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Abstract
By mitigating the negative effects of urbanization, urban trees contribute significantly to the well-being of urban citizens. 
However, trees themselves are also exposed to urban stress that can influence tree condition and tree-herbivore interactions. 
Maple species (Acer spp.) are among the most commonly planted trees in urban areas throughout North America and Europe. 
Among these species, field, sycamore, and Norway maple are native to Europe, but tolerate environmental stress to varying 
degrees. Here, we compared the phytophagous insect communities in the canopy of these tree species in the city of Budapest, 
Hungary. We also examined the stress level [expressed as peroxidase (POD) enzyme activity], and physiological condition 
(expressed as degree of leaf necrosis and leaf fall) of the maple trees, and their relationship to herbivore abundance. We 
observed higher total abundance of phytophagous insects on field and sycamore maple compared to Norway maple. Most 
herbivorous species were associated with field maple, sycamore had the highest aphid densities, and Norway maple harbored 
the least specific phytophagous insect community. Field maple trees were in the best condition while Norway maple trees 
in the worst condition, i.e., with the highest proportion of necrotic leaf surface area. The super-abundant planthopper spe-
cies, Metcalfa pruinosa positively affected the POD activity of trees, but did not influence their condition. On the contrary, 
M. pruinosa abundance was driven by tree condition, with higher numbers on healthier trees. Our findings suggest that the 
abundance of phytophagous insects in the canopy of maple trees is highly determined by tree condition, and in this study 
field maple had the highest and Norway maple the lowest tolerance for urban stress.
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Introduction

Although urban areas represent a relatively small proportion 
of the total Earth surface, the urban land-cover continues to 
grow and is predicted to increase by 1.2 million km2 in the 
first 30 years of the 21st century (Seto et al. 2012). Urban 

expansion and associated land-cover change is considered 
to be one of the most extreme forms of landscape and habi-
tat transformation. It leads to dramatic changes in the local 
biotic and abiotic environment, and hence has substantial 
impacts on ecological systems (McDonnell and Pickett 
1990; McIntyre 2000; Grimm et al. 2008).

Trees contribute to the mitigation of abiotic environmen-
tal changes associated with urbanization, thus have impor-
tant role in providing a livable environment for humans. 
Urban trees reduce air temperature by absorbing solar 
radiation through evapotranspiration and reduce surface 
temperatures via shading (Rahman et al. 2017). Moreover, 
trees remove significant amounts of air pollutants originat-
ing from traffic and industrial activity, by absorption and 
by dry deposition on plant surfaces (Nowak et al. 2006). 
At the same time, trees are highly exposed to different fac-
tors associated with urbanization, including heat stress, 
increased emissions, low air humidity and periods of critical 
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water stress, soil compaction, and de-icing salt (Sjöman and 
Nielsen 2010; Pautasso et al. 2015).

Tree species respond to urban stress differently. Species 
that are poorly adapted to these harsh conditions are increas-
ingly losing their decorative value (Günthardt-Goerg and 
Vollenweider 2007; Swoczyna et al. 2015; Stratópoulos et al. 
2019), and are becoming particularly susceptible to biotic 
stress agents (Richards 1983; Wargo 1996; Tubby and Web-
ber 2010). Accordingly, knowledge about different species’ 
tolerance and stress resistance is crucial during the selection 
of trees for urban sites (Richards 1983; Roloff et al. 2009; 
Sjöman and Nielsen 2010).

Environmental stressors can negatively affect plant 
defensive chemistry, while increased nutrient deposition 
and elevated atmospheric carbon dioxide associated with 
urbanization can promote plant growth. These effects, along 
with altered top-down control (see Raupp et al. 2010 and 
Miles et al. 2019 for review), may lead to outbreaks in insect 
herbivore populations on urban trees (White 1969, 1984; 
Price 1991). These herbivores can cause visible decline in 
tree condition (Zvereva et al. 2010). For example, piercing-
sucking insect pests can cause significant removal of nutri-
ents, leading to reduced growth and survival, and weakened 
photosynthesis of trees (Dixon 1971; Kaakeh et al. 1992; 
Frank et al. 2013). Native species might be more exposed 
to these effects as they often support more local phytopha-
gous species and receive increased herbivory (Tallamy 2004; 
Matter et al. 2012; Clem and Held 2015; Frank et al. 2019). 
Differences in abundance and composition of herbivore 
communities also occur within congener tree species due 
to numerous reasons, including phenological characteristics 
(Ekholm et al. 2019) and physiological condition of trees 
(Dale and Frank 2017), and host plant specialization of her-
bivores (Fraser 1997). Although a number of studies have 
been conducted examining the effects of the urban environ-
ment on plants and herbivores, more studies examining the 
ecology of plant-herbivore interactions, including how tree 
species shape herbivore communities in cities, are needed 
to get a more holistic picture (Raupp et al. 2010; Miles et al. 
2019).

