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Abstract
Creating robust datasets of plant–insect interactions is important for understanding ecosystem dynamics, and data on species 
interactions can be used to evaluate conservation interventions. In the present work, we collected plant–herbivore–parasi-
toid data on an understudied but critical ecosystem—gallery forests in the Brazilian cerrado. We collected caterpillars on 
shrubs of Piper (Piperaceae) over the course of a year in seven gallery forests of varying sizes in order to compare seasonal 
changes in α- and β- diversity and tritrophic interaction networks as well as the role of fragment size in determining species 
and interaction diversity. Caterpillars were more abundant and diverse in the wet season and also increased with resource 
availability—the more Piper individuals present, the greater the abundance and richness of herbivores. The number of unique 
interactions between (i) plants and herbivores and (ii) herbivores and parasitoids did not change across seasons, but there 
was a high degree of turnover in the herbivore fauna between sites and seasons. Specialization was greatest in the dry-rainy 
season transition, when new leaves typically flush. Consistent with records of parasitism rates in the cerrado sensu stricto, 
parasitism in the gallery forests was greatest in the dry-rainy seasons. Forest size was not related to caterpillar richness. 
Overall, this work demonstrates the conservation value of gallery forests in supporting plant species that span the Amazon 
and the Atlantic Rainforest as well as diverse and highly seasonal trophic interactions.
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Introduction

Plant–insect herbivore interactions are highly diverse and 
dominate terrestrial ecosystems both in terms of individual 
actors (plants and herbivores) and the ecological and evolu-
tionary stories they tell (interaction networks; Del-Claro and 
Torezan-Silingardi 2021; Luna and Dáttilo 2021). Interac-
tion networks provide insight into ecosystem structure and 
stability that cannot be understood from species richness 
alone (Poisot et al. 2015; Landi et al. 2018), and preserving 
network structure preserves ecosystem functioning (Tyliana-
kis et al. 2010). Conservation efforts may therefore be more 
effective when focused on preserving entire ecological net-
works rather than just individual species, and more studies 
are needed to document interactions in both intact and dis-
turbed or threatened areas (Dyer et al. 2010; Del-Claro and 
Dirzo 2021). Data quantifying and summarizing interactions 
can inform conservation by highlighting areas in need of 
protection or by serving as a reference point for restoration. 
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Collecting the natural history data required to describe net-
works requires long-term studies, so documenting interac-
tions should be an ongoing research objective rather than 
one that rises out of a need for specific conservation efforts 
(Tylianakis et al. 2010; Luna and Dáttilo 2021).

The Brazilian cerrado is a highly threatened and under-
valued biome (Klink and Machado 2005; Carvalho et al. 
2009). It is a biodiversity hotspot (Myers et al. 2000), but 
only 8.2% of it is protected (MMA 2020). Plant–insect her-
bivore interactions are well studied in parts of the cerrado 
(Diniz and Morais 1995, 1997, 2002; Morais et al. 1999; 
Diniz et al. 2001; Marquis et al. 2002; Scherrer et al. 2010; 
de Araújo et al. 2013; Diniz et al. 2013; Vilela et al. 2014; 
Scherrer et al. 2016; Lepesqueur et al. 2018), making it pos-
sible to decipher patterns in ecological networks. β-diversity 
of plant-caterpillar interactions is high in the cerrado, and 
even though caterpillar communities on closely related host 
plants in the cerrado tend to be similar to each other, most 
caterpillars are specialized (Morais et al. 2011), creating a 
mosaic of diverse caterpillar networks.

Changes in plant–insect interaction networks over space 
and time have been documented in a number of ecosystems 
(Lange et al. 2013; López-Carretero et al. 2014; Scher-
rer et al. 2016; Koch et al. 2018; Lepesqueur et al. 2018; 
de Araújo et al. 2019; Campos Moreno et al. 2021; Luna 
and Dáttilo 2021). In the cerrado, there are strong seasonal 
changes in plant-caterpillar interactions, mostly driven by 
rewiring of networks rather than changes in community com-
position (Lepesqueur et al. 2018). Caterpillar diet breadth 
increases in the cerrado’s dry season (Scherrer et al. 2016) 
as it also does in the dry season in coastal habitats (López-
Carretero et al. 2014). The role of interaction rewiring sug-
gests species with narrowed diet breadth expand their host 
range in drier months due to changes in host plant nutritional 
quality and phytochemistry (Scherrer et al. 2016).

