, QMR and Bi-CGSTAB is shown in Table 7, only
for M(0,1). For high wavenumbers, it appears that GMRES
converges faster than QMR and Bi-CGSTAB. With mem-
ory becoming very demanding with an increase in k, restart-
ing GMRES to overcome the memory limitation only slows
down the convergence.

5.3 Radiation Conditions and GMRES Convergence
Bound

The effect of the inclusion of absorbing boundary conditions
on the spectrum of the preconditioned system can be ana-
lyzed as follows.
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To be more general, we consider the 2D Helmholtz equa-
tion. We only need to evaluate M(0,1) since the analysis in
Sect. 5.2 reveals that M(0,1) is more superior than M(0,0)

and M(−1,0).
First, we need an explicit expression for eigenvalues of

the preconditioned eigenvalue problem in 2D. Following a
similar analysis as in Sect. 5.2, we get

λ1,2
p = k2

1
+ k2

2
− k2

k2
1

+ k2
2

+ ĵ k2
,

k1 = 1π, k2 = 2π, 1, 2 ∈ N. (78)

Adding up the real and the imaginary part of (78) yields

Re(λ1,2
p ) + Im(λ1,2

p ) = (k2
1,2

− k2)2/(k4
1,2

+ k4). (79)

We have the following Lemma.

Lemma 5.1 Let the 2D Helmholtz equation with homoge-
neous Dirichlet boundary conditions be preconditioned by
M(0,1). If resonance does not occur, then for all k2 �= k2

1,2
the spectrum then completely lies above the line Re(z) +
Im(z) = 0.

Proof From (79) it is clear that Re(λp) + Im(λp) > 0. �

Notice that if we rotate the eigenvalues by an angle
θ = −π/4 all eigenvalues are in the positive half plane. In
fact we have the following Lemma.

Lemma 5.2 Let the 2D Helmholtz problem with homoge-
neous Dirichlet boundary conditions be preconditioned by
M(0,1) and assume that resonance does not occur. Fur-
thermore, let the spectrum be rotated by an angle θ . For
θ = −π/4, the spectrum has the following properties:

(i) All eigenvalues lie on a circle with center zc,− π
4

= 1
2

√
2

and radius r = 1
2

√
2. There are no zero eigenvalues.

(ii) This circle is independent of wavenumber k.

Proof Denote by λp,θ = λp exp(ĵ θ) the eigenvalue ob-
tained by rotating λp by an angle θ . From (78), we have
that

Re(λ1,2
p,θ ) =

(

k2
1,2

− k2

k4
1,2

+ k4

)

(

k2
1,2

cos θ + k2 sin θ
)

, (80)

Im(λ
1,2
p,θ ) =

(

k2
1,2

− k2

k4
1,2

+ k4

)

(

k2
1,2

sin θ − k2 cos θ
)

, (81)

where k4
1,2

= (k2
1

+ k2
2

)2. Substitution of θ = −π/4 gives

Re(λ1,2
p,− π

4
) = 1

2

√
2
(k2

1,2
− k2)2

k4
1,2

+ k4
> 0, ∀k1,2, k, (82)

Im(λ
1,2
p,− π

4
) = −1

2

√
2
k4
1,2

− k4

k4
1,2

+ k4
. (83)

Note that Im(λ
1,2
p,− π

4
) > 0 if k4

12
< k4.

Elimination of k12 from both equations yields

(

Re

(

λ
1,2
p,− π

4

)

− 1

2

√
2

)2

+ Im
(

λ
12
p,− π

4

)2 = 1

2
, (84)

or
∣

∣

∣

∣

λ
1,2
p,− π

4
− 1

2

√
2

∣

∣

∣

∣

= 1

2

√
2, (85)

which proves the lemma. �

This rotation is beneficial only for theoretical pur-
poses. In practice, this is equivalent to solving the system
PM−1

(0,1)Au = PM−1
(0,1)g with P = 1

2

√
2diag(1 + ĵ ). The ro-

tation is not necessary if Krylov subspace algorithms like
GMRES or Bi-CGSTAB are used.

From Lemma 5.2, we get the following corollary which
can be proved by using a θ = π/4 rotation.

Corollary 5.3 For the Helmholtz problem with Dirich-
let boundary conditions and preconditioned by operator
M(0,1), the spectrum lies on the circle |z − zc| = 1

2

√
2, with

zc = 1
2 (1 + ĵ ) the center of circle.

Due to the absorbing boundary conditions, the matrix
A is now complex-valued. We consider a special case of
complex-valued matrices, where the real part and the imagi-
nary part of the matrix are both symmetric positive definite.
We call this matrix a complex SPD (or CSPD) matrix. The
next lemma holds for a CSPD matrix [41].

Lemma 5.4 Let B be any CSPD matrix and let λB ∈ C be
an eigenvalue. Then Re(λB), Im(λB) > 0.

Consider again the matrix A and the splitting:

A = L − K2 ⇒ C := K−1LK−1 = K−1AK−1 + I, (86)

where L is a CSPD matrix related to discretization of the
Laplacian and the radiation boundary condition. Observe
that C is also CSPD. By Lemma 5.4, the eigenvalue of C,
denoted by λC , satisfies Re(λC), Im(λC) > 0.

Let M(0,1) be split in the similar way, and consider the
eigenvalue problem

M−1
(0,1)Av = λ

M−1
(0,1)

A
v.
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Fig. 4 Spectrum of the 2D
Helmholtz problem (k = 10)
with radiation boundary
conditions, preconditioned by
M(0,1) before (left) and after
(right) rotation. Number of
gridpoints: 102(◦), 202(�),
302(+)

It can be shown that

λ
M−1

(0,1)
A

= λC − 1

λC + ĵ
. (87)

We then have the following lemma.