Maples (Acer spp.) are among the most commonly 
planted urban tree species in North America (Cowett and 
Bassuk 2014, 2020) and Europe (Sæbø et al. 2003; Britt 
and Johnston 2008; Sjöman et al. 2012). In Central Europe, 
sycamore (Acer pseudoplatanus L.), Norway (A. platanoides 
L.), and field maple (A. campestre L.) are common native 
tree species (Caudullo and de Rigo 2016; Pasta et al. 2016; 
Zecchin et al. 2016), and are often selected for urban for-
estry (Roloff et al. 2009). These tree species have overlap-
ping phytophagous insect communities due to the presence 
of some generalist and maple specialist species (e.g., Jones 
1945; Nickel 2003; Wilkaniec and Sztukowska 2008).

Within the genus Acer, field maple is phylogenetically 
most closely related to Norway maple while sycamore is 
distantly related to these two species (Li et al. 2006). This 
relationship is partly reflected in their ecological preferences 
and stress tolerance. Field maple has a very wide ecological 
range and is relatively insensitive to soil parameters. It pre-
fers relatively warmer climates, thus tolerates high tempera-
tures and prolonged periods of dry soil (Zecchin et al. 2016). 
Norway maple can also cope with adverse environmental 
conditions (Sjöman and Nielsen 2010); however, does not 
tolerate conditions of high evapotranspiration or prolonged 
drought and grows best in deep, fertile and moist soils (Cau-
dullo and de Rigo 2016). Similar to field maple, Norway 
maple is often recommended as ideal species for urban 
plantings (Roloff et al. 2009; Sjöman and Nielsen 2010). 
Although sycamore maple is very adaptable to different soil 
types, it has high demands of cool and moist growing condi-
tions and does not tolerate excessive heat and limited water 
availability (Pasta et al. 2016). Therefore, sycamore maple 
is considered to be less suitable species for urban habitats 
(Roloff et al. 2009). However, the performance of these three 
Acer species and the outcomes of their interactions with her-
bivorous insects in urban environment has not been studied.

In this study, we examined the abundance patterns of phy-
tophagous insects as well as their interactions with physi-
ological condition of these three common Acer species in 
urban areas. Our first objective was to compare the compo-
sition and abundance of common pest insects on sycamore, 
Norway, and field maple trees. Our second objective was to 
assess how phytophagous insects influence the stress level 
and condition of trees. Finally, our third objective was to 
determine whether the condition of these trees may affect 
the abundance of phytophagous insects.

Methods

Study area and arthropod collection

The research was carried out in the city of Budapest 
between 2014 and 2015. We selected four study sites in 
urban environment (Arboretum of Buda [47° 28′ 50.1″ N 
19°  02′  16.4″  E], Gellért Hill [47°  29′  07.4″  N 
19° 02′ 38.7″ E], streets around the Buda Campus of Szent 
István University [47° 28′ 40.3″ N 19° 02′ 06.4″ E], and 
Alkotás utca [47° 29′ 20.1″ N 19°01′ 28.3″ E]) that are situ-
ated close to each other and have sufficient numbers of field 
(A. campestre), Norway (A. platanoides), and Sycamore 
maples (A. pseudoplatanus). We selected 12 individuals 
(three at each site) in 2014 and 20 individuals (five at each 
site) per tree species in 2015 for arthropod collection, all of 
which had similar ages and undamaged trunks.
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Arthropods were collected from the canopy of the trees 
by the beating method (Basset et al. 1997), using a beating 
funnel 70 cm in diameter and 60 cm in depth, together with 
a 120 cm long beating stick. Ten branches were sampled per 
tree. Samples were taken on 14 dates in 2014 (April 6, 20, 
May 4, 18, June 1, 16, 29, July 13, 26, August 9, 24, Septem-
ber 7, 20 and October 5) and on seven dates in 2015 (May 7, 
June 16, July 8, 29, August 19, September 10 and October 
3). The collected arthropods were counted and deposited at 
the Department of Entomology of Szent István University. 
We identified to species level the abundant phytophagous 
species among aphids (Hemiptera, Aphididae), psyllids 
(Hemiptera, Psylloidea), plant- and leafhoppers (Hemiptera, 
Auchenorrhyncha, collected only in 2015, except Metcalfa 
pruinosa [Say] which was collected in both study years), 
heteropterans (Heteroptera), and curculionids (Coleoptera, 
Curculionidae).

