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Abstract This paper provides a critical review of past and
current techniques for the computational modelling of di-
arthrodial joints. The objective of the paper is to describe
strategies for addressing the computational modelling of
joint mechanics using the finite element (FE) method, dif-
ferentiating between geometry, constitutive modelling of the
components, computational aspects and applications. The
structure and function of the main components of the joints
are reviewed, with emphasis on the relationship of tissue mi-
crostructure with its continuum mechanical behavior. Ap-
plications to two diarthrodial joints (human knee and tem-
poromandibular joint) in physiological, pathological and
pos-surgery situations are presented and discussed. The pa-
per concludes with a discussion of future research direc-
tions.

1 Introduction

Biomechanics is defined as the development, extension and
application of mechanics with the purposes of a better un-
derstanding of Physiology and Pathophysiology and helping
in the diagnosis and treatment of disease and injury. That is,
the overall goal of Biomechanics is, and must remain, the
general improvement of human condition [92].

In particular, a proper understanding of joints biome-
chanics is essential to improve the prevention and treatment
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of their disorders and injuries. Despite the many investiga-
tions developed in this field, the exact mechanical behavior
of the different human joints and the causes of many of their
injuries are not completely known yet. This is partially due
to inherent limitations of experimental studies such as their
high cost, difficulties associated with the obtention of accu-
rate measures of strain and stress and, especially, the diffi-
cult and sometimes impossible reproduction of certain nat-
ural, pathological or degenerative situations. Computational
models of diarthrodial joints provide therefore a powerful
tool for the study of joint function, prosthesis design, and the
effects of joint reconstruction. Computers models also pro-
vide a standardized framework for parameter studies, such
as evaluation of clinical treatments, stress distributions for
different geometries and kinematics, evaluation of surgical
procedures, injury assessment, surgery planning and the ef-
fects of ageing, disease and drugs [201].

It is important to note that reliability of these models
strongly depends on a precise geometrical reconstruction
and on an accurate mathematical description of the behavior
of the biological tissues involved, and their interactions with
the surrounding environment.

The acquisition of an accurate geometry of the joint is
a fundamental requirement for the construction of three-
dimensional FE models. Both magnetic resonance imaging
(MRI) and computerized tomography (CT) are used to ac-
quire joint geometry. MRI provides detailed images of soft
tissues in diarthrodial joints while CT provides excellent im-
ages of the bones around the joint [203]. Extraction of the
geometry from CT or MRI data is performed by first identi-
fying the boundary of the structure (process known as seg-
mentation). For that purpose, it is still generally necessary
to perform manual (or semi-automatic) segmentation of the
boundaries, followed by a semiautomatic reconstruction of
the 3D bodies involved. Usually, some additional manual
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edition is needed to remove underjoined image artifacts or
non-interesting organs, to smooth surfaces or to separate dif-
ferent components wrongly joined, among other usual oper-
ations.

Once the geometrical model has been reconstructed from
the 3D image dataset, it is necessary to generate the FE
mesh. For accurate solutions, it is recommended the use of
hexahedral elements (quadratic and linear tetrahedra are also
very much used), although this is not always necessary. For
example, some ligaments are very thin, being reasonable the
use of shell elements. In many cases, when the interest is
focussed on soft tissues, bones are modelled as rigid bodies
due to their much higher stiffness (several orders of mag-
nitude). In these cases, bone surfaces can be modelled us-
ing rigid shell elements. Usually, the high complexity of the
geometries involved implies that the development of a spe-
cific finite element model takes a large amount of user time.
Other alternative, although not much extended yet, is the
family of numerical methods globally coined as meshless or
mesh-free methods [39]. Their main characteristic is the no
need of a mesh in the traditional sense. Instead, the connec-
tivity between nodes is generated in a process transparent to
the user, thus alleviating the burden associated to the mesh
generation [40]. However, their computational cost is higher
than the one of FEM.

Constitutive equations are used to describe the mechan-
ical behavior of ideal materials through the establishment
of the dependence of the stress on different variables, such
as the deformation gradient, rate of deformation or tem-
perature. In this paper, we emphasize that constitutive re-
lations describe the behavior of a material under certain
conditions of interest, but not the material itself. That is,
although we would prefer an equation that describes the
behavior of a specific material under every condition, we
have generally to accept relations that hold only under spe-
cific conditions discarding or approximating important, but
on the other hand marginal for the purposes of the study,
aspects like for instance individual cell behavior. Five dif-
ferent theoretical frameworks have proved to be of con-
siderable utility in continuum biomechanics of hard and
soft tissues: finite elasticity, damage mechanics, viscoelas-
ticity, mixture theory and growth and remodelling [92], this
is, the adaptive evolution process, typical of living tissues,
that consists on the modification of their internal archi-
tecture according to the specific mechanical and biologi-
cal environments. Most of the available models character-
ize the relation between continuum behaviour and inter-
nal microstructure by means of macroscopic internal vari-
ables like the apparent density, fabric or other structural ten-
sors.

The main characteristic of biological tissues is their high
flexibility (they usually undergo large strains) and their non-
linear, anisotropic, inhomogeneous and viscoelastic behav-

ior determined by the concentration and structural arrange-
ment of their principal constituents: collagen, elastin and
proteoglycans. Examples of connective tissues are bone (a
special tissue partially mineralized), tendons, ligaments or
cartilage, among many others. Numerous material models
have been used to model them: hyperelastic [206], viscoelas-
tic [160] and poroelastic [188] among others. In addition,
biological tissues are usually exposed to a complex distri-
bution of “in vivo” residual stresses as a consequence of
the continuous growth, remodelling, damage and viscoelas-
tic strains that they suffer along their whole life.

Finally, many soft tissues are quasi-incompressible. Fail-
ure to satisfy this assumption can result in a considerable
drift of the numerical solution from the theoretical one.
A single-field variational approach with the displacement u
as the only field variable is often used together with the so-
called penalty method, based on the simple idea of modeling
an incompressible material as slightly compressible by using
a large value of the bulk modulus. However, this method ex-
hibits rather poor numerical performance due to the penalty
sensitivity and ill-conditioning of the stiffness matrix. To
eliminate these difficulties, multi-field variational principles
as Lagrangian-multipliers, Augmented Lagrangian, Simo–
Taylor–Pister or Hu–Washizu variational principles may be
used [90].

Another important aspect in joint modelling is the evalua-
tion of the constitutive parameters. Material coefficients may
be based on subject-specific measurements or on population
averages. In the former, uncertainty is related to inherent er-
rors in experimental measurements and their extension to
other individuals. In the latter, coefficients represent a pop-
ulation average, and thus, have some well-defined variance.
In both cases, it is desirable to characterize the sensitivity
of the numerical results to variations in the material coeffi-
cients [203].

During deformation, two or more bodies may contact.
The analysis of contact using the FE method can be a very
difficult, nonlinear problem. In a FE context, contact may
be enforced as an additional nonlinear kinematic constraint.
Contact implementation must be able to handle both sta-
tic and dynamic situations, with and without frictional slid-
ing. Three of the most common approaches for implement-
ing contact in a FE context are the penalty method, the La-
grange multiplier method, and the Augmented Lagrangian
method [212].

The comparison of model predictions to experimental
measurements, or clinical evidences constitutes the vali-
dation process. There is no way to completely validate
a model. Therefore, one must pose specific hypotheses about
model predictions along with tolerable errors. Validation is
the most challenging aspect of the FE modelling of joint me-
chanics, as it requires accurate experimental measurements
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of quantities that are difficult to obtain. We can use experi-
mental data available in the literature, but this is also insuf-
ficient in subject-specific joint models.

With all the above in mind, the objective of the pa-
per is to describe strategies for addressing the computa-
tional modelling of joint mechanics using the finite element
(FE) method, differentiating between geometry, constitu-
tive modelling of the components, computational aspects
and applications. The paper is organized as follows: Sect. 2
describes the basic structure, composition and constitutive
models of the main hard and soft tissues that compose di-
arthroidal joints; Sect. 3 discusses technical aspects of the
finite element formulation and finally, examples of physi-
ological, pathological and pos-surgery simulations of knee
and temporomandibular joints are presented in Sect. 4. Fi-
nally, in Sect. 5 some conclusions are summarized.

2 Constitutive Models for Joint Tissues

In this section, a revision of the constitutive models that have
been developed for joint tissues is presented. Joint tissues
can be divided in soft and hard tissues. In the following,
a brief description of hard tissues model is presented, and
a more detailed one is done for soft tissues. Apart from this,
the muscle tissue has a special behaviour related to its capac-
ity of natural contraction and this aspect will be described in
a separate section. In addition, these tissues are usually ex-
posed to a complex distribution of in vivo initial strains and
this characteristic will be described in the last section. How-
ever, the composition of all of them is quite similar.

In general, joint tissues are mainly composed of spe-
cialized cells (chondrocytes, osteoblasts, . . . ) and extracel-
lular matrix that includes interstitial fluid (water and elec-
trolytes) and different proportions of the following compo-
nents: fibers of collagen and elastin and ground substance.

Collagen is a fibrous protein [60]. It is a basic structural
element for hard and soft tissues in animals. It gives me-
chanical integrity and strength. It is present in a variety of
structural forms in different tissues and organs. The stiffness
of the collagen network is highly influenced by the amount
of cross-links among fibers. Collagen also has the ability to
form covalent molecular cross-links with the ground sub-
stance matrix. These cross-links are responsible for the high
stiffness and tensile strength of collagen and its resistance to
chemical and enzymatic attack [195].

On the other hand, the behavior of elastin is responsi-
ble for a small part of a soft tissues’s tensile resistance and
its elastic recoverability. The insoluble protein elastin takes
on a complex coiled arrangement when unstressed. When
elastin is stressed, the coiled arrangement stretches into a
more ordered configuration. Ligaments with a high elastin
content have shown to be less stiff and to undergo larger

strains before failure when compared to cartilage with a
lower elastin content [60, 201].

Finally, the connective tissue surrounding the fibers is re-
ferred to as the ground substance matrix. This tissue is partly
responsible for holding the fibers together. The composition
of the ground substance varies with the tissue. The ground
substance matrix is composed of proteoglycans, glycolipids,
and fibroblasts and holds large amounts of water [60]. Pro-
teoglycans have a very important role: the hydration of col-
lagen. Water typically comprises 60 to 70% of the total
weight of normal soft tissues. Water and proteoglycans pro-
vide lubrication. The interaction of water with the ground
substance matrix and collagen is responsible for most of the
time- and history-dependent viscoelastic behavior observed
in soft tissues [60, 195].

2.1 Structure and Properties of Joint Tissues

2.1.1 Bone

Bone is a complex, living, constantly changing tissue. The
architecture and composition of cancellous and cortical bone
allow the skeleton to perform its essential mechanical func-
tions. The bone matrix has an organic component, primarily
type I collagen, which gives it tensile strength and an in-
organic component, primarily hydroxyapatite, which gives
it stiffness to compression. This tissue has different levels
of porosity, a macroporosity that defines the trabeculae and
a microporosity of the intrinsic solid bone tissue. Besides,
specialized populations of bone cells form, maintain and re-
model this matrix.

Bone tissue for instance has very interesting structural
properties. While its compression strength is similar to that
of steel, it is three times lighter and ten times more flexi-
ble, essentially due to its special heterogeneous microstruc-
ture. In addition, bone tissue is under permanent change
in response to different signals such as external loads, hor-
monal influence, etc. This process of microstructural change
is known as bone remodelling [36, 42, 95].

2.1.2 Tendons and Ligaments

Tendons and ligaments are soft tissues composed of closely
packed, parallel collagen fiber bundles oriented to provide
motion and stability to the musculoskeletal system. Under
macroscopic examination, ground substance is observed in
the interfibrillar spaces. Although ligaments are considered
as a composite material consisting of a ground substance
matrix reinforced by collagen and elastin, collagen is the pri-
mary component that resists the tensile stress in ligaments.
Figure 1 illustrates the hierarchy proposed by Kastelic and
Galeski [98] for the type I collagen in a rat tail tendon.
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Fig. 1 Hierarchy of the structure of a tendon adapted from Kastelic
and Galeski [98]

Fig. 2 Schematic diagram of a uniaxial tensile test where fibers orient
in the direction of the load as it increases

The tensile modulus of the ligament depends on the col-
lagen fibril density, fibril orientation and the amount of col-
lagen cross-linking. When this tissue is tested in tension, the
collagen fibrils are aligned and stretched along the axis of
loading. For small deformations, when the tensile stress in
the specimen is relatively small, a nonlinear toe-region is
seen in the stress-strain curve, due to realignment of the col-
lagen fibres, rather than stretching of these fibers. For larger
deformations, and after realignment, the collagen fibrils are
stretched and therefore generate a larger tensile stress due
to the intrinsic stiffness of the collagen fibrils themselves.
Due to this phenomenon, the tensile stiffness of ligaments is
highly strain dependent (see Fig. 2).

2.1.3 Cartilage

Articular cartilage forms a thin tissue layer that lines the
articulating ends of all diarthrodial joints in the body. The
primary functions of these cartilage layers are to minimize

contact stresses generated during joint loading and to con-
tribute to lubricate the joint [133, 134]. A healthy joint is
able to withstand the large forces associated with weight-
bearing and joint motion over the lifetime of an individual.

Articular cartilage can be considered a composite, or-
ganic solid matrix that is saturated with water and mo-
bile ions. The solid matrix consists of cartilage cells (chon-
drocytes) embedded in an extracellular matrix. The major
components of the extracellular matrix are collagen mole-
cules and negatively charged proteoglycans (PGs). The wa-
ter phase of cartilage constitutes averages from 65 to 80% of
the total weight for normal tissue and determines the behav-
iour of this tissue. This interstitial water is distributed non-
uniformly with depth from the surface and is an important
constituent in controlling many physical properties.

Collagen, on average, constitutes nearly 75% of the dry
tissue weight. As it happens with water, the distribution of
collagen is stratified throughout the depth. Collagen fibers
do not offer significant resistance to pressure, but are stiff
and strong in tension as mentioned for ligaments and ten-
dons (Sect. 2.1.2). Hence, they provide resistance against
swelling and tensile strains.

The response of the tissue to an applied load varies
with time, giving rise to well-known viscoelastic behaviors
as creep and stress relaxation. There are two distinct dis-
sipative mechanisms in response to loading: (a) the fric-
tional drag force of interstitial fluid flow through the porous-
permeable solid matrix (i.e. the flow-dependent mecha-
nism); and (b) the time-dependent deformations of the solid
macromolecules (i.e. the flow-independent mechanism).

When the load is applied, the interstitial fluid flows out-
side the porous-permeable matrix. The load makes the solid
matrix to compact, increasing the interstitial pressure and
forcing the fluid to squeeze out of the matrix. The rate of
fluid flow is controlled by the drag forces generated by the
flux. In general, the load transmission between solid and
fluid phases is related with the volume fraction of each
phase. Besides, the rate of fluid exudation is related with the
tissue’s permeability. This variable decreases in a non linear
form with the compressive load. This effect acts as a regu-
lation mechanism, avoiding a fast exudation of the fluid and
making possible that the cartilage can support more load.

2.1.4 Skeletal Muscle

Skeletal muscle makes up a major part of the animal body. It
is the prime mover of animal locomotion and it is controlled
by voluntary nerves. When stimulated, it can generate ten-
sion that produce a contracting mechanism [60]. The skele-
tal muscles have a complex structure with a well defined
hierarchy which can be distinguished when observed at vari-
ous levels of magnification. At the lowest level of magnifica-
tion, it is observed that muscles are surrounded by a fibrous
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Fig. 3 Hierarchy of the structure of a muscle adapted from Fung [60]

connective tissue, the epimysium, and composed of many
bundles, or fascicles, which are in turn encased in a dense
connective tissue, the perimysium (Fig. 3).

Due to its special composition, skeletal muscle presents
two different behaviors. As connective tissue, muscle
presents a passive behavior similar to tendon and ligaments.
In addition, a muscle can contract independently. This phe-
nomenon is known as active behavior [79, 93]. A motor unit
is composed of a neuron and the muscle fibers stimulated
by it. In large muscles each motor unit may have 1000 to
2000 muscle fibers. The degree of activation of a muscle is
a result of the number of activated (recruited) motor units.
Note that the fibers of each motor unit are not contiguous
but are dispersed throughout the muscle; thus, even if a sin-
gle motor unit was stimulated, a large portion of the muscle
would appear to contract [60].

2.2 Constitutive Models for Hard Tissues

Bone tissue, like most biological materials, has very in-
teresting structural properties. This is essentially due to
its heterogeneous microstructure, composed of an organic
part (mainly collagen, which provides traction capacity) and
a mineral part (which provides strength and stiffness un-
der compression). Bone is an inhomogeneous, anisotropic,
viscoelastic and porous material. Moreover, its mechanical
properties are not constant with time, since its composition
changes permanently in terms of the mechanical environ-
ment, ageing, disease, nutrition and other biological factors.

The first proposed models were elastic but they were
early replaced by models that try to correlate mechanical

properties with composition [26]. Vose and Kubala [198]
were possibly the first to quantify how much mechanical
properties depend on composition, obtaining a correlation
between ultimate bending strength and mineral content.

One of the most cited works belongs to Carter and Hayes
[25], who found that the elastic modulus and the strength of
trabecular and cortical bone are closely related to the cube
and square of the apparent wet bone density, respectively.
Although these preliminary models only took into account
the apparent density, several authors [37] have shown that
the mechanical properties of cortical and cancellous bone
depend both on the apparent density and the mineral con-
tent. So, Hernández et al. [76] express the elastic modulus
and compressive strength, independently, as a function of
the bone volume fraction and ash fraction.