Theorem 5.5 Let λ
M−1

(0,1)
A

be an eigenvalue of M−1
(0,1)

A with

boundary condition (7). Let |z − zc| = 1
2

√
2 with zc =

1
2 (1 + ĵ ) be the circle corresponding to all eigenvalues of
the “closed-off” problem (as described in Corollary 5.3).
Then, λ

M−1
(0,1)

A
is enclosed by this circle.

Proof By using (87) and Corollary 5.3 we have that

λ
M−1

(0,1)
A

− zc = λC − 1

λC + ĵ
− 1

2
(1 + ĵ )

= 1

2

λC − 1 − ĵ (λC + 1)

λC + ĵ

= 1

2

(λC − 1 − ĵ (λC + 1))(λC − ĵ )

(λC + ĵ )(λC − ĵ )
.

With |λ
M−1

(0,1)
A

− zc|2 = (λ
M−1

(0,1)
A

− zc)(λM−1
(0,1)

A
− zc), we

find that

|λ
M−1

(0,1)
A

− zc| = 1

2

√
2

√

λC − ĵ

λC − ĵ
· λC + ĵ

λC + ĵ

= 1

2

√
2

√

λCλC − 2Im(λC) + 1

λCλC + 2Im(λC) + 1
<

1

2

√
2

for every λC because of Lemma 5.4. Therefore, the eigen-
value λ

M−1
(0,1)

A
lies inside the circle. �

Theorem 5.5 tells us that:

• with radiation boundary conditions, the spectrum of pre-
conditioned system is more clustered than the spectrum
with Dirichlet boundary conditions (see Fig. 4),

Table 8 Number of iterations of GMRES, QMR and Bi-CGSTAB to
reduce the relative residual by 7 orders for a 2D Helmholtz problem
with absorbing conditions. The preconditioner M(0,1) is inverted by
using a direct solver

GMRES QMR Bi-CGSTAB

10 13 13 9

20 26 27 23

40 69 85 68

80 220 296 161

• since this spectrum does not touch the circle, one can in
principle choose an ellipse such that the origin is not in-
side or on this ellipse. By using the well-known conver-
gence bound of GMRES [105, 106], GMRES applied to
the preconditioned system will converge.

In practice, we observe a faster convergence if radiation
boundary conditions are used, than if Dirichlet or Neumann
conditions are used, as seen in Table 8 (refer to Table 7 for
comparison). From Table 8, it reveals that Bi-CGSTAB con-
verges faster than QMR. The performance of QMR appears
to quickly deteriorate as k increases.

5.4 h-Independence of Convergence

To have insights about the convergence dependence of the
gridsize h, we consider again the 1D Helmholtz equation
with boundary conditions u(0) = 1 and u(1) = 0.

For k = 0 (the Laplace equation) the eigenvalues are
μc

1
= (1π)2, 1 = 1,2, . . . . Using the central difference

scheme for the Laplace operator, with N + 1 gridpoints and
h = 1/N , the eigenvalues of the discrete Laplacian operator
are given as

μ1 = 4

h2

(

sin
πh1

2

)2

, 1 = 1, . . . ,N. (88)

For some of the eigenvalues, say ˜1, such that πh˜1 � 1 it
follows that |μ1 −μc

1
| = O(h2) for 1 < ˜1. So, the small-

est eigenvalues of the matrix Lh are good approximations
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Fig. 5 Spectrum of 1D PML
Helmholtz equation for k = 30.
The thickness of PML is 0.1
(left) and 0.2 (right) of the
physical domain

Table 9 Computational performance of GMRES (number of itera-
tions) to solve Problem (77) with different grid resolutions

k M(0,0) M(−1,0) M(0,1)

h−1 h−1 h−1

50 100 150 50 100 150 50 100 150

10 13 14 14 17 17 17 15 15 16

40 99 96 98 96 96 99 79 78 80

of the eigenvalues of the continuous problem. Suppose now
that k2 �= μc

1
�= 0 for all 1. Then we have that

lim
h→0

min
1

|μ1 − k2| = |μc
m − k2| �= 0, (89)

where |μc
m − k2| = min1 |μc

1
− k2|. Combining this limit

with the analysis given in Sect. 5.2, for Mh,(0,1) we can show
that [42, 136]

lim
h→0

λmin(Q(0,1)) = |μc
m − k2|2

2k4
. (90)

Since the maximal eigenvalues of Q(0,1) are bounded by 1,
we conclude that the convergence behavior of this precon-
ditioners is independent of h (see also [90]). Only initially
there can be dependence of the smallest eigenvalue on h. In
a similar way, for M(−1,0) we find that

lim
h→0

λmin(Q(1,0)) = |μc
m − k2|2

4k4
, (91)

which also indicates an h-independent convergence.
Table 9 presents convergence results of GMRES for

the 2D Helmholtz equation with Dirichlet boundary con-
ditions, shown for several k and h. As seen in the ta-
ble, the convergence is independent of the gridsize h. Sim-
ilar convergence results also hold for Bi-CGSTAB and
QMR.

5.5 More General Problems: Heterogeneous Media, PML

In [131] a similar but more general analysis is presented
from a more algebraic point of view. The results discussed
in the preceding section generally holds for general prob-
lem, namely, in the case absorbing-type boundary condi-
tions, the spectrum can be enclosed by a circle related to
the location of eigenvalues of the preconditioned Helmholtz
problem with Dirichlet boundary conditions in the complex
plane. See Theorem 3.5 in [131].

Figure 5 is an example of spectrum for a 1D PML
Helmholtz problem with constant k = 30, shown for dif-
ferent PML thicknesses. The preconditioner is the shifted
Laplacian with imaginary shift, which in the case of PML
has the form:

MPML := − ∂

∂x1

(

s2

s1

∂

∂x1

)

+ ĵ
ω2

c2
s1s2, (92)

with s1 and s2 defined as in (13).
The spectrum is again enclosed by the circle defined in

Theorem 5.5. It appears that an increase in PML thickness
leads to a spectrum which is far from the origin. This may
be good for convergence, but will requires more work due
to the enlarged computational domain. Especially for thick
PML, one notices a branch in the spectrum, which is most
probably due to PML.