Stress level and condition of trees

To determine the stress level of the trees, we measured per-
oxidase (POD) enzyme activity. Peroxidases are considered 
as important stress indicators of plants because the levels of 
these defensive proteins increase considerably in response to 
both abiotic and biotic stressors (Pandey et al. 2017). PODs 
are an important component of the immediate response of 
plants to insect damage and their activity is often used as 
a measure of plant response to herbivore attack (War et al. 
2012). In 2015, we collected leaves from the selected trees 
on July 30 and 31, when the highest abundance of phytopha-
gous insects was detected, and transported the leaves in a 
cooler box to the laboratory of the Department of Applied 
Chemistry of Szent István University. For enzyme analyses, 
leaves were homogenized in 20 mM sodium acetate, pH 7.8 
buffer containing 1 % polyvinylpyrrolidone, 20 % sucrose, 
0.035 % bovine serum albumin, 10 % Triton X100. The tis-
sue extract was centrifuged at 13,000 r/min for 20 min. The 
procedure was carried out at 4 °C and the supernatant was 
used for further analyses. POD activity was determined by 
spectrophotometry in a H2O2 substrate with ortho-dian-
izidine used as chromogenic indicator (ε = 11.3) at 460 nm 
(Shannon et al. 1966) and expressed in units of peroxidase 
per ml. A unit of peroxidase was defined as an increase of 
0.001 unit of absorbance for 90 seconds.

In 2015, we evaluated visually the degree of leaf necro-
sis and leaf fall of trees. These symptoms are considered 
as suitable indicators of environmental stress and can be 
used to determine the condition of plants (Close et al. 1996; 
Dobrowolska et al. 2001; Schreuder et al. 2001; Günthardt-
Goerg and Vollenweider 2007; Khavaninzadeh et al. 2014). 
The evaluations were done in the second half of October, 
when leaf fall and leaf necrosis symptoms became apparent. 
The evaluations were done in five-point scales along ordinal 

conditional gradients (leaf necrosis: observed in less than 5% 
[score: 1], between 5 and 20% [score: 2], between 20 and 
35% [score: 3], between 35 and 50% [score: 4], and between 
50 and 70% of the canopy [score 5]; degree of leaf fall: less 
than 10% [score: 1], between 10 and 25% [score: 2], between 
25 and 40% [score: 3], between 40 and 50% [score: 4] and 
between 50 and 60% [score: 5]).

Data analyses

We used R version 3.6.2 statistical environment (R Core 
Team 2019) for all analyses. Before the analyses, insect 
abundance and POD activity were log-transformed to meet 
conditions of normality. The degree of leaf necrosis and leaf 
fall variables were handled as ordered factors in the models 
using the function “as.ordered” of R. For the analyses on 
the relationships between phytophagous insects and stress 
levels and condition of trees, we included the numbers of the 
most abundant phytophagous insect species (M. pruinosa, n 
= 15912) and groups (other plant- and leafhoppers [except 
M. pruinosa], n = 1886; heteropterans [all species], n = 
1626; aphids [all species], n = 1154) in 2015 and p values 
were adjusted using the method of Benjamini and Hochberg 
(1995).

Effect of tree species on the composition 
and abundance of phytophagous insects

We performed non-metric multidimensional scaling 
(NMDS) to examine the effect of tree species on the com-
munity composition of abundant phytophagous insect spe-
cies using Bray–Curtis dissimilarity as the distance measure, 
and the “metaMDS” function of “vegan” package version 
2.5–6 (Oksanen et al. 2019). In order to obtain meaning-
ful quantitative responses, only those insect species rep-
resented by at least 50 individuals in each year’s samples 
were included (Table S1). We also ran an indicator species 
analysis (Dufrêne and Legendre 1997) to identify potential 
phytophagous character species for each maple species using 
the “indval” function of the “labdsv” package version 2.0-1 
(Roberts 2019). For NMDS and IndVal analyses, the abun-
dance data were pooled across study years.

To determine the effect of maple species on phytophagous 
insects, we ran general linear mixed models (GLMMs) using 
the function “lme” from the “nlme” package version 3.1-
143 (Pinheiro et al. 2019). The models included the yearly 
abundances of the main insect groups (aphids, plant- and 
leafhoppers and heteropterans) and species (Table S1) as 
response variables, tree species as an explanatory variable 
(fixed factor), and site as a random factor. If the model vali-
dation plots showed heteroscedasticity, we implemented a 
variance function “varIdent” in the weight of the models to 
estimate the within-group variance and account for unequal 
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variances. To evaluate the effect of tree species, ANOVA 
tests were performed using “Anova” function of the “car” 
package version 3.0-6 (Fox and Weisberg 2019). For post-
hoc analysis, least square means were calculated using the 
“lsmeans” function, and pairwise comparisons with Tukey p 
value correction were performed using the “pairs” function 
from the package “lsmeans” version 2.30-0 (Lenth 2016).

