
Arch Comput Methods Eng (2007) 14: 343–381
DOI 10.1007/s11831-007-9010-x

Trefftz-Based Methods for Time-Harmonic Acoustics

B. Pluymers · B. van Hal · D. Vandepitte · W. Desmet

Published online: 17 August 2007
© CIMNE, Barcelona, Spain 2007

Abstract Over the last decade, Computer Aided Engineer-
ing (CAE) tools have become essential in the assessment
and optimization of the acoustic characteristics of products
and processes. The possibility of evaluating these character-
istics on virtual prototypes at almost any stage of the design
process reduces the need for very expensive and time con-
suming physical prototype testing. However, despite their
steady improvements and extensions, CAE techniques are
still primarily used by analysis specialists. In order to turn
them into easy-to-use, versatile tools that are also easily
accessible for designers, several bottlenecks have to be re-
solved. The latter include, amongst others, the lack of ef-
ficient numerical techniques for solving system-level func-
tional performance models in a wide frequency range. This
paper reviews the CAE modelling techniques which can be
used for the analysis of time-harmonic acoustic problems
and focusses on techniques which have the Trefftz approach
as baseline methodology. The basic properties of the differ-
ent methods are highlighted and their strengths and limita-
tions are discussed. Furthermore, an overview is given of
the state-of-the-art of the extensions and the enhancements
which have been recently investigated to enlarge the appli-
cation range of the different techniques. Specific attention is
paid to one very promising Trefftz-based technique, which
is the so-called wave based method. This method has all the
necessary attributes for putting a next step in the evolution
towards truly virtual product design.
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1 Introduction

This paper reviews the research efforts spent on the de-
velopment of numerical methods for the analysis of time-
harmonic acoustics, with a specific focus on Trefftz-based
methods. Acoustics refers to the engineering field, which
considers small pressure perturbations with respect to a con-
stant ambient pressure level. The small pressure perturba-
tions, or acoustic pressures, exhibit both a spatial and a tem-
poral distribution. In many cases, the acoustic processes of
interest are stationary, i.e. they show a time-harmonic be-
haviour, for which the description in the frequency domain,
or in the wave number domain, is often more suitable than in
the time domain. At discrete frequencies, the linear (or lin-
earized) Helmholtz equation governs the spatial distribution
of the acoustic pressures [1, 2].

Many deterministic methods exist for solving linear
Helmholtz equations. Among those methods, the finite el-
ement method (FEM) [3, 4] and the boundary element
method (BEM) [5–7] are probably the most well known.
These methods perform satisfactory for the low-frequency
range, i.e. for those frequencies for which the corresponding
characteristic wavelengths are of the same order of magni-
tude as the dimensions of the bounded domain. However,
one of the major computational challenges nowadays is the
treatise of high-frequency or short-wave phenomena [8].
This topic is therefore investigated extensively, which is ap-
parent through the large number of dedicated conference
sessions [9–13] and review papers [14–16].

A large diversity of computational methods for high-
frequency problems in acoustics coexist. Their number is
too large to thoroughly discuss them all. Nevertheless, in
this paper an attempt is made to classify the methods roughly
in some general categories. One of these categories will be
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detailed further, namely the class of the Trefftz-based meth-
ods. The basic principles of these methods date back to 1926
when Trefftz [17] presented an alternative for the Rayleigh-
Ritz approach, on which for example the FEM is based.
The Trefftz-based approach has been unnoticed for a long
time. Only in the 1970s, the quest for more accurate FEMs
drives the growing interest for the Trefftz-based method. In
the years that follow, the value of the Trefftz-based methods
has been proven for applications in elasticity and heat trans-
fer, for plate bending and shell problems and for the Poisson
problem. For more details, the reader is referred to the re-
view papers [18] and [19], both published in the mid-1990s.
Since the mid-1990s, the application of the Trefftz-based
methods has been extended for time-harmonic problems in
acoustics, structural mechanics and electro-magnetics in or-
der to meet the challenges of the high-frequency phenom-
ena.

The objective of this paper is to give an overview of
the state-of-the-art of the element based and the Trefftz-
based methods for the analysis of time-harmonic acoustic
problems. In addition, special attention is paid to a particu-
lar Trefftz-based method, namely the so-called wave based
method, on which the authors have provided a substantial
scientific contribution [20–24].

This paper is outlined as follows. The mathematical
model for time-harmonic acoustic problems is presented
first. In order to illustrate the computational challenges with
respect to high-frequency phenomena, the basic features of
the FEM are outlined including a discussion on the numeri-
cal accuracy. This discussion clears the way for categorizing
the enhancements of the classical FEM, such as the stabi-
lized approaches, the generalized methods, the multi-scale
approaches, etcetera. In a comparable layout, a next section
discusses the BEM and its extensions and enhancements.
Then, a detailed survey of the Trefftz-based methods is pro-
vided. In particular the capabilities of the WBM for simulat-
ing high-frequency acoustic problems are discussed in de-
tail and demonstrated for both interior and exterior acoustic
problems.

2 Mathematical Model

2.1 Boundary Value Problem

Figure 1 shows a bounded domain �i with the following
acoustic properties: the ambient density ρ and the speed of
sound c. A point source at position rq , characterized by a
source-strength amplitude q , excites the acoustic domain.
The excitation has a time-harmonic behaviour ejωt with a
radial frequency ω. The response consists of the acoustic
pressure p and the particle velocity v, which also show a
time-harmonic behaviour with the frequency ω. The follow-
ing set of coupled partial differential equations governs the

Fig. 1 Interior acoustic problem

time-harmonic acoustic pressure p and the particle velocity
v at position r [1, 2]

conservation of mass:

∇T v(r) + jk

ρc
p(r) = qδ(r, rq), ∀r ∈ �i, (1a)

equation of motion:

∇p(r) + jρωv(r) = 0, ∀r ∈ �i. (1b)

In these equations, ∇ = [∂/∂x ∂/∂y ∂/∂z]T represents the
gradient operator, where the superscript T denotes the trans-
pose, k = ω/c represents the wave number, j = √−1 the
unit imaginary number and δ a Dirac delta function. The
conservation of mass and the equation of motion are usually
combined resulting in the linear Helmholtz equation

(� + k2)p(r) = −jρωqδ(r, rq), ∀r ∈ �i, (2)

where � = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace oper-
ator. Since the Helmholtz equation is a second-order partial
differential equation, one boundary condition is required at
each boundary point in order for the acoustic problem to be
well-posed. The following time-harmonic, acoustic bound-
ary conditions may be imposed at the problem boundary
∂�i = �p ∪ �v ∪ �Z

p(r) = p̄(r), ∀r ∈ �p, (3a)

nT v(r) = v̄n(r), ∀r ∈ �v, (3b)

nT v(r) = p(r)/Z̄(r), ∀r ∈ �Z. (3c)

In these relations, n is the outward normal vector at the
problem boundary (see Fig. 1) and p̄, v̄n and Z̄ are pre-
scribed distributions for the pressure, the normal velocity
and the normal impedance along the corresponding parts of
the problem boundary.

The above mathematical model is a boundary value prob-
lem for interior acoustics. The modelling of exterior prob-
lems, e.g. sound radiation problems, follows the same prin-
ciples. Figure 2 shows an unbounded domain �e with the
acoustic properties ρ and c. Again, a point source q excites
the acoustic domain and the Helmholtz equation (2) governs
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Fig. 2 Exterior acoustic problem

the time-harmonic response. However, now the problem
boundary ∂�e is composed of (i) a finite part �p ∪�v ∪�Z ,
where the boundary conditions of (3) are imposed, and of
(ii) an unbounded part �∞, where the Sommerfeld radia-
tion condition [25] is imposed to model the far field cor-
rectly

lim
r→∞ r

(
∂p(r)
∂r

+ jkp(r)
)

= 0, with r = ‖r‖. (4)

A two-dimensional (2D) acoustic problem can be derived
from the above full 3D representations if the following con-
ditions are satisfied.

1. The dimension of the acoustic domain �{i/e} is infinite
in the z-direction.

2. The boundary conditions do not vary in the z-direction.
3. A line source at position (xq, yq), characterized by a

source-strength amplitude q excites the acoustic system.
4. In case of an exterior acoustic problem, the 2D expres-

sion of the Sommerfeld radiation condition is selected

lim
r→∞

√
r

(
∂p(r)
∂r

+ jkp(r)
)

= 0. (5)

The 3D problem reduces to a 2D problem by omitting the
z-dependency in the involved linear operators.

The discussed boundary value problems can be solved
numerically using the FEM, the BEM or the Trefftz-based
methods. The FEM and the Trefftz-based methods make di-
rect use of the governing differential equations. The BEM,
on the other hand, requires that the boundary value prob-
lem is described by boundary integral formulations. These
methods are reviewed next.

2.2 Boundary Integral Formulation

The following inhomogeneous integral equation of the sec-
ond kind is applicable to describe both interior and exterior
acoustic problems

C(r)p(r) = g(r, rq, k) +
∫

�f

(
p(rb)

∂g(r, rb, k)

∂n

+ jρω vn(rb)g(r, rb, k)

)
d�(rb). (6)

This boundary integral equation relates the pressure p at po-
sition r to the pressure distribution p and normal velocity
distribution vn along the finite part of the domain boundary
�f = �p ∪ �v ∪ �Z . The equation is referred to as the direct
boundary integral since the involved boundary values are the
acoustic quantities of interest. In (6), the vector rb indicates
the position of the boundary points. The ∂/∂n = nT ∇ oper-
ator represents the gradient operator in the outward normal
direction n. The free-field Green’s function g(r, rq, k) takes
the effect of the acoustic line source (2D) or of the acoustic
point source (3D) at position rq into account. The free-field
Green’s function is a fundamental solution of the inhomoge-
neous Helmholtz equation (2) given by

g(r, rq, k) =

⎧⎪⎪⎨
⎪⎪⎩

−j

4
H

(2)
0 (k‖r − rq‖), (2D)

e−jk‖r−rq‖

4π‖r − rq‖ , (3D)
(7)

where H
(2)
0 represents the zero-order Hankel function of the

second kind. The free-field Green’s function is also used as
kernel function g(r, rb, k) in the boundary integral equa-
tion (6). The position dependent coefficient C(r) in this
equation is given by

C(r) =

⎧⎪⎨
⎪⎩

1, ∀r ∈ {�\�f },
1
2 , ∀r ∈ �f ,

0, ∀r /∈ �.

(8)

Note that the value 1
2 holds for the boundary points rb where

the normal vector n is continuous. Otherwise the coefficient
C(rb) takes a value between 0 and 1 depending on the dis-
continuity or the jump of the normal vector [[n(rb)]]. The
derivation of the direct boundary integral equation is too
lengthy to present here. The interested reader is referred to
[5–7, 26] for the details.

A second type of boundary integral formulation is based
on the indirect boundary integral equation given by

p(r) = g(r, rq, k) +
∫

�f

(
−σ(rb)g(r, rb, k)

+ μ(rb)
∂g(r, rb, k)

∂n

)
d�(rb). (9)

The term ‘indirect’ refers to the boundary values σ(rb) and
μ(rb), which are not the acoustic variables of interest, i.e. p

and vn. However, the boundary values represent the densi-
ties of continuously distributed sources along the finite part
of the boundary �f .
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Recall that g(r, rb, k) is the free-field pressure response
for a point source at position rb . In the indirect boundary
integral equation (9), an infinite number of point sources
are distributed along the boundary �(rb) with the density
σ(rb). The integration along the boundary represents their
combined effect on the pressure field and is usually referred
to as the single layer potential. Similarly, it is not difficult to
see that ∂g(r, rb, k)/∂n represents the free-field pressure re-
sponse for a dipole source at position rb . The integration of
an infinite number of dipole sources with the density μ(rb)

results in the double layer potential.
The indirect boundary integral formulation allows one

also to consider combined interior/exterior acoustic prob-
lems and acoustic problems with open boundaries. For these
types of problems, the single and double layer potential den-
sities σ(rb) and μ(rb) are related as follows to the acoustic
variables

σ(rb) = j

ρω
(vn(r

+
b ) − vn(r

−
b )), (10a)

μ(rb) = p(r+
b ) − p(r−

b ). (10b)

The r+
b vector indicates the boundary position rb at the pos-

itive side of the boundary, i.e., the side in which the normal
vector n is directed. The r−

b vector indicates the opposite,
negative side.

The solutions of the boundary integral equations in (6)
and (9) satisfy the Sommerfeld radiation condition a priori
(although this is irrelevant for the bounded problems). These
solutions are obtained in two steps.

1. The boundary integrals are evaluated along the boundary
�f . This requires the substitution of the boundary con-
ditions resulting in a boundary integral for the unknown
boundary values. For example, in case of the direct for-
mulation with a prescribed normal velocity distribution
v̄n(rb), this integral becomes

1

2
p(r) = g(r, rq, k)

+
∫

�f

(
p(rb)

∂g(r, rb, k)

∂n

+ jρωv̄n(rb)g(r, rb, k)

)
d�(rb), ∀r ∈ �f .

(11)

2. All boundary values are known from the previous step.
The pressure at an arbitrary position r follows from the
evaluation of the considered boundary integral equation.

3 Finite Element Method

3.1 Basic Formulations

The finite element method (FEM) has proven to be one of
the most suitable computational methods for solving engi-
neering problems, which consist of finding the spatial and
possibly temporal distribution of physical quantities in a
continuous medium [3]. Its application for acoustic prob-
lems is well developed [4]. This section outlines the ba-
sic formulation of the method rather detailed. The reason
for this is twofold. The numerical difficulties, which arise
in high-frequency acoustics, can be clearly illustrated and
many methods nowadays consist of enhancing the classical
FEM.

Consider the interior acoustic problem, which is fully de-
scribed by (1–3). The exact solution of this problem is ap-
proximated by employing the following finite element (FE)
strategy:

1. The bounded domain �i is subdivided in subdomains
(�i =⋃ne

e=1 �e with �e ∩�g = 0, ∀e 
= g), i.e. the finite
elements �e as shown in Fig. 3. The boundary of each el-
ement ∂�e = �e

p ∪�e
v ∪�e

Z ∪�e
i is composed of the inter-

sections with the problem boundary, e.g. �e
p = ∂�e ∩�p ,

and the common interface �e
i between two elements. At

the common interface �i = �e
i = �

g
i , the continuity of

the field variables is imposed

pressure continuity:

pe(r) = pi(r) = pg(r), ∀r ∈ �i, (12a)

velocity continuity:

nT
e ve(r) = vni(r) = −nT

g vg(r), ∀r ∈ �i, (12b)

where the subscript e , g and i refer to the two adjacent
elements �e and �g and their common interface �i , re-
spectively.

2. Within each element �e, a linear combination of polyno-
mial basis functions approximates the exact solution

Fig. 3 Finite element model for
interior acoustic problem
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p(r) ≈ p̂(r) =
na∑

a=1

Na(r)pe
a = N(r)pe, ∀r ∈ �e, (13a)

v(r) ≈ v̂(r) = j

ρω
∇p̂(r) = j

ρω
∇N(r)pe, ∀r ∈ �e.