Figure 6 shows spectra for a 1D PML Helmholtz problem
with heterogeneity. In this case we set the wavenumber as
follows:

k =
{

kref, 0 ≤ x < 0.5,

0.5kref, 0.5 ≤ x ≤ 1.
(93)

In this case, we set kref = 30. The spectra are shown for dif-
ferent PML thickness. Again, the spectra are enclosed by the
same circle defined in Theorem 5.5.

An example of spectra for a 2D case is shown in Fig. 7
for k = 5 and different PML thickness. The spectra are again
enclosed by the same circle as in the 1D case (Theorem 5.5).
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Fig. 6 Spectrum of 1D PML
Helmholtz equation for
kref = 30. The thickness of PML
is 0.1 (left) and 0.2 (right) of the
physical domain

Fig. 7 Spectrum of 2D PML
Helmholtz equation for k = 5.
The thickness of PML is 0.1
(left) and 0.2 (right) of the
physical domain

The similarity between spectral properties of the precon-
ditioned PML equation and spectral properties of the pre-
conditioned Helmholtz equation suggests that the conver-
gence of both cases are expected to be similar.

6 Preconditioner Solves

So far, we only solved the preconditioner exactly; I.e. we
applied a sparse direct method to invert the precondition-
ing matrix exactly. In this section, multigrid is employed to
invert it only approximately. Furthermore, by using some
multigrid analysis, we can generalize the shift and choose
a better shift suitable for both multigrid approximation and
Krylov subspace acceleration.

6.1 Multigrid for Solving the Preconditioner

In this case, multigrid is not used to solve the Helmholtz
equation, but to approximately solve a preconditioning ma-
trix [10, 43, 62, 82]. We again use standard notations for
multigrid analysis: the subscripts h and H always indicate
the fine and coarse grids, with h = 2H .

In [10] and [62] the Laplacian is used as the precondi-
tioner for CGNR, and is approximately inverted by SSOR
and multigrid, respectively. As multigrid is very efficient for

Poisson problems, a few multigrid iterations in the precon-
ditioning steps of CGNR leads to a good iterative method.
As analyzed in Sect. 5 and as well shown in the numerical
examples in [10] and [62] the method however becomes in-
efficient for large k.

In [82], the definite Helmholtz equation, which is related
to (β1, β2) = (−1,0) in our discussion in Sect. 5 is handled
by multigrid. The convergence using this option is somewhat
faster than that in [10] and [62].

In this section we discuss multigrid as the solver for the
preconditioning system Mhuh = wh.

6.2 Multigrid Convergence for a Purely Imaginary Shift

Recall that our preconditioning operator reads, as in Sect. 5:

M := −∇ · ∇ − ĵ k2. (94)

A common way to analyze the convergence of multigrid
is by using Rigorous Fourier Analysis (RFA). This approach
is more quantitative than the approach discussed in [67]. For
given multigrid components (type of smoother, relaxation
factor, cycle, etc.) an estimate of the smoothing properties
and two- (or three-) grid can be determined; See [20–22,
114, 122, 139] for the two-grid analysis and [141] for the
three-grid analysis. The three-grid analysis gives some more
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details about the coarse-grid correction. If a large differ-
ence occurs between the two-grid and the three-grid conver-
gence factors, this is an indication for a problematic coarse-
grid correction. For the complex Helmholtz preconditioner
it is important to analyze the coarse-grid correction carefully
(Sect. 3.3).

A software for two- and three-grid analysis is available
nowadays and can be freely downloaded from: www.mgnet.
org/mgnet-codes-wienands.html, with detailed instructions
in [140].

In order to do Rigorous Fourier Analysis, we need some
multigrid components. In this section, we detail the multi-
grid components that can be specified for approximately in-
verting a discrete version of the preconditioning operator M
(49). We consider the 5-point discretization and denote the
discrete preconditioner as Mh. Furthermore, we consider the
right preconditioned system. Thus, we solve the equivalent
system

AhM
−1
h wh = gh, Mhuh = wh, (95)

with Mhuh = wh solved by one multigrid iteration. Standard
multigrid coarsening, i.e., doubling the mesh size h in every
direction is chosen.

Smoothers Classical iteration methods like Jacobi with un-
derrelaxation and Gauss-Seidel iterations can be used as
smoothers. We denote the two smoothers by ωr -JAC and
ωr -GS, respectively. In principle one can choose the under-
relaxation parameter ωr ∈ C (as in the two-stage complex
Jacobi iteration). The Fourier analysis indicates that there is
no real benefit from such a choice.

Prolongation and Restriction Operators For the intergrid
transfer of the grid functions two (linear) transfer opera-
tors (39) and (40) are required. There are several ways to
construct the transfer operators.

A frequently used prolongation operator is based on bi-
linear interpolation from GH to Gh. This interpolation is de-
fined as (see Fig. 8)

Ih
H v̂H (x, y)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v̂H (x, y) for A,

1
2 [̂vH (x1, x2 + h) + v̂H (x1, x2 − h)] for q,

1
2 [̂vH (x1 + h,x2) + v̂H (x1 − h,x2)] for p,

1
4 [̂vH (x1 + h,x2 + h) + v̂H (x1 + h,x2 − h)

+v̂H (x1 − h,x2 + h) + v̂H (x1 − h,x2 − h) for r.

(96)

In order to better accommodate heterogeneities, it is
natural to used an operator-dependent interpolation. What
follows is the operator-dependent interpolation due to de

Fig. 8 Two grids in standard coarsening. The coarse grid is denoted
by (•) while the fine grid by (◦)

Fig. 9 Left: Nine point stencil with numbering (in this case, for point
p), Right: Coarse grid cell and four fine cells (Coarse grid indices by
capital and fine grid indices by lower case letters)

Zeeuw’s transfer operators [35], denoted by MD, which has
been simplified to exploit symmetry of the linear system.
See also [3] and [77] for other operator-dependent interpo-
lations.