Stress levels and condition of maple tree species

To determine the differences between stress levels and con-
ditions of maple species, we ran GLM and cumulative link 
mixed models (CLMMs) using the functions “lme” from 
the “nlme” package and “clmm” from the “ordinal” pack-
age version 2019.12-10 (Christensen 2019). The models 
included POD activity (GLMM), degree of leaf necrosis, 
and leaf fall (CLMMs) as response variables, tree species 
as an explanatory variable (fixed factor), and site as a ran-
dom factor. To evaluate the differences between tree species, 
ANOVA tests were performed using the “Anova” function of 
the “car” package. For post-hoc analysis, least square means 
were calculated using the “lsmeans” function and pairwise 
comparisons with Tukey p value correction were performed 
using the “pairs” function from the package “lsmeans.”

Effect of phytophagous insects on stress level 
of trees

We performed two types of analyses (GLMMs) in order to 
examine the effect of phytophagous insects on tree stress 
levels using the function “lme” from “nlme” package. In 
the first analysis, we tested this relationship including all 
tree individuals (n = 60). The model included POD activity 
as response variable, the abundance of phytophagous insect 
species and groups as explanatory variables (pooled abun-
dance data across collection dates before the POD measure-
ments in 2015, fixed factors), and tree species and site as 
random factors. In the following analyses, we ran models for 
each tree species separately (n = 20). The models included 
POD activity as a response variable, the abundances of 

phytophagous insect species and groups as explanatory vari-
ables (fixed factors), and site as a random factor.

Relationships between phytophagous insects 
and tree condition

To test the effect of phytophagous insects on the condition 
of trees, we ran CLMMs using the function “clmm” of the 
“ordinal” package. The models included the degree of leaf 
fall and necrosis as response variables, the abundance of 
phytophagous insect species and groups as explanatory vari-
ables (fixed factors), and tree species and site as random 
factors. We used GLMMs to assess whether the condition of 
trees would influence the abundance of phytophagous insects 
using the function “lme” from “nlme” package. The models 
included the abundance of phytophagous insect species and 
groups as response variables, degree of leaf fall and necrosis 
as explanatory variables (fixed, ordered factors), and tree 
species and site as random factors.

Results

Taxa recorded

In total, we identified 33072 phytophagous insects, 12302, 
7835 and 12935 individuals from the canopy of sycamore, 
Norway, and field maple, respectively. The overall abun-
dance was similar between sycamore maple and field maple 
in both study years (2014: t = 1.544, p = 0.285; 2015: t 
= − 0.650, p = 0.793). However, the total abundance was 
lower on Norway than on field (2014: t = − 2.936, p = 
0.017; 2015: t = − 2.873, p = 0.016) and sycamore maple 
(2014: t = − 4.481, p < 0.000; 2015: t = − 2.223, p = 0.076) 
(Fig. 1). The collected individuals consisted mainly of plan-
thoppers (Fulgoromorpha; 66.4%), aphids (17.8%), heterop-
terans (7.0%), leafhoppers (Cicadomorpha; 5.3%), curculio-
nids (2.5%) and psyllids (0.86%). Metcalfa pruionosa (n = 
21852) was by far the most abundant species, representing 
66.1% of all individuals examined, followed by Periphyllus 

Fig. 1   Total abundance of col-
lected phytophagous insects on 
sycamore, Norway, and field 
maple trees in 2014 and 2015. 
On the boxplots red squares 
indicate means. Significant dif-
ferences between maple species 
(least square means, ANOVA, 
GLMM; *p ≤ 0.05, ***p ≤ 
0.001) were calculated for log-
transformed data.



133Host plant identity and condition shape phytophagous insect communities on urban maple (Acer…

1 3

testudinaceus (Fernie) (n = 2791, 8.4%), Drepanosiphum 
platanoidis (Schrank) (n = 2502, 7.6%), Halyomorpha halys 
(Stål) (n = 1182, 3.6%), Phyllobius oblongus (Linnaeus) (n 
= 571, 1.7%), Nezara viridula (Linnaeus) (n = 566, 1.7%), 
and Acericerus ribauti Nickel & Remane (n = 549, 1.7%) 
(Table S1). In general, aphids, psyllids, and curculionids 
had peaks in abundance earlier in the season than plant- and 
leafhoppers and heteropterans. For temporal abundances of 
phytophagous species see Figs. S1-S4.

Effect of tree species on the composition 
and abundance of phytophagous insects

NMDS analysis clearly separated the phytophagous insect 
communities of sycamore and field maple, and also showed 
that Norway maple had the least specific phytophagous 
insect community, with a high overlap especially with that 
of field maple (Fig. 2). Indicator species analysis identi-
fied two species, D. platanoidis and Periphyllus acericola 
(Walker), as character species of sycamore maple and other 
two species, Zyginella pulchra Low and Bradybatus kellneri 
Bach, as character species of Norway maple. Seven further 
indicator species, Drepanosiphum aceris Koch, Periphyllus 
obscurus Mamontova, Rhinocola aceris (Linnaeus), A. rib-
auti, Japananus hyalinus (Osborn), Gonocerus acuteangu-
latus (Goeze), and N. viridula showed a preference for field 
maple (Fig. 2; Table S2).

