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Abstract
The outbreak species, Orgyia trigotephras caused significant defoliation in northeastern Tunisia in 2005. This work aims 
to elucidate the population cycle of this pest by testing a wide range of variation of fecundity and population growth. The 
recorded fecundity was at its highest peak with an average of 153 eggs/egg batch during outbreaks. The action of the complex 
of egg parasitoid/predator associated with O. trigotephras varies over time. The action of Aprostocetus sp. and Coccidiphila 
rungsella was at its utmost during the collapse phase of the insect in 2007 and 2014. Only these two species were recorded 
over our 17-year study. A low proportion of dried eggs versus a high proportion of unfertilized eggs were observed due to 
the poor quality of foliage consumed by the mother larva during its development. The correlation between fecundity and 
unfertilized eggs was highly significant. Fecundity change indicators of O. trigotephras are indirect, namely defoliation by 
high densities of larvae reducing leaf quality for the next generation. The abundance of the host species makes it easily found 
by parasitoids or vulnerable to parasitism. This strategy is used by O. trigotephras since the action of natural enemies is very 
low. Yet, the insect was not observed since 2018. It will be important to conduct large research in the region to see whether 
the insect is still present in the localities or relocate to other ones near the studied site.
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Introduction

Population cycles are determined by biotic/abiotic or by 
intrinsic/extrinsic factors (Elton 1927; Rossiter 1994; 
Myers and Cory 2013). Natural enemies are reported as the 
main driving force in limiting and regulating the pest insect 
(Münster-Swendsen 1985; Berryman 1996; Wyckhuys and 
O’Neil 2006), suppressing incipient outbreaks and limit-
ing the spatial spread of existing outbreaks (Maron et al. 
2001; Maron and Harrison 1997). Along with multispecies 

models involving mixes of parasitoids, predators, and path-
ogens (May and Hassell 1988), other researchers believe 
that parasitoids do not cause sufficient mortality to limit 
the growth of populations (Campbell et al. 1977; Ticehurst 
et al. 1978). Forest structure may also affect the parasitism 
rates and survival of forest defoliators (Cappuccino et al. 
1998). Likewise, maternal effects (e.g. development rate 
and final size of offspring) are related to egg size and the 
order of laying (Rossiter 1994). Long-time series studies on 
outbreak pests were mostly conducted on larval parasitoids 
(Münster-Swendsen 1985; Montgomery and Wallner 1988). 
The goal of this research is to identify factors responsible for 
maintaining the population dynamic of the outbreak pest, O. 
trigotephras at low densities at the egg stage. This negative 
density-dependent could explain the decline of population 
on the following years. This Erebidae caused significant 
defoliation of maquis in northern Tunisia in 2005 (Ezzine 
et al. 2010) and on Pistacia lentiscus in Italy in 2010 (Bella 
et al. 2011). In this context, this work aims to elucidate the 
population cycle of O. trigotephras by testing (i) a wide 
range of variation of fecundity and population growth; (ii) 
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the interaction between parasitism and predation of eggs of 
O. trigotephras and another intrinsic effect of eggs mortality 
as unfertilized and eggs containing dead larva by measur-
ing long-term average levels (population abundance) from 
2005 to 2021.

Materials and methods

Sampling

Investigations were carried out in northeastern Tunisia 
(36°849′N; 10°779′; alt. 410 m), in the forest of Jebel Beni 
Oulid (2670 ha) from 2005 to 2021. The region is under 
a sub-humid climate with a warm winter, characterized by 
Mediterranean vegetation, mainly the cork oak series repre-
sented by the Quercus coccifera, Erica arborea, and Lavan-
dula stoechas group. Average annual rainfall varies between 
450 mm and more than 600 mm (DGF 1995).

Females of O. trigotephras lay eggs in late May-early 
June. Egg batches can be oviposited in leaves of evergreen 
plants, namely Callicotome villosa, Erica arborea, E. multi-
flora, and Phillyrea media, and mainly on Quercus coccifera 
and Pistacia lentiscus (Ezzine 2016). Thereby, egg batches 
(n ≤ 30) were firstly collected on P. lentiscus from 2005 to 
2015. Since 2016, egg batches were only observed on Q. 
cocciferaon which we collected the detected ones. Once in 
the laboratory, these latter were kept individually in plastic 
boxes at ambient temperature (25 ± 2 °C) until the emer-
gence of natural enemies (Ezzine et al. 2010, 2015).