The notation in a stencil for the explanation of the prolon-
gation is as in Fig. 9 (left side). The right picture in Fig. 9
shows one coarse and four fine grid cells with indices for
the explanation of the interpolation weights. Capital letters
denote coarse grid, lower case letters fine grid points. Oper-
ator element mw

p , for example, denotes the west element of
operator Mh at point p on the fine grid.

The corrections from the coarse to the fine grid are ob-
tained by interpolation among nearest coarse grid neighbors.
The operator-dependent interpolation weights, w, to deter-
mine the fine grid correction quantities eh are derived with
the following formulas:

• for fine grid points p in Fig. 9: eh,p = wAeH,A +wBeH,B .
wA = ww; wB = we,

where

dw = max(|msw
p + mw

p + mnw
p |, |msw

p |, |mnw
p |), (97)

de = max(|mse
p + ms

p + mne
p |, |mse

p |, |mne
p |), (98)

ww = dw

dw + de

, we = de

dw + de

(99)

• for fine grid points q in Fig. 9: eh,q = wAeH,A +wCeH,C .
wA = ws ; wC = wn,
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with

dn = max(|mnw
q + mn

q + mne
q |, |mnw

q |, |mne
q |), (100)

ds = max(|msw
q + ms

q + mse
q |, |msw

q |, |mse
q |), (101)

ws = ds

ds + dn

, wn = dn

ds + dn

. (102)

On the remaining points the prolongation is defined as fol-
lows:

• On fine grid points that are also coarse points: eh(A) =
eH (A),

• On points r : eh(r) is determined so that MhI
h
H eH = 0

at r .

| · | denotes the modulus, in this case. In [3], for dw , for ex-
ample, the lumped sum of three elements, msw

p +mw
p +mnw

p

is chosen. For satisfactory convergence it is, however, im-
portant to use the modulus of the operator elements, as
in (97), (98), (100), (101) in the definition of the interpo-
lation weights.

For the restriction, the simplest choice is injecting the
value on a fine grid points to the corresponding coarse grid
points. This is called injection. Injection, however, is not a
good restriction for (94). A commonly used restriction oper-
ator is called the full weighting (FW) operator, which can be
considered as a nine-point weighted average of a (fine) grid
function on a coarse grid. For full weighting, the restriction
operator reads

dH (x1, x2)

= IH
h dh(x1, x2)

= 1

16
[4dh(x1, x2) + 2dh(x1 + h,x2) + 2dh(x1 − h,x2)

+ 2dh(x1, x2 + h) + 2dh(x1, x2 − h)

+ dh(x1 + h,x2 + h)

+ dh(x1 − h,x2 + h) + dh(x1 + h,x2 − h)

+ dh(x1 − h,x2 − h)], (103)

or, in stencil notation,

IH
h = 1

16

⎡

⎣

1 2 1
2 4 2
1 2 1

⎤

⎦

H

h

. (104)

In general, we do not choose for the adjoint of the prolon-
gation operator, which is commonly used but not absolutely
necessary (see [3] and [33]), unless a combination of bi-
linear interpolation and full weighting is evaluated. In this
case the adjoint of bilinear interpolation operator equals the
full weighting operator. We observe in our numerical ex-
periments especially with strongly varying coefficients that

Table 10 Asymptotic convergence from Fourier analysis with numer-
ical multigrid convergence, Mh,(0,1). μ is the smoothing factor; ρ2g ,
ρ3g are the two- and three-grid convergence factor from Fourier analy-
sis; ρh is the numerical multigrid convergence factor. The smoother is
ωr -RB-GS with ωr = 1

μ ρ2g ‖T 2h
h ‖S ρ3g ‖T 4h

2h ‖S ρh, V-cycle

V(1,0) 0.25 0.25 0.56 0.24 0.56 0.235

V(1,1) 0.06 0.06 0.14 0.06 0.14 0.055

Table 11 Number of multigrid V-cycles to solve the preconditioner
Mh,(0,1), with MD and FW as the transfer operators. The CPU time is
presented for k = 100. The termination criterion is ‖rj /r0‖ ≤ 10−6

Cycle k Time

20 40 60 80 100 (sec)

V(1,0) 9 9 9 9 9 1.01

V(1,1) 7 8 6 8 8 1.07

V(2,1) 4 6 8 5 6 1.16

V(1,2) 4 4 7 4 5 0.97

choosing the combination of full weighting and the operator-
dependent interpolation brings to a robust method. For con-
stant coefficients and mildly varying wavenumbers, how-
ever, bilinear interpolation (in combination with full weight-
ing) also gives very satisfactory convergence results.

In Table 10 we show results from RFA for the matrix
related to the preconditioning operator (94), for k = 100.
In this case, we have used multigrid with V-cycle and ωr -
RB-GS smoother, where RB stands for red-black ordering.
The intergrid transfer operators are matrix-dependent (MD)
interpolation based on [35] and the full weighting (FW) re-
striction operator. The use of matrix-dependent interpolation
operator is somewhat natural since it is suitable for varying
wavenumber (heterogeneous) problems.

In the table, the two- and three-grid convergence fac-
tor are denoted by ρ2g and ρ3g respectively, while ρh de-
notes the numerical multigrid convergence [122]. We com-
pare V(1,0)-cycle and V(1,1)-cycle. (The first integer in
the parentheses indicates the number of presmoothing. The
second integer is the number of postsmoothing.)