Similar changes in host-parasitoid interactions have been 
documented in other ecosystems, and interactions between 
the second and third trophic level also vary more across sea-
sons than do species assemblages (Lewis et al. 2002). There 
are a number of hypothesized mechanisms responsible for 
this tritrophic rewiring, including the hypothesis that parasit-
ism levels change with the food plant species of a caterpil-
lar host (Lill et al. 2002) and that parasitism can affect an 
herbivore’s host choice (Smilanich et al. 2011).

The present study examined changes in caterpillar diver-
sity and tritrophic plant–insect interactions across seven 
gallery forests in the cerrado. There is a paucity of research 
on plant–insect interactions in the gallery forests within 
cerrado, and these forests provide an interesting point of 
comparison for understanding landscape level and seasonal 
changes in species interactions. While the cerrado is highly 
seasonal, gallery forests are evergreen, so interaction net-
works may be less seasonal in gallery forests than they are 

in the surrounding cerrado. Gallery forests are highly frag-
mented, and variation in their size may provide information 
about the effects of fragmentation on diversity. In order to 
understand seasonality in trophic interaction networks, we 
examined temporal changes in α- and β-caterpillar diver-
sity and in tritrophic interaction networks. We also exam-
ined changes in caterpillar diversity and plant-caterpillar-
parasitoid interactions in gallery forests of differing sizes, 
and explored bottom-up effects of resource availability for 
herbivore abundance and diversity. We hypothesized that 
tritrophic interaction networks would be more specialized 
in the wet season and that rewiring would change more than 
species composition over time. We also hypothesized that 
increased host plant availability and host plant richness 
would be related to increased herbivore diversity. Finally, 
we hypothesized that species and interactions would be more 
diverse in gallery forests of greater size.

Materials and methods

Study sites

Plant–herbivore interaction plots were surveyed in seven 
gallery forests located in the cerrado of the Distrito Federal 
and Goiás in central Brazil. Five study sites were located in 
designated conservation units of the Distrito Federal; one 
was located outside the urban center of Pirenópolis, Goiás, 
and the last was in Chapada dos Veadeiros National Park, 
Goiás (Tables S1, S2). The minimum distance between sites 
was 7.01 km, and the maximum distance was 235.42 km. 
Sites ranged from 902 to 1247 m a.s.l. The cerrado is the 
second largest biome in South America after the Amazon 
and is the most biodiverse savanna in the world with over 
4800 endemic species. It once occupied 23% of Brazil, 
primarily in the country’s central highlands (Ratter et al. 
1997); today only ~ 60% of the biome contains natural veg-
etation (Sano et al. 2010). Cerrado spans a range of habitats 
from open fields to dense woodlands (in order of increasing 
crown cover and height: cerrado ralo, cerrado sensu stricto, 
cerrado denso, and cerradão). These habitats form mosa-
ics with forest and grassland habitats (Ribeiro and Walter 
2008). Grasslands include dry (campo limpo, campo sujo, 
campo cerrado) and seasonal (campo rupestre) habitats. For-
ests include seasonally dry forests (mata seca) and riverine 
forests (gallery forest or mata de galeria). Factors such as 
soil moisture and fertility as well as fire dynamics influ-
ence the floristic composition and vegetation structure that 
characterizes these different habitats. Mean annual monthly 
temperatures range between 20 and 26 °C, and seasonal-
ity is marked by changes in precipitation with 86% of the 
region receiving between 1000 and 2000 mm of rain per year 
(Oliveira and Marquis 2002).
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Gallery forests historically comprised 5% of the cer-
rado (Dias 1996). These forests act as biological corridors 
between the Atlantic Rainforest and the Amazon (Rizzini 
1979; Oliveira-Filho and Ratter 1995). Gallery forests house 
species found in the Atlantic Rainforest, the Amazon, and 
drainage basins of the Paraná River (Oliveira-Filho and Rat-
ter 1995). While the cerrado is highly seasonal (Espinoza 
et al. 1982; Alvares et al. 2013), gallery forests are evergreen 
(Ribeiro and Walter 2008).