Although all these correlations can predict the main me-
chanical properties, they do not consider the influence of
structural and microstructural features or the different be-
haviours in each direction that is the well known anisotropy
of bone tissue. This aspect has been considered by many au-
thors. For instance, Lotz et al. [118] determined the Young’s
modulus and the compressive strength of cortical and tra-
becular femoral bone in the axial and transversal directions
using the apparent density as a control variable.

The way to overcome this limitation is to employ aniso-
tropic internal bone remodelling models that are able to pre-
dict density and anisotropy distribution, and some of them
[41] with sufficient accuracy. Another assumption of most
FE analyses in the literature is the linearity of the con-
stitutive behaviour of bone tissue. This is usually accurate
enough, but some authors have also used nonlinear material
properties for cortical and trabecular bone [100].

Finally, when the interest is focussed on the surrounding
soft tissues, many authors [17, 43, 63, 144] assume that bone
tissue can be treated as a rigid element (taking into account
that its stiffness is much higher than the one of soft tissue).
This assumption involves a coarse simplification of the be-
haviour of bone tissue but helps in the treatment of complex
joint models.

2.3 Constitutive Models for Soft Tissues

As mentioned before the components of soft tissues are quite
similar. Usually, modelling of these tissues has been divided
in two types depending on the influence of fluid flow: hy-
drated tissues and non-hydrated ones. Ligaments, tendons
and muscles are treated as non-hydrated tissues, while car-
tilage as hydrated. However, except for the contribution of
the fluid phase inside the tissue, the behaviour of the solid
matrix in all these tissues is similar and therefore, the con-
stitutive models that have been used follow also the same
trend. In the following, a review of the classical and current
constitutive models that have been developed for this kind of
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tissues is presented. A complete description of these models
is done for ligaments and cartilage, while the active response
of muscles is briefly described in a separate section. Finally,
the consideration of the initial stress state of these tissues
will be briefly introduced.

2.3.1 Classical Models

The first mechanical models that were proposed in the liter-
ature used elastic models. For the ligaments, almost all the
mathematical models that have been developed for joints,
have used one-dimensional representations, since the pri-
mary function of ligaments is to resist tensile forces. A dis-
crete element representation of ligaments requires a lin-
ear [47, 48] or quadratic function [20, 22, 75] to specify
the force-elongation relationship for each element. A com-
mon approach has been to specify a reference length below
which the element force was equal to zero [22]. Although
one-dimensional representations can be used to predict lig-
ament forces, they are unable to predict stress distributions
throughout the ligament.

A more accurate approach is to consider the tissue as
a three-dimensional continuum body. This is the case of
the linear elastic models early proposed for cartilage. The
first mechanical analysis for this tissue can be attributed to
Hirsch [82], who used the solution of Hertz in the contact
between two elastic spheres to determine the Young mod-
ulus of articular cartilage from an indentation experiment.
In 1944, this researcher observed that the deformations in-
creased under a constant load (creep) and that the tissue did
not recover its shape completely after deformation. Thus, he
suggested a new term called imperfect elasticity, effect that
was studied posteriorly by Elmore et al. [50]. Timoshenko
and Goodier [194] derived the following expression for the
Young modulus for an incompressible material in an inden-
tation experiment:

E = P

2,67ω0a
(1)

where P was the applied load, a the radius of the cylindrical
indentor, ω0 the depth of the indentation, and ν = 0.5. In the
same way, another expression for the Young modulus was
suggested by Hayes and Mokros [71]:

E = P(1 − ν2)

2ω0ak(a/h, ν)
(2)

where k was defined in integral form, h was the thickness
of the tissue, and P, ω0, a and ν had the same meaning as
in (1).

However, these models were not able to describe the fi-
nite deformations that these tissues support. Hyperelastic
models were introduced to take into account this fact. For
the case of ligaments, Pioletti et al. [157, 159] developed an

isotropic hyperelastic model of the human anterior cruciate
ligament. They proposed an incompressible isotropic model
defined by the following strain energy function:

� = αeβ(I1−3) + C1(I2 − 3) (3)

Although this model was able to predict experimentally
observed trends, it is known that the assumption of isotropy
can introduce large errors in fiber-reinforced structures such
as ligaments. These models do not take into account ei-
ther the time dependent behaviour. Thus, viscoelastic mod-
els both for the intrinsic rate dependent response of the solid
matrix and for the contribution of water inside tissues are
necessary to simulate the overall behaviour of these tissues.

The first viscoelastic models for cartilage were composed
only by a spring and a dashpot to take into account the creep
phenomenon in the indentation experiment [34, 71, 130].
Parsons and Black [143] used a generalized Kelvin model
consisting of several pairs of springs and dashpots connected
in parallel with another spring in series. These authors intro-
duced the concept of stiffness in tight and relaxed situations
to describe the instantaneous and equilibrium modulus, and
a delay spectrum to describe the creep response.

Barbenel et al. [13] generalized these spring and dash-
pot models by incorporating a logarithmic relaxation spec-
trum for ligaments. Sanjeevi [168] described the viscoelastic
behavior of biological soft tissues with an equation similar
to that of a Voigt-type spring and dashpot model. As with
the elastic models, one-dimensional viscoelastic represen-
tations for ligaments can describe one-dimensional behav-
ior, but are incapable of describing and predicting complex
three-dimensional behavior. Continuum viscoelasticity the-
ory can be applied to circumvent this shortcoming of one-
dimensional approaches. In addition, continuum hyperelas-
tic models can be readily extended to continuum viscoelas-
ticity [201].

Fung [60] introduced a viscoelasticity theory that has be-
come the most widely used in soft tissue biomechanics. This
is referred to as Quasi Linear Viscoelasticity (QLV). The ba-
sis of this theory is that the stress at a given time can be
described by a convolution integral representation, separat-
ing the elastic response and the relaxation function; the re-
laxation function has a specific continuous spectrum. It is
assumed therefore that the stress relaxation function can be
expressed as a convolution of a relaxation function with an
elastic response

S(t) = G(t)Se(C) (4)

where Se(C) is the elastic response and G(t) is a fourth-
order tensor providing direction-dependent relaxation phe-
nomena named as reduced relaxation function. One of the
advantages of QLV theory is that it decouples the elastic
contribution to the stress from the rate-dependent contribu-
tions. This makes it relatively easy to use any hyperelastic
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model for the elastic contribution since the viscoelastic por-
tion will remain unaffected. This model has however an im-
portant drawback, such as the information must be saved at
every previous time step in order to compute the stress re-
sponse at the current one.

Puso and Weiss [164] formulated a time discretization al-
gorithm of the convolution integral in which the relaxation
function and the elastic constitutive behaviour were split by
means of a multiplicative decomposition, thus reducing the
non-linear response of the tissue to the latter, maintaining
the viscous behaviour within the framework of linear vis-
coelasticity. They developed a FE implementation of QLV
using a discrete spectrum approximation. This approach was
used to reduce the large amount of storage required for a
continuous relaxation function. Their implementation used
an exponential series approximation to G(t).

2.3.2 Current Models

The current models comprise the different aspects that, as
mentioned before, the classical models did not take into ac-
count. The main characteristics of these models are the treat-
ment of the anisotropy and the incorporation of three dimen-
sional viscoelasticity. They have been applied to ligaments
and tendons [81, 206], muscles [126] and the solid matrix of
the cartilage [2, 97, 99, 211].

As mentioned before, biological soft tissues are subjected
to large deformations with negligible volume changes, that
is, only quasi-isochoric (J ≈ 1) motions are possible. When
these tissues are reinforced by only one family of fibers, they
have a single preferred direction and are usually modelled as
a transversely isotropic hyperelastic material [201] while in
the case of two families of fibers they are modelled as an
anisotropic hyperelastic material [84]. The formulation of
finite strain hyperelasticity is usually expressed in terms of
invariants with uncoupled volumetric/deviatoric responses,
first suggested in [54], generalized in [179] and employed
for anisotropic soft biological tissues in Weiss et al. [206],
Holzapfel et al. [85], Peña et al. [150], Alastrue et al. [3],
Pérez del Palomar and Doblaré [188] and [153].

Let x = ϕ(X, t) : �0 × R → R
3 denote the motion map-

ping and let F be the associated deformation gradient. Here
X and x define the respective positions of a particle in the
reference �0 and current � configurations such as F =
dx/dX. Further, let J ≡ det F be the Jacobian of the motion.
To properly define volumetric and deviatoric responses in
the non-linear range, we introduce the following kinematic
decomposition [54]:

F = J
1
3 F̄, F̄ = J− 1

3 F (5)

C = FT F, C̄ = J− 2
3 C = F̄T F̄ (6)

The term J
1
3 I is associated with volume-changing deforma-

tions, while F̄ is associated with volume-preserving defor-
mations. We shall call F̄ and C̄ the modified deformation
gradient and the modified right Cauchy–Green tensors, re-
spectively.

The direction of a fiber at a point X ∈ �0 is defined by
a unit vector field m0(X), |m0| = 1. It is usually assumed
that, under deformation, the fiber moves with the material
points of the continuum body. Therefore, the stretch λ of the
fiber defined as the ratio between its length at the deformed
and reference configurations can be expressed as

λm(x, t) = F(X, t)m0(X)

λ2 = m0 · FT F · m0 = m0 · C · m0

(7)

where m is the unit vector of the fiber in the deformed con-
figuration.

The introduced kinematics for one family of fibers may
be applied to other in an analogous manner. We will denote
the second preferred direction by the unit vector field n0(X).

To characterize isothermal processes, we postulate the
existence of a unique decoupled representation of the strain-
energy density function � [178]. Based on the kinematic
assumption (5) and following Spencer [185] it can be shown
that eight modified invariants are necessary to form the in-
tegrity bases of the tensors C̄,m0 ⊗ m0,n0 ⊗ n0. Then, the
free energy can be written in a decoupled form as

� = �vol(J ) + �̄
(
C̄,m0 ⊗ m0,n0 ⊗ n0

)

= �vol(J ) + �̄
(
Ī1, Ī2, Ī4, Ī5, Ī6, Ī7, Ī8, Ī9

)
(8)

with

Ī1 = trC̄, Ī2 = 1

2

(
tr(C̄)2 − trC̄2),

Ī4 = m0 · C̄ · m0, Ī5 = m0 · C̄2 · m0,

(9)
Ī6 = n0 · C̄ · n0, Ī7 = n0 · C̄2 · n0,

Ī8 = m0 · C̄ · n0, Ī9 = (n0 · m0)
2

with Ī1 and Ī2 the first two strain invariants of the symmetric
modified Cauchy–Green tensor, while the pseudo-invariants
Ī4, . . ., Ī9 characterize the anisotropic constitutive response
of the fibers. Ī4 and Ī6 have a clear physical meaning, since
they are the squares of the stretches along the two families of
fibers. In order to reduce the number of material parameters
and to work with physically motivated invariants, we shall
omit the dependency of the free energy � on Ī5, Ī7, Ī8 and
Ī9. These invariants are usually not included in the formula-
tions directly since most of their effects can be introduced in
the strain energy density function through derivatives with
respect to the invariants Ī4 and Ī6 [206]. Besides, the strong
correlation of Ī5 and Ī7 with Ī4 and Ī6 leads to an ill posed
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parameter estimation problem for most experiments. Finally,
Ī8 is related to the interaction between both families of fibers
that is usually discarded, and Ī9 is not strain dependent. This
hypothesis is usually used in biomechanical modelling [87].

Materials which keep the volume constant throughout a
motion are characterized by the incompressibility constraint
J = 1. In order to derive general constitutive equations for
incompressible hyperelastic materials, we can postulate the
strain-energy function

�vol(J ) = 1

D
(J − 1)2 (10)

where �vol(1) = 0 and �̄ is defined for J = 1. The scalar
p introduced in (10) serves as an indeterminate Lagrangian
multiplier, which can be identified as the hydrostatic pres-
sure. Note that the scalar p represents a workless reaction
to the kinematic constraint on the deformation field and
may only be determined from the equilibrium equations and
boundary conditions [84].

The stress response is obtained from the derivatives of the
stored-energy function, getting

S = 2
∂�

∂C
= Svol + S̄

= JpC−1 + J− 2
3
(
I − 1/3C−1 ⊗ C

) : S̃ (11)

where Svol and S̄ are the volumetric and deviatoric parts of
the second Piola–Kirchhoff stress tensor, p is the hydrostatic
pressure and S̃ the modified second Piola–Kirchhoff stress
tensor

p = d�vol(J )

dJ
S̃ = 2

∂�̄(C̄,m0,n0)

∂C̄
(12)

The explicit expressions for the second Piola–Kirchhoff
stress tensor depending of the defined invariants is

S = 2
∂�

∂C
= JpC−1 + 2

[(
∂�̄

∂Ī1
+ Ī1

∂�̄

∂Ī2

)
1 − ∂�̄

∂Ī2
C̄

+ Ī4
∂�̄

∂Ī4
m0 ⊗ m0 + Ī6

∂�̄

∂Ī6
n0 ⊗ n0

− 1

3

(
∂�̄

∂Ī1
Ī1 + 2

∂�̄

∂Ī2
Ī2 + ∂�̄

∂Ī4
Ī4 + ∂�̄

∂Ī6
Ī6

)
C−1

]

(13)

The Cauchy stress tensor σ is 1/J times the push-
forward of S (σ = J−1χ∗(S)), that is, σij = J−1FiIFjJ SIJ ,
so, from (11), we obtain

σ = p1 + 2

J
dev

[
F̄

∂�̄(C̄,m0,n0)

∂C̄
F̄T

]
(14)

with 1 the second-order identity tensor and dev the deviator
operator in the spatial description [177].

From (13), we obtain

σ = p1 + 2

J

[(
∂�̄

∂Ī1
+ Ī1

∂�̄

∂Ī2

)
b̄ − ∂�̄

∂Ī2
b̄2

+ Ī4
∂�̄

∂Ī4
m ⊗ m + Ī6

∂�̄

∂Ī6
n ⊗ n

− 1

3

(
∂�̄

∂Ī1
Ī1 + 2

∂�̄

∂Ī2
Ī2 + ∂�̄

∂Ī4
Ī4 + ∂�̄

∂Ī6
Ī6

)
1
]

(15)

The development of uncoupled volumetric/deviatoric fi-
nite deformation elasticity with two families of fibers can
be concluded by recording the explicit expressions for the
elastic tangent moduli. The tangent modulus plays a cru-
cial role in the numerical solution of the boundary value
problem by Newton-type iterative methods [218]. The use
of consistently linearized moduli is essential to preserve the
quadratic rate of the asymptotic convergence that character-
izes full Newton’s method [90]. Consider the nonlinear sec-
ond Piola–Kirchhoff stress tensor S at a certain point. Its
variation with respect to the right Cauchy–Green tensor C is
the elasticity tensor in the material description or the refer-
ential tensor of elasticities and may be written as

C = 2
∂S(C)

∂C
= Cvol + C̄ = 2

∂Svol

∂C
+ 2

∂S̄
∂C

(16)

where Cvol and C̄ may be written as [177]

Cvol = 2C−1 ⊗
(

p
∂J

∂C
+ J

∂p

∂C
+ 2Jp

∂C−1

∂C

)

= J p̃C−1 ⊗ C−1 − 2JpC−1 � C−1 (17)

C̄ = −4

3
J− 4

3

(
∂�̄

∂C̄
⊗ C̄−1 + C̄−1 ⊗ ∂�̄

∂C̄

)

+ 4

3
J− 4

3

(
∂�̄

∂C̄
: C̄

)(
I
−1
C + 1

3
C̄−1 ⊗ C̄−1

)

+ J− 4
3 C̄w̄ (18)

C̄w̄ = 4
∂2�̄

∂C̄∂C̄
− 4

3

[(
∂2�̄

∂C̄∂C̄
: C̄

)
⊗ C̄−1

+ C̄−1 ⊗
(

∂2�̄

∂C̄∂C̄
: C̄

)]

+ 4

9

(
C̄ : ∂2�̄

∂C̄∂C̄
: C̄

)
C̄−1 ⊗ C̄−1 (19)

with IC−1 = ∂C−1/∂C = −C−1 � C−1 = −(1/2) ×
(C−1

IKC−1
JL +C−1

IL C−1
JK). For convenience, the scalar function

p̃ is introduced and is defined by

p̃ = p + J
dp

dJ
(20)

with the constitutive equation for p given in (12)a .
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The elasticity tensor in the spatial description is defined
as the push forward of c

c = cvol + c̄ (21)

where cvol is defined as

cvol = p(1 ⊗ 1 − 2I) (22)

with I the fourth-order identity tensor, p defined in (12)
and c̄

c̄ = −2

3
(devσ ⊗ 1 + 1 ⊗ devσ )

− 4

3J

[(
�̄1 + �̄2Ī1

)
Ī1 − �̄2

(
Ī 2

1 − 2Ī2
) + �̄4Ī4

+ �̄6Ī6
](

I − 1

3
1 ⊗ 1

)
+ 4

[(
�̄11 + 2�̄12Ī1 + �̄2

+ �̄22Ī
2
1

)
b̄ ⊗ b̄ + �̄22

(
b̄

2 ⊗ b̄
2) − �̄2Īb̄ − (

�̄12

+ �̄22Ī1
)
(b̄ ⊗ b̄

2 + b̄
2 ⊗ b̄) + (

�̄14 + �̄24Ī1
)
Ī4

× (b̄ ⊗ m ⊗ m + m ⊗ m ⊗ b̄) + (
�̄16 + �̄26Ī1

)

× Ī6(b̄ ⊗ n ⊗ n + n ⊗ n ⊗ b̄) − �̄22Ī4
(
b̄

2 ⊗ m

⊗ m + m ⊗ m ⊗ b̄
2) + �̄44Ī

2
4 (m ⊗ m ⊗ m ⊗ m)

− �̄22Ī6
(
b̄

2 ⊗ n ⊗ n + n ⊗ n ⊗ b̄
2) + �̄66Ī

2
6

× (n ⊗ n ⊗ n ⊗ n) − 4

3

[(
�̄11Ī1 + �̄12Ī

2
1

+ �̄12Ī2 + �̄2Ī1 + 2�̄22Ī1Ī2 + �̄14Ī4 + �̄24Ī1Ī4

+ �̄16Ī6 + �̄26Ī1Ī6
)
b̄ − (

�̄12Ī1 + 2�̄22Ī2 + �̄2

+ �̄24Ī4 + �̄26Ī6
)
b̄

2 + (
�̄14Ī1 + 2�̄22Ī2

+ �̄44Ī4
)
m ⊗ m ⊗ b̄ + (

�̄16Ī1 + 2�̄22Ī2

+ �̄66Ī6
)
n ⊗ n ⊗ b̄ + 1 ⊗ ((

�̄11Ī1 + �̄12Ī
2
1

+ �̄12Ī2 + �̄2Ī1 + 2�̄22Ī1Ī2 + �̄14Ī4 + �̄24Ī1Ī4

+ �̄16Ī6 + �̄26Ī1Ī6
)
b̄ − (

�̄12Ī1 + 2�̄22Ī2 + �̄2

+ �̄24Ī4 + �̄26Ī6
)
b̄

2 + (
�̄14Ī1 + 2�̄24Ī2

+ �̄44Ī4
)
m ⊗ m

) + (
�̄16Ī1 + 2�̄26Ī2 + �̄66Ī6

)

× (
n ⊗ n

)] + 4

9

[((
�̄11 − �̄12

)
Ī 2

1 + 2�̄2Ī2 + 4�̄22Ī
2
2

+ 4�̄12Ī1Ī2 + 2�̄14Ī1Ī4 + 2�̄16Ī1Ī6 + 4�̄24Ī2Ī4

+ �̄44Ī
2
4 + 4�̄26Ī2Ī6 + �̄66Ī

2
6

)
1 ⊗ 1

]
(23)

Following this approach, different strain energy functions
have been proposed in order to take into account both the
isotropy related to the solid matrix and the anisotropy intro-
duced by the collagen fibers.