From RFA, the asymptotic two-grid convergence fac-
tor for the V(1,1)-cycle is about 0.06, which is in a good
agreement with the numerical convergence. Furthermore,
the norm of the two-grid operator is well below 0.2. Multi-
grid for (94) behaves very similarly to the definite real ver-
sion of the Helmholtz operator (and of the Laplace operator).
See Table 11 for the actual number of iterations to reduce the
residual by 6 orders.

Another example from Fourier analysis applied to (94)
is shown in Table 12 for ωr -JAC, with JAC denoting Ja-
cobi smoother. Here we have used F-cycle. With γ = 2,
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Table 12 Comparison of asymptotic convergence from Fourier analy-
sis with numerical multigrid convergence, Mh,(0,1). μ is the smoothing
factor; ρ2g , ρ3g are the two- and three-grid convergence factor from
Fourier analysis; ρh is the numerical multigrid convergence factor. The
smoother is ωr -JAC with ωr = 0.8

μ ρ2g ‖T 2h
h ‖S ρ3g , γ = 2 ‖T 4h

2h ‖S ρh, F-cycle

F(1,0) 0.60 0.60 0.60 0.60 0.60 0.58

F(1,1) 0.36 0.36 0.36 0.36 0.36 0.34

this means that the F-cycle is identical to the W-cycle. We
set ωr = 0.8. Again, the agreement between the smoothing,
two- and three-grid Fourier analysis results with one and two
smoothing iterations and the numerical convergence is ex-
cellent, as presented in Table 12. The results obtained are
very similar to the convergence factors for the Laplace op-
erator with ωr -JAC ([122]).

We note here that:

• For Mh,(0,1) direct PDE coarse-grid discretization and
RB-GS Gauss-Seidel relaxation can be adopted. With
two smoothing iterations, this leads to a good multigrid
method. The cost of RB-GS per iteration is almost twice
as expensive as that of one Jacobi iteration.

• Bilinear interpolation in combination with half injection
can be employed to obtain the 5-point stencil discretiza-
tion on the coarse levels. This consequently reduces work
on the coarse levels. This is however a divergent method
for M(0,1) if V(1,1)-cycle is used. W(1,1)-cycle does
better than V(1,1)-cycle, but the improvement is not sub-
stantial. Furthermore, W-cycle is more expensive than V-
cycle.

• One can also obtain a 5-point stencil on the coarse grids
by applying a direct discretization to the operator (94). In
this case, care should be taken in incorporating radiation
boundary conditions in the coarse grid discretization. Our
observation, however, leads to a conclusion that this is not
also a good method.

It is important to note that multigrid is only used to ap-
proximately invert the preconditioner M in a Krylov sub-
space algorithm. Hence, it is not necessary to do multigrid
iterations up to a very high accuracy, and in practice it is
sufficient to only do one multigrid iteration. Then, we keep
the preconditioning work as small as possible.

6.2.1 Numerical Experiment

Table 13 shows convergence results from the 2D homo-
geneous Helmholtz equation with radiation boundary con-
ditions. For the linear solver, Bi-CGSTAB is used. We
compare the case without preconditioner, with ILU(0) and
ILU(1) preconditioners and with preconditioner Mh,(0,1).
For Mh,(0,1 we approximately invert it by using one V(1,0)

or V(1,1) multigrid iteration.

Table 13 Number of Bi-CGSTAB iterations for a 2D constant
wavenumber Helmholtz problem, shown for various k

k 10 20 40 50 100

grid 322 642 1282 1922 3842

No-Prec 150 846 1857 3054 6283

ILU(0) 75 221 474 634 1340

ILU(1) 35 113 238 295 563

MG(V (1,0)) 18 36 63 71 133

MG(V (1,1)) 16 33 60 70 133

Observe that:

• with Mh,(0,1) the number of iterations still increases but
slowly with respect to k,

• V(1,0) and V(1,1) multigrid leads to almost the same
number of Bi-CGSTAB iteration for all k’s under consid-
eration

• ILU(1) and multigrid require almost the same CPU time.
While the number of iteration reduces dramatically, the
use of multigrid increases the total amount of work per
iteration.

6.3 Multigrid for a General Complex Shift

We can relax the restriction for β1 and β2 by only requiring
that β �= 0. Since multigrid is used to solve the precondi-
tioner, the pair (β1, β2) can be determined from convergence
properties of multigrid methods. It is not necessary that the
preconditioner related to the optimal choice of (β1, β2) can
be solved by multigrid with the typical text book multigrid
convergence.

In [43] some possible choices for the pair (β1, β2) in (49)
are considered and evaluated by using Fourier analysis. We
present in Table 14 results of Fourier analysis for two pre-
conditioners:

M(1,1) = −∇ · ∇ − (1 − ĵ )k2 and (105)

M
(1, 1

2 )
= −∇ · ∇ −

(

1 − 1

2
ĵ

)

k2. (106)

In both cases, F(1,1) multigrid cycle is used; this cycle is
more effective than V-cycle but requires less work than W-
cycle. With only three grid levels, there is no different be-
tween F-cycle and W-cycle. The smoother is point Jacobi
with relaxation ωr = 0.7 for (105) and ωr = 0.5 for (106).