Study system

Shrubs of the genus Piper (Piperaceae; Ribeiro and Walter 
2008) are among the dominant plants in the understory of 
gallery forests in the cerrado, the Atlantic Rainforest, and the 
Amazon. Piper includes ca. 2,600 species, the majority of 
which are Neotropical (Callejas-Posada 2020), and it is the 
second most species rich genus of seed plants in the Amazon 
(Cardoso et al. 2017). Centers of endemism of Piper occur 
in both the Amazon and the Atlantic Rainforest (Quijano-
Abril et al. 2006). Piper requires perennially moist soils, and 
most species are restricted to the shaded understory of tropi-
cal rainforests (Burger 1971). As such, it is absent from the 
cerrado sensu stricto (Marquis 2004), which is characterized 

by a marked dry season (Gomes de Moraes et al. 2016). In 
contrast, gallery forests in the cerrado are characterized by 
relatively high levels of soil moisture year-round and support 
Piper species (Oliveira-Filho et al. 1990). Several studies 
mention the presence of Piper in the cerrado, but the species 
registered are frequently typical of disturbed habitats (e.g., 
Piper aduncum L.) and are likely found in gallery forests or 
along their margins (pers. obs., E.J.T.; Oliveira et al. 2013).

Piper and its associated herbivores have been studied in 
other parts of Brazil (Shimbori 2009) and Central and South 
America (Marquis 1991; Gentry and Dyer 2002; Janzen and 
Hallwachs 2005; Rodríguez-Castañeda et al. 2010; Tepe 
et al. 2014; Glassmire et al. 2019; Slinn et al. 2018). These 
studies show Piper hosts a high richness of specialist and 
generalist caterpillars as well as diverse herbivore-parasitoid 
interactions. Piper arboreum Aubl. is a species of particular 
interest because of its broad distribution throughout Central 
and South America and the occurrence of isolated popula-
tions across its range (Yuncker 1972) that can potentially 
host unique arthropod assemblages. It is possible that popu-
lations of this species have diverged to the point they now 
actually comprise a complex of cryptic species. The present 
work documents Piper-herbivore-parasitoid interactions in 
gallery forests.

Collection and rearing

Caterpillars were collected between May 2015 and April 
2016 (see Table S3 for collection information). Circular 
plots measuring 10 m in diameter were established in gallery 
forests with a randomly selected individual of P. arboreum 
as the center of each plot. Plots were a minimum of 5 m 
apart; most were more than 10 m apart. Piper abundance 
and richness were recorded for each plot, and all leaves of 
all Piper individuals were exhaustively searched for lepi-
dopteran eggs, larvae, and pupae. Each plot was surveyed 
only one time, and plots were not evenly distributed across 
sites or seasons, so different components of the dataset 
were analyzed to make seasonal comparisons. All stages 
of immature Lepidoptera were brought to the lab, photo-
graphed, and reared to adults or until parasitoids emerged. 
Insects were reared in plastic containers and were fed leaves 
of the same species they were originally found on. A total 

Table 1  Hill numbers of caterpillars by season and location

Locations are listed in increasing order of the size of the gallery for-
ests where plots were conducted

Richness
(q = 0)

Shannon–Wiener 
index (q = 1)

Simpson’s 
index (q = 2)

Dry season 21 10.2 6.1
Dry-rainy season 10 9.5 9.0
Rainy season 25 20.4 15.4
Rainy-dry season 22 10.6 6.7
IBGE 11 6.7 4.4
PNCV 16 8.6 4.8
PNB 12 7.9 5.9
Pirenópolis 14 8.8 5.8
ESECAE 10 7.0 5.0
JBB 11 10.7 10.3
FAL 26 13.0 7.2

Table 2  Results of Bayesian 
hierarchical models describing 
caterpillar species and 
interaction richness and 
caterpillar abundance per plot

Abundance and species richness were higher in the rainy season. Overall beta values and 90% credible 
intervals are presented