The total number of aphids was the highest on sycamore 
and the lowest on Norway maple trees in both years (Fig. 
S5, Table S3). Aphid species exhibited a high degree of host 
specificity. Similar to the results of the NMDS analysis, D. 
platanoidis was exclusively, and P. acericola and Periphyl-
lus aceris (Linnaeus) were mainly associated with sycamore, 
while D. aceris and P. obscurus were almost exclusively 
associated with field maple. Periphyllus testudinaceus was 
abundant on both sycamore and field maple trees. In con-
trast, no aphid species were associated with Norway maple 
(Fig. 3; Table S4).

The abundance of the planthopper M. pruinosa was the 
highest on field maple and the lowest on Norway maple 
(Fig. 4; Table S4). For other planthoppers and leafhoppers, 
the overall abundance was significantly higher on field maple 
compared to sycamore maple (Fig. S5; Table S3). Latilica 
maculipes (Melichar) showed no preference between the 
three maple species (Fig. 4; Table S4). For leafhoppers, J. 
hyalinus was associated with field maple and Z. pulchra with 
Norway maple, while A. ribauti was associated with both 
(Fig. 4; Table S4).

The total abundance of heteropterans was significantly 
higher on field maple than on sycamore maple in 2014, but 
not in 2015 (Fig. S5; Table S3). We detected the lowest 
abundances of G. acuteangulatus and N. viridula on syca-
more maple; however, for the latter species this difference 
was only significant compared to field maple. Palomena 
prasina (Linnaeus) had higher number of individuals on 
Norway maple compared to field maple in 2015. Individuals 
of H. halys occurred in same numbers on all maple species 
(Fig. 5; Table S4).

The psyllid R. aceris was associated with field maple, 
while we found no difference between the abundances of 
Cacopsylla pulchella (Low) on the three maple species. 
Considering curculionids, we found a significantly higher 
abundance of P. oblongus on field maple compared to 
sycamore maple, with intermediate abundance on Norway 
maple. Bradybatus kellneri was primarily associated with 
Norway maple (Fig. 6; Table S4).

Stress levels and condition of maple tree species

Although on average Norway maple individuals had the 
highest POD activity values, we did not find significant dif-
ferences between maple species for this variable. In contrast, 
we found significant differences in the leaf necrosis levels 
between the maple species, which were the highest on Nor-
way maple and were lowest on field maple. We found no 
statistically significant differences in leaf fall between maple 
species (Fig. 7; Table S5).
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Effect of phytophagous insects on stress level 
of trees

Overall, we observed a significant increase in POD activ-
ity in maple trees with increasing numbers of M. pruinosa 
individuals, while the abundant phytophagous groups (other 
plant- and leafhoppers, aphids, and heteropterans) had no 
effect on this variable (Table 1). We found a significant 
positive relationship between M. pruinosa abundance and 
POD activity of sycamore and field maple trees, but no such 

relationship was found for Norway maple (Fig. 8; Table S6). 
The abundance of other phytophagous groups had no effect 
on POD activity of any of the maple species (Table S6).

Relationships between phytophagous insects 
and tree condition

Analyzing the relationship between the abundance of phy-
tophagous insects and tree condition we found that the 
abundance of phytophagous insect groups had no significant 

Fig. 3   Abundance of aphid 
species on sycamore, Norway, 
and field maple trees in 2014 
and 2015. On the boxplots red 
squares indicate means. Signifi-
cant differences between maple 
species (least square means, 
ANOVA, GLMM; *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001) were 
calculated for log-transformed 
data. The main outcomes of 
pairwise comparisons are sum-
marized in Table S4. Note the 
different scales on the y-axes.
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effect on the degree of leaf fall or necrosis of maple trees 
(Table S7). Conversely, advancing degree of leaf fall and 
leaf necrosis negatively affected the abundance of the super-
abundant species M. pruinosa (Table 2). The abundance of 
other insect groups showed no response to the changing con-
ditions of the trees (Table 2).

Discussion

In this study, we showed that despite being native and con-
gener species, sycamore, Norway, and field maple trees sup-
port phytophagous insect communities that differ in density 
and species composition in urban environment. We observed 
a higher total abundance of phytophagous insects on field 
and sycamore maple compared to Norway maple trees. Field 
maple had the most indicator species and Norway maple 

had the least specific phytophagous insect community. The 
numbers of the most abundant phytophagous insect species, 
M. pruinosa, were driven by tree conditions, with higher 
abundances on healthier trees.