(13b)

The contribution factors pe
a , stored in the element vec-

tor pe , form the unknown element degrees of freedom.
These unknown degrees of freedom are generally nodal
pressure values. The corresponding basis functions Na

are stored in the row vector N.
3. The approximation (p̂, v̂) satisfies the equation of mo-

tion (1b) and the pressure continuity in (12a) by de-
finition. Furthermore, the prescribed pressure distribu-
tion p̄(r) ∀r ∈ �p is usually represented by piecewise
(bi)linear functions, which can exactly be described by
the pressure approximation p̂. However, the approxima-
tion does not satisfy the remaining equations, i.e. the con-
servation of mass (1a), the velocity boundary condition
in (3b), the impedance boundary condition in (3c) and
the velocity continuity in (12b). The involved residuals
on these relations are enforced to zero in some integral
sense. This is achieved by either the weighted residual
approach, the principle of virtual work or a variational
principle. All three approaches yield the following weak
problem formulation on element level

−ω2
∫

�e

u
1

c2
p̂ d� + jω

∫
�e

Z

u
ρ

Z̄
p̂ d�

+
∫

�e

(∇u)T (∇p̂)d�

= · · · = jω

∫
�e

uρqδ(r, rq)d�

−jω

∫
�e

v

uρv̄n d� − jω

∫
�e

i

uρvni d�, (14)

where u = u(r) represents an arbitrary test function,
which is zero along �e

p .
4. The above weak problem formulation is transformed into

a set of na algebraic equations by following the Galerkin
approach. Each basis function Na of the pressure approx-
imation p̂ in (13a) is selected as test function once. To-
gether with the substitution of the pressure approxima-
tion p̂, this approach yields the following FE description

(−ω2Me + jωCe + Ke)pe = jω(qe − ve − ve
i ). (15)

In this algebraic equation, Me, Ce and Ke represent the
acoustic mass, damping and stiffness matrix. The vectors
qe , ve and ve

i are the acoustic loading vectors associated
with the point source q , the prescribed normal velocity
v̄n and the interface velocity vni .

5. Finally, the assembly of all element models results in the
following FE model

(−ω2M + jωC + K)p = jω(q − v), (16)

where the vector p is the solution vector. It collects all
degrees of freedom, which are nodal pressure values. The
pressure boundary conditions are taken into account by
assigning the prescribed pressure values directly to the
nodal degrees of freedom on the boundary �p , such that
these degrees of freedom are no longer unknowns of the
FE model. Note that the ve

i contributions of two adjacent
elements cancel out each other, because the inter-element
pressure continuity along their common interface �e

i is
satisfied a priori (conforming elements).

3.2 Treatment of Unbounded Domains

A difficulty in the application of the FEM for exterior
acoustic problems lies in the effective treatment of un-
bounded domains, because these cannot be subdivided into
a finite number of elements. Therefore, an artificial bound-
ary �t is introduced in order to truncate the unbounded do-
main [27]. This results in a bounded domain �̄e for the
exterior acoustic problem, which is subdivided using con-
ventional finite elements (see Fig. 4). The artificial trun-
cation boundary �t , however, requires some special treat-
ment in order to prevent or to reduce the spurious reflec-
tions of waves. The three most commonly used treatments
are [15, 16, 28]

1. The application of absorbing boundary conditions,
2. The explicit modelling of the unbounded domain using

infinite elements or
3. The introduction of absorbing layers,

which are discussed briefly here.

3.2.1 Absorbing Boundary Conditions

The absorbing boundary conditions are mathematical rela-
tions between the pressure p and its derivatives at the trun-

Fig. 4 Finite element model for exterior acoustic problem with artifi-
cial truncation boundary �t
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cation boundary �t . A distinction is made between condi-
tions defined by a local scheme and those defined by a global
scheme.

The local schemes retain the sparse and banded struc-
ture of the FE system matrices. They are applicable to more
generally shaped artificial boundaries and they usually guar-
antee the uniqueness of the solution. The low-order local
schemes are easy to implement but they tend to lose accu-
racy for the higher frequencies [29]. Furthermore, the ar-
tificial boundary must be placed far enough from the ra-
diating or scattering object to prevent spurious reflections.
The impedance boundary condition in (3c) is an example of
the most simple, first-order local boundary condition of this
type. Higher-order local schemes improve the accuracy but
their implementation is more demanding due to the presence
of the high-order derivatives. Alternatively, the order of the
absorbing boundary conditions can be increased rather eas-
ily by the introduction of auxiliary variables which elimi-
nate the high-order derivatives at the expense of additional
degrees of freedom [30].

Also in case of the global scheme, the order of boundary
conditions can be increased easily to obtain the desired level
of accuracy. However, the geometry of truncation boundary
�t is limited to relatively simple shapes. Furthermore, all
degrees of freedom on �t are coupled, which results in a
significant reduction of the sparsity of the system and which
requires special procedures for implementation and paral-
lelization. The Dirichlet-to-Neumann mapping is the most
commonly used approach of this type [31–33]. The order of
the series expansion of the Dirichlet-to-Neumann boundary
condition determines the accuracy of the procedure. Despite
the theoretical correctness of the approach, the fact of being
a global method degenerating the sparse structure of the FE
system matrices is a major practical disadvantage.

3.2.2 Infinite Elements

The truncation boundary �t is subdivided in a finite number
of infinite elements [34]. These elements explicitly model
the unbounded domain outside bounded domain �̄e. They
have finite dimensions in the plane of the truncation bound-
ary �t , but they extend to infinity in the outward normal di-
rection n. The FE approximation in that direction consists of
a combination of a suitable amplitude decay and a wave-like
radial variation for modelling the outgoing travelling waves.
The accuracy of the approximation improves for an increas-
ing radial order of the FE basis functions, but also the com-
putational costs increase in that case.

Two leading approaches have emerged within the infi-
nite element world [35], namely (i) the unconjugated Bur-
nett elements and (ii) the Astley-Leis wave envelope ele-
ments. The unconjugated Burnett elements [36, 37] use the

same basis functions for both the trial and the test func-
tions (Galerkin approach). This results in symmetric but fre-
quency dependent system matrices. Their condition number
increases rapidly for an increasing radial order. Furthermore,
the model generation involves some tedious numerical in-
tegration. The unconjugated Burnett elements are believed
to provide the best accuracy for the near-field whereas the
Astley-Leis wave envelope elements are most effective in
the far-field [29]. In the wave envelope elements [38, 39], the
test functions are conjugates of the basis functions in the FE
approximation and a geometrical weighting factor is intro-
duced. This results in frequency independent system matri-
ces which are no longer symmetric. Furthermore, the numer-
ical integration is less expensive than for the unconjugated
elements and the ill-conditioning can be avoided by the se-
lection of a suitable radial basis. Unfortunately, the perfor-
mance of both the conjugated and unconjugated infinite el-
ements deteriorates at higher frequencies and for stretched
truncation boundaries [40].

3.2.3 Absorbing Layers

Berenger [41] introduces the perfectly matched layer con-
cept for treating the truncation boundary in exterior elec-
tromagnetic wave problems. This concept is applicable for
acoustic radiation and scattering problems too [42]. The ba-
sic idea is to introduce an exterior layer of finite thickness
at the truncation boundary. The purpose of this additional
layer is to absorb the outgoing waves. The reflection of
plane waves with arbitrary angles of incidence can be elimi-
nated theoretically by splitting a scalar field and by selecting
the proper perfectly matched layer coefficients. Perfect ab-
sorbance can be reached for increasing layer thickness. All
in all, the practical implementation involves several parame-
ters, such as the layer thickness, the number of divisions of
the perfectly matched layers and the variation and the limits
of their coefficients. Current research focuses on the opti-
mization of these parameters.

3.3 Accuracy at High Frequencies

The convergence of the FEM is guaranteed if the approxima-
tion solution satisfies the following convergence criteria [3].

1. A ‘rigid’ body mode, i.e. a constant pressure distribution,
does not result in a contribution to the particle velocity
field.

2. The approximation solution must be able to describe a
constant particle velocity field. This criterion is com-
monly referred to as the criterion of completeness.

3. The particle velocity approximation must be finite at
the element boundaries, which implies the imposition of
C0 continuity conditions for the pressure approximation.
This criterion is commonly referred to as the compatibil-
ity condition.
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The above criteria are satisfied if the ‘serendipity’ fam-
ily of 2D rectangular and 3D brick elements is used or the
family of 2D triangular and 3D tetrahedral elements. These
elements may be distorted in order to mesh the bounded
acoustic domain �i or �̄e with an irregularly shaped bound-
ary �f (∪�t) using less elements. In those cases, the appli-
cation of the isoparametric mapping procedure ensures that
the convergence criteria are still satisfied.

In case of elliptic problems, such as the Poisson problem,
the FEM provides an accurate approximation irrespective
of the applied mesh size h. However, the linear Helmholtz
equation is indefinite. The FEM, applied to indefinite prob-
lems, converges only if the mesh size h is smaller than a crit-
ical mesh size hcr. The solution of a time-harmonic acoustic
problem contains harmonic components with wavelengths
of λ = 2π/k = 2πc/ω. At least two elements are required
per wavelength. Consequently, the critical mesh size would
be hcr = π/k = πc/ω.

In order to describe the spatial variation of the harmonic
component with a certain level of accuracy, often the ‘rule of
thumb’ is applied, which states that at least 6 to 10 linear el-
ements should be used per wavelength λ. Thus, the maximal
mesh size according to this rule would be hmax = 1/k = c/ω

(≈ 6 elements per λ). The ‘rule of thumb’ controls the ap-
proximation error well for low frequencies or small wave
numbers, where the approximation error is governed mainly
by the interpolation error. The latter error is the difference
between the exact solution and the approximation solution,
which is based on the linear combination of basis functions
weighted by the exact nodal solutions. However, for higher
frequencies or increasing wave numbers, the interpolation
error gets polluted. That is, the approximation error is no
longer governed by the interpolation error only, but the so-
called pollution effect gains importance. The FE approxima-

Fig. 5 1D acoustic problem: tube

tion introduces artificial dispersion, which causes this pollu-
tion effect.

The consideration of a 1D acoustic problem helps to clar-
ify the distinction between the two sources of error. Fig-
ure 5 depicts the 1D acoustic problem consisting of a tube
of length L filled with air (ρ = 1.225 kg/m3, c = 340 m/s).
A unit normal velocity excites the acoustic system at left
end. At the right end, an absorbing boundary condition is
imposed, such that the pressure response consists of a prop-
agating wave. The mathematical model is reformulated in
the following non-dimensional variables

x̃ = x

L
, k̃ = kL and h̃ = h

L
. (17)

This allows one to distinguish between the low wave number
range (k̃ � 1) and the high wave number range (k̃ > 1). Fig-
ure 6 shows the pressure distribution for the ‘rule of thumb’
with kh = k̃h̃ = 1 for the high wave number of k̃ = 10. The
approximation shows a wave that propagates with a larger
wavelength than the exact solution. In other words, the nu-
merical wave number k̃n is smaller than the physical wave
number k̃, which corresponds to the dispersion-free prop-
agating wave. The erroneous approximation of the relation
between the radial frequency ω and the wave number k̃ is re-
ferred to as the dispersion error. The dispersion error causes
the pollution effect, which can be defined as the difference
between the approximation solution p̂intp, obtained by in-
terpolation of the exact solution p, and the FE approxima-
tion p̂FE as clarified in Fig. 6. In case of a regular mesh,
the dispersion error can be predicted. Consider the patch
of elements surrounding node a in a 1D mesh as shown in
Fig. 7. A FE discretization is made of the 1D homogeneous
Helmholtz equation based on the linear elements in the patch
with the basis functions Na−1, Na and Na+1. This results in
the following algebraic equation for node a

A1pa−1 + 2A0pa + A1pa+1 = 0

with A0 = −1

3
(k̃h̃)2 and A1 = −1 − 1

6
(k̃h̃)2, (18)

Fig. 6 Pressure distribution in
the tube at k̃h̃ = 1
(− − p,� − .p̂intp,� —p̂FE)
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where pa represent the nodal pressure at position x̃a = ah̃.
The solution of this equation is a propagating wave

pa = p̂(x̃a) = ej k̃nx̃a (19)

with the numerical wave number k̃n. The substitution of this
solution in the homogeneous differential equation (18) and
some further mathematical operations result in the follow-
ing explicit dispersion relation for the numerical wave num-
ber k̃n multiplied by the mesh size h̃

k̃nh̃ = arccos(−A0/A1)

≈ k̃h̃ − 1
24 (k̃h̃)3 +O((k̃h̃)5) (Taylor expansion) (20)

smaller than the physical wave number k̃ and (ii) that keep-
ing k̃h̃ = kh constant, as in case of the ‘rule of thumb’, does
not control the dispersion error.

The pollution effect, caused by the dispersion error, is
kept within acceptable limits by the following rule

k̃3h̃2 = constant. (21)

This rule follows from an a priori error estimation discussed
by Ihlenburg [4].

A similar dispersion analysis as presented above can be
performed for a regular 2D mesh. Consider the patch of el-
ements surrounding the node at position (x̃a, ỹb) = (ah̃, bh̃)

in a 2D mesh as shown in Fig. 7. The FE discretization,
based on bilinear elements with the basis functions N•�, of
the 2D homogeneous Helmholtz equation results in the fol-
lowing algebraic equation

A2pa−1,b−1 + A1pa,b−1 + A2pa+1,b−1 + · · ·

+A1pa−1,b + A0pa,b + A1pa+1,b + · · ·
+A2pa−1,b+1 + A1pa,b+1 + A2pa+1,b+1 = 0

with

⎧⎪⎪⎨
⎪⎪⎩

A0 = 8
3 − 16

36 (k̃h̃)2,

A1 = − 1
3 − 4

36 (k̃h̃)2,

A2 = − 1
3 − 1

36 (k̃h̃)2,

(22)

where pa,b represents the nodal pressure at position (x̃a, ỹb).
The solution of this equation is formed by the set of all prop-
agating waves given by

pa,b = p̂(x̃a, ỹb) = ej k̃n(x̃a cos(θ)+ỹb sin(θ)), (23)

where θ represents the direction of the propagating wave.
The substitution of this solution in the homogeneous differ-
ential equation (22) and some further mathematical opera-
tions result in the following implicit dispersion relation for
the numerical wave number k̃n multiplied by the mesh size h̃

A0 + 2A1(cos(ξ̃1) + cos(ξ̃2)) + 4A2(cos(ξ̃1) cos(ξ̃2)) = 0

with ξ̃1 = k̃nh̃ cos(θ) and ξ̃2 = k̃nh̃ sin(θ). (24)

Figure 8 visualizes this relation for the ‘rule of thumb’
with k̃h̃ = 1. The numerical wave number k̃n is clearly direc-
tion dependent and smaller than the physical wave number k̃

for each direction θ . The largest differences occur for waves
propagating along the grid lines, which equals the difference
between the numerical wave number k̃n and the physical k̃

in the 1D case. Therefore, rule (21), where k̃3h̃2 is kept con-
stant, will control the pollution effect for the 2D case too.
The extension to the 3D case is straightforward and, there-
fore, it is not considered here.

Fig. 7 Element patch in regular
finite element meshes for
dispersion analyses

Fig. 8 Dispersion curve for
k̃h̃ = 1 (– – k̃,— k̃n)
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The simple dispersion analyses presented here illustrate
the challenge in high-frequency acoustics. The convergence
of the FEM applied to time-harmonic acoustics is mesh size
dependent. A ‘rule of thumb’ (k hmax = (ω/c)hmax = 1)
states that at least 6 to 10 linear elements should be used
per wavelength λ to control the interpolation errors. Since
the wavelength λ = 2π c/ω is inversely proportional to the
radial frequency ω, the number of elements needs to grow
for increasing frequencies in order to comply with the ‘rule
of thumb’. Moreover, at high frequencies, the FE approxi-
mation shows artificial dispersion which pollutes the inter-
polation errors. The more stringent rule (21) is necessary to
control these pollution effects resulting in a further increase
of the number of degrees of freedom. Both the mesh size
dependent convergence and the numerically introduced dis-
persion complicate the application of the classical FEM for
high-frequency acoustics. Therefore, in order to meet this
computational challenge, the enhancements and the exten-
sions of the FEM focus on reducing these two main draw-
backs. However, the 2D dispersion analysis shows already
that this will not be easy due to the direction dependency of
the numerically introduced dispersion.

More details on the numerical dispersion analysis and on
the error estimation in the FEM applied to linear acoustics
can be found in [4]. This reference also considers the p-
version of the FEM, which uses higher order polynomial
basis functions and thereby suffers less from numerical dis-
persion.

3.4 Enhancements and Extensions

Several enhancements and extensions of the FEM coexist
which try to improve the accuracy at high frequencies. Their
number is too large to discuss them all in detail. Neverthe-
less, this paper tries to capture most of them in five cate-
gories, which are

1. The process optimization methods,
2. The domain decomposition methods,
3. The stabilized methods,
4. The generalized methods and
5. The multi-scale methods.