Laboratory trials

As the eggs of Orgyia trigotephras are protected inside a 
cocoon, egg batches were rubbed with a stiff bristle brush 
against a strainer over a bowl. The mesh of the strainer is less 
than 1 mm (size of the egg) to retain eggs and let the bristle 
(Ezzine et al. 2010). Eggs were then placed in a petri dish 
(9 cm ⌀) and observed under a binocular microscope to dis-
tinguish different types of eggs. Natural enemies were kept 
in the Eppendorf tube, in ethanol (96%), or killed with ether 
before morphological identification (Ezzine et al. 2015).

Statistical analysis

Statistical analyses were performed using the SPSS-10.0 
software package for Windows. The average number of 
eggs/egg batch (fecundity), parasitized, predated, “unfer-
tilized, and dried eggs” were calculated and reported as 
mean ± standard error of the mean (MSE). Differences in 
egg categories among years were tested with analysis of 
variance (ANOVA) followed by multiple comparisons of 
means using the Duncan test.

Dispersion index (DI = Var (X)/Average (X)) values were 
estimated for both parasitized and predated egg numbers. 
The correlation between predated and parasitized eggs was 
calculated using the Pearson correlation coefficient.

Results

Egg categories

Sorting eggs allowed us to identify five types of eggs; (i) 
parasitized eggs present a circular and regular exit hole. The 
interior emptied contains often waste black (rest of larva); 
(ii) predated eggs, in general, are fragments derived chorions 
eggs predation; (iii) dried eggs are mostly flat, “brown, black 
or orange”, and contain a dry larva; (iv) flattened eggs are 
unfertilized; and (v) hatched eggs recognizable through the 
large and reniform or circular exit hole of the larva.

Female fecundity

The number of eggs/egg batches (fecundity) varied signifi-
cantly among years (ANOVA,  F(16, 314) = 15.768, P < 0.001). 
In 2005 and 2014, fecundity was higher on average (153 
eggs/egg batch). It was lower in 2007 with an average of 
45 ± 5.63 eggs/ egg batch. Yet, for the other years, the fecun-
dity average varied between 60 (2017) and 133 (2015) eggs/ 
egg batches (Fig. 1). The maximum number of eggs was 
238 eggs (2010), however, the minimum was 5 eggs (2006).

Egg mortality

Egg mortality includes dried eggs, flattened/unfertilized 
eggs, “predated eggs, and parasitized eggs”. Percentage of 
each category varied significantly among years (P < 0.001). 
According to multiple comparisons of means Duncan, six 
groups of unfertilized eggs were identified. In 2015, we 
recorded the highest mean percentage (88.73 ± 3.07%) and 
the lowest in 2014 (14.43 ± 2.6%) (Fig. 2A). The maximum 
percentage of unfertilized eggs was 100% (2005, 2006, 2008, 
and 2009), however, the minimum was 0.00% (2006, 2010, 
2014, and 2017).

The highest mean percentage of dried eggs was recorded 
in 2017 (12.86 ± 3.19%). It was lower than the other years 
and it does not exceed 4% (Fig. 2B). The maximum percent-
age of dried eggs was 90.43% (2009), however, the mini-
mum was 0.00% throughout the study period.

One parasitoid, the Hymenoptera, Eulophid Aprostocetus 
sp. parasitized the eggs. Even, predation was caused by the 
larvae of the Cosmopterigidae, Coccidiphila rungsella Nel 
and Brusseaux, 1997 (Ezzine et al. 2015). The mean percent-
age of parasitized eggs varied between 1.08 ± 0.25 (2009) 
and 22.09 ± 5.4 (2014) (Fig. 2C). The maximum was 72.27% 
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and the minimum was 00%. On the other side, predation var-
ied between 00% (2012) and 5.33 ± 2.16 (2016) (Fig. 2D), 
with a maximum of 36.84% (2016).

The dispersion index (DI) was well above 1.0 in all stud-
ied years (except 2011 and 2012 for predated eggs). It shows 

Fig. 1  Female fecundity or 
Average number (± SE) of eggs/
egg batch of Orgyia trigote-
phras. Within each year, values 
labeled with different super-
script letters are significantly 
different (Duncan’s Multiple 
Range test, P < 0.05)
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Fig. 2  Average percentage number (± SE) of unfertilized eggs (A), 
dried eggs (B), parasitized eggs (C), and predated eggs (D)/ egg batch 
of Orgyia trigotephras. Within each year, values labeled with differ-

ent superscript letters are significantly different (Duncan’s Multiple 
Range test, P < 0.05)
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the gathering distribution of parasitoid and predator attacks 
(Table 1).

The number of parasitized or dried eggs was not sig-
nificantly correlated with Fecundity. Yet, the number of 
unfertilized or predated eggs was significantly correlated 
with fecundity. On the other hand, parasitized eggs were 
significantly correlated with dried and predated eggs. 
Unfertilized eggs were significantly correlated with pre-
dated eggs. Parasitized and predated eggs were correlated 
significantly (Table 2).