Objective 1: effect of tree species 
on the composition and abundance 
of phytophagous insects

Norway maple harbored not only the least abundant, but also 
the least specific phytophagous insect community compared 
to the other two maple species. However, all the three maple 
species we studied are native to Hungary and, therefore, we 
cannot expect a much lower susceptibility to the major insect 
groups in Norway maple. Field and Norway maple had more 
overlapping, while field maple and sycamore had distinct 
phytophagous insect communities (Fig. 2). Phylogenetic 

Fig. 4   Abundance of plant- and 
leafhopper species on sycamore, 
Norway, and field maple trees. 
On the boxplots red squares 
indicate means. Significant dif-
ferences between maple species 
(least square means, ANOVA, 
GLMM; *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001) were calculated 
for log-transformed data. The 
main outcomes of pairwise 
comparisons are summarized 
in Table S4. Note the different 
scales on the y-axes.

and leafhoppers



136	 D. Korányi, V. Markó 

1 3

distance between the three maple species may explain this 
pattern (Li et al. 2006).

The abundance of aphids was the lowest on Norway 
maple (Fig. 3; Fig. S5). In contrast to our observations, 
Mackoś-Iwaszko et al. (2015) found high numbers of aphids, 
especially those of P. testudinaceus and P. aceris on Nor-
way maple in urban environments. At the same time, they 
found that spring with little precipitation led to a decrease 
of the number of aphids on this maple species. Barczak et al. 
(2021) also registered high P. testudinaceus densities on A. 

platanoides, but mostly on tree individuals occurring on 
moist soil. Based on these, low aphid densities observed 
on Norway maple in our study may be related to the dry 
environmental conditions and associated poor condition of 
Norway maple trees in our study area. The abundance of 
aphids in both years was much higher on sycamore than 
on field maple (Fig. S5). An explanation for this difference 
might be that budburst of sycamore starts earlier than field 
maple (Lechowicz 1984), providing better phenological syn-
chronization for aphid species with early egg hatch (e.g., for 

Fig. 5   Abundance of heter-
opteran species on sycamore, 
Norway, and field maple trees in 
2014 and 2015. On the boxplots 
red squares indicate means. 
Significant differences between 
maple species (least square 
means, ANOVA, GLMM; *p 
≤ 0.05, **p ≤ 0.01, ***p ≤ 
0.001) were calculated for log-
transformed data. The main out-
comes of pairwise comparisons 
are summarized in Table S4. 
Note the different scales on the 
y-axes.
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Fig. 6   Abundance of psyllid 
and curculionid species on 
sycamore, Norway, and field 
maple trees in 2014 and 2015. 
On the boxplots red squares 
indicate means. Significant 
differences between maple 
species (least square means, 
ANOVA, GLMM; *p ≤ 0.05, 
**p ≤ 0.01) were calculated 
for log-transformed data. The 
main outcomes of pairwise 
comparisons are summarized in 
Table S4.

Fig. 7   POD enzyme activity, degree of leaf necrosis, and fall of syca-
more, Norway, and field maple trees. On the boxplot of POD activity, 
red squares indicate means. In case of leaf necrosis, asterisks indicate 

significant differences between maple species (least square means, 
ANOVA, CLMM; *p ≤ 0.05, ***p ≤ 0.001). The main outcomes of 
pairwise comparisons are summarized in Table S5.
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P. testudinaceus) (Fig. S1) (Dixon 1998). Regarding the host 
plant specificity of aphids, in line with our results, D. plata-
noidis and P. acericola are known to develop primarily on 
sycamore maple, D. aceris and P. obscurus on field maple, 
while P. testudinaceus develops mainly on field and syca-
more maple (Figs. 2 and 3) (Blackman and Eastop 1994).

Our results are consistent with earlier findings that 
leafhopper species A. ribauti and J. hyalinus feed mainly 
on field maple, which seems to be the primary host plant 
for these species in Europe (Nickel 2003). According to 
Nickel (2003), Z. pulchra feed mainly on sycamore maple 
and less frequently on its congener species. In contrast, 
and in line with the observations of Wilson and Mühle-
thaler (2010), we found that this species can reach higher 
densities on Norway maple in urban settings (Figs. 2 and 
4).

The abundance of most heteropteran species, mainly 
feeding on fruits of the trees, was the lowest on sycamore 
maple (Fig. 5). One explanation for this pattern might be 
the inadequate amount or quality of ripening fruits on syc-
amore trees during the second half of the growing season, 
when true bugs reached high abundance in the canopy 
(Fig. S3). The invasive and highly polyphagous stink-bug 
species Halyomorpha halys was first detected in Hungary 
in 2013 at one of our study sites (Vétek et al. 2014). Our 
results suggest that this species became the most abundant 
true bug on all examined maple species within a few years.