Lanir [109] used a strain energy approach to form
a continuum model for fibrous connective tissue. The de-
formation energy was assumed to arise from the tensile
stretch in the collagen fibers, with the only contribution
from the matrix being a simple hydrostatic pressure. The
model described an incompressible composite of undulat-
ing collagen fibers embedded in a fluid matrix. The model
assumed that the collagen fibers buckle under a compres-
sive load and the unfolding of the fibers during deforma-
tion squeezed the matrix, resulting in an internal hydrostatic
pressure. The stress due to the deformation was described
by

S = λWλm ⊗ m + p1 (24)

where λ is the collagen fiber stretch, Wλ is the strain energy
contribution from the collagen fibers, m is a unit vector de-
scribing the local fiber direction, and p is the hydrostatic
pressure arising from the matrix.

The most used transverse model for ligaments is the early
proposed by Weiss [206]. The strain energy function for in-
compressible material was divided into an isotropic part that
corresponds to a Neo-Hookean model and other depending
on the collagen fibers (Fλ).

� = C1
(
Ī1 − 3

) + Fλ(λ) (25)

where C1 is the Neo-Hookean constant, D the inverse of the
bulk modulus k = 1/D, Ī1 is the first modified strain invari-
ant of the symmetric modified Cauchy–Green tensor C̄.

Following physical observations in human ligaments,
they assumed that collagen fibers do not support compres-
sive loads, Fig. 2. The derivatives of the term of the free-
energy function related to the fibers that were initially pro-
posed by Weiss et al. [206] can be written as:

λ�λ = 0 λ < 1

λ�λ = C3
(
eC4(λ−1) − 1

)
λ < λ∗ (26)

λ�λ = C5λ + C6 λ > λ∗

where �λ = ∂Fλ/∂λ, λ∗ is the stretch at which collagen
fibers start to be straightened, changing �λ from exponential
to linear, C3 scales the exponential stress, C4 is related to the
rate of collagen uncrimping and C5 is the elastic modulus of
the straightened collagen fibers.

Limbert et al. [115] proposed another ligament model
where the strain energy function takes the form

� = C1
(
Ī1 − 3

) + �λ(λ) (27)

and the term �λ is defined in the following form
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�λ = 0 I4 < 1

�λ = C2

C3

(
eC3(I4−1)2 − 1

)
1 ≤ I4 < I ∗

4 (28)

�λ = 2C4

√
I4 + C5 ln I4 I4 ≥ I ∗

4

where I4 = λ2.
Hirokawa et al. [80, 81] proposed an anisotropic hyper-

elastic model for ligaments where the anisotropy was de-
fined by a two vector field. This model is more useful for
soft tissues characterized by the existence of two family of
the fibers as blood vessels [85] or human cornea [3].

Regarding cartilage, Cohen et al. [32, 33] demonstrated
that the linear transversely isotropic biphasic theory could
provide successful results, suggesting that the difficulties
encountered with the isotropic model could be overcome
by modeling tissue anisotropy, similarly to the earlier work
of Lanir et al. [108]. Soulhat et al. [184] proposed a fibril-
network reinforced model for the solid phase of biphasic car-
tilage that incorporates tension-compression nonlinearity,
when the collagen fibrils can only sustain tensile stresses. In
the same way, Li et al. [119, 120] considered the solid phase
of the matrix as elastic, and introduced collagen fibers like
springs that only worked in tension. Korhonen et al. [105]
used a similar model to study the behaviour of the healthy
cartilage. They compared its behaviour when the collagen
network is damaged modifying the stiffness of the springs
that simulates the collagen fibers. In the same way, Park
et al. [142] suggested the significance of the introduction
of different properties in the tissue under traction and com-
pression, relating them with the pressurization of the tissue.

Different strain energy functions have been proposed for
cartilage [4, 188]. However, only Almeida and Spilker [6]
and Pérez del Palomar and Doblaré [153] have used trans-
versely isotropic hyperelastic models to model the collagen
fibers of the solid phase. In [153] for example, the strain
density energy function earlier proposed by Holzapfel et al.
[84],

� = C1
(
Ī1 − 3

) + K1

2K2

{
exp

[
K2

(
Ī4 − 1

)2] − 1
}

+ 1

D
(J − 1)2 (29)

was used.
The second aspect that the current constitutive mod-

els includes is tissues’ time dependent behaviour [60, 67,
71, 114, 158]. Pioletti et al. [158, 160] developed a three-
dimensional, visco-hyperelastic model for ligaments and
tendons that included nonlinear elastic behavior, short-term
memory effects, and long-term memory effects. The short-
term memory effects describe the dependence of stress on
the strain rate while the long-term memory effects describe

stress relaxation on a longer time scale. The second Piola–
Kirchhoff stress tensor is then written as:

S(t) = Se

(
C(t)

) + Sv

(
C(t); Ċ(t)

)

+
∫ ∞

0

∑
G

(
(t − s), s

)
C(t)ds

= ∂�e

∂C
+ ∂�v

∂Ċ
+

∫ ∞

0

∑
G

(
(t − s), s

)
C(t)ds

(30)

where �e is the previously defined strain energy function for
a hyperelastic material and �v is a similarly defined dissipa-
tive potential for short-term memory effects from which the
viscous stress is derived. The model was limited by consid-
ering specimens to be isotropic, homogeneous and incom-
pressible. Limbert and Middleton [114] extended the dissi-
pative potential �v to the anisotropic case. These phenom-
enological approaches [114, 158] have however an impor-
tant drawback, they involve 10 and 15 invariants, respec-
tively.

A fully three-dimensional finite strain viscoelastic model
not restricted to the isotropic domain was developed by
Simo [176]. This model is based on the concept of in-
ternal variables and allows a very general description of
materials involving irreversible effects. This constitutive
model was applied to model the mechanical behavior of
isotropic elastomers. Following Simo’s constitutive frame-
work, Holzapfel and Gasser [86] proposed a Maxwell type
viscoelastic model of fiber-reinforced composites at finite
strains that considered a different viscoelastic behaviour for
the matrix and the fibers. The proposed constitutive expres-
sion for the second Piola–Kirchhoff stress tensor is:

S = 2
∂�(C,m0,n0,Qi )

∂C
= S∞

vol + S∞
iso +

n∑

i=1

Qi (31)

where S∞
vol and S∞

iso define the stress response at (t → ∞)
and Qi may be interpreted as non-equilibrium stresses asso-
ciated to matrix and fibers.

However, ligaments are usually assumed to have a
Kelvin–Voight-type viscoelastic constitutive behaviour [165,
169, 197]. Following Simo [176] and Holzapfel and Gasser
[86], Peña et al. [148] presented a fully three-dimensional
finite strain anisotropic visco-hyperelastic Kelvin–Voight
model for ligaments. They postulated the existence of an
uncoupled free energy function of the form

�(C,m0,n0,Qi )

= �0
vol(J ) + �̄0(C̄,m0 ⊗ m0,n0 ⊗ n0)

−
n∑

i=1

1

2
C̄ : Qi + �

(
n∑

i=1

Qi

)

(32)
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where �0
vol and �̄0 are the volumetric and deviatoric parts

of the initial elastic stored energy function �0, Qi play the
role of internal variables (not accessible to direct observa-
tion) corresponding to the reference configuration and � is
a certain function of the internal variables.

Restricting the attention to the isothermal case and ex-
ploiting the Clausius–Duhem inequality Dint = −�̇ + 1

2 S :
Ċ ≥ 0 [125], one gets

S = 2
∂�(C,m0,n0,Qi )

∂C
= JpC−1

+ J− 2
3 dev

[

2
∂�̄0(C̄,m0,n0)

∂C̄
−

n∑

i=1

Qi

]

= S0
vol + S̄0 − J− 2

3 dev

[
n∑

i=1

Qi

]

(33)

Dint = −
n∑

i=1

∂�(C,m0,n0,Qi )

∂Qi

: Q̇i

=
n∑

i=1

[
1

2
C̄ − ∂�(Qi )

∂Qi

]
: Q̇i ≥ 0 (34)

Qi may be interpreted as non-equilibrium stresses, in the
sense of non-equilibrium thermodynamics, and remain un-
altered under superposed spatial rigid body motions [177].
This fundamental requirement is the same invariance prop-
erty classically placed on the second Piola–Kirchhoff tensor
S and automatically ensures frame indifference of the con-
stitutive relationship (33).

Since σ = (1/J )FSFT , in the spatial description expres-
sion (33) may be recast in the equivalent form

σ = p1 + 1

J
dev

[
F̄
{

2
∂�̄0(C̄,m0,n0)

∂C̄
−

n∑

i=1

Qi

}
F̄T

]
(35)

Motivated by Holzapfel and Gasser [86] and in order to
consider different contributions of the matrix material and
families of fibers on the non-equilibrium part, the internal
variables can be divided in the following way:

Qi =
9∑

j=1j �=3

Qij (36)

where Qi1 and Qi2 are the isotropic contribution due to
the matrix material associated to Ī1 and Ī2 invariants and
Qi4, . . . ,Qi9 are the anisotropic contribution due to the two
families of fibers associated to Ī4, . . . , Ī9 invariants. Thus,
the evolution equations can be formulated in a separate form
for each contribution. The following set of rate equations

governing the evolution of internal variables Qij can be con-
sidered [176]

Q̇ij + 1

τij

Qij = γij

τij

dev
[
2δ�̄0(j)

]
lim

t→−∞ Qij = 0 (37)

with γij ∈ [0,1] are free energy factors associated with re-
laxation time τij > 0 and δ�̄0(j) = (∂�̄0/∂Ij )(∂Ij /∂C̄).

The evolution equations (37) are linear and, therefore, ex-
plicitly lead to the following convolution representation

Qij (t) = γij

τij

∫ t

−∞
exp

[−(t − s)

τij

]
dev

[
2δ�̄0(j)

]
ds (38)

� can be determined from the condition of thermody-
namic equilibrium [176]. It is clear that, given the rate equa-
tions (37), equilibrium is achieved for

Q̇ij = 0 ⇒ Qij = γij dev
[
2δ�̄0(j)

]

(39)
∂δ�̄0(j)

∂Qij

= 0 ⇒
n∑

i=1

9∑

j=1,j �=3

[
−1

2
C̄ + ∂�

∂Qij

]
= 0

Equation (39) defines � as the Legendre transformation of
the function �0

iso in the sense that

�(Qij ) =
n∑

i=1

[
9∑

j=1,j �=3

[−2γij δ�̄
0(j)

] + 1

2
C̄ :

9∑

j=1,j �=3

Qij

]

(40)

Substitution of (38) into (33) and integrating by parts then
yields the following equivalent expression

S = JpC−1 + J− 2
3

9∑

j=1,j �=3

[(

1 −
n∑

i=1

γij

)

× dev
{
2δ�̄0(j)

(
C̄,m0,n0

)}
]

+
n∑

i=1

9∑

j=1,j �=3

[
J− 2

3 γij

∫ t

−∞
exp

[−(t − s)

τij

]
d

ds

{
dev

[
2δ�̄0(j)

(
C̄,m0,n0

)]}
ds

]
(41)

Note that Qi attains its equilibrium value (39) as
t/τij −→ ∞. The corresponding value of the equilibrium
stress is a fraction of the initial stress; that is

lim
t

τij
−→∞

S = JpC−1 + J− 2
3

9∑

j=1,j �=3

[(

1 −
n∑

i=1

γij

)

× dev
{
2δ�̄0(j)

(
C̄,m0,n0

)}
]

(42)
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The convolution representation (41) in terms of the Cauchy
stress tensor takes the form [148]

σ = p1 + 1

J

[
9∑

j=1,j �=3

[(

1 −
n∑

i=1

γij

)

× dev
{
F̄
[
2δ�̄0(j)

(
C̄,m0,n0

)]
F̄T

}
]

+
n∑

i=1

9∑

j=1,j �=3

[
γij

∫ t

−∞
exp

[−(t − s)

τij

]
d

ds

{
dev

{
F̄
[
2δ�̄0(j)

(
C̄,m0,n0

)]
F̄T

}}]
ds

]

(43)

Both the anisotropic hyperelastic and viscoelastic models
presented above describe the behaviour of the solid matrix
of soft tissues. As mentioned previously however, these tis-
sues have a percentage of liquid that in the case of cartilage
strongly influences its overall behaviour. Thus, although in
other soft tissues this fluid phase can be neglected assuming
the incompressibility assumption, in the case of cartilage,
the fluid phase not only contributes to the distribution of the
load but the free fluid flow also makes the tissue viscoelas-
tic [50, 82, 116, 182]. Thus, the current models use for this
tissue starts from the assumption that cartilage is composed
of two phases and then biphasic models are needed.

It was not until the 80s when Mow et al. [130] proposed
the biphasic theory based on the mixtures theory. In this
theory, the tissue is modeled as a mixture of two differ-
ent phases, both immiscible and incompressible: an elas-
tic solid matrix and a non viscous fluid. Due to the in-
trinsic incompressibility of both phases, the dilatation of
the tissue is supposed to be caused by the exudation or
absorption of interstitial fluid. In the biphasic theory it
is supposed that the stiffness due to the collagen fibers
and proteoglycans is included in the elastic constants of
the solid matrix. This model had an important success on
the description of the experimental results corresponding
to confined compression tests [23, 49, 101, 131, 132], al-
though later experiments suggested some limitations for
the interpretation of these experiments using those mod-
els.

The porous media models, such as the biphasic mixture
theory of Mow et al. [130] or the electromechanical model
of Frank and Grodzinsky [57] can appropriately explain the
time-dependent viscoelastic response of cartilage as result-
ing primarily from the dissipative drag of interstitial fluid
flowing through the porous solid matrix. Alternatively, Suh
and Bai [189] were able to show successful data using a
linear isotropic poroviscoelastic model firstly proposed by
Mak [123] and also used by Setton et al. [173]. To com-
plete these formulations, the mechanism of flow indepen-
dent viscoelasticity in the solid matrix can be also taken

into account. Recently, Pérez del Palomar and Doblaré [153]
have developed a finite deformation biphasic model where
the solid matrix is considered as transversely isotropic and
hyperelastic, and where the incompressibility is treated ac-
curately.

Recent theoretical analyses using triphasic or quadripha-
sic mixture theory (which includes the electrical charge
of each constituent) have identified two important sources
of electrical potential in the negatively charged articu-
lar cartilage: a diffusion potential resulting from the in-
homogeneous distribution of the fixed charge density ei-
ther strain induced or naturally occurring, and a stream-
ing potential resulting from fluid flow within charged tis-
sue [99, 107, 124, 135]. Recently, Chen et al. [31] have
developed a triphasic theory for modelling the mechano-
electrochemical phenomena of charged hydrated soft tis-
sue extending it to finite deformation problems. These
recent theoretical studies indicate that the charged na-
ture of articular cartilage has a profound influence not
only on the swelling and electric behaviors but also on
mechanical behaviors as well, which has been reviewed
above.

2.4 Active Response of Muscle Tissue

In previous sections, the behaviour of the muscle has been
briefly explained. It was mentioned that it has a passive and
an active response. The passive one is usually considered as
a fibered hyperelastic material, and therefore, all the con-
stitutive relations explained before can be directly applied.
However, the active component responsible of the shorten-
ing of the muscles fibers determines its behaviour and needs
to be described separately. Here, only a brief description of
the models that are most used is presented.

Hill’s model is the most famous equation in muscle me-
chanics [79] and is still the basis for most of the currently
used models. Hill represented the muscle actuators as com-
posed of three elements, as depicted in Fig. 4.

• One elastic element to account for the muscle elasticity in
isometric conditions.