Figure 3 shows the simulation between fecundity, para-
sitized, and predated eggs. Two highest peaks of fecundity 
(> 153 eggs/egg batch) were observed in 2005 and 2012, and 
a relatively low one in 2015 (134 eggs). The highest peak 
of parasitism was observed in 2014 (22%) and a relatively 
low one in 2007 (16%). The same results were observedfor 
predation, a peak in 2016 (5.33%) and two relatively low 
ones in 2013 (2.41%) and 2014 (2.78%).

Discussion and conclusion

Given the long-term available data sets, we studied the 
female fecundity and the mortality factors of eggs of O. 
trigotephras and the action of natural enemies. Like other 

outbreak insects, O. trigotephras occurs in many sites at low 
densities, and a few sites at very high densities (Harrison 
1997; Maron et al. 2001; Ben Jamâa et al. 2002; Ezzine 
et al. 2021). In 2005, the first year of a large outbreak (pro-
gradation phase), larvae density of O. trigotephras was very 
high and larvae fed on Quercus coccifera, Pistacia lentiscus, 
Callicotome villosa, Erica arborea, E. multiflora, Arbutus 
unedo and Cistus Crispus (Ezzine et al. 2010; Ezzine, 2016). 
The recorded fecundity was at its highest peak with an aver-
age of 153 eggs/egg batch (max = 232 eggs). From 2006 to 
2012, the insect was present but with a low density (latency 
phase). In 2012, a second and low outbreak was observed 
with female fecundity of 153 eggs/ egg batch (max = 227 
eggs). During these years, the density of O. trigotephras 
was very low and it correspond to the retro gradation phase 
of the insect till 2018 wherein no more egg batch was 
observed on any host plant in this site. According to Myers 

Table 1  Average number (± SE) of parasitized and predated eggs (B)/ 
egg batch of Orgyia trigotephras; and dispersion index values for the 
natural enemies (parasitoid and predator)

For each column, values followed by the same letters are not signifi-
cantly different based on Duncan’s Multiple Range test at P < 0.05

Year Parasitized eggs Predated eggs

Mean DI Mean DI

2005 4 ± 0.68cdef 3.5 0.33 ± 0.14d 1.93
2006 1.66 ± 0.35ef 2.24 0.1 ± 0.07d 1.62
2007 7.3 ± 2.38b 7.76 1.1 ± 0.37bcd 1.3
2008 2.23 ± 0.47def 3.01 0.1 ± 0.1d 3
2009 1.1 ± 0.29f 2.34 0.9 ± 0.22 cd 1.71
2010 4.4 ± .81bcde 4.47 0.46 ± 0.17d 1.88
2011 2.46 ± .97cdef 11.59 0.1 ± 0.05d 0.93
2012 2.43 ± 0.77cdef 7.35 0d 0
2013 2 ± .77def 4.47 2.33 ± 1.33abc 13.76
2014 14.85 ± 1.77a 2.97 2.78 ± 1.52ab 11.71
2015 2.66 ± 0.54cdef 2.02 1.05 ± 0.39 cd 2.61
2016 5.57 ± 1.31bc 8.06 2.96 ± 1.17a 12.14
2017 5.08 ± 1.66bcd 12.52 1.39 ± 0.25abcd 1.09

Table 2  Correlation coefficients 
(R) between fecundity and types 
of eggs

P: the asymptotic significance. ns: not significant (P > 0.05); *: significant (0.01 < P < 0.05); **: highly sig-
nificant (P < 0.01). P values are in parentheses