Table 1   Results of the GLMMs for the POD enzyme activity (log-
transformed data) of maple trees depending on the abundance of 
aphids, Metcalfa pruinosa, other (non-M. pruinosa) plant- and leaf-
hoppers, and heteropterans

Numbers in bold indicate significant (p < 0.05) and number in italics 
indicate marginally significant (p ≥ 0.05 and p < 0.1) p values
* Benjamini-Hochberg correction

Explanatory variable Estimate SE t Adj. p* Unadj. p

M. pruinosa 0.000 0.000 2.753 0.034 0.008
Other plant- and leaf-

hoppers
0.001 0.001 1.014 0.421 0.316

Aphids 0.000 0.001 -0.327 0.745 0.745
Heteropterans 0.007 0.003 1.913 0.124 0.062
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Fig. 8   Effect of the abundance of Metcalfa pruinosa on POD enzyme activity of sycamore, Norway, and field maple trees. Continuous lines 
indicate significant (p < 0.05) relationships. The main outcomes of phytophagous insect-POD activity relationships are summarized in Table S6.

Table 2   Results of the GLMMs 
for the abundance of aphids, 
Metcalfa pruinosa, other 
(non-M. pruinosa) plant- and 
leafhoppers, and heteropterans 
(log-transformed data), 
depending on the degree of leaf 
fall and necrosis of maple trees 
(ordered factors)

Numbers in bold indicate significant (p < 0.05) and number in italics indicate marginally significant (p ≥ 
0.05 and p < 0.1) p values
* Positive values indicate phytophagous groups or species that increased in abundance with increasing rates 
of leaf fall and necrosis
** Benjamini-Hochberg correction

Explanatory variable Response variable Estimate* SE t Adj. p** Unadj. p

Leaf fall M. pruinosa −0.332 0.113 −2.939 0.041 0.005
Other plant- and leafhoppers −0.005 0.080 -0.060 0.960 0.952
Aphids −0.183 0.108 −1.697 0.257 0.097
Heteropterans 0.011 0.127 0.083 0.960 0.934

Leaf necrosis M. pruinosa −0.320 0.127 −2.521 0.049 0.013
Other plant- and leafhoppers 0.032 0.102 0.311 0.960 0.756
Aphids −0.010 0.196 −0.051 0.960 0.960
Heteropterans 0.232 0.187 1.242 0.442 0.221
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The large number of the seed-feeding curculionid, B. 
kellneri, on Norway maple (Fig. 6) was because Norway is 
the earliest flowering of the three tree species (Weryszko-
Chmielewska et al. 2016), and overwintered B. kellneri 
individuals search for flowers of maples after their emer-
gence (Fig. S4) (Blake et al. 2018).

It is important to mention that nine out of the 11 character 
species (82%), and four out of the eight species showing no 
or only a weak preference for maple species (50%) were 
native to the study region (Fig. 2; Table S2). This suggests 
that local phytophagous insect species are more strongly 
associated with native trees than alien ones (Tallamy 2004; 
Clem and Held 2015).

Objective 2: effect of phytophagous insects 
on stress level and condition of trees

We found that increasing abundance of M. pruinosa sig-
nificantly increased the POD activity of trees, but no such 
relationship was observed for other insect groups (Table 1). 
This result could be expected, since M. pruinosa was the 
most abundant phytophagous species in the canopy of 
maple trees and the POD activity measurements coincided 
with its activity peak (Fig. S2). As antioxidative enzymes, 
PODs play important role in reducing perturbations caused 
by reactive oxidative species, which induce oxidative dam-
ages under environmental stress conditions in plant cells 
(Sharma et al. 2012; War et al. 2012). PODs also regulate 
a number of processes that have a direct or indirect role in 
plant defense, including lignification or wound healing, and 
are known to become more active when herbivore damage 
occurs (Tscharntke et al. 2001; Zhang et al. 2008; War et al. 
2012). In contrast to field and sycamore maple, M. pruinosa 
abundance did not affect POD activity in Norway maple, 
where we found trees with high stress levels even at low M. 
pruinosa densities (Fig. 8; Table S6). One reason for this 
may be that other, presumably abiotic factors have contrib-
uted to increased stress level of this tree species. Although 
POD activity assessments coincided with the highest overall 
abundance of phytophagous insects, aphids, as one of the 
most abundant insect groups, had the highest densities in 
spring and early summer (Fig. S1). This may explain the 
lack of relationship between aphids and POD activity, which 
was measured in the second half of the summer (Table 1).

The degree of leaf necrosis, an indicator of a tree’s con-
dition, was by far the lowest in field maple and the highest 
in Norway maple (Fig. 7; Table S5). Although tree condi-
tion was assessed only in the second year, this pattern was 
already apparent in the first year of this study (DK personal 
observation). Prior studies reported that the appearance of 
necrosis in leaves is directly or indirectly induced by abiotic 
stress factors, such as air pollution, drought, heavy metal 
contamination of soil, and salt stress (Paludan‐Müller et al. 