The remaining part of this chapter gives a brief overview of
the state-of-the-art per category.

3.4.1 Process Optimization Methods

Several FE processes can be optimized. The computa-
tional resources, which come available in this way, are
used to fulfil the mesh size criteria at higher frequencies.
The most obvious optimization techniques are the r-, h-
and p-refinement and their combinations (see a.o. [43–47]).
They usually require a posteriori error estimators for which

Ainsworth and Oden [48] and Zienkiewicz [49] give general
overviews. Oden et al. [50] focus more on their application
in acoustics. An adaptive approach improves the efficiency
further by refining the regions with largest errors more.

Another process, which can be optimized, is the FE
model generation. This process includes a large number of
integral evaluations, which are usually performed numeri-
cally. A reduced numerical integration scheme obviously re-
sults in a cost reduction. However, this cost reduction is only
marginal since the FE model generation is responsible for
only a small part of the overall computational costs. The ma-
jor advantage of reduced integration is its positive influence
on the numerical dispersion. Thompson and Kunthong [51]
and Guddati and Yue [52], for example, have recognized this
effect and they make even a more efficient use of it by se-
lecting non-conventional integration point positions.

Solving the system of algebraic equations consumes most
of the computing time. These systems consist of huge but
sparsely populated matrices due to the mesh requirements
at high frequencies. The classical Gaussian elimination and
factorization schemes are not applicable anymore. The use
of skyline solvers is inevitable. Direct skyline solvers are
available [53], but the sparse iterative solvers become more
and more standard in large scale numerical analyses [54].
These iterative solvers are computational more efficient, but
they lack robustness and their performance is highly prob-
lem dependent. However, the mathematical community con-
tinuously improves the iterative solvers and makes them
generally applicable.

3.4.2 Domain Decomposition Methods

Despite the continuous growth of the available computa-
tional capacity and despite the improvement of the sparse
iterative solvers, the FE models may still be too large for
real-life acoustic problems in e.g. automotive or aerospace
engineering. Domain decomposition methods allow one to
tackle these problems based on a divide and conquer prin-
ciple. That is, it is more efficient to solve a large number of
small problems than to solve a single huge problem. An ad-
ditional advantage of this strategy is that it is well suited for
parallel implementation.

The component mode synthesis [55] is a well established
tool in the field of structural dynamics. It consist of subdi-
viding a structure into several components. The component
FE models are reduced using a small basis of Ritz vectors.
The reduced models are assembled and solved for the over-
all reduced set of degrees of freedom. The Craig-Bampton
method is probably the most popular component mode syn-
thesis method. It requires a.o. a Ritz vector for each FE node
on the common interface between components. This is dis-
advantageous for the acoustic problems considered here be-
cause (i) the interfaces are not discrete coupling points but
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lines (2D) or surfaces (3D) and (ii) the number of interface
nodes grows with frequency in order to satisfy the mesh re-
quirements.

This drawback of the component mode synthesis is over-
come by the automated multi-level substructuring method
[56, 57]. It follows a procedure which automatically sub-
divides the FE model (i) in a large number of substruc-
tures (ii) on multiple levels (iii) based on the sparsity of
the model matrices. A large number of small eigenvalues
needs to be solved in this way. Consequently, this multi-level
method is computational far more efficient than the compo-
nent mode synthesis and it is inherently better suited for par-
allelization. Kropp and Heiserer [58] and Stryczek et al. [59]
have applied this method successfully for solving real-life
structural-acoustic problems in automotive engineering.

Schwartz alternating procedures incorporate the domain
decomposition principles directly in the sparse iterative
solvers [54, 60, 61]. The problem domain is subdivided into
(non-)overlapping subdomains. Schwartz alternating proce-
dures follow a two-level strategy to solve the correspond-
ing subproblems. On the local level, each subproblem is
solved using the intermediate pressure solutions of neigh-
bouring subdomains as essential boundary conditions. On
the global level, a reduced problem is solved iteratively for
the unknown interface degrees of freedom.

The Schwartz alternating procedures have been applied
successfully in many engineering disciplines, but the in-
definiteness of the Helmholtz equation poses serious chal-
lenges on their performance [62]. Instead of enforcing es-
sential boundary conditions on the local level, Farhat and
Roux [63] propose the use of the Lagrange multiplier tech-
nique to interconnect the non-overlapping subdomains. This
results in the so-called finite element tearing and intercon-
necting method. The overall problem is described by the re-
duced set of Lagrange multipliers and solved iteratively on
the global level. The method has proven to provide reliable
results if (i) proper Lagrange multipliers are selected, which
regularize the local problems, and if (ii) the global problem
is preconditioned properly. The finite element tearing and
interconnecting method has been applied successfully a.o.
in acoustics [62, 64–66] and in structural-acoustics [67].

3.4.3 Stabilized Methods

The stabilized FE methods belong to the first class of meth-
ods which aim at reducing the artificial dispersion. They
modify the weak problem formulation for that purpose such
that it becomes unconditionally stable [68]. This is achieved
by including additional residual terms in the bilinear part
a(u, p̂) of the weak problem formulation in (14), which is
given by

a(u, p̂) = −ω2
∫

�e

u
1

c2
p̂ d� + jω

∫
�e

Z

u
ρ

Z̄
p̂ d�

+
∫

�e

(∇u)T (∇p̂)d�. (25)

For example, the Galerkin least-squares (GLS) method
[69, 70] includes the residual on the Helmholtz equation in
this way and the Galerkin gradient least-squares (G∇LS)
method [71, 72] the gradient of this residual

aGLS(u, p̂) = a(u, p̂) +
∫

�e

(�u − k2u)τ(�p̂

+ k2p̂ + jρωqδ(r, rq))d�, (26a)

aG∇LS(u, p̂) = a(u, p̂) +
∫

�e

(∇(�u − k2u))T τ∇(�p̂

+ k2p̂ + jρωqδ(r, rq))d�, (26b)

where τ represents an algebraic design parameter. These ad-
ditional residual terms result in a modification of the model
matrix (−ω2M + jωC + K) of the FE model in (16). The
optimal design parameter τopt follows from a dispersion
analysis. The selection of τopt eliminates the dispersion er-
ror completely in the 1D case. Unfortunately, this is not the
case for higher-dimensional problems. The selection of τopt

can only eliminate the dispersion error in certain preferred
directions. If the exact solution does not include large con-
tributions of wave components in those preferred directions,
then the application of this type of stabilization scheme has
less influence on the overall accuracy.

The quasi-stabilized method [73, 74], on the other hand,
minimizes the dispersion error over all directions. This is
achieved by modifying the coefficients of the dispersion re-
lation, i.e. A0, A1 and A2 in (18) and (22). Numerical ex-
periments on the 2D Helmholtz equation with a regular FE
mesh illustrate that the quasi-stabilized method outperforms
the Galerkin least-squares method.

The local mesh-dependent augmented Galerkin method
[75] is even more enhanced in the sense that it considers
the numerical dispersion as a position dependent acoustic
property. An artificial anisotropic dispersion is introduced to
suppress the numerical dispersion and thereby restoring the
exact propagation characteristics. The method outperforms
the Galerkin least-squares method applied to 2D acoustic
problems with non-uniform rectangular meshes. However,
further research is needed to extend the method for arbitrar-
ily distorted meshes.

3.4.4 Generalized Methods

The generalized methods are based on the partition-of-
unity method [76, 77]. They aim at reducing the artificial
dispersion by incorporating a priori knowledge about the
global, short-wavelength behaviour in the local approxi-
mation field. The application of these new approximations
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in the FE framework results in a modified model matrix
(−ω2M + jωC + K) of the FE model in (16).

In case of the partition-of-unity FEM [78–81], a priori
knowledge is incorporated by replacing the local approxi-
mation in (13a) by a linear combination of free-space solu-
tions �b(r) multiplied by the conventional polynomial basis
functions Na(r)

p̂(r) =
na∑

a=1

Na(r)pe
a

→ p̂(r) =
na∑

a=1

Na(r)
nb(a)∑
b=1

�b(r)qe
ba, ∀r ∈ �, (27)

where qe
ba represent the unknown degrees of freedom, which

are generally not nodal pressure values. The use of the ba-
sis functions Na(r) localizes the global, short-wavelength
behaviour and it guarantees the inter-element pressure con-
tinuity. The free-space solutions, which describe the short-
wavelength behaviour, have been selected from the set of

generalized harmonic polynomials:

e±j nθJn(kr), n = 0,1,2, . . . (28a)

and plane wave functions:

ejkr cos(θ−θn), n = 1,2, . . . , θn ∈ [0,2π]. (28b)

In these relations, r = (r, θ) represents the polar coordinate
and Jn the Bessel functions of the first kind. The applica-
tion of the latter set of plane wave functions for the 2D
Helmholtz equation with a regular FE mesh shows an im-
proved computational efficiency compared with the stabi-
lized methods. However, the treatise of essential boundary
conditions and the numerical integration require special at-
tention. Furthermore, the set of algebraic equations becomes
ill-conditioned for a large number of free-space solutions
�b(r). These computational issues hold generally for all
partition-of-unity based methods.

Another member of this class is the element-free Galerkin
method [82–85]. It is based on the moving least-squares
method [86] and, therefore, it forms a specific instance of
the partition-of-unity [77]. A weighted sum of a number of
free-space solutions approximates the pressure in the neigh-
bourhood of the node at position ri

p̂(r) =
nb∑

b=1

�b(r)αb(r), ∀‖r − ri‖ ≤ Di. (29)

Di represents the domain of influence of node i, which is
a measure for the size of the neighbourhood surrounding
node i. The coefficients αb(r) are position dependent too.
They are obtained by a least-squares fit of the pressure ap-
proximation p̂ for all ni nodes, which are scattered over the

acoustic domain �. The pressure approximation can be ex-
pressed as

p̂(r) =
ni∑

i=1

�i(r)pi, ∀r ∈ �, (30)

where �i(r) represents the globally defined basis function
associated with node i, which contains knowledge about
the short-wavelength behaviour, and pi is the corresponding
nodal degree of freedom. Numerical experiments show that
the level of artificial dispersion obtained with the element-
free Galerkin method is comparable with the levels obtained
with the quasi-stabilized method.

3.4.5 Multi-Scale Methods

The multi-scale or multi-grid methods aim at reducing the
artificial dispersion by incorporating a priori knowledge
about the short-wavelength behaviour in the local approx-
imation field similar to the generalized methods. How-
ever, the multi-scale methods follow an additive approach
rather than the multiplicative approach to do so. References
[87, 88] provide a general framework for the multi-scale
methods, which is the variational multi-scale method de-
tailed below.

The basic assumption of the variational multi-scale
method is that the exact solution of the acoustic problem
described by (2) and (3) is given by

p(r) = p̂(r) + p′(r), ∀r ∈ �. (31)

This relation represents the direct sum of the coarse-scale
solution p̂(r), for which the classical FE solution of (13a) is
chosen, and the fine-scale solution p′(r), which is solved
analytically. The fine-scale solution p′(r) describes the
global, short-wavelength behaviour. It is defined for ele-
ment interiors only, i.e. it vanishes on the element bound-
aries

⋃ne

e=1 ∂�e . The weak form of the acoustic problem is
decomposed into the following two subproblems

coarse-scale problem: a(u, p̂) + a(u,p′) = b(u), (32a)

fine-scale problem: a(u′, p̂) + a(u′,p′) = b(u′), (32b)

where a(v,p) and b(v) represent the bilinear and the linear
operator, which are given by the following relations in case
of the acoustic problem

a(v,p) = −ω2
∫

�

v
1

c2
p d� + jω

∫
�Z

v
ρ

Z̄
p d�

+
∫

�

(∇v)T (∇p)d�, (33a)

b(v) = jω

∫
�

vρqδ(r, rq)d� − jω

∫
�v

vρv̄nd�. (33b)
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Furthermore, the arbitrary test function u′ = u′(r) in (32b)
belongs to the same solution space as the fine-scale solution
p′(r). The fine-scale problem is solved analytically, which
results in an expression for the fine-scale solution as func-
tion of the coarse-scale residuals R(p̂) on the Helmholtz
equation and the boundary conditions

p′ = M ′(R(p̂)), (34)

where M ′ is a non-local integral operator. The substitution
of the fine-scale solution in the coarse problem results in the
following weak problem formulation for the coarse scales

a(u, p̂) + a(u,M ′(R(p̂))) = b(u) (35)

which exactly accounts for the non-local effect of the short-
wavelength behaviour. Recall that the underlying fine-scale
solution vanishes on the element boundaries. Consequently,
the weak problem in (35) can be expressed on element level
resulting in an expression which resembles the weak prob-
lem formulation of the stabilized methods. This indicates
that the two classes of methods are related.

In general, it is difficult to obtain a closed-form ex-
pression for the non-local operator M ′. Therefore, several
multi-scale methods have been proposed, which differ in
the way they approximate the non-local operator, i.e. how
they approximate the fine-scale solution p′(r) in (32b). In
the residual-free bubble method [89, 90], the fine-scale solu-
tion consists of a weighted sum of residual-free bubble func-
tions. These bubble functions are solutions of the fine-scale
problem associated with the basis functions Na(r) of the FE
approximation on the coarse scales.

Since the set of bubble functions needs to be computed
for each element, the residual-free bubble methods is com-
putationally demanding. The computational costs are re-
duced substantially if a set of alternative bubble functions
is used, which is computed only once per frequency of in-
terest for a single parent element [91]. These alternative bub-
ble functions are not exact solutions of the fine-scale prob-
lem, but they form merely a hierarchical extension of the
coarse-scale approximation space. Numerical experiments
show that the same level of accuracy is reached as the FEM
but for frequencies which are three times higher.

Oberai and Pinsky [92] solve the fine-scale problem
(32b) approximately by application of Green’s functions.
The derived multi-scale method shows a super convergent
behaviour in the 1D case. However, for a 2D problem with
a plane wave as exact solution, the accuracy depends on the
direction of the wave propagation. This deficiency holds for
all multi-scale methods based on a fine-scale solution, which
vanishes on the element boundaries.

In the discontinuous enrichment method [93, 94], the
above restriction on the fine-scale solution is somewhat re-
laxed. This allows the use of a free-field solution of the

Helmholtz equation �b(r) as fine-scale basis functions, sim-
ilar to the ones used by the generalized methods, which do
not vanish on the element boundaries. Consequently, the di-
rect sum of the FE approximation p̂(r) and the fine-scale
solution p′(r) may violate the pressure continuity across
element boundaries (non-conforming elements). The appli-
cation of the Lagrange multiplier technique enforces the
pressure continuity weakly. Numerical experiments show
that the discontinuous enrichment methods suffers less from
pollution errors than the classical FEM. Furthermore, the
involved models are not as ill-conditioned as partition-of-
unity FE models of comparable numerical accuracy.

4 Boundary Element Method

4.1 Basic Formulations

The boundary element method (BEM) is a numerical predic-
tion method which is often applied for solving engineering
problems [5]. Amongst others, the method is also well es-
tablished for the solution of acoustic problems [6, 7]. Unlike
the FEM, which makes direct use of the Helmholtz differen-
tial equation (2), the BEM starts from a boundary integral
formulation for constructing a numerical model. Depending
on the choice of the integral formulation, (6) or (9), a di-
rect boundary element (BE) or an indirect BE formulation is
obtained. This section outlines the basic formulation of the
both approaches.

4.1.1 Direct Boundary Element Method

The direct BEM is based on the direct boundary integral (6)
and, hence, can be used for the solution of interior acoustic
problems or exterior acoustic problems with a closed bound-
ary surface �f . The method follows a two-step procedure.