Fig. 4 Schematic representation of the 3D Hill model to account both
the active and passive response of the muscle
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• One contractile element, which is freely extensible at rest,
but capable of shortening when activated.

• One elastic element placed in parallel with the two others
to account for elasticity of the muscle at rest.

It has been recognized that the parallel element stands for
the action of the intramuscular connective tissues surround-
ing the fibres and the series element has mainly been at-
tributed to the intrinsic elasticity of the cross-bridges [117].

Some of the most interesting papers in this field are [93,
126, 210, 217]. These are phenomenological models, ac-
counting for the length-force and the velocity-force relation-
ship of the muscle.

Huxley [93] for instance presented a phenomenological
model at different architectural levels. The basic theory fo-
cuses on an ensemble of myosin heads which are assumed
to be capable of binding to actin, to form a cross-bridge.
During contraction, a fraction of all cross-bridges is at-
tached. Every attached crossbridge has its own dimension-
less attachment length ξ . The distribution of attached cross-
bridges with respect to their length is given by the function
n(ξ, t) and the rate of change of this distribution can be ex-
pressed with a modified two-state Huxley equation:

∂n(ξ, t)

∂t
− u(t)

∂n(ξ, t)

∂ξ
= r(t)f (ξ)

[
α − n(ξ, t)

]

− g(ξ)n(ξ, t) (44)

where u(t) is the scaled shortening velocity of a half sar-
comere, f (ξ) and g(ξ) are the attachment and detachment
rate of the cross-bridges, respectively, α is an overlap factor,
and r(t) is an activation factor, depending on the amount of
calcium in the myofibrillar space. It should be noted at this
point that (44) again is a partial differential equation with
a time derivative and a derivative to the attachment length,
which is a microstructural property. The shortening velocity
u(t) is a macroscopic property.

The active muscle stress can be determined from the
distribution of attached cross-bridges n. It is assumed that
the cross-bridge force depends linearly on the attachment
length ξ . The active Cauchy stress σ a generated by all cross-
bridges in a slice of half sarcomeres is described as

σ a = caλ

∫ ∞

−∞
ξn(ξ, t)dξ = caλQ1(t) (45)

where Q1(t) is the first moment of function n(ξ, t), ca is
a material constant and represents the maximal isometric
stress with the maximum number of cross-bridges attached
and λ is the extension ratio in fiber direction [215, 216].

It is assumed that the total stress in the material is defined
by a superposition of a passive stress (caused by the stiffness
properties of collagen and cytoskeletal materials) and an ac-
tive stress that works only in the fibre direction [140]. In

mathematical terms this can be written as

σ = σp + σ aef ef

= σmatrix
p + σ fiber

p ef ef + σ aef ef (46)

where σp is the passive stress and ef denotes the local fiber
direction. In the most recent models, the passive stress σp

is usually decoupled in matrix and fiber contribution [126,
140, 216].

2.5 Initial Strains

Initial strains are a consequence of the continuous growth,
remodelling, damage and viscoelastic strains that suffer liv-
ing materials along their whole life. Their most important
aim is to homogenize the stress distribution at different
stages of tissue deformation. For example, in arteries, their
effect is to decrease the circumferential stresses at the in-
ner wall and to reduce the stress gradient through the ar-
terial thickness [28]. It has been assumed by different au-
thors that the physiological state of a healthy artery requires
constant circumferential stress in each layer. This situation
is only possible by the presence of initial stresses [166].
In ligaments of diarthrodial joints, initial stretches provide
joint stability even in a relatively unloaded joint configura-
tion [63]. Typical residual strains are approximately 3–5%
in these ligaments [12].

Initial strains can be relieved by selective cutting of the
living tissue and removal of its internal constraints. Direct
measurement of ligament stresses is very difficult, inva-
sive and in most cases simply not available. Therefore, nu-
merical estimations of the effect of these stress and strain
distributions and the associate parametric study are useful
for a better understanding of the mechanical behaviour of
these organs under physiological and pathological condi-
tions. This information is also important in the design of
artificial grafts.

In order to describe the current deformation state of
a solid, including the effect of initial deformations, three
different configurations are usually defined: (a) the stress-
free state (�sf), (b) the reference state in which the material
is unloaded (�0) and (c) the current deformed state (�). It
is assumed that the total deformation gradient tensor cor-
responding to the current state (Fr ) admits a multiplicative
decomposition [205] such as:

Fr = FF0 (47)

The initial stress in the reference state, σ 0, is defined for
hyperelastic materials in the standard form, by the strain-
energy density function ��sf . Note that this function is al-
ways referred to the stress-free state �sf, while σ 0 are true
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Fig. 5 Multiplicative decomposition of the total deformation gradient
where �sf denotes the stress free state, �0 the reference state and �

the current configuration [149]

stresses in the reference load-free configuration. Then

σ 0 = 2

J0
χ∗

[
∂��sf(C)

∂C

∣∣∣∣
C=C0

]

= 2

J0
F0

[
∂��sf(C)

∂C

∣∣∣∣
C=C0

]
FT

0 (48)

with χ∗ the push-forward associated to F0 and C0 = FT
0 F0.

In the same way, it is possible to define the total stresses
corresponding to the current state σ r in the standard form by
using the strain-energy density function ��sf through Fr .

σ r = 2

Jr

χ∗
[
∂��sf(C)

∂C

∣∣∣∣
C=Cr

]

= 2

Jr

Fr

[
∂��sf(C)

∂C

∣∣∣∣
C=Cr

]
FT

r (49)

with Jr = J0J and Cr = FT
r Fr .

Finally, the elasticity tensor in the material description

C = 4
∂2��sf(C)

∂C∂C

∣∣∣
∣
C=Cr

(50)

3 Finite Element Modeling

In this section the formulation of the biphasic theory under
the frame of multiphasic systems is derived. First of all, the
balance laws for multiphasic systems are presented, and then
these are particularized for the case of two and one phase
materials. Finally, some computational aspects that have to
be taken into account are described.

3.1 Balance Laws of Multiphasic Systems

At this point, the unified model proposed by Garikipati et al.
[64] is described in order to derive the constitutive equations
for biphasic systems. The multiphasic solid B occupies the
region �0 ⊂ R

3 in the reference configuration. Points of B

Fig. 6 Continuum tissue with diffusing species (�0 undeformed con-
figuration and �t current configuration)

are parameterized by their coordinates in the reference con-
figuration, X. The deformation of B is denoted by the func-
tion ϕ(X, t) ∈ R

3 (Fig. 6), in �0, that makes correspond
each point X its deformed position x = ϕ(X, t), at time
t ∈ [0, T ]. In each deformed configuration B occupies the
opened region �t = ϕ(�0, t), �t ⊂ R

3. The deformation
gradient and the associated Jacobian are therefore defined
as F = ∂ϕ/∂X and J = det F, respectively.

The tissue is considered to be composed of different
species. The solid phase is denoted by s, and the fluid phase
by f . The remaining species, α, . . . ,ω, are precursors of the
tissue or bioproducts coming from biochemical reactions in-
side it. The index i is used to indicate a specie. Each specie
has sources/sinks of mass πα, . . . , πω and fluxes of mass
mα, . . . ,mω in the deformed configuration. We have to point
out that the fluxes are defined relative to the solid phase. The
solid phase is associated with possible sources and sinks and
without mass fluxes (πs �= 0,ms = 0), while the fluid phase
is only related to mass fluxes (πf = 0,mf �= 0). The solid
phase does not undergo mass transport so its movement is
uniquely determined by means of ϕ(X, t). The remaining
species are convective with respect to the solid and diffusive
with it. Finally, we consider the whole system closed with
respect to mass, that is,

∑
i π

i = 0.
The current concentration of the specie i, ρi

0 = ρ̄iφi , is
defined as mass per unit of volume in �0 and is expressed
in terms of the intrinsic density ρ̄i and the volume frac-
tion φi . Therefore, density in the deformed configuration
can be calculated by means of the deformation gradient as
ρi = ρi

0J
−1. The tissue density is defined as ρ0 = ∑

i ρ
i
0.

Balance of mass The concentrations, ρi
0, change due to

mass transport and interconversion of species. The balance
of mass in the deformed configuration is:

d

dt

∫

ϕ(v)

ρi dV =
∫

ϕ(v)

πi dV

−
∫

∂ϕ(v)

mi · ndS ∀v ⊂ �0 (51)
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Applying the Leibnitz rule, the divergence theorem, and
summing over all the species we get,

dρ

dt
= −

∑

i

divmi − ρ divv (52)

where d/dt is the material derivative, and v is the spatial
velocity of the solid movement.

Balance of linear momentum The tissue is subjected to
surface stresses t and body forces g. We assume that t =∑

i σ
i · n, where σ i is the Cauchy stress tensor correspond-

ing to specie i and the index runs over all species.
The solid has a material velocity field V(X, t) =

∂ϕ(X, t)/∂t . Since fluxes are defined relative to the solid
phase, the total spatial velocity of the solid phase is v =
V ◦ ϕ−1, and for each of the remaining species v + vi ,
(i = s, f,α, . . . ,ω), with the understanding that vs = 0 and
vi = (1/ρi)mi .

The balance of linear momentum in the deformed config-
uration for each specie is:

d

dt

∫

ϕ(v)

ρi(v + vi )dV

=
∫

ϕ(v)

ρi(g + qi )dV +
∫

ϕ(v)

πi(v + vi )dV

+
∫

∂ϕ(v)

σ i · ndS −
∫

∂ϕ(v)

(v + vi )mi · ndS

∀v ⊂ �0 (53)

with qi the interaction force per unit mass between the
specie i and the other species.

Summing (53) over all the species and comparing with
the same equation but for the whole system, we get∑

i ρ
iqi = −∑

i π
ivi .

Finally, the local version of the linear momentum for one
specie is:

ρi ∂

∂t
(v + vi ) = ρi(g + qi ) + divσ i

− [∇(v + vi )
] · mi

− ρi
[∇(v + vi )

] · v (54)

Balance of angular momentum For the purely mechan-
ical theory, balance of angular momentum implies that the
Cauchy stress for each specie is symmetric: σ i = σ iT [64].

Balance of energy The internal energy per unit mass of
the specie i is denoted by ei , the heat supply to specie i per
unit mass of that specie is ri and the partial heat flux vector
f i

q , defined on �. An interaction energy appears between
species: the energy per unit mass of i, transferred to i by all

other species is ẽi . Therefore, the balance of energy for the
specie i in integral form becomes:

d

dt

∫

ϕ(v)

ρi

(
ei + 1

2
‖v + vi‖2

)
dV

=
∫

ϕ(v)

[
ρig · (v + vi ) + ρiri

]
dV

+
∫

ϕ(v)

ρiq i · (v + vi )dV

+
∫

ϕ(v)

[
πi

(
ei + 1

2
‖v + vi‖2

)
+ ρi ẽi

]
dV

+
∫

∂ϕ(v)

[
(v + vi ) · σ i − mi

(
ei + 1

2
‖v + vi‖2

)

− f i
q

]
· ndS ∀v ⊂ �0 (55)

Summing over all the species and taking into account the
balance of energy of the complete system with its environ-
ment, the energy balance equation on the deformed config-
uration is:

∑

i

ρi dei

dt

=
∑

i

[
σ i : ∇(v + vi ) − mi · ∇ei − divf i

q

]

−
∑

i

[
ρiqi · vi + πi

(
ei + 1

2
‖vi‖2

)
− ρiri

]
(56)

Clausius–Duhem inequality Let ϑi the entropy per unit
mass of specie i in the deformed configuration and θ the ab-
solute temperature. The entropy inequality can be written as,

∑

i

d

dt

∫

ϕ(v)

ρiϑi dV

≥
∑

i

∫

ϕ(v)

(
πiϑi + ρiri

θ

)
dV

−
∑

i

∫

∂ϕ(v)

(
ϑimi + f i

q

θ

)
· ndS ∀v ⊂ �0 (57)

Applying the Leibnitz rule, the divergence theorem, us-
ing the balance of mass and introducing the Helmholtz’ free
energy ψi = ei − θϑi , the Clausius–Duhem inequality in
the deformed configuration becomes,

∑

i

[
ρi

(
dψi

dt
+ ϑi dθ

dt

)
− σ i : ∇(v + vi )

+ mi · (∇ψi + ϑi∇θ) + 1

θ
f i

q · ∇θ + ρiqi · vi

+ πi

(
ψi + θϑi + 1

2
‖vi‖2

)]
≤ 0 (58)
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Additionally, for a saturated tissue,
∑

i φ
i = ∑

i (ρ
i/ρ̄i) =

1 must be satisfied. Introducing this restriction in the defin-
ition of the total free energy by means of a Lagrange multi-
plier, p, yields

W = J
∑

i

ρiψ̄ i + pJ

(
1 −

∑

i

ρi

ρ̄i

)
(59)

where W = W(F, θ) is the free energy of the tissue, ψ̄ i =
ψ̄ i(F, θ) stands for the free energy per unit mass of each
specie. Therefore, introducing the mass balance equation,
and making some algebraic manipulations, the inequal-
ity (58) turns:
(

∂W

∂F
· FT − Jσ s − Jp

ρs

ρ̄s
1
)

: ∇v

+
(

∂W

∂θ
+ J

∑

i

ρiϑi

)
dθ

dt

+ J
∑

i

[(
ρiψi1 − σ i − p

ρi

ρ̄i
1
)

: ∇vi

]

+ J
∑

i

π i

(
θϑi + 1

2
‖vi‖2 + p

ρ̄i

)

+ J
∑

i

[
vi ·

(
∇(ρiψi) + ρiϑi∇θ + ρiqi − p∇ρi

ρ̄i

)]

+ J
∑

i

[
1

θ
f i

q · ∇θ

]

−
(

1 −
∑

i

ρi

ρ̄i

)
d

dt
(pJ ) ≤ 0 (60)

3.1.1 Application to Biphasic Soft Tissues

In this case, the tissue is composed of only two constituents:
a solid phase and a liquid phase, so i = s, f . Assuming that
the tissue is saturated and denoting by φs = ρs/ρ̄s the solid
volume fraction and φf = ρf /ρ̄f the fluid volume fraction,
we have that φs + φf = 1. Note that the particularization to
only one phase would be immediate to obtain using the fol-
lowing equations without the contribution of the fluid phase.

Therefore, the tissue density in the deformed configura-
tion ρ = ρ(t) is,

ρ = φsρ̄s + φf ρ̄f = ρs + ρf (61)

where ρ̄s and ρ̄f are the intrinsic density of the solid and
fluid phases respectively. Assuming that there is no genera-
tion of mass, the balance of mass for both phases becomes:

d(φsρ̄s)

dt
= −ρ̄sφs divvs (62)

d(φf ρ̄f )

dt
= −ρ̄f φf divvs − divmf (63)

where vs corresponds to the absolute velocity of the solid
phase (note that we have changed the previous notation v

by vs and vf by (vs − vf ) being now vf the absolute ve-
locity of the fluid. These will be the chosen variables in the
development of the following formulation).

Making use of the relation mf = −ρf (vs − vf ) =
−φf ρ̄f (vs −vf ), the solid and fluid phases can be obtained:

dφs

dt
= −φs divvs (64)

dφf

dt
= −φf divvs + div(φf vs − φf vf ) (65)

Summing (64) and (65) and using the saturation condition
we have:

div(φsvs + φf vf ) = 0 (66)

which is the continuity equation for a biphasic mixture [83,
130–132].

The volume fractions of the solid and fluid phases in the
deformed configuration can be expressed as,

φα
0 = Jαφα α = s, f (67)

and taking into account that the fluid is considered to be con-
vective with the solid phase, the Jacobian of the fluid phase
can be related to the one of the solid through the saturation
condition as,

1

J f
= 1

J s
+ 1

φ
f

0

(
1 − 1

J s

)
(68)

Assuming that, there is no mass generation πi = 0,
the temperature is uniform ∇θ = 0, the process is adia-
batic, f i

q = 0, and the fluid phase is fully incompressible,
(60) must be satisfied for all thermodynamically possible
processes, therefore, following standard arguments in Con-
tinuum Mechanics, we can state:

J
∑

i

ρiϑi = −∂W

∂θ
, i = s, f,

σ f = −pφf I ,

σ s = ρsJ−1 ∂W

∂F
· FT − pφsI , (69)

φs + φf = 1,

(vs − vf ) · (−p∇φf + ρf qf ) ≤ 0

Remember that J = J s since we have identified the move-
ment and deformation gradient with those of the solid
phase.
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The last relation and ρsqs + ρf qf = 0 are fulfilled if we
choose the phenomenological relations:

ρf qf = −K · (vf − vs) + p∇φf

(70)
ρsqs = −ρf qf = K · (vf − vs) + p∇φs

where K is a positive definite second order tensor, usually
known as diffusive drag coefficient.

Finally, the equilibrium equations for a biphasic solid can
be written as,

∇ · σ s
e − φs∇p − K · (vs − vf ) = 0

(71)
−φf ∇p + K · (vs − vf ) = 0

where σ s
e is usually known as effective stress. These equa-

tions are the same as those proposed by Mow et al. [130],
and used by others [4, 188], but they have been obtained
from a different approach.