Caterpillar abundance Caterpillar richness Interaction richness

Intercept 0.63 0.46 − 0.13
Piper abundance 0.26 (0.09–0.43) 0.29 (0.10–0.48)
Piper richness − 0.10 (− 0.29–0.08)
Season (rainy to dry) − 0.35 (− 0.58 to − 0.12) − 0.24 (− 0.46 to − 0.03) 0.07 (− 0.14–0.28)
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of 243 caterpillars were collected. Fifteen percent of larvae 
were successfully reared to adulthood, and percent parasit-
ism was 49% (number of parasitized caterpillars/number of 
adult Lepidoptera + parasitized caterpillars). Adult Lepidop-
tera were spread and identified by specialists (primarily V. 
Becker) or with the help of a reference collection. Herbarium 
samples were made for each species of Piper in the plots and 
are deposited in the herbarium of the University of Brasilia. 
Lepidoptera specimens were deposited in the Entomologi-
cal Collection in the Zoology Department at the University 
of Brasilia. Parasitoid wasps were identified using a Nikon 
stereomicroscope (ZM1500). Wasps were identified to the 
genus level and classified as morphospecies. They were 
labeled and deposited in the Entomological Collection of 
the Laboratory of Ecological Interactions and Biodiversity at 
the Federal University of Goiás, Brazil. Parasitoids that did 
not eclose were included in the dataset and were assigned 
unique species names based on unique host associations 
because of their extreme diversity and specialization (Forbes 
et al. 2018). Parasitoids that did not eclose but were from the 
same species of caterpillar collected at the same time were 
considered the same species.

Data analyses

Descriptive statistics

Caterpillar diversity was calculated for each study site 
and each season: the rainy season (December–February), 
rainy to dry season transition (March–May), dry season 
(June–August), and the dry to rainy season transition (Sep-
tember–November; seasonal assignments following Lepes-
queur et al. 2018). Diversity was calculated using Hill num-
bers (Jost 2006). For calculations of the Shannon–Wiener 
index (q = 1) and Simpson’s index (q = 2), species abun-
dances were corrected based on the number of Piper plants 
searched because collections were not standardized across 
seasons or sites. Diversity was calculated across plots 
because caterpillars were absent from many plots (values 
presented are not means, but show total diversity, hence 
there is no variation around them).

Piper individuals in the plots at each site were summa-
rized according to abundance, richness (q = 0), and Simp-
son’s index (q = 2). Variation in richness as abundance 
among plots at each study site was also calculated. Diversity 
was not calculated for parasitoids because of the low level of 
parasitism and high mortality of parasitoids, which did not 
allow all species to be identified.

Caterpillar species richness in the different study sites 
was also estimated using abundance data with the Chao1 
index as a lower bound and the Abundance-based Coverage 
Estimator modified for heterogeneous communities (ACE-
1) as a higher bound estimate using SpadeR (Chao et al. 
2016) in R. Rarefaction curves of species richness were also 
created using the iNEXT package (Chao et al. 2014; Hsieh 
et al. 2020) in R.

Analyses

Factors affecting the richness and abundance of caterpil-
lars per plot as well as the number of unique interactions 
per plot (plants and herbivores plus herbivores and para-
sitoids) were examined with hierarchical Bayesian models 
with uninformed priors. Predictor variables included the 
abundance and richness of Piper per plot and season. For 
the lowest level of the hierarchy, we included study sites. In 
these analyses, ‘season’ was defined as the rainy (rainy and 
rainy-dry season) and dry (dry and dry-rainy season) periods 
due to the uneven distribution of plots across study sites and 
seasons. Prior to analyses, the number of unique interactions 
per plot was standardized by the abundance of Piper in a 
plot. Models were run using the R2jags package (Su and 
Yajima 2020) with four chains and 1,000,000 iterations. We 
evaluated model performance using trace and density plots 
and the Gelman–Rubin, Geweke, Heidelberger–Welch, and 
Raftery–Lewis convergence diagnostics with the superdiag 
package, specifying 1000 burnins (Tsai et al. 2012). Best-fit 
models were determined with deviance information crite-
rion scores. Caterpillar plots were constructed with ggplot2 
(Wickham 2016) to illustrate estimates of beta coefficients 
and their 90% credible intervals for each location. Locations 
are arranged along the y-axis of the caterpillar plots in order 
of increasing gallery forest area where the plots were con-
ducted (calculated in Google Earth). All models converged 
(Figs. S1–S3).