In the first step the pressure and normal velocity distri-
butions on the closed boundary surface �f are determined.
In a similar way as in the FEM, the closed boundary surface
�f is discretized into a number of small subsurfaces �e such
that �f =⋃ne

e=1 �e with �e ∩ �g = 0, ∀e 
= g. These sub-
surfaces are referred to as boundary elements. Within each
boundary element, the distributions of the pressure p(r) and
normal velocity vn(r) are approximated by a linear combi-
nation of polynomial basis functions

p(r) ≈ p̂(r) =
na∑

a=1

Ne
a(r)pe

a, ∀r ∈ �e, (36a)

vn(r) ≈ v̂n(r) =
na∑

a=1

Ne
a(r)ve

na, ∀r ∈ �e. (36b)

With na the number of nodes associated with boundary ele-
ment �e . Based on the element shape functions Ne

a , which



Trefftz-Based Methods for Time-Harmonic Acoustics 355

are locally defined within one boundary element �e , some
global shape functions Na may be constructed, which are
defined in the entire boundary surface �f . In this way, global
boundary variable expansions may be defined as

p(r) ≈ p̂(r) = N(r)p, ∀r ∈ �f , (37a)

vn(r) ≈ v̂n(r) = N(r)vn, ∀r ∈ �f . (37b)

The contribution factors pe
a and ve

na , stored in the (nb × 1)
column vectors p and vn, respectively, with nb the total
number of boundary surface nodes, form the unknown de-
grees of freedom. The corresponding global basis functions
Na are stored in the (1 × nb) row vector N. Note that, al-
though this is assumed in (36), the shape functions for the
expansion of the boundary surface pressure and the bound-
ary surface normal velocity do not have to be the same.

The determination of the unknown degrees of freedom
is commonly based on a collocational scheme. In this
scheme, the direct boundary integral formulation (6), using
the boundary variable expansions (36), is evaluated for po-
sitions r, which correspond to the locations of the nb nodes
in the boundary surface discretization. This results in the
following matrix equation

Ap = jρωBvn, (38)

with matrices A and B the (nb × nb) direct BEM system
matrices. This linear system of equations has twice as many
unknowns as it has equations. Since the boundary condi-
tions (3) impose either a prescribed pressure, a prescribed
normal velocity or a prescribed normal impedance relation
between both boundary variables, at each node either the
pressure value pe

a or the normal velocity value ve
na or their

normal impedance relation is known a priori. Hence, the
number of unknowns reduces with nb, and the remaining nb

unknown boundary variables may be determined by solution
of the system.

In the second, post-processing step, the pressure in any
point of the interior or exterior acoustic domain is obtained
from the direct boundary integral formulation (6), using the
surface results from the first step. In this way, the approxi-
mation for the pressure at a certain point r ∈ �{i/e}\�f is

p(r) = Cp + Dvn. (39)

4.1.2 Indirect Boundary Element Method

The indirect BEM is based on the indirect boundary inte-
gral (9) and, hence, can be used for the solution of combined
interior/exterior acoustic problems or exterior acoustic prob-
lems with an open boundary surface �f . Identical the direct
BEM, the indirect BEM follows a two-step procedure.

In the first step, the boundary surface variables, being the
single and double layer potentials (10), are determined. In a

similar way as in the direct BEM, the closed boundary sur-
face �f is discretized into a number of boundary elements.
Within each boundary element, the single and double layer
potential σ(r) and μ(r) are approximated by a linear com-
bination of locally defined polynomial basis functions. The
construction of global shape functions allows to define the
following global boundary variable expansions

σ(r) ≈ σ̂ (r) = N(r)σ , ∀r ∈ �f , (40a)

μ(r) ≈ μ̂(r) = N(r)μ, ∀r ∈ �f . (40b)

With σ and μ two (nb × 1) column vectors, storing the un-
known shape function contributions. The (1 × nb) row vec-
tor N stores the corresponding global shape functions. Note
that, although this is assumed in (40), the shape functions
for the expansion of the single and double layer potential do
not have to be the same.

The use of a collocational approach to determine the un-
known degrees of freedom, as selected in the direct BEM,
becomes much more difficult, since the evaluation of the
indirect boundary formulation (9) for discrete positions r
on the boundary �f requires the numerical evaluation of
Hadamard finite part integrals [26]. Therefore, another so-
lution technique is used, which relies on a variational for-
mulation and which leads to regular integrals. Minimization
of the functional involved with the variational formulation
results in the following matrix equation

[
B C

CT D

]{
σ

μ

}
=
{

fσ
fμ

}
, (41)

with matrices B, C and D the (nb ×nb) indirect BEM system
matrices and with fσ and fμ the (nb × 1) right-hand side
vectors. Since, from the imposed boundary conditions (3), at
each node either the single layer potential, the double layer
potential or a relation between both boundary variables can
be derived a priori, the number of unknowns reduces to nb

boundary variables, which may be determined by solution
of the system.

In the second, post-processing step, the pressure in any
point of the interior or exterior acoustic domain is obtained
from the indirect boundary integral formulation (9), using
the surface results from the first step. In this way, the approx-
imation for the pressure at a certain point r ∈ �{i/e}\�f is

p(r) = Aσ σ + Aμμ. (42)

4.2 Comparison with the Finite Element Method

Since the BEM and the FEM are based on a completely
different modelling approach, both methods yield numeri-
cal models with very different characteristics. Due to the
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application of a boundary integral formulation, a BE ap-
proach only discretizes the boundary of the considered prob-
lem such that the numerical BE models are smaller than cor-
responding FE models. However, the BE system matrices
are fully populated with complex and frequency dependent
coefficients and result from more complicated numerical in-
tegrations, as compared to the sparsely populated FE sys-
tem matrices which can be decomposed into a number of
frequency independent submatrices whose coefficients re-
sult from simple integrations of polynomial functions. Since
the boundary integral formulations, applied in the BEM, are
available as analytical expressions, there is no additional ac-
curacy decrease for derived acoustic variables, unlike with
the FEM, where the polynomial shape functions, which ap-
proximate the fundamental acoustic field (most commonly
the acoustic pressure), result in polynomial functions of
lower order to approximate the higher order derived vari-
ables. Furthermore, in contrast with the FEM, the BEM can
easily handle problems with unbounded acoustic domains,
since the Sommerfeld radiation condition is inherently satis-
fied. Finally, like the FEM (see Sect. 3.3), the BEM also suf-
fers from numerical pollution. As a result, the BE discretiza-
tion also needs to be refined with increasing frequency [95].

It is clear that assembly of a BE model is more time con-
suming as compared to the fast assembly of a FE model.
Whereas in a FE analysis, the bulk part of the computational
efforts is spent in solving the system of equations, a major
part of the computational efforts in a BE analysis is needed
for constructing the model. Depending on the size of the
models, it is possible that the solution time for a densely
populated BE model is lower that the solution time of an
associated, but much larger, sparsely populated FE model.
However, despite the possibly lower solution time, the BEM
cannot counterbalance the increase in construction time. In
conclusion, the BEM can hardly compete with the FEM for
solving interior acoustic problems [96]. However, the BEM
does become an efficient alternative for tackling problems in
unbounded domains. Nevertheless, the practical use of both
the FEM and the BEM is restricted to low-frequency appli-
cations.

4.3 Enhancements and Extensions

A major disadvantage of the BEM is the associated fully
populated system matrix. This section briefly discusses
some enhancements and extensions of the BEM which pur-
sue decreasing of the density of the matrices, retaining a
sparse structure, allowing a faster calculation of the coeffi-
cients and faster solution of the model. The enhancements
and extensions are captured in three categories:

1. The process optimization methods,
2. The generalized methods and
3. The multipole methods.

4.3.1 Process Optimization Methods

In conventional direct BEM, the pressure response is gov-
erned by an integral equation, relating the pressure anywhere
in the domain to a pressure and normal velocity distribution
on the boundary. As a result, the obtained system matrix is
fully populated. For acoustic radiation problems the velocity
distribution over the boundary is a priori known. Rayleigh
methods [97, 98] consider the vibrating boundary as a col-
lection of independently vibrating rigid pistons, whose am-
plitude of vibration is determined by the applied boundary
conditions. As a result the pressure in a point located in the
acoustic problem domain can be determined as a single in-
tegral over the boundary of the piston velocity and an appro-
priate (singular) source formulation

p(r) =
∫

�f

vn(ξ)ϒ(r, ξ)d�(ξ) (43)

with vn(ξ ) the piston velocity and ϒ(r, ξ) the source for-
mulation. Depending on the applied approximation, ϒ can
be the free-field solution of a point source (7), the solution
of a point source in a semi-infinite environment, a collec-
tion of free-field solutions taking into account reflections,
etcetera. In this way, no large numerical matrix equation is
constructed or needs to be solved. However, Rayleigh meth-
ods lose accuracy at low frequencies and close to the bound-
ary.

The high-frequency BEM [97] is an alternative approx-
imating method which assumes the radiation impedance at
the boundary surface to be approximately the same as the
ρ c characteristic impedance of the medium. For response
points where kr becomes very large, with k the wave num-
ber and r the distance to the boundary, the high-frequency
BEM develops into a Rayleigh method.

The lumped parameter BEM [99, 100] is a BEM which
offers significant gains both in assembly and solution speed.
The concept of the method is to approximate the domain
boundary conditions in a special way. Both the normal ve-
locity field and the pressure field are characterized by a sin-
gle lumped parameter for each discrete boundary element.
The physical basis for this approach is given by Fahnline
and Koopman [101]. The lumped parameter BEM applies a
dual set of shape functions, namely higher-order functions
to describe the geometry and constant functions to approxi-
mate the boundary variables.

4.3.2 Generalized Methods

Generalized BEMs incorporate a priori known information
into the formulation, comparable to the generalized FEMs
(see Sect. 3.4.4).

Perrey-Debain et al. [102] and Perrey-Debain et al. [103]
developed an extension to the conventional direct BEM
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which is called the wave boundary element method. Using
ideas arising from the partition-of-unity FEM, the underly-
ing wave behaviour of the solution is incorporated into the
formulation of the boundary elements. As a result each el-
ement may span a larger area of the boundary than a con-
ventional BE. The wave boundary element method reduces
the size of the system matrices rather than attempting to
introduce sparsity. The basic idea is that the conventional
polynomial BE shape functions are multiplied with plane
wave functions. The number of plane waves and their direc-
tion may be chosen freely. Evenly distributed directions are
most commonly applied, but they may be irregularly distrib-
uted if some knowledge about a prevailing wave direction is
available. Just like with the partition-of-unity FEM and other
methods that apply plane wave functions, the presence of a
large number of plane waves causes the conditioning of the
system to degrade.

A recently developed class of boundary element methods
is the so-called wave number independent methods. These
methods try to adapt the conventional BEM so that the pre-
diction accuracy obtained with a given discretization be-
comes independent of frequency, or at least that the com-
putational costs grow with frequency at a sublinear, namely
logarithmic, rate. The idea is to enrich the BE shape func-
tions by incorporating the known asymptotic behaviour of
the solution at high frequencies. The integrands involved
with the new BE approaches may be decomposed into a
highly oscillating factor and a smooth factor. Depending
on the numerical scheme applied to incorporate the bound-
ary conditions, single or double integrals have to be solved.
Chandler-Wilde et al. [104] apply a weighted residual for-
mulation and end up with highly oscillatory double inte-
grals. Arden et al. [105] describe a similar method, adapting
a collocational scheme and having the advantage that only
highly oscillatory single integrals have to be evaluated. In
this respect, the work of Huybrechs and Vandewalle [106] is
mentioned as a cost efficient method for evaluation of sin-
gle integrals and Huybrechs and Vandewalle [107] for the
efficient evaluation of multi-dimensional highly oscillatory
integrals. Evaluation of both the weighted residual approach
and the collocational approach on 2D scattering problems
by convex polygons, shows that both methods indeed ex-
hibit only a logarithmic increase in computational cost as
frequency increases. Huybrechs and Vandewalle [108] and
Huybrechs [109] extend the collocational method by intro-
duction of very effective quadrature rules for the oscillatory
integrals and obtain a sparse discretization matrix for the
problem. It is found that matrix entries are non-zero only if
at least one quadrature point exists that lies in the support of
the basis function. Therefore, the number of non-zero points
depends on the size of the supports of the basis functions. If
all basis functions are local, then the structure of the matrix
will be sparse. At the moment, the wave number indepen-

dent BE methods are restricted to convex obstacle scatter-
ing problems. For non-convex obstacles, the asymptotic be-
haviour at high frequencies is not available in an applicable
form.

4.3.3 Multipole Methods

The key idea of the fast multipole BEM [110–116] is to uti-
lize two formulations for the fundamental Green’s kernel so-
lution, one in the near-field and one in the far-field. The ef-
fect of sources far away from a field point apply a grouped
multipole expansion, whereas for nearby sources standard
BEM evaluations are used. A multi-level approach is applied
in that the discretized boundary surface is fitted to a binary
cluster tree. A cluster is a collection of boundary elements
which are located within a tolerance range from the cluster’s
centre. The basic idea is that only neighbouring clusters are
considered to be in the considered cluster’s near-field. These
contributions are computed directly by standard BEM eval-
uations. The children of the considered cluster’s parent clus-
ter are added to a so-called ‘interaction’ set and appropri-
ate multipole evaluations are performed. This procedure is
repeated upwards until the top of the tree is reached, after
which the determined contributions are passed downwards
until they reach the lowest level. On the lowest level, the
results are recovered for each cluster. In this way, the mul-
tipole BEM algorithm solves the problem with a computa-
tional cost that depends quasi linearly on the number of un-
knowns, i.e. a complexity of N logN is obtained instead of
N2 with conventional BEM.

It is stated by various authors that the developments from
the generalized methods may be combined with a multi-
level multipole approach, even further optimizing the mod-
elling procedure.

5 Trefftz-Based Method

5.1 Basic Formulations

5.1.1 Origin

The discussion of the enhancements and extensions of both
the FEM and the BEM has revealed that the introduction of
a priori knowledge of the exact solution improves the com-
putational efficiency of these methods substantially. Already
in 1926, Trefftz [17] proposes the use of this a priori knowl-
edge in the definition of approximate solutions. His approx-
imate solutions satisfy the governing domain equations but
violate the boundary conditions. Originally, Trefftz has in-
troduced his approach as a counterpart for the Rayleigh-Ritz
approach in order to obtain an error bound on the Rayleigh-
Ritz prediction for a potential problem. Only half a century
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later, researchers have picked up the idea of Trefftz again
as they recognize its potential advantages in numerical pre-
diction methods. This has led to a class of numerical meth-
ods which are generally called Trefftz-based methods. The
reader is referred to Jirousek and Wróblewski [18] for a
historical overview of the development of the Trefftz-based
methods, while Kita and Kamiya [19] provide a detailed
overview of most accepted Trefftz-based methods.

In the mid-1990s, the Trefftz-based methods have made
their entry in the field of computational acoustics. One
of the first attempts to apply this method to the homoge-
neous Helmholtz equation has been reported by Cheung
et al. [117]. The original approach of Trefftz is detailed in
that publication for the calculation of wave forces on off-
shore structures and is reformulated here for acoustics. The
purpose of this outline is merely to illustrate the basics of the
Trefftz-based method. Subsequent sections provide a more
detailed survey of different Trefftz-based methods.

5.1.2 Indirect Formulation

Cheung et al. [117] consider the Helmholtz problem for
an unbounded domain. The Sommerfeld radiation condition
in (4) or (5) applies in order to model the far-field at infinity
�∞ correctly

2D: lim
r→∞

√
r

(
∂p(r)
∂r

+ jkp(r)
)

= 0,

3D: lim
r→∞ r

(
∂p(r)
∂r

+ jkp(r)
)

= 0.

Neumann boundary conditions have been specified on
the remaining boundaries �v . The approximate solution
p̂(k, r) is selected from the following set of complete so-
lutions [118]

2D: p(k, r) = a0 H
(1)
0 (kr)

+
∞∑

m=1

(
am H(1)

m (kr) cos(mθ)

+ bmH(1)
m (kr) sin(mθ)

)
, (44a)

3D: p(k, r) =
∞∑

m=1

m∑
q=−m

(
amqh(1)

m (kr)P
q
m(cos θ)

)
, (44b)

which are defined in cylindrical coordinates r = (r, θ) for
the 2D case and in spherical coordinates r = (r, θ,ψ) for
the 3D case. In (44), the functions H

(1)
m , h

(1)
m and P

q
m are

the Hankel functions of the first kind, the spherical Hankel
functions of the first kind and the associated Legendre poly-
nomials, respectively.