3.2 Weak Form of the Biphasic Mixture Equations

Let δχ s and δχf , be arbitrary admissible variations of the
displacements associated to the solid and fluid phases re-
spectively, which are Sobolev functions of first order over
�, and take null values on �s

h and �
f
h being these the parts

of the boundary of �, �, where solid displacements and fluid
velocities are imposed, respectively. The weak form of the
equilibrium equations (71) can be obtained from a standard
weighted residual approach as:

∫

�

δχ s · [divσ s
e − φs∇p − K(vs − vf )

]
dv

+
∫

�

δχf · [−φf ∇p + K(vs − vf )
]

dv = 0 (72)

Applying the divergence theorem to (72), we obtain for a
biphasic mixture:

G(us ,uf ; δχ s , δχf )

=
∫

�

(∇symδχ s)T : σ s
e dv −

∫

�

div(φsδχ s)p dv

+
∫

�

δχ s · K(vs − vf )dv

−
∫

�

div(φf δχf )p dv

−
∫

�

δχf · K(vs − vf )dv −
∫

�ts

δχ s · t̄ s da

+
∫

p̄f · (δχf · n)da = 0 (73)

3.2.1 Augmented Lagrangian Method for Incompressible
Response

Traditionally, in order to solve the incompressibility condi-
tion in biphasic formulations, the continuity equation is pe-
nalized in such a way that the pressure is eliminated from
the formulation [4, 6, 186, 188]. Therefore, considering β

as the penalty parameter, the continuity equation is replaced
by,

div(φsvs + φf vf ) + p

β
= 0 (74)

Other possibility is to force the incompressibility condi-
tion for the tissue by means of an Augmented Lagrangian
Method [53, 55, 65, 121, 181]. This combines penalty func-
tions and local duality. In this method, the system is solved
for a load step with a relatively compressible material. Next,
the penalty parameter is increased incrementally, forcing the
incompressibility. With an appropriate update scheme of the
variables, this method leads to a stable algorithm. The new
functional is then defined as:

L(us ,uf ,p;λ) = �(us ,uf ,p) +
∫

�

λhdv (75)

where h is a function of the constraint, the continuity equa-
tion in this case, that becomes zero when the material is in-
compressible and λ is the Lagrange multiplier.

An important advantage of this method is that allows to
find the value of the parameters (λ and β) incrementally and
to use different values of the parameter in the mesh, avoiding
the introduction of high penalty parameters in those zones
where they are not necessary.

Collecting all terms in (73), the weak form of the problem
can be written as:

G(us ,uf ; δχ s , δχf )

= Gs(u
s; δχ s) + GDrag(u

s ,uf ; δχ s , δχf )

+ GAug(u
s ,uf ; δχ s , δχf )

+ gext(t̄
s · p̄f ; δχ s , δχf ) (76)

where,

Gs(u
s; δχ s) =

∫

�

(∇symδχ s)T : σ s
e dv (77)

GDrag(u
s ,uf ; δχ s , δχf )

=
∫

�

δχ s · K(vs − vf )dv

−
∫

�

δχf · K(vs − vf )dv (78)
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GAug(u
s ,uf ; δχ s , δχf )

=
∫

�

div(φsδχ s)
[
λ + β div(φsvs + φf vf )

]
dv

+
∫

�

div(φf δχf )
[
λ+β div(φsvs +φf vf )

]
dv (79)

gext(u
s; δχ s , δχf )

=
∫

�
tf

p̄f (δχf · n)da −
∫

�ts

δχ s · t s d� (80)

Since � and � in the above weighted residual state-
ment correspond to the current configuration, they are time-
dependent and, therefore, unknown. A Total Lagrangian for-
mulation can be used, where the integrals in (76) are referred
to the reference configuration at initial time t = 0 using the
well-known expressions:

dv = Jdv0 and nda = Jn0 · F−1da0 (81)

where J = det F, and the superscript s of the Jacobian has
been dropped out for simplicity.

In the case of monophasic tissue such as the ligament,
where only the solid phase is considered, all the terms in-
cluding superindex f must be removed.

3.3 Computational Aspects

3.3.1 Incremental and Time Evolution Algorithms

Typically, in an incremental nonlinear finite element ap-
proach, the solution at time t , un is known and we seek the
solution at the next time increment t+�t, un+1 = un +�u,
where we have dropped the reference to the step in �u to
simplify the notation. If a linear one-step implicit integrator
is used as in many applications [90], the velocity may be
written in terms of the displacement increment as:

vn+1 = f (vn,�u) (82)

For Newton approaches, the derivative of the different
variables with respect to the incremental displacement is
needed. Thus, each component of the movement is uncou-
pled, we can write:

δvn

δ�un+1
= δf

δ�un+1
= η (83)

where η is a scalar.

3.3.2 Integration Algorithm for the Visco-Hyperelastic
Model

The basic idea in the numerical integration of the constitu-
tive equations is to evaluate the convolution integral in (41)
through a recursive relation. A related procedure was first
suggested by Herrmann and Peterson [77] and modified by

Simo [180]. The key idea is to transform the convolution
representation discussed in previous section into a two-step
recursive formula involving internal variables stored at the
quadrature points of a finite-element mesh [177].

We introduce the following internal algorithmic history
variables can be introduced,

H(ij) =
∫ t

−∞
exp

[−(t − s)

τij

]
d

ds

× {
dev

[
2δ�̄0(j)(C̄,m0,n0)(s)

]}
ds (84)

Let [t0, T ] ⊂ R, with t0 < T , be the time interval of in-
terest. Without loss of generality, t0 can be taken −∞. Fur-
ther, let [t0, T ] = ⋃

n∈I
[tn, tn+1], be a partition of the inter-

val [t0, T ] with I an appropriate subset of the natural num-
bers and �tn = tn+1 − tn the associated time increment.
From an algorithmic standpoint, the problem is defined in
the usual strain-driven format and it can be assumed that at
certain times tn and tn+1 all relevant kinematic quantities are
known.

Using the semigroup property of the exponential func-
tion, the property of additivity of the integral over the in-
terval of integration and the midpoint rule to approximate
the integral over [tn, tn+1] one can arrive to the update for-
mula [177]

H(ij)

n+1 = exp

[−�tn

τij

]
H(ij)

n

+ exp

[−�tn

2τij

](
S̄0(j)

n+1 − S̄0(j)
n

)
(85)

where S̄0(j)

n+1 = dev[2δ�̄0(j)(C̄,m0,n0)(s)] is the term of the

initial stress response corresponding to Ij , i.e., S̄0(1)
n+1 and

S̄0(2)
n+1 are due to the matrix material and S̄0(4)

n+1 . . . S̄0(9)
n+1 are

due to the two families of fibers, see (13).
Following the convolution representation (41), the algo-

rithmic approximation for the second Piola–Kirchhoff stress
takes the form

Sn+1 = Jn+1pn+1C−1
n+1

+ J
− 2

3
n+1

9∑

j=1,j �=3

[(

1 −
n∑

i=1

γij

)

S̄0(j)

n+1

]

+ J
− 2

3
n+1

9∑

j=1,j �=3

n∑

i=1

[
γij

{
dev

[
H(ij)

n+1

]}]
(86)

Also, the Cauchy stress tensor can be calculated as:

σ n+1 = pn+11 + 1

Jn+1

9∑

j=1,j �=3

[(

1 −
n∑

i=1

γij

)

dev

{
F̄n+1

[
2
∂�̄0(j)(C̄n+1,m0,n0)

∂C̄

]
F̄T

n+1

}]
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+ 1

Jn+1

9∑

j=1,j �=3

n∑

i=1

[
γij

{
dev

[
F̄n+1

[
H(ij)

n+1

]

× F̄T
n+1

]}]
(87)

In order to obtain an easier recursive update procedure,
the update formula (85) can be rewritten as in [177]

H̃(ij)
n = exp

[−�tn

τij

]
H(ij)

n − exp

[−�tn

2τij

]
S̄0(j)

n (88)

H(ij)

n+1 = H̃(ij)
n + exp

[−�tn

2τij

]
S̄0(j)

n+1 (89)

With this notation

Sn+1 = Jn+1pn+1C−1
n+1

+ J
− 2

3
n+1

9∑

j=1,j �=3

[

(1 − γj + νj )S̄
0(j)

n+1

+
n∑

i=1

γij

{
dev

[
H̃(ij)

n

]}
]

(90)

σ n+1 = pn+11 +
9∑

j=1,j �=3

[
(1 − γj + νj )dev

[
σ

0(j)

n+1

]

+ 1

Jn+1

n∑

i=1

γij

{
dev

[
h̃(ij)

n

]}]
(91)

where γj = ∑n
i=1 γij and νj = ∑n

i=1 γij exp[−�tn
2τij

]. Note

that H̃(ij)
n is a constant at time tn+1 in the linearization

process.
Using (16) and (90) we obtain

Cn+1 = C
0
vol n+1 +

9∑

j=1,j �=3

[

(1 − γj + νj )C̄
0(j)

n+1

− 2

3
J

− 4
3

n+1

n∑

i=1

γij

{
dev

[
H̃(ij)

n

] ⊗ C̄−1
n+1

+ C̄−1
n+1 ⊗ dev

[
H̃(ij)

n

]

− (
H̃(ij)

n : C̄
)(

I
−1
Cn+1

− 1

3
C̄−1

n+1 ⊗ C̄−1
n+1

)}]

(92)

and the spatial tangent modulus defined in (21) takes the
form

cn+1 = c0
vol n+1 +

9∑

j=1,j �=3

[

(1 − γj + νj )C̄
0(j)

n+1

− 2

3Jn+1

n∑

i=1

γij

{
dev

[
h̃(ij)

n

] ⊗ 1

+ 1 ⊗ dev
[
h̃(ij)

n

] − tr
[
h̃(ij)

n

](
I − 1

3
1 ⊗ 1

)}]

(93)

where h̃(ij)
n = F̄n+1H̃(ij)

n F̄T
n+1.

3.3.3 Numerical Treatment of Initial Strains

The main objective of this section is to discuss different
methodologies to enforce initial strains in living soft tissues
commented in the previous section, and more specifically in
knee ligaments [149]. Two of these possible methodologies
are:

• Stress-free Reference Configuration (SFRC): It corre-
sponds to a Total Lagrangian Approach where the initial
deformation product F0 is computed in an initial deforma-
tion step from a known stress-free state. The subsequent
configurations are all referred to this stress-free state.

• Deformed Reference Configuration (DRC): It is related
with an Updated Lagrangian Approach. In this case, ini-
tial strains F0 are enforced by defining an appropriate “de-
formation” field in the current configuration that, after an
additional auto-equilibrium step, leads to a balanced ini-
tial state. The next configurations were then referred to
this latter reference geometry.

The SFRC methodology implies to know the stress-
free configuration. This is actually an idealized state since,
as noted by Fung [59], it is practically impossible the
existence of a configuration with zero stress at every
point of a soft tissue. The compatibility constraints to
maintain continuity between different parts of the tissue
with different constitutive properties generate these internal
stresses.

In addition, the “extraction” of this idealized stress-free
configuration “in vivo” is almost impossible. Possibly, the
best approximation is to obtain it from a fresh-frozen spec-
imen by dissecting it from its attachments. Another fur-
ther difficulty corresponds to the viscoelastic behaviour of
most soft tissues. When ligaments, for instance, are dis-
sected, an instantaneous elastic recovery takes place. This,
however, does not correspond to the stress-free configura-
tion. Initial stresses computed with this configuration un-
derestimate the real ones. On the contrary, if the configu-
ration obtained after the complete viscoelastic recovery is
considered as the stress-free state, stresses computed after
a purely elastic step from this configuration overestimate
the actual ones. This methodology was used by Hirokawa
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et al. [81] for the finite element simulation of the ACL de-
formation. In their work, in order to obtain the stress-free
configuration, the ligament of a fresh-frozen specimen was
dissected of its attachments and the resulting state was con-
sidered as the stress-free configuration. They modelled the
ligament as a hyperelastic material. Normally, this strat-
egy requires remeshing steps and the corresponding projec-
tions of the current results, making finite element formula-
tions ineffective and inaccurate without additional improve-
ments [21].

A way to overcome these drawbacks is to refer the prob-
lem to the zero-load reference configuration. In this case
it is assumed that the initial strain distribution is known.
This information can be obtained from experiments, but
the associated process is usually very laborious. The real
strain distribution of the specimen is three-dimensional
and heterogenous and direct measures are very complex.
However, some type of approximation is always possi-
ble.

In the DRC technique, F0 represents in general, an in-
compatible strain field, corresponding to the map from the
two idealized configurations �sf to �0 (initial strains), and F
the deformation gradient that results after application of the
external loads to the reference configuration �0. Usually F0

is not a real deformation gradient tensor because it does not
arise from a displacement field. As noted, F0 is difficult to
determine from experiments. In the case of ligaments and
tendons, Gardiner et al. [63] proposed a relatively easy form
to measure length variations along the fiber direction at dif-
ferent points, that is, F0 corresponds to an axial stretch λ0

along the fiber direction a0 in the reference state �0 that in
ligaments closely follows the direction of maximal length.
The concomitant contraction in the perpendicular plane is
dictated by incompressibility, usual assumption in biologi-
cal soft tissues.

In a coordinate system (*) where the fiber direction a0 is
aligned with the X1 axis, F0 can be written as:

[
F∗

0

] =
⎡

⎢
⎣

λ0 0 0
0 1√

λ0
0

0 0 1√
λ0

⎤

⎥
⎦ (94)

and transformed to the global systems:

F0 = RF∗
0 (95)

with R the rotation tensor from this local system to the
global one.

To introduce initial strains into the finite element formu-
lation by the DRC technique, it is necessary to specify F0

pointwise within the finite element mesh. An equilibrium
step is firstly applied with zero forces with the constitutive
behaviour defined by ��sf in order to obtain a balanced, al-
though not fully compatible configuration. A second load

step will result in the deformation gradient F that balances
the externally applied forces.

Due to their non-linear behavior and the non-uniform dis-
tribution of the residual stresses, a wrong inclusion of the
initial strain state in computational models of soft tissues
can lead to important errors.

3.3.4 Numerical Treatment of the Incompressibility

A full Newton–Raphson approach in each load increment,
with the update algorithm of the Lagrange multiplier and
penalty parameter proposed by Powell [161] can be chosen
to enforce the incompressibility, see Sect. 3.2.1.

The iterative Newton–Raphson scheme in each �t with
the update procedure both for Lagrange multiplier λ and
the penalty parameter β is schematically shown in Table 1.
It can be observed that if the maximum value of the con-
straint is larger than the parameter ξ , only the penalization
should be updated, while if this value is smaller than ξ ,
then the Lagrange multiplier is updated to guarantee op-
timality, reducing the value of ξ to ensure convergence.
The values of β and λ remain constant during the Newton–
Raphson iterations keeping the quadratic convergence of the
method.

Table 1 Augmented Lagrangian scheme for the incompressibility
treatment

Let h be h = max
e=1,Ne

{he} = max
e=1,Ne

{∇ · (φs
ev

s
e + φ

f
e v

f
e )}

λ
(0)
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(0)
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(0)
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DO n increments

WHILE h(k) > T OL
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END IF
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n := n + 1
END DO
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3.3.5 FE Approximation and Consistent Linearization

The corresponding finite element approximation of the weak
form (73) is obtained after subdividing the continuum into
an appropriate FE mesh. An isoparametric conforming finite
element approximation of the space of admissible variations
is defined in the standard manner as

δuα =
m∑

j=1

φj δuα
j , δuα

j ∈ R
3 (96)

where φj are the isoparametric shape functions and m is the
number of nodes which the approximate function is com-
puted.

After substituting the independent variables by their ap-
proximated counterparts, the non-linear algebraic system is
obtained. To achieve the solution of this system at �0 +
�uα

n , an initial estimate for �uα
n , α = s, f can be as-

sumed. This estimate is then iteratively improved using,
for examples, a consistently linearized full-Newton method.
The term consistent simply means that the expression of
G(us ,uf ; δχ s , δχf ) is linearized after the approximation,
that is, from G(ūs , ūf ; δχ s , δχ f ) ensuring that quadratic
convergence is maintained along the Newton iteration strat-
egy. This linearization takes the form:

LGe
k+1 = G

k

e + DG
k

e · (�ūα(k+1) − �ūα(k)
)

= G
k

e + DG
k

e · (��ūα(k)
)

(97)

where () denotes the approximated counterparts.
In what follows the directional derivatives will be de-

noted as:

δsGe = DGe · (��ūs
n,0)

(98)
δf Ge = DGe · (0,��ū

f
n )

where the term δsGe corresponds to the directional deriva-
tive of Ge in the direction of ��ūs and δf Ge to the respec-
tive derivative in the direction of ��ū

f
n .

The derivative of (77) at �ūα(k) in the direction ��ūs(k),
that is, the Gâteaux derivative of the nonlinear functional Gs

along the direction of �ūα particularized for ��ūα(k) can
be expressed as:

δsGs =
∫

�0

[
div(��ūs)σ s

e

] : ∇δχ sJ dv0

+
∫

�0

div(��ūs) : [pe(1 ⊗ 1 − 2I) + C̃
]

: (∇δχ s)J dv0 (99)

where all the terms are evaluated at u
(k)
n+1 and the super and

subscripts have been dropped for clearness. Note that pe is

the hydrostatic pressure due to the uncoupling of the strain
energy function in a dilatational and deviatoric components
and C̃ is the modified Green tensor defined in (18).

In (99) the first term represents the geometric, or initial
stress stiffness matrix, and the second represents the mater-
ial stiffness. These terms arise in a traditional displacement-
based nonlinear analysis.

The derivative of (78) at �ūα(k) in the direction ��ūs(k)

is:

δsGDrag =
∫

�0

δχ s · πJ div��ūs(v̄s − v̄f )J dv0

+
∫

�0

δχ s · Kηs��ūsJ dv0

+
∫

�0

δχ s · K(v̄s − v̄f )J div��ūs dv0

−
∫

�0

δχ f · πJ div��ūs(v̄s − v̄f )J dv0

−
∫

�0

δχ f · Kηs��ūsJ dv0

−
∫

�0

δχ f · K(v̄s − v̄f )J div��ūs dv0

(100)

where π is the partial derivative of the scalar diffusive drag
matrix with respect to the Jacobian, ∂K/∂J , that depends
on the permeability function and ηs is a scalar that depends
on the algorithm used to define the velocity of the solid (see
Sect. 3.3.1). The directional derivative of J along ��ūs is
expressed as:

δsJ = J div(��us) (101)

On the other hand, the derivative of (78) at �ūα(k) in the
direction ��ūf (k) is:

δf GDrag = −
∫

�0

δχ s · Kηf ��ūf J dv0

+
∫

�0

δχ f · Kηf ��ūf J dv0 (102)

where ηf depends on the algorithm used for the fluid veloc-
ity definition (see Sect. 3.3.1).