Parameters Parasitized eggs Unfertilized eggs Dried eggs Predated eggs

Fecundity 0.030 ns(0.589) 0.588**(0.000) 0.054 ns(0.339) − 0.122*(0.02)
Parasitized eggs − 0.079 ns(0.159) 0.170**(0.002) 0.125*(0.02)
Unfertilized eggs − 0.079 ns(0.159) − 0.037 ns(0.507) − 0.143*(0.01)
Predated eggs 0.125*(0.02) − 0.143*(0.01) 0.064 ns(0.252)
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and Cory (2013), three factors are required for cyclic popula-
tion dynamics: the first one is a high fecundity to allow the 
population to increase by three to six orders of magnitude 
during the four or five generations of the increase phase; 
the second one is the density-related, increased mortality 
factors initiating the decline at peak density; and the last 
one is delayed density-related mechanisms inducing the 
decline of the population. A review of Berryman (1996) on 
cyclic forest Lepidoptera led to conclude that parasitoids 
invariably kill a consistently high proportion of lepidopteran 
eggs, larvae, and pupae during the decline phase and relax 
their effects during the increase phase. According to the data 
reported in the present paper, the action of the complex of 
egg parasitoid/predator associated with O. trigotephras var-
ies in time. The action of Aprostocetus sp. and C. rungsella 
was at its utmost during the collapse phase of the insect in 
2007 and 2014. Only very low numbers of Aprostocetus sp. 
were recovered from O. trigotephras moth eggs and were 
found to cause a lower percentage of parasitism and did not 
exceed 22% (2014). Yet, predation caused by larvae of C. 
rungsella was very low and the percentage did not exceed 
5% (2016). Only these two species were recorded over our 
17-year study. The deepest study conducted by Myers and 
Cory (2013) showed that parasitism is a universal mortality 
factor for forest Lepidoptera. Parasitism by hymenopteran 
parasitoids leads to a delayed density dependence capable 
of producing cyclic oscillations in the population dynamics 
of Lepidoptera (Berryman 1996; Tanhuanpää et al. 2002). 
Egg parasitism of L. dispar was unimportant as a mortality 
factor in the examined Slovak populations compared to the 
other stages (Hoch et al. 2001). The Eulophid parasitoids 
were reported to be successfully used to control important 
forest pests (Voegele 1989; Duan et al. 2013; Wang et al. 
2021). Generally, parasitoids parasitize fertilized host eggs 

(Krugner 2014) since it’s important for parasitism and fit-
ness of the parasitoid offspring (Wang et al. 2020). Apros-
tocetus spp. were used in forestry to control pests (Sampson 
et al. 2013) and, parasitize the eggs of Lepidoptera (Yang 
et al. 2015). In Viggiani (2021), it was reported that egg 
parasitoids, Aprostocetus, Anastatus bifasciatus, and Bary-
scapus sp. of Phaneroptera nana, oviposit in the host eggs in 
autumn and complete a generation in the next spring–sum-
mer and can also develop another generation on the same 
host in summer-autumn. Our results showed that the biology 
of Aprostocetus is synchronized with the egg deposition of 
O. trigotephras. On the other side, females of other species, 
as the trichogrammatid oviposit in the host egg in autumn 
and a long development takes place (Viggiani 2021). Ezzine 
et al. (2020) elucidate the effect of pupa parasitoids on the 
outbreak species the Erebidae, Casama innotata which 
suggests the existence of strong natural regulation mecha-
nisms, by the mortality of more than 93% of the popula-
tion by parasitoids. In our work, results indicate that natural 
enemies play a role in maintaining this population dynamic 
but with a low proportion. Nevertheless, intrinsic factors 
may play a crucial role in regulating the population. Our 
findings showed a low proportion of dried eggs (< 13%). 
Contrariwise, the proportion of unfertilized eggs was very 
important and ranged between 15% (2014) and 89% (2015). 
These defective eggs do not have a complete plan for build-
ing an embryo or being incapable of further development. 
This may be due to the poor quality of foliage consumed by 
the mother larva during its development (Ezzine et al. 2010, 
2015). The correlation between fecundity and unfertilized 
eggs was highly significant. Fecundity change indicators 
of O. trigotephras are indirect, namely defoliation by high 
densities of larvae reducing leaf quality for the next genera-
tion (Ezzine et al. 2015). Furthermore, Villemant and Fraval 

Fig. 3  Average number 
(± SE) of eggs per egg batch, 
percentage of parasitized eggs, 
and predated eggs of Orgyia 
trigotephras 
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(1992), considered that after strong defoliation caused by 
Lymantria dispar, the attack of the parasitoid was low and 
it was due to the high proportion of dry eggs resulting from 
the poor nutrition of parents.

The abundance of the host species makes it easily found 
by parasitoids or vulnerable to parasitism. Thus, existence 
at relatively low abundance may provide refuge from para-
sitism (Barbosa 2004). Maybe, this strategy is used by O. 
trigotephras since the action of natural enemies is very 
low. Yet, the insect was not observed since 2018, it’s prob-
ably due to the competition that reigns in the studied site 
since 2013 (Hammami et al. 2019). It will be important 
to conduct large research in the region to see whether the 
insect is still present in the localities or relocate to other 
ones near the studied site.

To conclude, biological control involves the mutual-
ism among natural enemies affecting the same host (May 
and Hassell 1988). The broad objective of this study is 
to look for biological control as it reduces the average 
abundance of a pest by using one or more populations of 
natural enemies, and in so doing reduce insect outbreaks. 
These results caution us against formulating biological 
control strategies purely in terms of two-species systems. 
The cyclic dynamics can be affected by environmental 
disturbances. It’s so important to emphasize other ways 
for future studies to expand cyclic population dynamics 
mechanisms, considering the effect of climate change and 
phenology in elucidating patterns of synchrony among 
populations and outbreaks.
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