The approximate solution p̂ is obtained by truncating the
set of complete solutions in (44). It can be expressed as fol-
lows

p̂(k, r) =
nb∑

b=1

�b(k, r)αb = �(k, r)α, ∀r ∈ �, (45)

where �b(k, r) represent the wave functions selected from
the complete set of solutions and αb represent the unknown
contribution factors. The wave functions �b are collected in
the row matrix � and the corresponding contribution factors
are stored in the vector α. An auxiliary matrix � is defined
here, which simplifies the expressions for the Trefftz model
matrices and vectors to come

�(rb, k) = j

ρω

∂

∂n
�(rb, k), ∀rb ∈ ∂�. (46)

The approximation p̂ satisfies the homogeneous Helmholtz
equation and the Sommerfeld radiation condition a priori.
Only the violation of the Neumann boundary conditions
needs to be enforced to zero in an integral sense by appli-
cation of the weighted residual approach
∫

�v

u

(
j

ρω

∂p̂

∂n
− v̄n

)
d� = 0. (47)

A Galerkin approach is followed similar to the FEM, i.e.
each basis function �b is selected as weighting function.
Together with the substitution of the approximation in (47),
this results in a set of nb algebraic equations of the following
Trefftz boundary integral model

A(k)α = b(k) (48a)

with the Trefftz system matrix:

A(k) =
∫

�v

�(k, r)T �(k, r)d� (48b)

and the Trefftz boundary vector:

b(k) =
∫

�v

�(k, r)T v̄n d�. (48c)

The outlined method is according to the original idea of Tre-
fftz. The unknown degrees of freedom in the solution vector
α do not represent physical field quantities. Therefore, this
version is a member of the family of the indirect Trefftz-
based methods.

5.1.3 Direct Formulation

In addition to the indirect Trefftz-based methods, a direct
version of the method exists where the unknown degrees
of freedom do represent physical boundary field quantities.
Cheung et al. [117] have applied the direct Trefftz-based
method for the same unbounded Helmholtz problem. This
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method is also explained briefly here for acoustics. The main
difference with the indirect version is that the approximate
solution p̂ is not selected from the set of complete solu-
tions. Therefore, this approximation violates the homoge-
neous Helmholtz equation in the unbounded domain �, the
Sommerfeld radiation condition at infinity �∞ and the Neu-
mann boundary condition on �v . The equation of motion
(1b) is however satisfied. The following weighted residual
formulation enforces the involved errors to zero in an inte-
gral sense

∫
�

u(�p̂ + k2p̂)d� +
∫

�∞
jρωu

(
j

ρω

∂p̂

∂n
− p̂

ρc

)
d�

+
∫

�v

jρωu

(
j

ρω

∂p̂

∂n
− v̄n

)
d� = 0. (49)

This relation can be rewritten as follows using the Green’s
second identity formula

∫
�

p̂(�u + k2u)d� +
∫

�∞
jρωp̂

(
j

ρω

∂u

∂n
− u

ρc

)
d�

−
∫

�v

(
p̂

∂u

∂n
+ jρωuv̄n

)
d� = 0. (50)

The first two terms in this relation vanish for the following
choice of the weighting function

u(k, r) =
nb∑

b=1

�b(k, r)βb = �(k, r)β, ∀r ∈ �, (51)

where �b(k, r) represent wave functions selected from the
complete set of solutions in (44) and βb represent arbitrary
contributions stored in the vector β . Note that the approxi-
mate solution p̂ = p̂(k, r) needs only to be defined on the
boundary �v similar to the direct BEM for which the fol-
lowing FE approximation is well suited

p̂(r) = p̂(rb) = N(rb)p, ∀rb ∈ �v. (52)

The substitution of u and p̂ in (50) and the requirement that
the resulting relation should hold for all possible contribu-
tion vectors β results in the direct Trefftz boundary integral
model

A(k)p = b(k) (53a)

with the direct Trefftz system matrix:

A(k) =
∫

�v

�(k, r)T N(rb)d� (53b)

and the direct Trefftz boundary vector:

b(k) =
∫

�v

�(k, r)T v̄n d�. (53c)

This boundary integral model is solved for the unknown de-
grees of freedom in the solution vector p, which, contrary to
the indirect version, represent physically meaningful quan-
tities, namely nodal boundary pressure values. Notice that
the direct Trefftz model in (53) is very similar to the direct
boundary element model. The discriminating feature is the
use of a set of complete functions instead of the use of fun-
damental solutions as kernel functions in the BEM.

The direct Trefftz-based method is not as popular as the
indirect version for acoustic applications. Apart from Che-
ung et al. [117], Masson et al. [119] and Sladek et al. [120],
further use of the direct method in acoustics is limited.
Therefore, the remainder of this review paper considers only
indirect methods. These are referred to as the Trefftz-based
methods from here onward.

To conclude this outline of the basics of the Trefftz-based
method, the duality of this method is emphasized [121]. On
the one hand, the Trefftz-based method is a boundary inte-
gral method similar to the BEM, however with the advantage
that it does not require the evaluation of singular integrals.
On the other hand, it is based on a similar weighted residual
formulation with trial and test functions as the FEM.

5.2 Survey of Trefftz-Based Methods

5.2.1 Classification

The classification of the Trefftz-based methods for time-
harmonic acoustics is not a straightforward task. The rea-
son for this originates mainly from its duality. Researchers
with different backgrounds have embraced the method and
have focused on a specific feature. Researchers with a FEM
background consider more often interior acoustic prob-
lems or near-field acoustic radiation problems. The bound-
ary of the acoustic domain can have a rather complex
shape which causes numerical difficulties. The number nb of
Trefftz basis functions �b in (45) must increase for accu-
racy reasons but at the same time the model becomes ill-
conditioned [122]. The numerical condition is kept under
control by subdividing the problem domain in smaller sim-
ply shaped subdomains similar to the FEM. This subdivision
principle characterizes the development of Trefftz-elements
[18, 19, 123, 124].

Researchers with a BEM background, on the other hand,
are often interested in exterior acoustic problems such as
scattering or radiation problems. They are more familiar
with the use of fundamental free-field solutions and poten-
tial layers as kernel functions. These functions can be con-
sidered as continuously distributed acoustic sources along
the finite part of the problem boundary �f = �p ∪ �v ∪ �Z .
Based on these ideas, the numerical condition of the Trefftz-
based model can also be kept under control by combining
different sets of complete functions rather than by following
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Fig. 9 Hybrid Trefftz finite
element

a domain subdivision procedure. The different sets of com-
plete functions correspond to multiple acoustic sources in
this case, which are distributed near the scatterer or radiator.
The use of multiple source solutions characterizes the class
of source simulation methods [125].

The Trefftz-based methods can also be classified by the
way the boundary conditions are enforced. Three well-
known strategies are used based on either (i) a collo-
cation scheme, (ii) a least-squares formulation or (iii)
a Galerkin approach. Furthermore, two large classes of
Trefftz-elements exist based on the treatment of the continu-
ity conditions between elements, namely the hybrid Trefftz-
elements and the frameless Trefftz-elements [18]. The wave
based method, which is detailed further on, belongs to the
class of the frameless Trefftz-elements. Actually, a third
approach is available to enforce the continuity conditions
along subdomain interfaces, namely the ultra-weak vari-
ational formulation [126]. This technique is unique in its
kind and it cannot be categorized by the other two classes of
Trefftz-elements.

Finally, some meshless methods have been developed
which are strongly related to the indirect Trefftz-based
method. They are not based on the moving least-squares
method [86] such as the element-free Galerkin method
(see Sect. 3.4.4) but they are based on radial basis func-
tions [127].

Based on the above discussion, the Trefftz-based meth-
ods are arranged in five categories, which are

1. The hybrid Trefftz finite element methods,
2. The frameless Trefftz finite element methods,
3. The ultra-weak variational formulation,
4. The source simulation methods and
5. The radial basis function methods.

The remaining part of this chapter reviews the stat-of-the-art
in these categories.

5.2.2 Hybrid Trefftz Finite Element Method

The hybrid Trefftz FEM is the first method in the class of the
Trefftz-element methods. It incorporates the indirect Trefftz-
based method in the FEM as the name already suggests. The
characteristic feature of the hybrid Trefftz FEM is that the
inter-element continuity is enforced by application of the

Langrange multiplier technique. The followed FE strategy
is summarized below for an interior acoustic problem with
Neumann boundary conditions [128].

1. The acoustic domain �i is subdivided in elements (�i =⋃ne

e=1 �e) and an auxiliary frame is placed along inter-
element interfaces �e

i (see Fig. 9).
2. Within each element �e, a truncated set of complete

functions approximates the exact solution and a simple
FE interpolation approximates the unknown frame vari-
able λ

p(r, k) ≈ p̂(r, k) = �(r, k)αe, ∀r ∈ �e, (54a)

λ(rb) ≈ λ̂(rb) = N(rb)λ
e, ∀rb ∈ �e

i , (54b)

where the vectors αe and λe contain the Trefftz and frame
degrees of freedom.

3. The following weighted residual formulation enforces
the errors on the boundary conditions and the continuity
conditions to zero
∫

�e
v

u

(
j

ρω

∂p̂

∂n
− v̄n

)
d�

+
∫

�e
i

u

(
j

ρω

∂p̂

∂n
− λ̂

)
d� = 0, (55a)

−
∫

�e
i

μ
(
p̂ − pi

)
d� = 0, (55b)

where u and μ represent arbitrary test functions and pi

is the pressure on the frame. The frame pressure pi is not
considered further since its contribution vanishes during
the assembly (conforming Trefftz-element).

4. The application of the Galerkin approach together with
the substitution of the pressure and frame approximation
results in the hybrid Trefftz-element

[
A CT

C 0

]{
αe

λe

}
=
{

b
0

}

with C(k) = −
∫

�e
i

N(rb)
T �(r, k)d� (56)

and with A and b similar to the definition in (48).
5. The assembly of all elements results in the hybrid Trefftz

FE model.



Trefftz-Based Methods for Time-Harmonic Acoustics 361

The hybrid Trefftz FEM outlined here is a so-called hy-
brid Trefftz traction FEM [18]. The term ‘traction’ refers
to the equivalent mechanical quantity for the normal veloc-
ity, which is selected as Lagrange multiplier. Several meth-
ods with other Lagrange multipliers have been developed
for other engineering disciplines, but this choice is one of
few reported in literature [129, 130]. Farhat et al. [129] de-
rive this method, which is named the discontinuous Galerkin
method, from the discontinuous enrichment method (see
Sect. 3.4.5) by omitting the coarse scale FE approximation
p̂ from the solution.

5.2.3 Frameless Trefftz Finite Element Method

Frameless Trefftz-elements impose the inter-element conti-
nuity conditions without the use of an auxiliary frame. A
general FE framework is followed which is again summa-
rized for an interior acoustic problem with Neumann bound-
ary conditions.

1. The acoustic domain �i is subdivided in elements (�i =⋃ne

e=1 �e).
2. The Trefftz-based approximation in (54a) is used

(p̂(r, k) = �(r, k)αe).
3. The application of a method dependent integral formula-

tion enforces the errors on the boundary conditions and
the continuity conditions to zero in an average way. This
is detailed below for three frameless Trefftz-elements.

4. The substitution of the Trefftz-based approximation and,
if necessary, of the test functions results in the general
expression for the frameless Trefftz-element

Aeαe + Cegαg = be. (57)

The model matrices and vector are method dependent.
They are detailed below.

5. The assembly of all elements results in the frameless Tr-
efftz FE model.

The first method of this type is the Trefftz least-squares FEM
introduced by Jirousek and Wróblewski [131] for a static
mechanical problem and it has been applied successfully to
the Helmholtz problem [132–134]. The method uses a least-
squares formulation to impose the boundary conditions and
the continuity conditions. The integral formulation in step 3
above results from the minimization of an error functional
F with the following general format

F =
∫

�e
v

βv

∣∣∣∣ j

ρω

∂p̂e

∂n
− v̄n

∣∣∣∣
2

d� +
∫

�e
i

(
βp

∣∣p̂e − p̂g
∣∣2

+ βv

∣∣∣∣ j

ρω

∂p̂e

∂n
− j

ρω

∂p̂g

∂n

∣∣∣∣
2)

d�, (58)

where the parameters βp and βv restore the homogeneity
of the physical dimensions. The general expressions for the

model matrices in (57) are given by

Ae =
∫

�e
i

βp(�e)H �e d� +
∫

�e

βv(�
e)H �e d�, (59a)

be =
∫

�e
v

βv(�
e)H v̄n d�, (59b)

Ceg =
∫

�e
i

(
−βp(�e)H �g + βv(�

e)H �g
)

d�, (59c)

where •H denotes the conjugate transpose operator. Notice
that the auxiliary matrix �g is defined for the outward nor-
mal vector n of the adjacent element �e.

A second frameless Trefftz method is the variational the-
ory of complex rays [135], which is a dedicated numeri-
cal method for the prediction of mid-frequency vibrations
which is able to yield numerical predictions with the same
level of accuracy in the mid-frequency range as the FEM,
however with substantially less computational efforts. The
considered problem structure must lend itself to partitioning
into homogeneous substructures. The first characteristic of
the approach is the use of a variational formulation of the
problem which enables application of a priori independent
approximations within each substructure. In other words, it
is not necessary for the approximations to satisfy a priori
the compatibility and the equilibrium conditions at the in-
terfaces between substructures. Instead, these conditions are
incorporated into the variational formulation. The second
characteristic of the variational theory of complex rays is the
introduction within each substructure of two-scale approxi-
mations, having a strong mechanical meaning. The solution
is assumed to be well-described as the superposition of an
infinite number of local vibration modes. These basic modes
(which can be interior modes, boundary modes or corner
modes and which represent wave solutions of various forms)
satisfy the equations of motion. In this way, the method is a
Trefftz method. The modes constitute two-scale approxima-
tions with a slowly varying scale and a rapidly varying scale.
Only the slowly varying scale, i.e. the polynomial part of the
solution, is discretized, while the rapidly varying scale, i.e.
the oscillating part of the solution, is taken into account an-
alytically. The unknowns are the discretized amplitudes of
the slowly varying parts. As a result, no fine discretization
is needed and the approximate solution is obtained from a
small, computationally efficient numerical model, as com-
pared to the large conventional FE models.

A third frameless Trefftz method is the Wave Based
Method (WBM) [136]. The WBM is similar to the Trefftz
least-squares FEM in that it also applies a direct coupling
of non-conforming fields used to describe the dynamic re-
sponse variables within (large) Trefftz elements. Two essen-
tial differences distinct both methods. First, there is the se-
lection of the applied functions. In the Trefftz least-squares
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FEM, plane wave functions [133] or Bessel functions [134]
are applied. In the WBM a combination of propagating and
evanescent waves is applied. A second difference is the
treatment of the boundary and continuity conditions. The
WBM adopts a weighted residual approach to enforce the
boundary and continuity residuals to zero. Unlike the Tre-
fftz least-squares FEM, where both pressure and (normal)
velocity continuity are enforced for all subdomains associ-
ated with an interface, the WBM only enforces one relation
for each subdomain adjacent to the interface. The WBM
has been successfully applied for many time-harmonic in-
terior acoustic problems [137], interior vibro-acoustic prob-
lems [20] and exterior vibro-acoustic problems [23]. It is
shown that the WBM exhibits an enhanced computational
efficiency as compared to conventional FEMs. As a result
the WBM is able to tackle problems at higher frequencies
than the FEM. In order to fully benefit from the WBM’s
computational efficiency, the considered subdomains should
have a relatively moderate geometrical complexity. This has
triggered investigations for a hybrid finite element-wave
based method [128, 138] in order to tackle problems with
more complex geometrical descriptions. In coupling the FE
domains with the WB domains, two strategies can be fol-
lowed. Either a direct coupling approach is applied, like is
used in the WBM itself, or an indirect coupling approach
is used, requiring the introduction of auxiliary frames like
with the hybrid Trefftz methods. The hybrid finite element-
wave based method has proven to be successful for several
interior acoustic problems [139] and interior vibro-acoustic
problems with an acoustic-acoustic coupling [24] and an
acoustic-structural coupling [140].