Finally, the derivative of (79) at �ūα(k) in the direction
��ūs(k) is:

δsGAug =
∑

α=s,f

{∫

�0

δs
[
div(φαδχ α)

]

[
λ + β div(φs v̄s + φf v̄f )

]
J dv0

+
∫

�0

div(φαδχ α)δs

[
λ + β div(φs v̄s + φf v̄f )

]
J dv0
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+
∫

�0

div(φαδχ α)

[
λ + β div(φs v̄s + φf v̄f )

]
δs[J ]dv0

}
(103)

Next, each derivative is expanded in the following way,

δs
[
div(φsχ s)

]

= φs
0

J 2

{
2 div��ūs∇J − δs[∇J ]} · ��ūs

− φs
0

J
div��ūs div��ūs

+ φsδs[F−1] : ∇��ūs (104)

where the term ∇J , δs[∇J ] and δs[F−1] are defined be-
low; and the operators ∇ and ∇ are the gradient operators
in the current configuration and reference configuration, re-
spectively.

The gradient of the Jacobian of the solid phase can be
expressed as:

(∇J )l = εIJK

(
∂FI1

∂xl

FJ2FK3 + FI1
∂FJ2

∂xl

FK3

+ FI1FJ2
∂FK3

∂xl

)
(105)

with F the deformation gradient.
Thus, the directional derivative of the gradient of the Ja-

cobian (105) is,

δs(∇J ) = δs(∇J · F−T )

= ∇(δsJ )F−T + ∇J δs(F−T )

= ∇(J div�us)F−T − ∇JF−T ∇�usF−T

= ∇(J div�us) − ∇J∇�usF−T

= ∇(J div�us) − ∇J · ∇(�us) (106)

Finally, the directional derivative of the inverse of the defor-
mation gradient can be written as:

δs(F−1) = −F−1(δsF )F−1 (107)

where the directional derivative of the deformation gradient
can be defined as δsF = ∇�us .

In the same way,

δs
[
div(φs v̄s + φf v̄f )

]

= φs
0

J 2

{
2 div��ūs − δs[∇J ]}(v̄s − v̄f )

− φs
0

J 2
∇Jηs��ūs

+ φs
[
δs[F−1] : ∇v̄s + F−1 : ηs∇��ūs

]

− φs
0

J
div��ūs(div v̄s − div v̄f ) (108)

where ηs arise from the time evolution algorithm, and finally

δs
[
div(φf χ f )

]

= −φs
0

J 2

{
2 div��ūs∇J − δs[∇J ]} · ��ūf

+ φs
0

J
div��ūs div��ūf + φf δs[F−1] : ∇��ūf

(109)

Operating in the same way, the derivative of (79) at
�ūα(k) in the direction ��ūf (k) is

δf Gβ =
∑

α=s,f

{
β

∫

�0

div(φα��ūα){divφf ηf ��ūf

+ φf ηf ∇��ūf }J dv0

}
(110)

The above linearization process of the weak form of
biphasic materials can be simplified for materials with the
solid being the only one that significantly contributes to its
overall behavior. Thus, as mentioned before, for the case of
ligaments, this formulation can be simplified by removing
the terms with superindex f .

4 Simulation of Articulate Joints

The three types of joints that exist in the human body are
fibrous, cartilaginous, and synovial. Synarthroses, or fibrous
joints are those in which the bone surfaces have very lit-
tle movement relative to each other (skull). Amphiarthroses,
or cartilaginous joints, are those in which the bone surfaces
may have some relative movement (vertebral bodies of the
spine). Only synovial, or diarthrodial joints will be discussed
in this paper. They allow a large degree of relative movement
between the opposing bones. Some examples of this type of
joint are the shoulder, elbow, hip, knee, temporomandibu-
lar and ankle. We will only focus here in two important di-
arthrodial joints such as the knee and the temporomandibu-
lar joint.

4.1 Knee Joint

4.1.1 Anatomical Description of the Knee Joint

Although the knee may look like a simple joint, it is one of
the most complex. Moreover, the knee is more likely to be
injured than any other joint in the body. The knee is essen-
tially made up of four bones: femur, tibia, patella and fibula;
four ligaments: anterior and posterior ligaments (ACL, PCL)
and lateral and medial collateral ligaments (LCL and MCL),
patellar tendon (PT), articular cartilage and menisci (Fig. 7).
The human knee joint compliance and stability required for
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Fig. 7 Anterior view of the knee joint with the description of its main
components

optimal daily functions are provided by several components
like menisci, cartilage, ligaments and muscle forces that
allow complex mechanical responses to different types of
physiological loads.

An important multifunctional component of the knee are
the menisci. They are a complex biomechanical system in
themselves, with a fundamental role in load transmission,
shock absorption, proprioception, improvement of stability
and lubrication [196]. In order to perform these functions
efficiently, their behavior is completely dynamic. They ef-
fectively distribute contact forces over the articular surfaces
by increasing the contact surface of the joint. Load distribu-
tion over an incongruent joint surface is redistributed by the
menisci by maintaining maximal congruency. The function-
ality of the menisci and their role in load transmission across
the knee have been discussed by many authors [52, 122].
This functionality is strongly affected by various lesions. For
example, Scheller et al. [172], Jackson [94] found frequent
degenerative changes after meniscectomy.

Because of the relative incongruence of the articular sur-
faces, ligaments play an important role in providing passive
stability to the joint. For the development of adequate diag-
nostic and surgical procedures, it is essential to understand
the role of individual ligament as motion restraints [22]. The
primary role of the ligaments that surround the knee is to
provide stability to the joint throughout its range of motion.
Each ligament plays a role in providing stability in more
than one degree of freedom as well as restraining knee mo-
tion in response to externally applied loads. Overall joint
stability depends on the contributions of the individual liga-
ments as well as interaction between them.

The anterior cruciate ligament (ACL) is known to be a
restraint against anterior tibial loads by limiting anterior tib-
ial translations. The posterior cruciate ligament (PCL) is a
major stabilizer of the knee joint. The PCL is known to be

a restraint against posterior tibial loads by limiting posterior
tibial translations. But, the role of the PCL under more com-
plex rotatory motions is not clear [56]. The function of the
medial collateral ligament (MCL) as the primary valgus re-
strain has firmly established [91]. Depending upon the inves-
tigation read, the MCL has been shown to resist external ro-
tation, internal rotation, both rotations, and neither rotation.
However, the majority of the experiments point to the MCL
as a restraint to external rotation only [9]. Of the two col-
lateral ligaments, the lateral collateral ligament (LCL) has
received considerably less attention. Owing to its position
contralateral to the MCL, the LCL would be expected to re-
sist varus and internal rotation, as has been shown by many
authors [9, 22, 69]. The activity of the LCL in response to
tibial axial rotation is not well established.

4.1.2 A Brief Review of Available Numerical Models of the
Knee Joint

Knee models can help to understand the biomechanics of
the joint and can also be used to estimate the consequences
of injuries and surgical treatments. In this review we distin-
guish two types of knee models: analytical and FE models.
The analytical models are used to describe the distribution
of the forces in muscles and ligaments, contact forces and
the kinematics of the knee during different types of joint
loading conditions. On the contrary, FE models can predict
nonuniform 3D stresses and strains and study the combined
behavior of the main components in load transmission and
stability.

Early attempts to model the knee joint articulation were
primarily centered on rigid body models with prescribed
bending moments and simple analytical approximations
(which provided a simplification of the knee using closed-
form expressions). In particular, the use of the Hertzian the-
ory has been extensively used to model articulation contact
mechanics [47, 48]. However, the simplifications in geome-
try and boundary conditions limit its usefulness for patella
focused studies. Moreover, the majority of these studies
were 2D. Hefzy and Grood [74] developed an analytical
model to include geometric nonlinearities such as ligament
wrapping. Discrete element joint models have been devel-
oped to simulate the response of joints to dynamically ap-
plied loads [1, 48, 51]. The inertial effects of bones were
included in these joint models and in all cases, the ligaments
were represented by simple elastic springs while bones were
modelled as rigid bodies. The approach used by Moeinzadeh
and Engin [128] in the development of a two-dimensional,
sagittal plane knee joint model considered nonlinear elastic
spring ligaments to connect the rigid bones. The model was
used to predict ligament and joint contact forces with the ap-
plication of dynamic loads to the tibia. These models, while
useful, especially for dynamic analysis, have obvious limi-
tations such as point contact assumptions and inextensible
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ligaments as pointed out by Beynnon et al. [20, 22, 27]. For
a more detailed review of the analytical models available in
the literature, see [73].

The first FE models were developed for the patello-
femoral articulation. Matthews et al. [127] and Huberti et al.
[89] studied the contact area and pressures in the patellar
cartilage. Heegard et al. [72] and Hefzy and Yang [75] de-
veloped a tridimensional model of the patello-femoral ar-
ticulation to simulate de knee flexion in order to determine
patello-femoral motions and contact mechanics. In all cases,
ligaments were modelled using one-dimensional represen-
tations. With respect to the tibio-femoral joint, some stud-
ies have been developed in the literature. Bendjaballah et al.
[17, 18] and Jalani et al. [96] constructed respective nonlin-
ear finite element models of the entire human knee to in-
vestigate the biomechanics of the passive tibiofemoral joint
in full extension under anterior-posterior drawer forces and
internal-external torques. Perie and Hobatho [163] and Li
et al. [112, 113] considered joint contact stresses and con-
tact areas on the human knee menisci. In all these models,
ligaments were modelled as non-linear springs. In addition,
the combined behavior of ligaments and menisci was not
considered in any of them.

Other researchers developed 3D finite element models
of individual human ligaments such as the ACL [61, 62,
81, 115, 160, 183] or the MCL [63]. Gardiner et al. [62]
developed a finite element model of the MCL to study its
three-dimensional stress-strain behavior under valgus load-
ing. Gabriel et al. [61] determined the distribution of an
in situ force between the two bundles of the ACL when
the knee is subject to anterior tibial and rotatory loads. Hi-
rokawa et al. [81] developed a three-dimensional model of
the ACL that was used to study the deformation and stress
distributions in this ligament during knee flexion. Limbert
et al. [115] proposed a 3D finite element model of the human
ACL, that model was used to simulate clinical procedures
such as the Lachman and drawer tests. Moglo and Shirazi-
Adl [129] used a 3D finite element model of the knee in or-
der to study the cruciate coupling and screw-home mechan-
ics in passive knee joint during extension-flexion movement.
In all these studies, the interactions between ligaments and
between ligaments and other components of the knee were
not taken into account.

The model developed by Peña et al. [145] is one of the
most complete model of the healthy human knee joint avail-
able in the literature. It includes all the relevant ligaments
(ACL, PCL, LCL, MCL and PT), menisci and articular carti-
lages. Femur and tibia were considered to be rigid, articular
cartilage and menisci linearly elastic, isotropic and homo-
geneous while ligaments were modelled as 3D hyperelas-
tic transversely isotropic. Initial strains in all the ligaments
were considered. This model [145] has been used to analyze
the combined role of menisci and ligaments in load trans-
mission and stability.

Three-dimensional Finite Element models can also be
used to estimate the consequences of injuries and surgical
treatments. Most models of injured and reconstructed knee
joint have been directed towards ligament injuries. For ex-
ample, Au et al. [11] developed a three dimensional finite
element model in order to study the stress in surgically al-
tered femur and tibia. In that model, only bones were sim-
ulated and no knee soft tissue was considered. Raminaraka
et al. [167] performed a 3D computational study of the in-
fluence of graft mechanical properties after PCL reconstruc-
tion. They replaced the mechanical properties of the liga-
ment with the mechanical properties of the graft, but they
did not consider the reconstruction technique. They found
higher contact pressures in the reconstructed joint than in
the intact knee. Suggs et al. [187] developed a computa-
tional model of the human knee joint to study the ACL
reconstruction. They used nonlinear springs to model lig-
aments and graft. That model was used to simulate ACL
reconstruction using three different grafts. Since they mod-
elled the graft as a spring, the graft stress distribution was
not analyzed. Peña et al. [150] developed a 3D finite ele-
ment model of the human knee including all the main liga-
ments and graft in order to study the effect of graft stiffness
and graft tensioning on the knee joint biomechanics. They
considered a transversely isotropic hyperelastic behavior of
the ligaments that were initially prestressed. Another impor-
tant surgery studied by FE models is meniscectomy. Wilson
et al. [209] and Bendjaballah et al. [17] considered the effect
of total medial meniscectomies on the human knee joint us-
ing the finite element method. Peña et al. [146, 147] studied
the effect of total and partial medial and lateral meniscec-
tomies.

4.1.3 Some Examples of Application

Description of the model In the following the model de-
veloped by Peña et al. [145] is summarized. The geomet-
rical data of the model developed [145] were obtained by
NMR (Nuclear Magnetic Resonance) for soft tissues and CT
(Computerized Tomography) for bones, with images taken
from a normal adult volunteer. The CT and NMR image
block consisted of parallel digital images separated at inter-
vals of 1.5 mm in the sagittal, coronal and axial planes with
the knee at 0◦ flexion.

The contours of the femur, tibia, articular cartilage,
menisci and ligaments (patellar tendon, anterior cruciate,
posterior cruciate, medial collateral and lateral collateral)
were manually identified in each image with the help of
M.D.s from the Traumatology Department of the Univer-
sity of Zaragoza (Fig. 8). The manual segmentation had
an accuracy of 0.3 mm. These lines were transferred into
the commercial code I-DEAS v.9 where the main sur-
faces and solid version of the model were reconstructed
(Fig. 8c).
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Fig. 8 NMR images [145]

Fig. 9 Finite element model of the knee joint [145]

Bones were assumed to be rigid in this model, and hexa-
hedral block-structured meshes of the ligaments, menisci
and articular cartilages were constructed. A total of 4783
four-node surface elements were used to mesh the bony sur-
faces and 5195 eight-node brick elements for the meshes of
cartilages, menisci and ligaments (Fig. 9). In all cases, trilin-
ear hexahedral elements with a full geometrically nonlinear
formulation were used, see Sect. 3.

Although menisci and cartilage are hydrated tissues, in
that case, and considering that the loading time of inter-
est corresponded to that of a single leg stance, and the vis-
coelastic time constant of cartilage approaches 1500 seconds
[10], articular cartilage was considered to behave as a single-
phase linear elastic and isotropic material with an elastic
modulus of E = 5 MPa and a Poisson ratio of ν = 0.46
[113]. This is accurate enough to predict short-term carti-
lage response as demonstrated by Donzelli et al. [45], who
proved that there are no significant changes in the cartilage
contact response shortly after loading. For the same reason,
menisci were also assumed to be a single-phase linear elas-
tic and isotropic material with the following average prop-
erties: elastic modulus of E = 59 MPa and Poisson ratio of
ν = 0.49 [110].

On modelling ligaments, two important assumptions
were made. First, no difference in the material behavior be-
tween the ligament body and its insertion were considered.
Second, material characteristics depending on time, such as
viscoelasticity, creep and relaxation were neglected [81] due

again to the high ratio between the viscoelastic time con-
stant of the material and the loading time of interest in this
study. A transversely isotropic hyperelastic model was used
including the effect of one family of fibers, usually applied
to ligaments [201].

The volumetric part �vol (8) was considered, in a
standard manner for quasi-incompressible materials, as a
penalty function of the Jacobian [84]. The isochoric part
�̄ of the strain-energy function (8) was divided into an
isotropic part that corresponds to a Neo-Hookean model and
other depending on the collagen fibers, see Sect. 2.3.2. We
had in turn

� = 1

2D
ln(J )2 + C1

(
Ī1 − 3

) + F2(λ) (111)

where C1 is the Neo-Hookean constant and D the inverse
of the bulk modulus k = 1/D which was chosen for all
the ligaments as k/C1 = 1000 [202]. For F2(λ), the free-
energy function defined in (26) earlier proposed by Weiss
et al. [206] was used with the average constants obtained by
Gardiner and Weiss [62] for the MCL in their experimen-
tal data. The LCL constants were assumed to be identical
to those of the MCL. The uniaxial stress-strain curves ob-
tained by Butler et al. [24] for ACL, PCL and PT (patel-
lar tendon) were fit with those obtained by Weiss’s get-
ting the associated constants that have been included in Ta-
ble 2.

In order to consider initial strains in ligaments, the
methodology presented in previous section was employed.
Initial strains in that model were defined from data avail-
able in literature [22, 112, 183] and have been included in
Table 2 with the following terminology: a: anterior part of
ligament; p: posterior part of ligament; m: medial part of
ligament. Figure 10 shows the strain distribution for the lig-
aments after equilibrium but before the application of ex-
ternal loads. Obviously, the initial strains obtained after that
equilibrium step are not exactly the prescribed ones. The
differences found were all of them under 10% except in the
PCL where a small initial strain appeared after equilibrium
that Blankevoort and Huiskes [22] did not consider.

Boundary conditions were defined as follows. Each of
the horns of the menisci and the external periphery of the
medial meniscus, which is joined to the medial collateral
ligament, were attached to the tibial plateau, simulating the
horn-menisci attachment. Ligaments were attached to bone
by establishing the final row of elements at their proximal
and distal ends to be composed of the same material than
the nearby bone [62].