2002; Günthardt-Goerg and Vollenweider 2007; Khavan-
inzadeh et al. 2014). For instance, increased necrotic leaf 
injury was observed on Norway maple as a response to salin-
ity stress (Marosz and Nowak 2008), elevated concentrations 
of particulate matter in city air (Mitrović et al. 2006), and 
soil alkalization (Bach and Pawłowska 2006). Furthermore, 
biotic factors like pathogens can also cause necrotic spot-
ting (Hudelson et al. 2008; Held et al. 2018), although we 
observed a low disease (e.g., Sawadaea bicornis [Wallr.] 
Homma or Rhytisma acerinum [Pers.] Fries) incidence on 
the studied trees.

We found that field maple trees were in better condition 
than the other maple species (Fig. 7). Field maple is consid-
ered one of the most tolerant tree species to urban conditions 
due to its wide ecological plasticity, winter robustness, and 
resistance to drought and adverse soil conditions (Roloff 
et al. 2009; Swoczyna et al. 2015; Stratópoulos et al. 2019). 
In contrast to our expectations, Norway maple showed the 
most severe necrosis symptoms (Fig. 7). Norway maple 
is often considered to be resistant to urban conditions tol-
erating heat, drought, salt, and air pollution (reviewed by 
Sjöman and Nielsen 2010). However, in accordance with 
our results, under certain circumstances (e.g. high summer 
temperatures associated with extremely dry conditions, rela-
tively high soil pH, and extensive use of de-icing salt), Nor-
way maple responds negatively to urban conditions (Fostad 
and Pedersen 1997; Uhrin et al. 2018).

Objective 3: Effect of tree condition 
on phytophagous insects

The deteriorating condition of trees (i.e., advanced leaf 
necrosis and leaf fall) negatively influenced the abundance 
of the super-dominant planthopper species, M. pruinosa 
(Table 2). Although we did not find a significant relation-
ship between tree condition and aphid abundance, the total 
number of aphids was the lowest on Norway maple (Fig. S5; 
Table S3). However, we measured the condition of the trees 
in autumn and it is therefore difficult to speculate about its 
effect on phytophagous insects in the first half of the season.

Although many authors claim that stressed trees in urban 
areas have a greater susceptibility to attack by sap-sucking 
insects (e.g., Cregg and Dix 2001; Raupp et al. 2010; Dale 
and Frank 2017), some studies showed that these insect 
groups prefer trees with better conditions and healthier 
leaves (Hanks and Denno 1993; Huberty and Denno 2004; 
Sienkiewicz-Paderewska et  al. 2017). According to the 
predictions of the Plant Stress Hypothesis, plants exposed 
to stress may decrease investment in defenses, which can 
lead to increased herbivore insect abundance (White 1984), 
though this effect may vary among insects from different 
feeding guilds (Huberty and Denno 2004). Although in this 
study, the vast majority of the phytophagous insects were 
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phloem feeders (aphids, plant- and leafhoppers, and psyllids) 
(Hodkinson 1974; Dixon 1998; Nickel 2003), they differed 
in their response to host plant condition (observed either 
within or between Acer species). In addition to host plant 
specificity of phytophagous species, seasonality and sever-
ity of plant stress may be responsible for these differences 
in abundance patterns (Huberty and Denno 2004; Gely et al. 
2020).

Metcalfa pruinosa is a highly polyphagous, devastating 
pest of ornamental trees in Europe (Alma et al. 2005, Strauss 
2010). Our results suggest that its abundance in the canopy 
of maple trees is determined primarily by the tree condition 
and to a lesser extent by the species of the studied maple 
hosts.

Conclusions

In this study we characterized the phytophagous insect com-
munities in the canopy of three maple species (Acer pseudo-
platanus, A. platanoides and A. campestre), native to Europe 
and commonly used in urban plantings. Our results showed 
that the three maple species support characteristic phytopha-
gous insect communities, which are primarily determined 
by the species of the host plant. Maple trees differed mark-
edly in their condition, expressed as degree of leaf necro-
sis, where field maple was in the best and Norway maple in 
the worst condition in the urban environment. Consistent 
with that finding, field maple had the most indicator species 
while Norway maple had the least specific phytophagous 
insect community, with the lowest abundance. Numbers of 
the super-abundant planthopper species, M. pruinosa, were 
driven by tree condition, achieving higher abundances on 
healthier trees.

Our results suggest that field maple can cope with the 
negative effects of urbanization, including abiotic stressors 
and outbreaks of phytophagous insects, and that therefore 
this species is well-suited to urban habitats.
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