Sections 6 and 7 will elaborate on the basic formulations
of the WBM for 2D time-harmonic acoustic problems and
will illustrate the method’s enhanced computational perfor-
mance, as compared to conventional element based meth-
ods, for both interior and exterior acoustic problems.

5.2.4 Ultra-Weak Variational Formulation

The ultra weak variational formulation [126] is based on
a discretization of the problem domain into elements. A
boundary variable is introduced at the element boundaries
satisfying an alternative variational formulation, namely the
ultra weak variational formulation. It is shown that, if the
boundary variable satisfies the ultra weak variational for-
mulation, the associated field variable, representing the dy-
namic pressure, satisfies the Helmholtz equation. The field
variable is approximated by a set of plane wave functions.
Application of the Galerkin approach yields the ultra weak
variational formulation matrix equation. Interelement conti-
nuity is taken directly into account in the weak variational
formulation. In this way the ultra weak variational formula-
tion is comparable to the Trefftz least-squares FEM. Sim-

ilar to the finite element tearing and interconnecting ap-
proach, the ultra weak variational formulation applies alter-
native coupling conditions based on equivalent normal ve-
locities in order to overcome the ill-posedness of the conven-
tional pressure and normal velocity continuity [141]. Once
the boundary variable is identified from solution of the sys-
tem of equations, the associated field variable may be re-
covered. Preconditioning of the system of equations may be
useful when large-scale problems are solved using iterative
methods. Although the ultra weak variational formulation
promises to solve wave problems at reduced computational
cost, it may suffer from numerical instability.

5.2.5 Source Simulation Method

Regardless of the various names given to this class of
methods (e.g. superposition method, source simulation tech-
nique, equivalent source method, full-field method, null-
field method, equivalent sphere method, energy source sim-
ulation method, etcetera) they all apply the same modelling
principle. An interior/exterior acoustic boundary value prob-
lem is solved by positioning a number of sources exte-
rior/interior to the problem boundary (see Fig. 10). Enforce-
ment of the boundary conditions yields a numerical model,
which can be solved to obtain the source strengths of the ap-
plied sources. As all Trefftz methods, these methods yield
ill-conditioned matrices.

Koopmann et al. [142] discuss the basic approach of
putting a number of sources inside a radiating boundary
and enforcing the boundary conditions at the boundary via
a collocational scheme to determine their source strengths.
Enforcing the boundary conditions via a Galerkin weighted
residual formulation yields the so-called null-field equation
method [143], enforcement via a least-square formulations
yields the L2 method [144]. Ochmann [125] gives a com-
prehensive overview of the different ways to incorporate the
boundary conditions. Inside the radiating boundary, either
few source locations are chosen, but at every source loca-
tion a large number of sources with increasing order is used,
or a lot of simple (monopole) sources are employed at var-
ious locations. The latter is often denoted as the superposi-
tion method or the equivalent source method. However, no
general rules exists for the determination of the number of
sources, their locations and their orders, which turns out to
be very problem dependent. Ochmann [125] mentions that
for the one-point multipole method the convergence to the
true solution can be shown if the surface is assumed to be
a Lyapunov surface, which has the essential property that
the normal vector to the surface is uniquely defined at each
point, i.e. a smooth surface. Furthermore, numerical insta-
bilities can occur with some variants of the source simula-
tion technique. Ochmann [145] develops a new stabilized
variant of the source simulation technique, called the full-
field method, by using the exterior instead of the interior
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Fig. 10 Application of the
equivalent source method for
interior and exterior problems

Helmholtz integral equation. When unconjugated weighting
functions are applied, the method is denoted the full-field
method of the first kind, while the full-field method of the
second kind applies complex conjugate weighting functions.
The method is more stable since the resulting matrix be-
comes more diagonally dominant. Recently, Ochmann [146]
applied the equivalent source method for the sound propaga-
tion over an infinite impedance plane.

In order to determine rules for positioning the sources,
Pavic [147] determined a greedy algorithm for optimal se-
lection of the monopole source positions for 2D problems.
The strategy does not yield a strict mathematical optimum,
but gives nonetheless very satisfactory results when com-
pared to random or uniform positioning. Pavic [148] opti-
mizes the approach so that also multipole sources can be
incorporated. Simulations are limited to 2D problems. Ap-
plication for 3D problems may turn out to be too time con-
suming.

Bouchet et al. [149] propose a method which uses an
equivalent sphere instead of a multipole point source. The
number of unknowns is equal to the number of radiation
modes of the sphere. The unknown radiation mode contri-
bution factors are obtained from a quadratic residual min-
imization procedure. This approach has two advantageous
features. The first is that the modes of the spheres may be
normalized, having a stabilizing effect. Secondly, if each
point of the boundary structure corresponds to a point of the
sphere, the vibrating field at the surface of the sphere may
be deduced from that of the boundary structure by geometric
mapping. For simple 3D problems, a significant reduction in
calculation time compared to the BEM is obtained.

Reboul et al. [150] apply an equivalent source method,
using acoustical energy sources instead of pressure sources.
Validation calculations on the radiation of a ribbed plate
yield favourable results. Herrin et al. [151] developed a sim-
ilar technique to determine the sound energy density called
the energy source simulation method. A specified intensity
boundary condition on the surface of a vibrating body is ap-

proximated by a combination of energy density sources lo-
cated outside the acoustic domain by application of a least-
square minimization procedure. In most cases, the method
gives reliable results.

5.2.6 Radial Basis Function Methods

The boundary knot method [152] is a method that uses
Bessel functions to solve the Helmholtz equation. However,
the method stems from the methods based on the so-called
Radial Basis Functions (RBFs) [127]. Kansa’s method, also
called the radial basis functions collocation method, applies
globally defined RBF interpolation functions and a collo-
cational formulation to obtain the solution of partial differ-
ential equations. These RBFs may be considered as source
terms and are distributed inside the domain. The RBFs are
no exact solutions of the differential equations and there-
fore, collocation points are not only required at the bound-
ary, but also inside the domain, which distinguishes RBF
based methods from true Trefftz methods. Kansa’s method
yields very ill-conditioned matrices and, in a way, its mod-
elling approach is comparable to that from the element free
Galerkin method. The method of fundamental solutions is
a modified form of Kansa’s method, in that it applies sin-
gular functions that exactly satisfy the governing differen-
tial equation. The method of fundamental solutions is com-
parable to the Trefftz equivalent source methods since also
sources are positioned outside the problem domain while the
source strengths are determined by enforcing the boundary
conditions at the boundary in a collocational way [153, 154].
No collocation points are needed inside the domain. How-
ever, the method of fundamental solutions does not apply
T-complete functions, distinguishing it from the genuine Tr-
efftz methods. Also a weighted residual [155] or a least-
squares [156] approach may be applied to incorporate the
boundary conditions. In the dual reciprocity method of fun-
damental solutions [157] the solution field is cast into a ho-
mogeneous and a particular solution. First, the particular so-
lution is solved regardless of the boundary conditions using
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global interpolation of the field in terms of RBFs. When the
particular solution is known, the homogenous solution can
be tackled with the method of fundamental solutions. The
boundary knot method is a dual reciprocity method of funda-
mental solutions based on a collocational scheme, yielding
severely ill-conditioned matrices. A major distinctive fea-
ture of the boundary knot method is that it applies non-
singular functions to approximate the homogeneous solu-
tion. As a result the sources may be located on the boundary
and no artificial surface collecting the sources outside the
problem domain is required. Since not all applied approxi-
mation functions are exact solutions of the governing differ-
ential equation, i.e. the RBFs applied for the approximation
of the particular solution, also collocation points inside the
domain are required. The applied fundamental solutions are
Bessel functions. However, they do not form a T-complete
set of functions.

6 Wave Based Method

6.1 Basic Formulations

The wave based method (WBM) is a frameless Trefftz-
based prediction technique (see Sect. 5.2.3) which is ap-
plicable for time-harmonic acoustic problems. As a result,
the method is based on an indirect Trefftz approach and
follows a mathematical formulations related to the one dis-
cussed in Sect. 5.1.2. In general, five major steps are distin-
guished in a WB modelling procedure:

1. Partitioning into a number of convex subdomains,
2. Selection of a set of wave functions,
3. Construction of the WB system matrices,
4. Solution of the wave model,
5. And postprocessing.

6.1.1 Partitioning into Convex Subdomains

A sufficient condition for the WB approximations to con-
verge towards the exact solution, is convexity of the con-
sidered problem domain [136]. In a general acoustic prob-
lem, see Figs. 1 and 2, the acoustic problem domain � may
be non-convex so that a partitioning into a number of con-
vex subdomains is required. If the WBM is applied for un-
bounded problems, an initial partitioning of the unbounded
domain into a bounded and an unbounded region precedes
the partitioning into convex subdomains. Figure 11 illus-
trates the principle. The unbounded acoustic problem do-
main � is divided into two non-overlapping regions by a
truncation curve �t . The bounded region, enclosed by the
truncation curve and the problem boundary �p ∪ �v ∪ �Z

is partitioned into a number of N� non-overlapping, con-
vex subdomains �(α). The unbounded region exterior to �t

Fig. 11 WB partitioning of an exterior acoustic problem

is considered as one acoustic subdomain �(N�+1). As a re-
sult, the acoustic problem domain is partitioned into N� + 1
subdomains: � =⋃N�+1

α=1 �(α).
Since the bulk part of the computational efforts is spent

in the creation of the WB system matrices, and since these
efforts are linked to the total interface length, it can be seen
from Fig. 11 that the efficiency of the WBM is primarily
exploited for problems of moderate geometrical complexity.
For problems with a more complex boundary description, a
hybrid finite element-wave based approach is more suited
[128, 138].

The boundary of a bounded acoustic subdomain �(α)

is denoted as ∂�(α). It consists of four mutually exclusive
parts,

∂�(α) = �(α)
p ∪ �(α)

v ∪ �
(α)
Z ∪ �

(α)
I , (60)

on which the following conditions apply:

• �
(α)
p = �p ∩ ∂�(α) indicates the part of the boundary

of subdomain �(α) on which pressure boundary condi-
tions (3a) are prescribed.

• �
(α)
v = �v ∩ ∂�(α) indicates the part of the boundary of

subdomain �(α) on which normal velocity boundary con-
ditions (3b) are prescribed.

• �
(α)
Z = �Z ∩ ∂�(α) indicates the part of the boundary of

subdomain �(α) on which normal impedance boundary
conditions (3c) are prescribed.

• �
(α,β)
I = �

(β,α)
I = ∂�(α) ∩ ∂�(β) indicates the com-

mon interface between subdomain �(α) and subdomain
�(β). The continuity conditions which need to be ap-
plied on this interface are discussed in the following
paragraphs. The collection of all subdomain interfaces in
which subdomain �(α) is involved is denoted as �

(α)
I =⋃N�+1

β=1,β 
=α �
(α,β)
I .

The boundary of the unbounded acoustic subdomain
�(N�+1) consists of the collection of acoustic interfaces
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�
(N�+1)
I , coinciding with the truncation curve �t , and the

boundary at infinity �∞.
To ensure continuity over the acoustic interfaces �

(α,β)
I

between the acoustic subdomains �(α) and �(β), continuity
conditions must be applied. Two types of continuity condi-
tions are considered in the WB methodology.

6.1.1.1 Pressure and Velocity Continuity Both pressure
and normal velocity continuity are imposed at the inter-
faces:

pressure continuity:

r ∈ �
(α,β)
I :p(α)(r) = p(β)(r), (61a)

normal velocity continuity:

r ∈ �
(α,β)
I :L(α)

v (p(α)(r)) = −L(β)
v (p(β)(r)), (61b)

with L(α)
v the velocity operator applied in subdomain �(α)

L(α)
v = j

ρω

∂

∂n(α)
. (62)

The WBM adopts a direct coupling approach in order
to couple the two subdomains. This implies that the con-
tinuity conditions (61a) and (61b) are directly enforced on
the acoustic quantities of the considered subdomains, with-
out introduction of auxiliary interface variables. In order for
the problem to be well-posed, one continuity condition is
imposed on each subdomain. This means that, on the in-
terface �

(α,β)
I between the acoustic subdomains �(α) and

�(β), the pressure p(β)(r) is enforced as a pressure bound-
ary condition on subdomain �(α) along �

(α,β)
Ip = �

(α,β)
I and

the normal velocity −L(α)
v (p(α)(r)) is applied as a nor-

mal velocity boundary condition on subdomain �(β) along
�

(β,α)
Iv = �

(β,α)
I , or vice versa. As a result

if �
(α,β)
Ip 
= ∅ then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(β,α)
Ip = ∅,

�
(α,β)
Iv = ∅,

�
(β,α)
Iv 
= ∅

or

if �
(α,β)
Iv 
= ∅ then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(β,α)
Iv = ∅,

�
(α,β)
Ip = ∅,

�
(β,α)
Ip 
= ∅

with ∅ the empty set. Furthermore the following notations
are introduced

�
(α)
Ip =

N�+1⋃
β=1,β 
=α

�
(α,β)
Ip and �

(α)
Iv =

N�+1⋃
β=1,β 
=α

�
(α,β)
Iv .

6.1.1.2 Equivalent Normal Velocity Continuity By taking
a linear combination of the two conditions (61) and by the
introduction of a pressure scaling factor Z̄int, two new con-
tinuity conditions can be formulated:

r ∈ �
(α,β)
I : L(α)

v (p(α)(r)) − 1

Z̄int
p(α)(r)

= −L(β)
v (p(β)(r)) − 1

Z̄int
p(β)(r), (63a)

r ∈ �
(α,β)
I : L(β)

v (p(β)(r)) − 1

Z̄int
p(β)(r)

= −L(α)
v (p(α)(r)) − 1

Z̄int
p(α)(r). (63b)

The impedance coupling factor Z̄int is actually a rela-
tive weighting factor. For a large value, the normal veloc-
ity component predominates the continuity conditions (63),
while for a small value the pressure component predomi-
nates. This kind of coupling is referred to as impedance or
equivalent normal velocity coupling with Z̄int being the im-
pedance coupling value. The term equivalent normal veloc-
ity results from the fact that relations (63) actually express
continuity of an equivalent acoustic velocity quantity. The
equivalent velocity operators are defined as

L(α)
eq+ = j

ρω

∂

∂n(α)
− 1

Z̄int
, (64a)

L(α)
eq− = − j

ρω

∂

∂n(α)
− 1

Z̄int
. (64b)

With the operators (64), (63) can be reformulated as

r ∈ �
(α,β)
I : L(α)

eq+(p(α)(r)) = L(β)
eq−(p(β)(r)), (65a)

r ∈ �
(α,β)
I : L(β)

eq+(p(β)(r)) = L(α)
eq−(p(α)(r)). (65b)

In order for the partitioned problem to be well-posed, condi-
tion (65a) is enforced as a normal velocity boundary con-
dition on subdomain �(α) along �

(α,β)
Iz = �

(α,β)
I and the

associated condition (65b) is enforced as a normal veloc-
ity boundary condition on subdomain �(β) along �

(β,α)
Iz =

�
(β,α)
I .

The following notation is introduced

�
(α)
Iz =

N�+1⋃
β=1,β 
=α

�
(α,β)
Iz . (66)

This impedance coupling approach is designed to be
more stable, as compared to the pressure and velocity cou-
pling approach, due to the introduction of artificial damping
into the numerical system [141]. The approach is inspired by
the finite element tearing and interconnecting method [64]
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and the ultra weak variational formulation [126], which ap-
ply a similar coupling approach. Pluymers [138] shows that
choosing Z̄int to be the characteristic fluid impedance ρc is
beneficial for the convergence rate.