Frictionless nonlinear contact was assumed for all the ar-
ticulations [136] and fifteen potential contact zones were
identified: two at the medial zone and two at the lateral
(femoral cartilage-meniscus and meniscus-tibial cartilage),
four between ligaments (MCL, LCL, ACL and PCL) and
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Table 2 Material parameters for the ligament stress-free state

C1 C2 C3 C4 C5 λ∗ D Initial strains

(MPa) (MPa) (MPa) (MPa) (MPa−1) (%)

aMCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126 0.04

mMCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126 0.04

pMCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126 0.03

aLCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126 0.0

pLCL 1.44 0.0 0.57 48.0 467.1 1.063 0.00126 0.08

aACL 1.95 0.0 0.0139 116.22 535.039 1.046 0.00683 0.03

pACL 1.95 0.0 0.0139 116.22 535.039 1.046 0.00683 0.03

PCL 3.25 0.0 0.1196 87.178 431.063 1.035 0.0041 0.0

PT 2.75 0.0 0.065 115.89 777.56 1.042 0.00484 0.01

Fig. 10 Initial stretch of the fibers after the equilibrium step and before loading in the different ligaments [145]

femur, four between ligaments and tibia and one between
cruciate ligaments and between the femoral cartilage and
the retropatellar articular cartilage. Contact conditions in the
model were completely general including finite sliding. The
motion of each bone was controlled by the six degrees of
freedom of its reference node. In all the analyses, tibia and
fibula remained fixed. The position at full extension served
as the reference initial configuration.

Healthy joint The first example analyzes the combined
role of menisci and ligaments in load transmission and sta-
bility. A compression load of 1150 N was applied for all the
cases that corresponds to the maximal force in the gait cycle
obtained by Sathasivam and Walker [170] at full extension.
A load of 134 N in the anterior direction and a valgus torque
of 10 Nm were also applied.

Under anterior tibial load of 134 N and a compres-
sion load of 1150 N, the anterior cruciate ligament sup-
ported about 75% of the total anterior load and the me-
dial collateral ligament the rest 25% as secondary stabi-

Fig. 11 Maximal principal stresses in the soft tissues of the knee at
different loads

lizer. Figures 11 and 12 shows the results obtained in dif-
ferent ligaments under this anterior load. A significant ten-
sile stress appeared in the posterior part of the ACL. The
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Fig. 12 Maximal principal stresses in the ligaments in response to a compressive load of 1150 N and an anterior tibial load of 134 N (MPa) [145]

Fig. 13 Contact pressures and minimal principal stresses in menisci and articular cartilages under valgus rotation (MPa) [145]

obtained results also showed that the PCL was mainly in
compression; only the anterior proximal part. The LCL
was tensioned due to the initial strains since during this
movement it is mainly relaxed. The anterior load produced
in the MCL a stress distribution similar to a shear prob-
lem, with tension in the anterior-distal and the posterior-
proximal parts of the MCL. Menisci transferred about
62% of the total axial load (40% the medial meniscus,
mainly concentrated on the lateral side). Contact stresses
were slightly higher in the lateral meniscus [145]. They
basically corresponded to the contact zones between the

femoral condyles and the menisci and were very simi-
lar to those obtained experimentally by Walker and Erk-
man [199].

The application of a 10 N m valgus torque induced
a valgus rotation, as observed by other authors [63]. The
MCL provides primary restraint to valgus rotation so, the
highest maximal principal stress took place in this ligament.
The application of a 10 N m valgus torque decreased the
transferred load by the medial meniscus, that became about
43% of the total axial load (Fig. 13). In this case, the high-
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Fig. 14 Contact pressures and minimal principal stresses in the partial longitudinal medial meniscectomized joint [146]

Fig. 15 Contact pressures and minimal principal stresses in the partial longitudinal lateral meniscectomized joint [147]

est contact pressure and minimal principal stress (maximal
compression) took place in the lateral meniscus.

The obtained results resulted close to experimental ones,
demonstrating that subject-specific FE models can predict
the complex, nonuniform stress and strain fields that occur
in biological soft tissues and the kinematics of the human
knee joint.

Pathological joint Finite element simulations help to un-
derstand the stress distribution in the human knee joint af-
ter joint injuries and pathological degeneration of articular
joints [146]. For example, Peña et al. [146, 147] studied the
effect of total and partial medial and lateral meniscectomies.
They developed four finite element models of the meniscec-
tomies removing elements of the model [146, 147].

In the first study developed by Peña et al. [146] for par-
tial longitudinal medial meniscectomy, compression stresses
and contact pressures in the remaining medial meniscus in-
creases up to 107% and 143% respectively. For the articular
cartilage (Fig. 14), there was a smoothing of the distribution
of the compression stresses due to the translation of the con-
tact area towards the posterior zone of the medial condyle
with a maximal compression increase of 50 and 104% in
the medial and lateral condyles, respectively [146]. In partial
longitudinal lateral meniscectomy, the compression stresses
and contact pressures grew up to 384% and 517% in contact
pressure and compression stress, respectively (Fig. 15).

In another paper, a similar study was presented by Peña
et al. [147] for a totally medially and laterally meniscec-
tomized joint. The finite element model was obtained from
the healthy joint (Fig. 9) by eliminating the medial or lateral
meniscus. The same external load was considered. In the to-
tally medially meniscectomized joint, a notable increase was
observed in all the values. For example, the maximal shear
stress increase for the totally medial and lateral meniscec-
tomized joint were of 177% and 375%. The catastrophic ef-
fect of total lateral meniscectomies could be appreciated in
these analyses. Increments of the maximal compression and
the maximal shear stress on the articular cartilage reached
values of 456% and 687% in the lateral condyle. A summary
of the results is presented in Fig. 16. The values obtained in
the FE simulation could help to understand why the clinical
results after total or lateral meniscectomies are much poorer
than those after medial ones [147].

Joint reconstruction Three-dimensional Finite Element
models can also be used to estimate the consequences of
surgical treatments in human knee joint. Most models of re-
constructed knee joints have been directed towards ligament
injuries, in particular, the anterior cruciate is the most fre-
quent to be totally disrupted. There are many mechanical
factors that influence the success or failure of ACL recon-
struction. These include angle and position of the tunnels,



Computational Modelling of Diarthrodial Joints. Physiological, Pathological and Pos-Surgery Simulations 75

Fig. 16 Summary of the stress increase results for the lateral and medial meniscectomies (MPa). CPMM: Contact pressure in medial meniscus,
CPLM: Contact pressure in lateral meniscus, SMM: Compression stress in medial meniscus, SLC: Compression stress in lateral meniscus, SMC:
Compression stress in medial articular condyle cartilage, SLC: Compression stress in lateral articular condyle cartilage, SMT: Compression stress
in medial articular tibial cartilage and SLT: Compression stress in lateral articular tibial cartilage

state of the articular and meniscal cartilages, graft material,
surgical technique, and graft tension [58, 70, 111, 150].

One of the most complete model of the ACL reconstruc-
tion available in the literature is the model developed by
Peña et al. [150]. The technique analyzed in that work was
developed by Yoshiya et al. [214]. The 3D finite element
models of the graft and bone plugs after positioned in the
tibial and femoral tunnels and bone plugs were attached to
the tibial and femoral surfaces allowing relative sliding by
an appropriate contact algorithm without friction in the case
of ligaments and without relative sliding in the case of bone
plugs. Grafts were modelled as ligaments while bone plugs
were considered to behave as linear elastic and isotropic
with an elastic modulus of E = 14220 MPa and a Poisson
ratio of ν = 0.3 [95]. For details see [150]. Comparisons be-
tween published data [175] and the predicted kinematics in
that paper under similar conditions demonstrated its good
performance and accuracy.

The results corresponding to initial graft tensions of 0,
20, 40 or 60 N with the knee at 0◦, 30◦ and 60◦ of flex-
ion were obtained under 134 N of anterior load [150]. The
joint did not fully recover, in any case, the kinematics of
the healthy situation, although the anterior tibial translation
was significantly less than that of the injured joint (Fig. 18).
A pretension of 60 N produced much higher stresses in the
graft than with an initial graft tension of 20 N or without
it (Fig. 17). Three different grafts with stiffnesses corre-
sponding to bone-patellar tendon-bone graft, gracilis graft

and quadrupled semitendinosus graft were compared. Un-
der the same load of 134 N, there were not relevant differ-
ences between the results obtained with patellar tendon and
gracilis tendon grafts while the anterior tibial displacements
resulted higher with a semitendinosus ligament [150].

That model was also used to investigate the effect of
the angle in the coronal plane of femoral and tibial tunnels
[144]. This angle was varied to 60◦, 70◦, and 80◦ for femoral
and tibial tunnel, (Fig. 19). Graft tension and the resulting
kinematics for the different angles under an anterior load of
134 N was compared to that of the intact knee. The angle of
the femoral tunnel affects the graft tension while the tibial
tunnel affects laxity, meniscal stresses and strains (Fig. 20).

Another clinical application of the FE model developed
by Peña et al. [148] was the evolution along time of the
initial prestress in bone-patellar tendon-bone grafts (see
Sect. 2.3.2). Before graft fixation, an initial pretension is
applied. The value of this initial tension applied to the re-
placing graft significantly alters the joint kinematics. This
prestress helps to provide joint stability, but a very high
pretension produces an important additional stress in the
graft during the knee movement. Viscoelasticity decreases
the tension imposed during surgery until its stabilization.
The decrease of this initial stress can compromise the joint
stability, affecting the postoperative results. Biomechani-
cal testing protocols include preconditioning (cyclic or sta-
tic stretching of the graft prior to implantation) to ensure
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Fig. 17 Maximal principal stresses in the ACL graft with different initial graft tensions [150]

Fig. 18 Anterior tibial translation with different initial tensions during
knee flexion [150]

Fig. 19 Graft tension from 0◦ to 60◦ of flexion [144]

that ligaments have a uniform strain history and decrease
relaxation of the initial stress in the graft [58]. Computa-
tional models can help to estimate the correct applied initial
stress.

Table 3 PT viscoelastic material parameters [148]

γ11 τ11 (s) γ12 τ12 (s) γ14 τ14(s)

0.55 10 0.55 10 0.35 150

The viscoelastic parameters of the graft were obtained fit-
ting the stress-curved obtained by Pioletti et al. [160] from
the human patellar tendon (PT). These parameters are in-
cluded in Table 3.

After fixation, the relaxation process of the graft was
computed until thermodynamic equilibrium. Figure 21
shows the evolution of the initial prestress without and with
previous cyclic load. The tension within the patellar tendon
graft without cyclic load decreased a 32.5% and with cyclic
load only 24.1%. This results is in agreement with clinical
results [58].

4.2 Temporomandibular Joint

4.2.1 Anatomical Description of the Temporomandibular
Joint

The TMJ is one of the most frequently used joints in the
body, allowing us to talk, chew, yawn, swallow and sneeze
and it is susceptible to all the problems that affect other
joints in the body, including ankylosis, arthritis, trauma, dis-
locations, developmental anomalies and neoplasms.

The temporomandibular joint (TMJ) is a gliding joint,
formed by the condyle of the mandible and the squamous
portion of the temporal bone. The temporomandibular joint
(TMJ) enables the frictionless movement between the tem-
poral bone and the mandible. The articular surface of the
temporal bone consists of a convex articular eminence ante-
riorly and a concave articular fossa posteriorly. The articular
surface of the mandible consists of the top of the condyle.
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Fig. 20 Maximal principal stresses in the knee joint (MPa). The first and second numbers mean femoral and tibial angle respectively [144]

Fig. 21 Normalized initial stress evolution in the graft tendon with
and without cyclic load [148]

Articular surfaces of the mandible and temporal bone are
separated by an articular disk, which divides the joint cav-
ity into two small spaces. Between the condylar process of

the mandible and the glenoid fossa of the temporal bone, it
lies an interposed fibrocartilaginous disc. It provides a sta-
ble platform for the rotational and gliding movements of the
joint and also acts as a shock absorber [138] (Fig. 22).

The articular disk is a biconcave, fibrocartilaginous struc-
ture, which provides the gliding surface for the mandibu-
lar condyle, resulting in smooth joint movement. The disc
has three parts: a thick anterior band, a thin intermediate
zone, and a thick posterior band. In the closed position of
the mouth, the condyle is separated from the articular fossa
of the temporal bone by the thick posterior band, while in
the mouth open position the condyle is separated from the
articular eminence of the temporal bone by the thin inter-
mediate zone. Thus, when we open the mouth, the rounded
ends of the lower jaw, called condyles, glide along the joint
socket of the temporal bone. The condyles slide back to their
original position when we close our mouths (Fig. 22).

Fig. 22 Sagital section of the
human temporomandibular
joint. On the right a detail of the
joint in open and closed mouth
is depicted
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The mandible is held in position by a set of ligaments
and muscles [66], and is connected to the temporal bone by
an articular capsule reinforced with the lateral and medial
ligaments. This capsule is very slack and thin, and it is com-
posed of two types of fibers: long superficial fibers from the
temporal bone to the mandible and short fibers that join the
temporal bone to the discs and these to the condyles. The at-
tachments of the discs to the condyles are tighter than those
to the temporal bone. The lateral ligament which is thick
and triangular, reinforces the lateral part of the capsule of
the joint, and is stronger than the medial attachment [68].
Inside the joint capsule, located just behind the disc, there is
a connective tissue known as retrodiscal tissue or bilaminar
zone. It is composed partially of ligaments connecting the
disk to the temporal bone and the condyle, but the primary
composition is made up of a fairly loose, spongy material.

4.2.2 A Brief Review of Available Numerical Models of the
Temporomandibular Joint

Many finite element (FE) analyses have been reported to
probe the biomechanical status of the TMJ. The first finite
element models were bidimensional [30, 38]. In these mod-
els the biomechanics of an oversimplified human TMJ was
analyzed during the normal movement of the jaw, and al-
though no reliable material properties were available for the
different tissues, it was predicted that there was a nonlinear
relationship between the maximal stresses that appeared in
the tissues and the stiffness of the disc. Tanne et al. [192]
measured elastic properties of dog articular discs, and they
showed that the articular disc had a nonlinear stress-strain
response in tension. The first three dimensional finite ele-
ment model was constructed by Nagahara et al. [137]. In this
model the authors analyzed the influence of the proper con-
tact of the teeth to prevent disorders in the joint. Koolstra and
van Eijden [103] developed a three dimensional model that
included the masticatory muscles. Later, Beek et al. [14] re-
ported that the stresses were located in the intermediate zone
of the disc during clenching. The results of these studies sug-
gested that the disc plays an important role in distributing
and absorbing loads acting on the joint. The applied models,
however, were (quasi-)static and, therefore, the applicability
of their results is limited to situations where the jaw hardly
moves (e.g., clenching) [16]. Posteriorly, Hu et al. [88] in-
troduced in a simplified model of the joint, the fibrocartilagi-
nous layers that cover the articulating surfaces of the joint,
concluding that these prevent the disc and bone compo-
nents from high stresses. Recently, Donzelli et al. [44] pre-
sented a 3D model of the joint, where the disc was consid-
ered as an isotropic poroelastic material. In their simulations
a 5% opening of the joint was achieved without introducing
a proper definition of the interfaces between cartilage and
bones.

Biomechanical analyses of musculoskeletal system dy-
namics have been performed widely by applying rigid-body
dynamics [7, 151]. This method, which basically transforms
forces into movements, is very flexible and enables to in-
vestigate the influence of muscle activation on body move-
ments. The distribution of forces in irregularly shaped joint
structures, however, cannot be analyzed, and the deforma-
tions of articular cartilaginous layers cannot be taken into
account. This method enables the prediction of the internal
forces and deformations. The rigid body and FE method are
supplementary [104].

The first model that took into account the presence of
the collagen fibers inside the tissue, and the transversely
isotropic character of the solid matrix was proposed by
Pérez del Palomar and Doblaré [156], concluding that the
introduction of collagen fibers in the biphasic behavior of
the articular disc implies for a prescribed displacement not
only an increase of the pressurization in the tissue, but also
higher stresses in the anterior and posterior bands, as well as
in the lateral zone of the disc. Thus, modelling the disc as an
isotropic solid matrix leads in this case to an overestimation
of the stresses in the intermediate zone, an underestimation
of the pore pressure in this area, and an underestimation of
the stresses in the rest of the disc. Following this idea, these
authors also simulate the dynamically opening movement of
the jaw [154] proposing different mechanisms of damage of
the joint. However, they did not introduce the muscles in the
joint.

4.2.3 Some Examples of Application

Description of the model In the following the model de-
veloped by Pérez del Palomar and Doblaré [154–156] is
summarized. The geometrical model developed was built
from NMR (Nuclear Magnetic Resonance) and CT (Com-
puterized Tomography) images, which were obtained from
an asymptomatic male subject aged 65. The contours of the
cranium (temporal bone) and the mandible were obtained
from the CT scan (Figs. 23a and 23b), while soft tissues con-
tours were constructed from the NMR images (Fig. 23c). In
this joint, bones were considered to be rigid also. Therefore,
in order to create the rigid surfaces for the mandible and the

Fig. 23 Computerized tomography and magnetic resonance images of
the skull
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Fig. 24 Finite element model

temporal bone, a STL (Surface Tesselation) of these bone
components was created and then meshed automatically in
the commercial package I-DEAS v.9. The deformable parts
of the joint, the articular disc and the ligaments were manu-
ally created. In order to generate the corresponding meshes,
the contours of the different tissues were detected semiauto-
matically by means of a custom-design code, that allows the
user to identify different components through a grey scale.
These contours were approximated by splines, and then,
these splines were used to construct the geometry and the
finite element mesh of the disc and ligaments using eight-
node brick elements in I-DEAS v.9.

The finite element model constructed includes therefore
the mandible, the temporal bone, the two temporomandibu-
lar joints, the articular discs and the temporomandibular lig-
aments and is the first one that includes the ligaments and
disc with a realistic geometry and properties. This model is

shown in Fig. 24. The temporomandibular joint is detailed
in Fig. 25, where the right condyle of the mandible, the tem-
poral contact surface, the disc and collateral ligaments are
shown.