Even though multigrid is more efficient for solving the
preconditioner with (β1, β2) = (1,1) than the precondi-
tioner with (β1, β2) = (1, 1

2 ), the latter is more effective
if it is used for Krylov subspace acceleration. This is ob-
served in Table 15, where the 2D Helmholtz equation with
constant k is solved by Bi-CGSTAB with preconditioners
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Table 14 Multigrid convergence analysis for (β1, β2) = (1,1) and
(β1, β2) = (1,0.5), with F(1,1)-cycle. See the text for details

(β1, β2) μ ρ2g ρ3g , γ = 2 ρh, F(1,1)

(1,1) 0.47 0.47 0.47 0.45

(1, 1
2 ) 0.60 0.60 0.60 0.61

Table 15 Bi-CGSTAB iterations to reduce the initial residual by 7 or-
ders of magnitude. For every (β1, β2): number of iterations (first row)
and CPU time in second (second row). “–” means “not computed”

(β1, β2) k

40 50 80 100 150 200 500

(0,1) 57 73 112 126 188 – –

0.44 0.92 4.3 7.7 28.5 – –

(1,1) 36 39 54 74 90 114 291

0.30 0.51 2.2 4.5 13.9 30.8 515

(1,0.5) 26 31 44 52 73 92 250

0.21 0.40 1.8 3.3 10.8 25.4 425

(105) and (106). Moreover, compared to the purely imag-
inary shift preconditioner M(0,1), the preconditioner with
(β1, β2) = (1,0.5) requires more than 2.5 times less itera-
tions and CPU times. Hence, it is even sufficient to employ
a multigrid iteration with a convergence factor ρh ≈ 0.6.

We note that within the context of Krylov subspace ac-
celeration, it is difficult to have a quantitative estimate of
a Krylov subspace method with multigrid-based precondi-
tioner. Qualitative insights can be obtained from the spec-
trum of the preconditioned system. This is can be done via
Fourier analysis by considering the regular splitting of Mh,
which is discussed in detail in [43]. This allows us to vi-
sualize the corresponding eigenvalues for various multigrid
cycles.

6.3.1 Numerical Experiment

We consider a simple 2D heterogeneous problem, called the
wedge problem, to illustrate the effectiveness of this new
shift (β1, β2) = (1,0.5). Furthermore, three boundary con-
ditions are implemented: the 2nd order absorption condi-
tion, the damping layer and PML. Figure 10 shows the con-
vergence results. Compared to the purely imaginary shift
(β1, β2) = (0,1), a convergence speed up of more than three
times in terms of number of iteration is gained. Since the
work per iteration is generally the same, CPU time is also re-
duced by the same order. Interestingly, the convergence also
hardly depends on the type of boundary conditions used.

Fig. 10 Convergence results for the wedge problem

6.3.2 Summary

Based on our analysis and observations, in order to obtain a
robust and efficient iterative method for the Helmholtz equa-
tion we require to use the following:

• Bi-CGSTAB as the outer iteration to solve the Helmholtz
matrix. This algorithm requires minimal memory than
GMRES (and QMR, slightly) and is faster than GM-
RES and QMR. We note that the right preconditioned Bi-
CGSTAB must be employed because this requires only
two preconditioner solves (instead of four for the left-
preconditioned version)

• The preconditioner is obtained from a discretization of the
operators: For the Helmholtz equation:

M := −∇ · ∇ − (1 − 0.5ĵ )k2. (107)

For the damping layers:

MDamp := −∇ · ∇ − (1 − 0.5ĵ )(1 − αĵ)k2. (108)

For PML:

MPML := − ∂

∂x1

(

s2

s1

∂

∂x1

)

− ∂

∂x2

(

s1

s2

∂

∂x2

)

− (1 − 0.5ĵ )
ω2

c2
s1s2. (109)

As will be shown in Sect. 7, M can be discretized differ-
ently from the Helmholtz operator. But it is important that
the same boundary conditions are used in the Helmholtz
equation and the preconditioner operator.

• One multigrid iteration is performed on the precondi-
tioner with the following components: matrix-dependent
interpolation, the full weighting, F-cycle with one pre-
and postsmoothing with the Jacobi iteration and relax-
ation factor ωr = 0.5.
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6.4 Inner-Outer Krylov Iterations

Beside multigrid, the preconditioner M can also be approx-
imately inverted by using Krylov subspace iterations, yield-
ing to an inner-outer iteration process [125]. Note that in this
case, the preconditioner is no longer constant. Since Krylov
subspace methods are not a linear method, the subspace gen-
erated by this process does not lead to the standard Krylov
subspace similar to that in the case of constant precondi-
tioner. One can do two approaches in this case. The first ap-
proach is to solve the preconditioning problems very accu-
rately (usually up to the machine precision). In this case, an-
other preconditioner may be needed in order to reduce work
in the inner iteration. The other approach is by using flexi-
ble Krylov iterations, by using, e.g., FGMRES [103], GM-
RESR [130] or FQMR [116].

6.5 Extension to the 3D Helmholtz Equation

In 3D, the linear system arising from discretization of the
Helmholtz equation becomes extremely large with large
bandwidth. In this case a black box (or algebraic) incom-
plete LU factorization becomes impractical. Fill-in can be
very excessive, which require more work for the precon-
ditioner solve. However, the shifted Laplace preconditioner
can be easily extended to 3D [45, 102]. One that is needed
is an efficient 3D multigrid solver.

In principle a multigrid method with standard coarsening
can be used for the preconditioner solve. However, if a 3D
multigrid method with a 2D semi-coarsening strategy [36,
120, 138] combined with line-wise ωr -Jacobi smoothing in
the third direction is used, much of results from 2D multi-
grid with standard coarsening can be employed. In this 3D
multigrid method, the coarsening is only performed simul-
taneously in two directions; the third direction is kept un-
coarsened. This strategy is illustrated in Fig. 11.

The transfer operator is adapted as follows. We assume
that on the finest level the 27-point stencil discretization is
used.