6.1.2 Wave Function Selection

The time-harmonic acoustic pressure field p(α)(r) in an
acoustic subdomain �(α) is approximated as solution expan-
sion p̂(α)(r)

p(α)(r) � p̂(α)(r) =
n

(α)
w∑

w=1

pw
(α)�(α)

w (r) + p̂(α)
q (r)

= �(α)(r)p(α)
w + p̂(α)

q (r). (67)

The wave function contributions p
(α)
w are the weighting fac-

tors for each of the selected wave functions �
(α)
w . Together

they form the vector of degrees of freedom p(α)
w . The corre-

sponding a priori defined wave functions are collected in the
row vector �(α). The set of all nW =∑N�+1

α=1 n
(α)
w acoustic

wave function contributions pw is collected in the column
vector pw , while the row vector � contains all nW wave
functions.

In (67) p̂
(α)
q represents a particular solution resulting

from the acoustic source term q(α) in the inhomogeneous
Helmholtz equation (2). It is the free-field solution of a
cylindrical source

p̂(α)
q (x, y) = ρωQ(α)

4
H 2

0

(
kr(α)

q

)
(68)

with Q(α) the source strength

Q(α) =
∫

�(α)

q(α) d� (69)

with

r(α)
q = ∥∥r − r(α)

q

∥∥ (70)

and with H 2
0 the zero-order Hankel function of the second

kind.
The definition of the wave functions �

(α)
w (r) in (67) de-

pends on the topology of the associated subdomain �(α).
Abstraction is made from the transformations between the
local subdomain coordinate systems, in which the wave
functions are defined, and the global coordinate system. As
a result, �

(α)
w (r) corresponds to the evaluation of the wave

function in position r but transformed to the correct subdo-
main coordinate system.

6.1.2.1 Wave Functions Within a Bounded Subdomain
Each acoustic wave function �

(α)
w (r) satisfies exactly the

homogeneous Helmholtz equation (2). Two types of wave
functions are distinguished, the r- and the s-set

n
(α)
w∑

w=1

pw
(α)�(α)

w (r) =
n

(α)
wr∑

wr=1

pwr

(α)�(α)
wr

(r)

+
n

(α)
ws∑

ws=1

pws

(α)�(α)
ws

(r), (71)

with n
(α)
w = n

(α)
wr + n

(α)
ws . The wave functions are defined as

�(α)
w (r (x, y)) =

⎧⎨
⎩

�
(α)
wr (x,y) = cos(k(α)

xwr
x)e−jk

(α)
ywr y,

�
(α)
ws (x,y) = e−jk

(α)
xws x cos(k(α)

yws
y).

(72)

The only requirement for the wave functions (72) to be exact
solutions of (2) is

(
k(α)
xwr

)2 + (k(α)
ywr

)2 = (k(α)
xws

)2 + (k(α)
yws

)2 = k2. (73)

As a result, an infinite number of wave functions (72) can be
defined for expansion (67). Desmet [136] proposes to select
the following wave number components

(
k(α)
xwr

, k(α)
ywr

)=
(

w
(α)
1 π

L
(α)
x

,±
√

k2 − (k(α)
xwr

)2)
, (74)

(
k(α)
xws

, k(α)
yws

)=
(

±
√

k2 − (k(α)
yws

)2
,
w

(α)
2 π

L
(α)
y

)
(75)

with w
(α)
1 and w

(α)
2 = 0,1,2, . . . . The dimensions L

(α)
x and

L
(α)
y represent the dimensions of the (smallest) bounding

rectangle, circumscribing the considered subdomain.
In order to allow the WBM to be implemented in a com-

puter code, the number na of Trefftz basis functions �a

needs to truncated by assigning finite values to the trunca-
tion numbers n•. These values may depend for example as
follows on the physical wave number k and the dimensions
of the bounding rectangle

nr

Lx

≈ ns

Ly

≥ T
k

π
, (76)

where T represents a truncation parameter, which is user
defined. Desmet [136] selects T = 2, which states that the
wavelength λmin of the highest oscillating wave function
in the set of basis functions �a is not larger than half the
characteristic wavelength λ = 2π/k of the acoustic problem
(λmin ≤ 1

2λ).
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6.1.2.2 Wave Functions Within the Unbounded Subdomain
Ihlenburg [4] and Herrera [118] show that the following
expansion, exterior to a circular truncation curve with ra-
dius R, converges for nu → ∞.

pe(r, θ) � p̂e(r, θ)

= pe,c0H
(2)
0 (kr) +

nu∑
n=1

pe,cnH
(2)
n (kr) cos(nθ)

+pe,snH
(2)
n (kr) sin(nθ), (77)

with r and θ polar coordinates. H(2)
n is the n-th order Hankel

function of the second kind. The contributions pe,c0, pe,cn

and pe,sn are the unknowns.
The applied wave functions correspond to the analyti-

cal solution of a Neumann problem for the exterior pressure
field of an infinitely long cylinder of radius R.

6.1.3 Construction of the Wave Model

With the use of the proposed pressure expansions (71)
and (77), the Helmholtz equation (2) and the Sommerfeld
radiation condition (4) are always exactly satisfied, irrespec-
tive of the values of the unknown wave function contri-
butions. These contributions are merely determined by the
acoustic boundary and continuity conditions.

Due to the partitioning of the acoustic problem domain
� into N� + 1 acoustic subdomains �(α), continuity con-
ditions (61) or (65) along the subdomain interfaces �

(α,β)
I

must be taken into account, in addition to the problem
boundary conditions (3). The unknown wave function con-
tribution factors are merely determined by these boundary
and continuity conditions.

Since both the boundary conditions and the continu-
ity conditions are defined at an infinite number of bound-
ary positions, while only finite sized prediction models are
amenable to numerical implementation, the boundary and
the continuity conditions are, for each subdomain, trans-
formed into a weighted residual formulation. The residual
error functions are defined as

• Residual error functions of the boundary conditions

r ∈ �
(α)
v : R

(α)
v (r) = L(α)

v (p̂(α)(r)) − v̄n(r),

r ∈ �
(α)
Z : R

(α)
Z (r) = L(α)

v (p̂(α)(r))

− p̂(α)(r)/Z̄n(r),

r ∈ �
(α)
p : R

(α)
p (r) = p̂(α)(r) − p̄(r).

(78)

• Residual error functions of the pressure and velocity con-
tinuity conditions

r ∈ �
(α,β)
Ip : R

(α,β)
Ip (r) = p̂(α)(r) − p̂(β)(r),

r ∈ �
(α,β)
Iv : R

(α,β)
Iv (r) = L(α)

v (p̂(α)(r))

+L(β)
v (p̂(β)(r)).

(79)

• Residual error functions of the impedance continuity con-
ditions

r ∈ �
(α,β)
Iz : R

(α,β)
I (r) = L(α)

eq+(p̂(α)(r))

−L(β)
eq−(p̂(β)(r)).

(80)

Similar error functions are derived for all N� + 1 acoustic
subdomains. For each subdomain, the error functions are
orthogonalized in a complementary way with respect to
a weighting function p̃(α) or its derivative. The weighted
residual formulation, applying the introduced error func-
tions, is expressed as
∫

�
(α)
v

p̃(α)(r)R(α)
v (r)d� +

∫
�

(α)
Z

p̃(α)(r)R(α)
Z (r)d�

−
∫

�
(α)
p

L(α)
v (p̃(α)(r))R(α)

p (r)d�

−
N�+1∑

β=1,β 
=α

∫
�

(α)
Ip

L(α)
v (p̃(α)(r))R(α,β)

Ip (r)d�

+
N�+1∑

β=1,β 
=α

∫
�

(α)
Iv

p̃(α)(r)R(α,β)
Iv (r)d�

+
N�+1∑

β=1,β 
=α

∫
�

(α,β)
Iz

p̃(α)(r)R(α,β)
Iz (r)d� = 0. (81)

Like in the Galerkin weighting procedure, used in the FEM,
the weighting functions p̃(α) are expanded in terms of the
same set of acoustic wave functions used in the pressure ex-
pansions (67) and (77)

p̃(α)(r) =
n

(α)
a∑

a=1

p̃a
(α)�(α)

a (r) = �(α)(r)p̃(α)
w . (82)

Substitution of the pressure expansions (67) and (77) and
the weighting function expansion (82) into the weighted
residual formulation (81) and imposing that the formulation
should hold for any weighting function p̃(α), yields a set of
n

(α)
w linear equations in the nW unknown wave function con-

tribution factors.
Expressing the weighted residual formulation (81) for

each subdomain results in N� + 1 systems of equations.
Combination of these equations yields the acoustic WB
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model, consisting of nW algebraic equations in the nW un-
known wave function contribution factors

Aaapw = b. (83)

A full description of the WB system matrices is given
in Appendix.

6.1.4 Solution of the Wave Based Model

After partitioning into convex subdomains, selection of a
converging set of wave functions and construction of the
WB model, the fourth step in the WB modelling process is
solution of the WB matrix equation (83) for the nW wave
function contribution factors pw .

6.1.5 Postprocessing

The fifth and final step in the modelling process is back-
substitution of the resulting wave function contribution fac-
tors into the pressure expansions (67), yielding an analyti-
cal description of the dynamic pressure field p̂ in all sub-
domains �(α). Evaluation of wave function expansions in
response points located inside the subdomains, yields the
acoustic pressures at those locations. Higher-order variables,
such as acoustic velocities, intensities and power distribu-
tions, can be easily obtained by derivation of the wave func-
tion expansions.

• The acoustic velocity vector field v̂ is determined propor-
tional to the gradient of the pressure field

v̂ = j

ρω

(∇� pw + ∇p̂q

)
. (84)

• The active acoustic intensity vector field Î, representing
the flow of acoustic energy, is determined as

Î = 1

2
�
(

(�pw + p̂q)

(
j

ρω
(∇�pw + ∇p̂q)

)∗)
(85)

with •∗ denoting the complex conjugate and � the real
part.

• The active acoustic power Ŵ through a surface S is deter-
mined as the integral of the acoustic intensity through the
considered surface and is calculated as

Ŵ =
∫ ∫

S

1

2
�
(

(�pw + p̂q)

×
(

j

ρω
(∇�pw + ∇p̂q)

)∗)
n dS (86)

with n the normal vector on S.

Note that there is no loss of accuracy in the higher-order
variables, since the derivatives of wave functions, are wave
functions themselves, with identical wavelengths as the pri-
mary wave functions.

6.2 Model Properties

This section discusses the properties of a WB model and
compares them with those of conventional element based
models, i.e. the FEM and the BEM.

Degrees of Freedom The degrees of freedom (dofs) in a FE
model are the nodal values, being acoustic pressures most
commonly. In an acoustic BE model, the dofs are either
acoustic pressures and velocities (direct BEM) or single and
double layer potentials (indirect BEM). In the WB method-
ology, the unknown wave function contributions pw form
the dofs.

Problem Discretization & Approximation Functions The
element based methods require a discretization of the prob-
lem domain (FEM) or of the problem boundary (BEM)
into small elements. Within these elements approximating
shape functions, mostly simple polynomials, are used to
describe the dynamic response variables. In order to yield
prediction results with reasonable accuracy, element sizes
have to decrease with increasing frequency, because wave-
lengths shorten. Construction of a WB model does not re-
quire a problem domain discretization into small elements.
The only prerequisite is a partitioning into convex subdo-
mains. However, these subdomains can be large and their
sizes are independent of frequency, since the wave functions,
which are used to describe the dynamic response variables
inside the subdomains, are exact solutions of the governing
dynamic equations. With increasing frequencies, the number
of wave functions is increased.

Accuracy of Derived Variables Due to the fact that the
primary response variables (i.e. the pressure) in the FEM
are most commonly approximated with simple polynomial
shape functions, the higher-order derived quantities (i.e. the
acoustic velocity, acoustic intensity and acoustic power) are
less accurate than the primary ones. In the BEM, a boundary
integral formulation preserves the same accuracy for both
the primary and the derived variables, so there is no addi-
tional loss of accuracy. Also for the WBM, there is no addi-
tional loss of accuracy because the derivatives of the wave
functions are wave functions as well, with identical wave-
lengths.

System Matrix Properties The system matrices in the FEM
are large and sparsely populated with real coefficients (ex-
cept when complex model properties are introduced). They
have a banded structure, are symmetric and can be decom-
posed into frequency independent submatrices. All of these
properties allow computationally efficient storage and solu-
tion of the FE system of equations. The BEM yields fully
populated matrices with complex coefficients. These matri-
ces are smaller than the system matrices of FE models for
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comparable problems, but the BE matrices are frequency
dependent and non-symmetric for the direct BEM and sym-
metric for the indirect BEM. The WB system matrices have
similar properties as the matrices in the direct BEM, in that
they are fully populated with complex coefficients, non-
symmetric and frequency dependent. However, WB system
matrices are smaller than BE system matrices.

Problem Geometric Complexity Because of the fine dis-
cretization of the element based methods, these methods
have almost no restrictions regarding the geometric com-
plexity of the considered problem domains. The only re-
quirement regarding the problem domain geometry for the
WBM to converge, is convexity of the considered subdo-
mains. However, since the WB subdomains are large and
have a relatively simple shape, problems with a complex
geometry are hard to model, unless a large number of sub-
domains are introduced. This would have a negative effect
on the method’s computational efficiency.

When unbounded domains come into play, like for in-
stance for acoustic radiation calculations, the fine discretiza-
tion of the problem domain in the FE methodology prevents
the FEM to tackle this kind of problems. Work-arounds are
the application of approximating impedance boundary con-
ditions on a truncation surface or coupling of a truncated FE
model with infinite elements. Due to the specific shape of
the Green functions applied in the BEM, the method inher-
ently satisfies the Sommerfeld radiation condition and can
therefore tackle problems involving unbounded domains.
Through the appropriate selection of wave functions which
satisfy the Sommerfeld radiation condition, the WBM is
able to tackle unbounded problems.

Computational Performance & Frequency Range Applica-
bility Construction of the WB models results from tedious
numerical integrations. Because the WB method, like any
Trefftz based method, yields ill-conditioned system matrices
[122, 158], the numerical integrations must be performed
carefully, making sure that a sufficiently high accuracy in
determining the matrix coefficients is obtained. As a result,
construction of the WB matrices is computationally more
demanding than construction of FE matrices, whose coeffi-
cients result from integrations of simple polynomial shape

functions, and even than construction of BE matrices. How-
ever, because of the large model, and resulting matrix size,
of the FE and BE models, as compared to the WB mod-
els, solution of the element based models is computation-
ally much more demanding than solution of the WB mod-
els. Also the convergence rate of the WBM is higher than
the convergence rate of the element based methods.

The higher convergence rate, combined with the small
model size, make it possible for the WBM to tackle prob-
lems at higher frequencies than the element based meth-
ods, before the same limitations regarding computational re-
sources are encountered.

7 Numerical Validations of the Wave Based Method

This section applies the Trefftz-based WBM for the analy-
sis of both an interior and an exterior 2D acoustic problem.
In both cases, the WBM shows to be computationally more
efficient than conventional element based methods.

7.1 Interior Acoustics: A Car Cavity

7.1.1 Problem Description

Figure 12 shows a 2D car cavity with a fairly complex geom-
etry, especially due to the modelling of the front seat as a
rigid object. The cavity is filled with air (ρa = 1.225 kg/m3,
c = 340 m/s) and it has the characteristic dimensions Lx ≈
2.7 m and Ly ≈ 1.1 m. The main part of the domain bound-
ary is rigid (v̄n = 0 m/s). An impedance boundary condition
is imposed at the roof with Z̄ = 2000 Pa.s/m, which intro-
duces damping in the acoustic system. A unit normal veloc-
ity distribution v̄n = 1 m/s at the fire wall excites the 2D car
cavity. This 2D example is used in several publications on
enhanced deterministic methods for interior acoustic prob-
lems, a.o. [43, 84, 159].

7.1.2 Numerical Models

Van Hal [128] has shown that it is beneficial for the WBM’s
convergence rate, if the subdomains, which are created

Fig. 12 2D acoustic car cavity



370 B. Pluymers et al.

Fig. 13 Original FE model and
various WB model
configurations of 2D car cavity

by the partitioning preceding the construction of the WB
model, are regularly shaped and rectangular. Clearly, a par-
titioning in only such regularly shaped subdomains is not
possible and thus an optimal balance between the number of
subdomains and their shape needs to be found. Either one
selects a relatively small number of irregularly shaped sub-
domains or one selects a large number of more regularly
shaped subdomains. Several domain partitions are applied
in this numerical example. In all the considered numerical
WB models, pressure and velocity continuity conditions are
applied at the resulting interfaces.