The general-purpose finite element code ABAQUS v.6.4
[78] was used to simulate the problem, implementing ap-
propriate user routines for the constitutive behavior of the
material of the disc (see Sect. 3). The mechanical properties
of the remaining materials were chosen from data available
in literature [5, 174, 201].

The human disc has a biconcave profile in sections cut
perpendicularly to its long axis. The thinner central part of
the disc is designated as the intermediate zone, and the thick-
ened rims are referred as the anterior and posterior bands
respectively. In the thinner central region, the collagen bun-
dles are preferentially oriented in an anteroposterior direc-
tion, while in the thicker more peripheral regions they run
mediolaterally [174] (see Fig. 26a).

The presence of collagen in the articular disc must be
taken into account when considering movement and distor-
tion of the disc during normal jaw excursions [19]. There-
fore, it is necessary to introduce a constitutive model for the
disc that incorporates its biphasic nature and the anisotropy
induced by collagen fibres (see Sect. 2.3.2).

The strain energy function chosen characterizing the hy-
perelastic behavior of the solid phase was earlier proposed
by [84],

� = C1(I1 − 3) + K1

2K2

{
exp

[
K2(I4 − 1)2] − 1

}

+ 1

D
(J − 1)2 (112)

where C1 is the material constant related to the ground sub-
stance, K1 > 0 and K2 > 0 are the parameters which iden-
tify the exponential behavior due to the presence of collagen
fibres, and D is the compressibility modulus.

The material constants have been obtained from a non-
linear fit of the experimental data reported by [174]. In that

Fig. 25 Detail of the right temporomandibular joint. a Lateral view. b Inferior view. c Posterior view
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work, Shengyi and coworkers performed tensile tests along
the mediolateral direction of the disc on strips taken from
the anterior and posterior bands, and from the middle zone.
In this way, the isotropic behavior of the matrix can be char-
acterized with the data obtained from the middle zone, since
the fibres run perpendicularly to the axis of the test. On the
other hand, the elastic constants related to the collagen fi-
bres (the exponential term in (112)) can be obtained from
the tests conducted on the tissue from the bands.

Figure 27 shows the experimental curves obtained by
[174] and those obtained by the nonlinear fit of (112). It
can be observed that within the 0% to 6% range, the the-
oretical curves are a sufficiently good fit of the experimen-
tal data. Although the exponential parameters of both bands
are slightly different, the average of these values for both of
them can be used. Table 4 depicts the elastic constants ob-
tained from the nonlinear regression that have been used to
define the behavior of the articular disc.

The disc has been divided in a number of element
groups to which a particular fibre orientation was assigned
(Fig. 26b). In this way the entire distribution of fibre orien-
tation in the disc was covered in the numerical model.

The biphasic properties of the disc were obtained from
literature [15]: an initial permeability of 7 × 510−15 m4/N s
and a solid volume fraction of 0.2. The hydraulic perme-
ability is related to the amount of compaction the tissue
experiences, which results in a decrease of apparent pore
size. The permeability has been considered to present a non-

Fig. 26 a Schematic diagram of fibres distribution in the articular disc
(viewed from top). b Collagen fibres distribution in the FE model

linear dependence with the volumetric deformation [4, 188]
(70), such as:

κ = κ0 ·
(

J − φs
0

1 − φs
0

)L

· exp

(
M · J − 1

2

)
(113)

where κ0 is the initial permeability, and M and L are ma-
terial parameters that have been taken from [5] (M = 4.638
and L = 0.0848).

Since the interstitial fluid can leak out of the matrix when
compressed, the whole disc surface was modelled with free
drain boundary conditions. In this study, the fibrocartilage
that covers the articulating surfaces of the condyle and the
temporal bone were not included.

It is accepted that the temporomandibular ligaments con-
strain the motion of the mandible [171], not taking part
in load transmission. Therefore, it is usually assumed that
the articular surfaces, the ligaments, and the motion of the
mandible induce the motion of the disc during the nor-
mal functioning of the joint [102, 141]. For the temporo-
mandibular ligaments, a Neo-Hookean hyperelastic model
with C1 = 6 MPa [204] was used.

The contact between the different elements of the joint
was introduced using the contact pair option in ABAQUS
v.6.4 [78] which allows finite sliding. Ten contact pairs were
defined in the model, including the interaction between the
soft tissue and the rigid elements. The joint was also consid-
ered to be well lubricated, so a friction coefficient of 10−5

[190, 191] was considered.
Several movements can be considered to analyze the be-

haviour of this joint, however, one of the most complete is
the opening movement of the jaw. In that paper, the results in

Table 4 Material constants of
the hyperelastic behavior of the
disc

C1 0.770562 MPa

D 1.41 MPa−1

K1 0.6 MPa

K2 79.8

Fig. 27 Comparison of the experimental curves (dotted lines) [174] to the theoretical curves using Holzapfel strain energy function (solid lines)
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Fig. 28 Evolution of the
opening movement of the jaw:
Closed position (left), 10.5 mm
opening (middle), 17.5 mm
opening (right)

Fig. 29 Evolution of the
maximum principal (SMAX),
minimum principal (SMIN)
stresses and pore pressure
(PRESS) in the disc during the
opening movement. Top and
bottom surfaces of the disc are
shown, with the following
labels: A anterior, P Posterior,
L Lateral and M Medial

a healthy, pathologic and reconstructed joint were presented
for an opening movement of the jaw.

Healthy joint The displacements of the mandible were
applied to a point located on the condyle. The trajectory
of this point was obtained following the previous work of
Chen et al. [29, 154]. The trajectory proposed by Chen was
fit to the current FE model in order to obtain a physiological
and smooth movement, obtaining a final mouth opening of
17.5 mm. The evolution of the opening movement is shown
in Fig. 28 for different stages including a detail of the disc,
the discal attachments and the condyle during the opening
movement.

In Fig. 29, the maximum principal stresses (SMAX), the
minimum principal stresses (SMIN) and the pore pressure

(PRESS) in the articular disc for different opening degrees
are shown. These results correspond to the right disc. It can
be also appreciated that the disc moved with the condyle
during the opening movement due to the collateral ligaments
that hold the disc tightly to the mandible. At the beginning of
the opening movement, higher stresses (SMAX) were found
at the lateral and posterior parts of the disc, and the stress
level increased with the progress of the opening movement.
Compressive stresses (SMIN) were located in the intermedi-
ate zone of the disc during the movement, reaching a value
of 8 MPa at its final stage. On the other hand, the introduc-
tion of a poroelastic model in the disc allowed to analyze the
evolution of the pore pressure during the movement. Thus,
it can be seen that the maximum pore pressure in the initial
stage appeared in the central region of the disc, where it is
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Fig. 30 Evolution of maximal
principal stresses (SMAX) in the
temporomandibular ligament
and in the collateral ligaments
during opening. These elements
are shown in lateral and medial
views

Fig. 31 Details of the two pathologic situations under study: on the
left, disruption of the retrodiscal tissue; on the right, disruption of the
lateral attachment of the disc to the condyle

compressed against the fossa. At the final stage, it can be
observed that the maximum pore pressure was located in the
lateral part of the intermediate zone on the bottom surface
of the disc.

The evolution of the tensile stresses in the ligaments are
shown in Fig. 30. It can be seen that the highest maximal
principal stresses were located at its attachment point to
the condyle (medial view), rising up to 5 MPa when the
opening movement was completed. The tensile stresses were
much higher in the collateral ligaments. These attach the
disc to the condyle during all the different movements of
the mandible, and are prone to failure in traumas [200]. In
Fig. 30 the large distortion of these ligaments during move-
ment can be appreciated. They result in higher stresses, with
maximum around 20 MPa.

Injured joint It seems that one of the essential causes of
disc disorders is the pathologic change in the ligamentous
attachments of the disc-condyle complex [35, 162, 200].
According to statistics published in the Journal of Ameri-
can Dental Association in 1990, 44% to 99% of TMJ prob-
lems are caused by trauma [46]. This term comprises any

impact to the head or mandible. Many traumatisms of the
mandible come from impacts in the anteroposterior or lateral
directions [200]. The impact force is transmitted to the skull
through the TMJ and the surrounding ligaments. A trauma
that comes from an anterior direction is likely to cause in-
jury to the retrodiscal tissue, while one from a lateral direc-
tion will probably damage the lateral ligament insertions of
the contralateral condyle.

In Fig. 32 a comparison between the stress response of
the disc in the healthy and in a damaged joint affected of
a bilaminar zone disruption is shown for a 10.5 mm open-
ing. It can be observed that in this pathologic TMJ the com-
pressive stresses (SMIN) moved posteriorly and the ten-
sile stresses in the posterior band were lower than in the
healthy one. The contact surface changed from the interme-
diate zone to the posterior band as well. Furthermore, higher
stresses than in the healthy disc appeared in the medial zone
of the disc, since it now moves both in the anterior and me-
dial directions.

Another consequence of a head impact may result in in-
juries to the lateral discal attachment. In Fig. 33 the stresses
undergone for the soft components in the healthy case and
in the pathologic one without lateral attachments are com-
pared for a 10.5 mm opening. It can be observed that the
main effect of the lack of this ligament is that the lateral part
of the disc is overstressed because this part of the disc tends
to go up as the mandible moves. Therefore, both maximal
and minimal principal stresses increased in that zone of the
disc.

Pathologic joint The most common TMJ arthropathy is
the internal derangement, which is characterized by a pro-
gressive anterior disc displacement. It is often associated
with a capsulitis, making pain a common feature. It is a ma-
jor TMJ disorder, accompanied with pain, clicking and/or
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Fig. 32 Comparison of the
maximal principal (SMAX) and
minimal principal (SMIN)
stresses in the disc between a
healthy joint and one where the
retrodiscal tissue has been
removed (damaged)

Fig. 33 Comparison of the
maximal principal (SMAX) and
minimal principal (SMIN)
stresses in the disc between the
healthy joint and one where the
lateral attachment of the disc
has been removed (damaged)

crepitus, muscle tenderness and limitation of mouth open-
ing [139]. Displacement of the articular disc in the temporo-
mandibular joint (TMJ) from its normal position was de-
scribed and identified as a potential clinical problem more
than a century ago [8]. Much emphasis has been placed
on the damage caused by a displaced disc, however its
origin and consequences are still unclear [139]. Theories
and observations have been brought forward that would ac-
count for disc displacement as the cause of joint pain, lim-
ited mandibular movements, joint sounds, and osteoarthrotic
changes in the TMJ [208]. These reports suggest that the
disc protects the underlying tissues and that its displacement
may expose these tissues to excessive loads with consequent
degenerative changes [139]. What is clear is that the degen-
erative changes in the joint are influenced by the degree and
the type of disc displacement. The more advanced the in-
ternal derangement, the more deteriorated the disc configu-
ration [193]. Therefore, the biomechanical environment in
the TMJ is a key to understand the inducing and progressive
mechanism of temporomandibular disorders.

The anterior disc displacement has different degrees of
severity. In an early stage, there is a simple displacement of
the disc in the closed mouth position, usually anteriorly, due
to weakness of the discal ligaments; this has been supported
clinically [106, 162] and by finite element simulations [154].
When the subject opens the mouth, the disc takes again its
normal position relative to the condyle: there is early click-
ing and the disc is said to be reduced early, due to the re-
maining elasticity of the bilaminar zone (the retrodiscal elas-
tic ligament) and of the collateral ligaments; this is called an-
terior disc displacement with reduction (ADDWR) (Fig. 34).
If this disorder becomes more severe the disc can not be
reduced and then it adopts a displaced position during the
movement. This case is called anterior disc displacement
without reduction (ADDWOR).

The FE analysis was performed for an opening move-
ment of the mouth for both pathologic cases (ADDWR and

Fig. 34 Degree of anterior disc displacement simulated in this analy-
sis; Healthy, ADDWR: anterior disc displacement with reduction,
ADDWOR: anterior disc displacement without reduction

ADDWOR). In the case of reduction (ADDWR), the behav-
iour of the soft components of the joint can be analyzed be-
fore and after the recapturation of the disc.

The stress distribution that was obtained in each stage is
shown in Fig. 35. It can be appreciated that before the re-
capture, the highest tensile stresses (SMAX) were located at
both poles (lateral and medial) of the anterior band of the
articular disc. The maximum compressive stresses in this
stage, however, were located at the posterior band of the disc
since it is compressed against the temporal surface when the
condyle moves forward. At this position, the disc is reduced
to its correct position on the condyle, and then the condyle
and the disc move together over the articular eminence. In
this stage, the maximum compressive stresses were located
at the intermediate zone of the disc where it is compressed
against the temporal bone. Thus, the maximum compressive
stresses moved from the posterior band to the intermediate
zone when the disc is reduced. However, it can be observed
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Fig. 35 Maximum Principal
Stress (SMAX) and Minimum
Principal Stress (SMIN)
distribution in the disc during
the opening movement in a TMJ
with ADDWR. Tensile stresses
in the collateral ligaments at the
final state of the movement. Top
and bottom surfaces of the disc
are shown, with the following
labels: A anterior, P Posterior,
L Lateral and M Medial;
Lateral and Medial Views are
shown for the collateral
ligaments

Fig. 36 Maximum Principal
Stress (SMAX) and Minimum
Principal Stress (SMIN)
distribution in the disc during
the opening movement in a TMJ
with ADDWOR at intermediate
and final states of the
movement. Top and bottom
surfaces of the disc are shown,
with the following labels:
A anterior, P Posterior,
L Lateral and M Medial

that both before and after the recapture, there is a stress con-
centration in the lateral and medial poles of the disc. Be-
sides, the behaviour of the collateral ligaments was also dif-
ferent in this case. The maximum value of the tensile stresses
was twice as high as the value in the healthy joint.

The compressive and tensile stresses undergone by the
articular disc in the ADDWOR are shown in Fig. 36. Now,
during all the opening movement the maximum compres-
sive stresses are located at the posterior band of the disc.
In this case, as well as in the ADDWR one, stress concen-
trations appear in both poles of the disc. With regard to
the response of the collateral ligaments, they were practi-
cally unloaded during the movement of the condyle because

they were unable to reduce the disc to its physiological po-
sition.

Joint reconstruction Most symptomatic temporomandibu-
lar joint (TMJ) disorders are treated conservatively. How-
ever, about 5% of the patients need surgery. Although An-
nandale et al. [8] first described surgical repositioning of
the displaced temporomandibular articular disc in 1887, it
was not until Wilkes [207] used arthrography to describe
the anatomy, form and function of the TMJ in 1978, that
disc repositioning became an accepted surgical technique.
The reported clinical results of surgical TMJ disc reposi-
tioning procedures (Fig. 37) have been variable and often
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Fig. 37 A healthy joint with the
disc located in its physiological
position; locking of the joint
with the disc permanently
displaced; repositioning of the
disc with a Mitek anchor to its
physiological position

Fig. 38 Repositioning surgery.
Compressive, tensile and
tangential stresses (MPa) in the
disc. LAT: lateral, MED:
Medial, IZ: Intermediate Zone

unpredictable, with failures related to a lack of long term
stability, indicating the need for improved methods of disc
stabilization.

One of the most used techniques to reposition the disc
consists in introducing a device to anchor it posteriorly to
the condyle of the mandible. One of these devices is called
MITEK anchor. It is composed of a titanium piece that is
placed inside the condyle and is joined to the disc by means
of two sutures. In [152], this system has been modelled with
truss elements which represent the sutures attached to the
condyle. As bones were considered rigid surfaces, the con-
tribution of the MITEK anchor was neglected and there-
fore, the truss elements were attached to the condyle di-
rectly.

The distribution of stresses on the disc after surgery is
shown in Fig. 38. It can be observed that the compressive
stresses (SMIN) were located at the intermediate zone of the
disc. Besides, the posterior band supported tensile stresses
(SMAX) because the repositioning device pulls the disc pos-
teriorly, an effect similar to the force exerted by the bilami-
nar zone in a healthy joint.

However, the artificial sutures modified the stresses in the
posterior band of the disc. The sutures are tied to the disc in
two points of the disc medially and laterally. This local ap-
plication of the pulling forces provokes stress concentrations
as shown in Fig. 39. There, a detail of the posterior band

Fig. 39 Repositioning surgery. Stress concentrations around the arti-
ficial sutures in the posterior band of the repositioned disc

where the sutures are located is shown. These local concen-
trations could lead to perforations of the disc in the posterior
band as has been detected clinically [213].

Therefore, the biomechanical response of the disc was
quite similar in the repositioned joint compared to the
healthy one, except for the appearance of local stress con-
centrations around the sutures that could damage those re-
gions of the posterior band. This effect is also correlated
with higher shear stresses in the posterior band in the joint
after surgery.

5 Concluding Remarks

A review of the computational models developed to numer-
ically analyzed diarthrodial joints such as the knee, and the
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temporomandibular joint has been presented here. A de-
tailed description of the main soft tissues involved, cartilage,
ligaments and muscles has been presented. Also, a critical
review of the constitutive models that have been developed
to represent these tissues has been made. The application of
these constitutive relationships in the context of joint mod-
elling has also been reviewed.

The ultimate goal of these modelling efforts is to improve
the clinical diagnosis and treatment of different injuries and
disorders of diarthrodial joints. The models may also iden-
tify means by which to prevent injuries. Despite the signif-
icant advances in recent years in both the complexity and
accuracy of computational models of soft tissues, current
models are still incapable of completely describing and pre-
dicting joints behaviour. Improvement in future models will
be achieved through research in a number of different areas,
in particular, more experimental data, more accurate consti-
tutive models, more precise geometrical models, and better
muscles load values are needed.
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