To determine the 3D interpolation weights, we consider
the 27-point stencil matrix (see Fig. 12), written as fol-
lows [138]:

(Mu)i1,i2,i3 =
∑

iz=−1,0,1

(

m(iz)1
i1,i2,i3

ui1−1,i2−1,i3+iz

+ m(iz)2
i1,i2,i3

ui1,i2−1,i3+iz

+ m(iz)3
i1,i2,i3

ui1+1,i2−1,i3+iz

+ m(iz)4
i1,i2,i3

ui1−1,i2,i3+iz

+ m(iz)5
i1,i2,i3

ui1,i2,i3+iz

+ m(iz)6
i1,i2,i3

ui1+1,i2,i3+iz

Fig. 11 Semicoarsening of three grid levels: standard coarsening in
two directions (x1 and x2), the third (x3) direction is kept uncoarsened

Fig. 12 The 27-point stencil

+ m(iz)7
i1,i2,i3

ui1−1,i2+1,i3+iz

+ m(iz)8
i1,i2,i3

ui1,i2+1,i3+iz

+ m(iz)9
i1,i2,i3

ui1+1,i2+1,i3+iz

)

. (110)

In case the coarsening is only done in (x1, x2) direction,
a lumped 9-point stencil matrix ˜Mh in an (x1, x2)-plane is
defined as:

( ˜Mφ)i1,i2,i3 = m̃1
i1,i2,i3

ui1−1,i2−1,i3 + m̃2
i1,i2,i3

ui1,i2−1,i3

+ m̃3
i1,i2,i3

ui1+1,i2−1,i3 + m̃4
i1,i2,i3

ui1−1,i2,i3

+ m̃5
i1,i2,i3

ui1,i2,i3 + m̃6
i1,i2,i3

ui1+1,i2,i3

+ m̃7
i1,i2,i3

ui1−1,i2+1,i3 + m̃8
i1,i2,i3

ui1,i2+1,i3

+ m̃9
i1,i2,i3

ui1+1,i2+1,i3,
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Table 16 Performance of preconditioned Bi-CGSTAB in terms of the
number of iterations and CPU time (in sec.) to reach convergence for
the Helmholtz equation with constant wavenumber k. kh = 0.625 and
the preconditioner is M(1,0.5)

k BI MD

Iter Time Iter Time

10 9 0.65 9 0.71

20 13 6.89 13 6.64

30 17 25.52 18 27.63

40 21 75.99 21 71.35

50 24 136.31 24 136.33

60 26 251.62 27 276.88

with

m̃
p
i1,i2,i3

= m(−1)
p
i1,i2,i3

+ m(0)
p
i1,i2,i3

+ m(1)
p
i1,i2,i3

,

p = 1,2, . . . ,9.

Based on the lumped 9-point stencil the coarse-to-fine grid
interpolation can be determined in the same way as de-
scribed in the previous section for 2D for bilinear interpo-
lation (BI) or in [35] for operator-dependent interpolation
(MD).

Numerical Experiment Numerical results are shown in Ta-
ble 16 for various wavenumbers k. The convergence results
shown in the table are similar to the 2D counterparts, or even
faster convergence is observed. In the constant wavenumber
case, the use of bilinear or operator-dependent interpolation
in multigrid does not lead to a different computational per-
formance.

7 Numerical Examples with Realistic Problems

In this section we consider two difficult problems arising
from seismic inversion in geophysics. In seismic inversion
one tries to generate an image of the earth’s substructure
from a set of recorded seismic data. In the inversion process,
to generate such an image one needs to do forward mod-
eling. Forward modeling means solving a wave equation,
which in our case is the 2D or 3D Helmholtz equation.
The initial velocity background is usually taken from a syn-
thetic model. During the course of inversion process, the
synthetic model is continuously updated until a convergence
is reached. In the case of convergence, the computed data
in the recording positions for the updated synthetic model is
the same as the recorded data (see, e.g., [99, 118]). To obtain
“good” images, the data are sampled for various frequen-
cies ranging from usually 5 to 70 Hz. Since, for every sam-
pled frequency forward modeling must be performed suc-
cessfully, it is crucial to have a convergence iterative method
for all frequencies.

Table 17 Bi-CGSTAB convergence for the Marmousi problem. CPU
time (in parentheses) is measured in seconds

f (Hz) Grid (β1, β2)

(0,1) (1,0.5)

1 751 × 201 91 (36) 39 (16)

10 751 × 201 187 (72) 54 (22)

20 1501 × 401 388 (642) 98 (167)

30 2001 × 534 484 (1472) 144 (444)

We consider two synthetic models: 2D Marmousi model
[19] and 3D saltdome model of the North sea [102]. These
are typically hard problem and, to author’s knowledge, there
exists no iterative method which gives convergent solution
for all frequencies. See, for example, [98] for convergence
problems of an iterative solver applied to the 2D Marmousi
case.

7.1 2D Marmousi Problem

A part of 2D Marmousi problem is depicted in Fig. 13. This
model represents a 2D earth’s substructure with a strong ve-
locity contrast: from c = 1500 m/s to 4000 m/s, and covers
an area of 1.6 × 6 km2. A source of different frequencies,
ranging from 10 Hz to 60 Hz, is located at the center just
below the upper surface.

7.1.1 Convergence on a Sequential Machine

To solve the problem, we use Bi-CGSTAB preconditioned
by the shifted Laplacian preconditioner of the form (106),
i.e. with (β1, β2) = (1,1/2), which results in the best choice
for constant wavenumber cases. The extension to heteroge-
neous case is very easy. In this case, we only include the
variation of k = 2πf/c in the discretization of (106).

For multigrid, we have used the multigrid components
summarized in Sect. 6.3.2.

Table 17 presents convergence results based on a single
processor machine. The figures shown there are related to
the reduction of the initial residual by 7 orders of magnitude.
We show also convergence results for (β1, β2) = (0,1).
Compared to the latter, the use of (β1, β2) = (1,0.5) in the
preconditioner leads to a convergence speed up of a factor
of more than 3. This gain is slightly more than the gain we
can get in the constant wavenumber case. Furthermore, the
number of iterations depends linearly on the frequency, with
only a small proportionality constant.