Figure 13 shows five WB model configurations and one
FE model. These WB model configurations are listed be-
low with an increasing level of regularity of the subdomain
geometries.

• WB model I contains a relatively small number of 18 sub-
domains, which are all irregularly shaped having 3 to 7
edges. The area ratio between the largest and the smallest
subdomain is high.

• WB model II contains 26 subdomains with more regular
geometries. Most subdomains have two parallel edges and
corner points where edges intersect at (nearly) 90◦.

• WB model III is derived from WB model II. It contains
36 more regularly shaped subdomains by splitting several
subdomains such that most subdomains have 4 edges.

• WB model IV contains 30 subdomains which have
(nearly) rectangular shapes. In other words, most of these
subdomains are more regularly shaped than the subdo-
mains in the WB models III and IV.

• WB model V is derived from WB model IV. It contains
40 (nearly) rectangular subdomains by splitting several
subdomains such that most subdomains have 4 edges.

Two FE models, which are used in an FRF analysis, are de-
rived from the original FE model in Fig. 13.

• A coarse FE model of 1796 linear elements and 1007
DOFs results from subdividing each triangular element
of the original FE model in 4 triangular elements. It is ap-
plicable up to fmax ≈ 270 Hz according to rule (21) with
L = 2.7 m and h = 0.054 m.

• A fine FE model of 16164 2nd-order elements and 32982
DOFs results from subdividing each triangular element
of the original FE model in 36 triangular elements. This
model serves as reference model up to fmax ≈ 1900 Hz
according to dispersion rule for quadratic FE described
by Ihlenburg [4] with L = 2.7 m and h = 0.018 m.

7.1.3 Evaluation of the Performance of the WBM

Figure 14 shows the predictions of the pressure response
p at position p1 indicated in Fig. 12. The first plot illus-
trates the effect of the pollution error on the FE pressure
response prediction p̂. The visual inspection on the current
scale shows that the FE prediction starts to deviate from
the reference near 400 Hz. This is more in agreement with
rule (21), which provides fmax ≈ 270 Hz, than with the ‘rule
of thumb’ (k · h = 1), which provides fmax ≈ 1000 Hz.

The WB results in Fig. 14 are obtained by using a trun-
cation parameter of T = 2. These results confirm that the
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Fig. 14 Pressure response
prediction for point p1 in
Fig. 12

Fig. 15 WB model sizes with
truncation parameter T = 2

WBM does not suffer from pollution errors. Even in the up-
per part of the frequency range of interest, the WB predic-
tions coincide with the reference solution more or less. How-
ever, this numerical validation example reveals two aspects
of the WB pressure response prediction p̂.

• Firstly, the influence of the domain subdivision can al-
ready be observed on the current scale of the graphs.

• Secondly, below ≈600 Hz some WB results have not con-
verged yet. Especially, the results for WB model I show
some deviation from the reference and, in less extent, the
results for WB models IV and V.

These phenomena are observed in an a posteriori error as-
sessment too.

An a posteriori error assessment is performed at 215 Hz,
525 Hz and 955 Hz. Figure 16 shows the pressure distribu-
tions at those frequencies obtained with WB model I with a
truncation parameter T = 2. These pressure distributions do
not show irregularities at the interfaces between two subdo-
mains on the current scale of the graphs. This indicates that
WB model I provides reliable results for the considered ex-
citation frequencies with a truncation parameter T = 2.

Figure 17 shows the averaged relative pressure error 〈ε〉
defined as

〈ε〉 =
nrp∑
j=1

Ajεj

A
with A =

nrp∑
j=1

Aj (87)
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Fig. 16 Pressure distributions
obtained with WB model I
(left figures: real part, right
figures: imaginary part) [Pa]

which is based on the relative pressure error ε

εj = ‖p̂j − p̂ref,j‖
‖p̂ref,j‖ , (88)

where nrp represents the number of response points, Aj the
area surrounding response point j and A the area of the
problem domain �, for the nrp = 279 response points in-
dicated by + in Fig. 12.

The following phenomena are observed.

• The computational efficiency depends on the frequency of
interest.
– At the high frequency of 955 Hz, the WBM exhibits

enhanced convergence properties, especially compared
with FEM based on linear elements.

– At 525 Hz, the computational efficiency of the WBM
is not as pronounced as at 955 Hz. However, the WBM
is still more efficient than the FEM based on linear ele-
ments since, on average, the same accuracy is obtained
with smaller WB models.

– At the low frequency of 215 Hz, the computational ef-
ficiency of the WBM and the FEM based on linear ele-
ments are comparable.

In case of interior acoustic problems with geometrically
complex boundaries, the FEM is best suited for low fre-
quency applications whereas the WBM performs better at
higher frequencies.

• The WBM convergence curves show an oscillatory be-
haviour which differs for each WB model configuration.
Especially at 215 Hz and 525 Hz, severe oscillations in
the convergence occur for WB models I, IV and V. Ap-
parently, WB models II and III are most robust for the
considered frequencies. This suggest that the optimal bal-
ance between the number of subdomains and their shape
is obtained by
– minimizing the number of subdomains
– while avoiding the occurrence of highly irregularly

subdomains.

In order to improve the low-frequency results, a minimal
value for the truncation numbers nr and ns in (76) can be
imposed [128].

7.2 Exterior Acoustics: A Bass-Reflex Loudspeaker

7.2.1 Problem Definition

In order to illustrate the ability of the WBM to analyze
more complex 2D unbounded problems, a bass-reflex loud-
speaker, as shown in Fig. 18, is considered. A unit normal
line force F is applied at the centre of the loudspeaker mem-
brane (E = 70.109 N/m2, ρs = 700 kg/m3, ν = 0.3, t =
3 mm). The membrane edges are clamped. The loudspeaker
is surrounded with air (c = 340 m/s, ρ = 1.225 kg/m3).
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Fig. 17 Convergence

7.2.2 Numerical Models

To compare the performances of the WBM and the existing
element based techniques, several coupled FE/indirect BE
and FE/(8th order conjugated) IE models of the considered
problem have been solved using LMS/Sysnoise Rev5.5. The
structural FE meshes consist of third-order 2-noded plate el-
ements, the acoustic BE meshes of 2-noded linear fluid ele-
ments and the acoustic FE meshes of 3- and 4-noded linear
fluid elements. Tables 1 and 2 show the number of elements
used to model the considered loudspeaker problem.

For the WB models a circular truncation curve with ra-
dius R = 0.5 m is applied. Figure 19 shows the partitioning
into 11 convex subdomains of the region interior to the trun-
cation curve. Equivalent normal velocity continuity condi-
tions are applied at the resulting interfaces with a coupling
factor Z̄int = ρc. Table 3 lists the WB model information at
5000 Hz.

Fig. 18 Dimensions (in mm) of a bass-reflex loudspeaker
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Table 1 FE/IE model information

� acoustic FE � acoustic FE � structural � IE total

inside cavity outside cavity FE � dofs

2835 7786 34 312 14567

4832 15973 68 394 25031

9492 26525 136 524 42552

Table 2 BE model information

� ac. BE � str. BE tot. � dofs

472 34 593

944 68 1167

1888 136 2315

3776 272 4611

Table 3 WB model information

� ac. WB dofs � str. WB dofs tot. � WB dofs

131 4 135

195 4 199

327 4 331

587 4 591

853 4 857

Fig. 19 WB partitioning

7.2.3 Evaluation of the Performance of the WBM

Figures 20 and 21 show the calculated pressure field and
the calculated active intensity field at 120 Hz. These results

Fig. 20 Contour plot of the pressure amplitudes at 120 Hz [10−4 Pa]

Fig. 21 Vector plot of the active intensity at 120 Hz

are obtained with a wave model which consists of 495 wave
functions. The pressure contour plots show that the rigid
boundary conditions are correctly taken into account by the
WBM since the pressure contour lines are perpendicular to
the rigid walls. Also, no pressure field discontinuities are ob-
served, which indicates that the continuity conditions at the
subdomain interfaces and the infinite domain interfaces are
correctly taken into account. Figure 21 shows that active in-
tensity flows from both the membrane and the reflex-channel
towards infinity which clearly illustrates the working princi-
ple of a bass-reflex channel. For the given loudspeaker di-
mensions, the considered frequency of 120 Hz indeed cor-
responds to the reflex-frequency of the loudspeaker.

Figure 22 plots the relative prediction error for the ra-
diated sound power W at 5000 Hz against the CPU time
needed for a direct response calculation at one frequency on
an Intel Pentium 4 computer system (1.8 GHz, 1 Gb RAM)
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Fig. 22 Power convergence
curves at 5000 Hz

running a Windows XP-Professional operating system. The
indicated CPU times for the WBM and the FE/BE models
include both the times for construction of the model and for
solution of the resulting matrix equation since the matrices
are frequency dependent. This is in contrast with the fre-
quency independent FE/conjugated IE models where only
the solution time is taken into account. The WBM exhibits
a beneficial convergence rate, compared with the element
based techniques.

To increase the accuracy of the FE/IE models, a finer ele-
ment discretization is required. However, since the artificial
boundary, which truncates the unbounded domain, was cho-
sen to be a circle, the greater part of the acoustic finite ele-
ments are needed to model the enclosed area between the ar-
tificial truncation boundary surface and the cavity, which is
not very efficient and which leads to prohibitively large cal-
culations. A more efficient way of modelling the problem
would be to use a more close-fitting truncation boundary,
such as for instance an elliptical boundary, so that the area
between the truncation boundary and the problem boundary
becomes much smaller.

8 Conclusions

This paper gives an overview of element based and Trefftz-
based modelling methods for the analysis of time-harmonic
acoustic problems. Element based techniques, such as the
FEM and the BEM, are commonly applied. These methods
discretize the considered problem domain or its boundary

into small elements and make use of locally defined, approx-
imating shape functions to describe the dynamic response.
Due to the approximating nature of the applied shape func-
tions, the numerical solution suffers from numerical disper-
sion. For a fixed element discretization, the associated dis-
persion errors grow with increasing frequency. In order to
maintain a reasonable prediction accuracy at higher frequen-
cies, the element discretization needs to be refined. This re-
sults in (prohibitively) large matrix equations and associated
computational resources, such that the practical use of the
FEM and the BEM is restricted to low-frequency applica-
tions.

A vast amount of research is on-going in the development
of extensions and enhancements of the FEM and the BEM,
to enlarge their practical applicability towards problems at
higher frequencies. Some extensions focus on the optimiza-
tion of the numerical processes, while others try to reduce
the dispersion error by means of a modified integral problem
formulation. Other classes of extended methods deal with
the application of novel or enriched sets of approximation
functions. In spite of these numerous attempts to develop
methods applicable for tackling problems at higher frequen-
cies, no mature method has emerged yet, which is applica-
ble for real-life engineering applications. Most of the novel
methods have been applied so far on academic cases only.

In parallel with the investigations regarding the element
based methods, an alternative family of numerical methods,
based on a Trefftz approach, is researched. Trefftz-based
methods apply approximation functions which exactly sat-
isfy the governing differential equations, resulting in small,
computationally efficient numerical models. Although most
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of the Trefftz-based methods also have characteristics lim-
iting their practical application range, one of these methods
has proven to be robust and applicable for the analysis of
general acoustic problems. This so-called WBM shows high
potential for tackling real-life problems in at high frequen-
cies.

The basic formulations of the WBM for 2D acoustic
problems are discussed and the application of the method
is illustrated by means of an interior and an exterior numeri-
cal validation case. It is shown that the method provides ac-
curate predictions and that it outperformes the conventional
element based methods, especially when going to higher fre-
quencies.

It is also shown that, in order to fully exploit the com-
putational efficiency of the WBM, the considered problem
geometry should be one of moderate complexity. This ob-
servation has initiated the development of a hybrid finite
element-wave based modelling approach, in which the abil-
ity of the FEM to model any problem, regardless of the geo-
metric complexity, and the computational efficiency of the
WBM are combined into one single method. Van Hal [128]
and Pluymers [138] have shown the potential of such a hy-
brid modelling procedure for the analysis of real-life en-
gineering problems with a complex geometrical descrip-
tion.
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Appendix

This appendix gives a detailed description of the WBM sys-
tem matrices and their derivation.

Substitution of the pressure expansions (67) and (77) and
the weighting function expansion (82) into the weighted
residual formulation (81) yields

p̃(α)T
w

[
C(α,1)

aa p(1)
w + · · · + C(α,α−1)

aa p(α−1)
w + A(α)

aa p(α)
w

+C(α,α+1)
aa p(α+1)

w + · · · + C(α,N�+1)
aa p(N�+1)

w

− f(α,1)
a − · · · − f(α,α−1)

a − f(α)
a

− f(α,α+1)
a − · · · − f(α,N�+1)

a

]= 0. (89)

The (n
(α)
w × n

(α)
w ) matrix A(α)

aa is

A(α)
aa = A(α)

v + A(α)
Z + A(α)

p + A(α)
Ip + A(α)

Iv + A(α)
Iz (90)

with

A(α)
v =

∫
�

(α)
v

j

ρω
�(α)T n(α)T B(α) d�, (91)

A(α)
Z =

∫
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(α)
Z
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(92)

A(α)
p = −

∫
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(α)
p
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ρω
B(α)T n(α)�(α) d�, (93)

A(α)
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∫
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(α)
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Iv
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(96)

with B(α) defined as a (2 × n
(α)
w ) matrix collecting the gra-

dient components of the acoustic wave functions �(α)

B(α) = ∇ �(α). (97)

The (n
(α)
w × n

(β)
a ) matrix C(α,β)

aa is defined as
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∫
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Z̄int
�(α)T �(β)

)
d� (98)

and is a non-zero matrix only if �
(α,β)
I 
= ∅. In other words,

there is only a non-zero coupling matrix C(α,β) if acoustic
subdomain �(α) is adjacent with acoustic subdomain �(β).

The (n
(α)
w × 1) vector f(α)

a is

f(α)
a = f(α)

v + f(α)
Z + f(α)

p + f(α)
Ip + f(α)

Iv + f(α)
Iz (99)

with
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∫
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f(α)
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∫
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∫
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f(α)
Iv =

∫
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(α)
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�(α)T
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j
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n(α)T ∇p̂(α)

q

)
d�, (104)
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f(α)
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The (n
(α)
a × 1) vector f(α,β)
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(106)

and is a non-zero vector only if �
(α,β)
I 
= ∅.

Since the weighted residual formulation (81) should hold
for any weighting function p̃(α), the expressions between
the square brackets in (89) must be zero. This yields a set
of n

(α)
w linear equations in the nW unknown wave function

contribution factors

[
C(α,1)

aa · · · C(α,α−1)
aa A(α)

aa C(α,α+1)
aa · · ·C(α,N�+1)

aa

]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(1)
w

...

p(α−1)
w

p(α)
w

p(α+1)
w

...

p(N�+1)
w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(α,1)
a

...

f(α,α−1)
a

f(α)
a

f(α,α+1)
a

...

f(α,N�+1)
a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (107)

One such matrix equation is obtained for each subdomain.
Combination of the N� + 1 systems yields the acoustic WB
model, consisting of nW algebraic equations in the nW un-
known wave function contribution factors

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A(1)
aa C(1,2)

aa · · · C(1,N�+1)
aa

C(2,1)
aa A(2)

aa · · · C(2,N�+1)
aa

...

C(N�,1)
aa C(N�,2)

aa · · · A(N�)
aa

C(N�+1,1)
aa C(N�+1,2)

aa · · · A(N�+1)
aa

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(1)
w

p(2)
w

p(3)
w

...

p(N�+1)
w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(1)

b(2)

b(3)

...

b(N�+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(108)

with

b(α) = f(α)
a +

N�+1∑
β=1,β 
=α

f(α,β)
a . (109)

The WB matrix equation is denoted in a condensed form as

Aaapw = b. (110)
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