In [44] ILU(0) and ILU(1) have been used as the precon-
ditioners for Bi-CGSTAB. For the 2D Marmousi problem
with frequency f = 20 Hz, the shifted Laplace precondi-
tioner with (β1, β2) = (1,0.5) leads to a convergence which
is about 40 and 18 times faster than ILU(0) and ILU(1), re-
spectively, in terms of the number of iterations. The iteration
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Fig. 13 Marmousi problem
(not to scale). a Velocity
distribution in meter/s, b real
part of the solution for f = 20
Hz, 5-point stencil, c real part of
the solution for f = 20 Hz,
9-point stencil (γ = 2/5) with
absorption layers

Table 18 Bi-CGSTAB convergence for the Marmousi problem. The
Helmholtz equation is discretized by using a 9-point stencil (γ = 2/5).
The preconditioner is discretized with the 5-point stencil. 50 gridpoints
are added for absorption layers

f (Hz) (β1, β2) = (1,0.5)

#iter CPU (s)

1 9 9

10 47 37

20 87 193

30 138 513

process requires CPU time which is about 9 and 5 times less
than ILU(0) and ILU(1), respectively.

This Marmousi problem has also been solved by us-
ing the 9-point stencil with absorption layers added sur-
rounding the original physical domain. Fifty grid points are
used in the absorption layers. In these layers, α in (11) in-
creases quadratically outwardly, starting from zero at the
interface between the physical region and absorption lay-
ers.

Here, we have used only the five-point stencil to dis-
cretize the preconditioning operator; Thus the Helmholtz
equation and the preconditioning operator are discretized
differently. Convergence results are shown in Table 18. The
real part of the solutions at 20 Hz is as in Fig. 13c.

Compared to the results in Table 17, the use of the 9-
point stencil does not influence the convergence negatively,
as the convergence is similar to that with the 5-point sten-
cil. The CPU time increases somewhat due to a larger size,
which is due to the inclusion of the absorption layers. Fur-
thermore, this result suggests that the preconditioning oper-
ator needs not be discretized by the same discretization as
the Helmholtz equation.

7.1.2 Performance on Parallel Machines

To solve high frequency problems, the computational grid
has to be refined to be able to capture the smallest wave-
length in the solution. As shown in Table 17 of the previous
subsection, we only compute solutions up to f = 30 Hz.
Beyond this frequency, the computing power becomes very
demanding, and parallel computing and algorithms become
necessary.

Implementations of the shifted Laplacian preconditioner
on a parallel machine are discussed in [81, 101, 102]. As the
method mainly consists of a Krylov subspace and a multi-
grid method, parallelization of the method depends only on
the parallelism of the Krylov and multigrid method. Note
that both methods consist mainly of matrix-vector multipli-
cations, inner products of two vectors and vector updates.
Multiplication of a matrix by a vector, which is the costliest
part in both methods, can be done in parallel. This is also
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Fig. 14 CPU time vs. # processors

Table 19 Bi-CGSTAB convergence for the 3D saltdome model

f (Hz) # unknown # proc. Iteration CPU time (hour)

5 11E+6 9 111 0.55

10 55E+6 18 216 3.30

the case for the inner products and vector updates. In partic-
ular, Bi-CGSTAB is a parallelizable algorithm. For parallel
multigrid methods, see, e.g., [95, 96].

Figure 14 shows CPU time measured for different num-
bers of processors used for solving the Marmousi prob-
lem with some physical damping, which suggests that the
method is scalable.

7.2 3D Saltdome Model

The 3D saltdome velocity model mimics a complex earth’s
structure in the North sea. This model covers a volume
of 8920 × 4440 × 5100 m3, with a velocity contrast rang-
ing from 1700 m/s to 4900 m/s. A source is located on
the upper surface of the computational box at position
(4460,2220,20).

Table 19 shows convergence results for two frequen-
cies [102]: 5 Hz and 10 Hz, solved on 11 million and 50
million gridpoints, making them impossible to fit in a single
processor machine. In this case we have used a machine with
9 and 18 processors, respectively. Here we do not study scal-
ability of the parallel implementation for the 3D saltdome.
One observes that the convergence depends linearly on the
frequency.

A scalability study for 3D cases is done in [102] for a 3D
wedge model in a unit cube with a reference wavenumber
kref = 150, solved on 55 million gridpoints. For a various
number of processors, the method reduces the initial residual
by 6 orders of magnitude within 91 iterations. The parallel
scalability is satisfactory. The scalability is however less if
many processors (in this case, more than 16 processors) are
used, due to communication time between each processor.

8 Conclusion

Iterative methods for large Helmholtz problems are still an
active research. In the last decade, progress has been made
within different iterative method framework.

In this paper we summarized development of the shifted
Laplacian preconditioner for the Helmholtz equation, and
gave some numerical examples arising from realistic ap-
plications, in which fast convergence is necessarily de-
manded. This preconditioner is very flexible in the sense that
it is readily generalizable to higher dimensions, different
discretization methods, different boundary conditions and
problems with heterogeneities. It can also be implemented
within sequential and parallel algorithms.

The first application of this method on scattering of an
obstacle using finite element methods has been reported
in [125]. The preconditioner is solved by Bi-CGSTAB pre-
conditioned by ILU. Ideally, following the same outline dis-
cussed in this paper, the preconditioner is handled by multi-
grid. For general finite element methods, this will require
algebraic multigrid methods.

Beside multigrid, domain decomposition methods and
ILU factorizations can as well be used to perform the pre-
conditioning steps. The use of ILU to approximate the
shifted Laplacian preconditioners are reported in [44]. The
convergence of Bi-CGSTAB combined by ILU applied to
the shifted Laplacian is very similar to ILU applied to the
Helmholtz matrix.

Considering as well spectral pictures shown in this paper,
we notice that too many small eigenvalues close to the origin
contribute to slow convergence, usually observed in the ini-
tial stage of the iterations. In Krylov subspace methods, such
slow convergence can be overcome by incorporating defla-
tion techniques [51, 93, 94]. Deflation, however, should be
done on the product M−1A, and not on A. If one can find a
way to include deflation, it can be expected that the method
will converge even faster.
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