The Morisita similarity index (MSI) for multiple commu-
nities was calculated to describe species turnover across sites 
and between seasons (Chao et al. 2008). MSI values closer 
to 1 indicate communities are more similar in their species 
composition. Calculations were based on species abundances 
(again corrected for the number of Piper individuals searched 
per season), and data were bootstrapped 200 times using 
SpadeR (Chao et al. 2016). The seasonal comparison was 
only conducted for two of the field sites, ESECAE and FAL, 

Fig. 1  Beta values values and 90% credible intervals resulting from 
hierarchical Bayesian analyses of caterpillar abundance (a, b), cater-
pillar richness (c, d), and the number of unique interactions per plot 
(e, f). Increases in caterpillar abundance a and richness c were related 
to the abundance of Piper in a plot. Caterpillar abundance b and rich-
ness d were greater in the wet season. Increases in Piper richness 
were typically related to decreases in the number of unique interac-
tions in a plot (e). The number of unique interactions was greater in 
the dry season (f). Study sites are shown in increasing order of the 
size of gallery forests where plots were conducted; no clear relation-
ship with forest size emerged

◂
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where collections were made during each of the four seasons. 
Turnover in Piper species between sites was also calculated, 
correcting for the number of plots per site.

We constructed matrices for each season and for all data 
combined. Each row consisted of a unique plant species, and 
each column represented a caterpillar species with which 
the plant directly interacted or a parasitoid species with 
which the plant indirectly interacted. We calculated multi-
ple network metrics using the networklevel function in the 
bipartite package in R (Dormann et al. 2008, 2009). Con-
nectance (the ratio of realized to possible interactions), the 
weighted nestedness metric based on overlap and decreasing 
fill (WNODF; Almeida-Neto and Ulrich 2011; scores vary 
between 0 (no nestedness) and 100 (perfectly nested)), linkage 
density (weighted diversity of interactions per node), Alatalo 
interaction evenness (a measure of uniformity of interaction 
strength), and H2 (a measure of specialization) are reported. 
We developed null networks to compare with observed values. 
We applied the ‘r2dtable’ function using 1000 randomizations 
in the bipartite package. The algorithm constrains marginal 
totals such that interactions are randomly distributed, but total 
interactions per species are maintained. Observed values were 
compared to these null distributions to determine if observed 
values differed significantly from null values using a two-tailed 
test with 5% error level. For more valid comparisons across 
seasons and studies, observed values were z-transformed 
(z = [x − μ]/σ; where x = observed value, μ = mean of null dis-
tribution, σ = standard deviation of null distribution).

Seasonal changes in species and interactions were exam-
ined for their contributions to tritrophic network turnover 
based on Poisot et al. (2012). Dissimilarity of interactions 
(βWN) was partitioned into its additive components: turno-
ver owed to changes in species composition (βST), and that 
owed to the rewiring of interactions (βOS). We calculated 
dissimilarity using the Jaccard index. In this case, a value 
of 1 indicates complete interaction dissimilarity between 
two communities. Comparisons were made with the com-
plete dataset and with a randomly created subset of the data 
including 640 plant records and associated herbivores and 
parasitoids where relevant per season. Six hundred forty 
was the minimum number of plants searched across seasons 
(this was the case for the rainy season). Tritrophic networks 

were illustrated using the plotweb function in the bipartite 
package.

Results

Thirteen species of Piper were found across the seven study 
sites, and species richness per plot was between one and 
six species (Table S4). A total of 67 species of Lepidoptera 
were collected; 119 individuals were identified to the species 
level, and 36 additional individuals were identified to the 
genus level (Table S5). Variance in plot level Piper richness 
between sites was between 0.02 and 1.09. The most diverse 
site was PNCV, followed by JBB and RECOR (Table S4). 
Piper arboreum and Piper aduncum L. were present at all 
sites, although P. aduncum was not sampled in all seasons 
a site was visited. Caterpillars were found on P. arboreum 
throughout the year, and caterpillars were observed on P. 
aduncum in all seasons except the rainy season. Piper cal-
dense C.DC., Piper crassinervium Kunth, and Piper xyloste-
oides (Kunth) Steud. hosted caterpillars in the rainy-dry and 
dry seasons. Caterpillars were found on five other species 
surveyed in only one season, although these plants were not 
as well represented in our samples. Piper communities were 
fairly similar between sites (MSI = 0.83 ± 0.01).

Hill numbers describing caterpillar diversity were high-
est in the rainy season (Table 1). This is in spite of the fact 
that the smallest number of Piper individuals (640) were 
searched in the rainy season. Overall caterpillar diversity 
was highest in FAL and JBB (Table 1), which had the largest 
areas of gallery forest (Table 1; Fig. S4). Chao1 and ACE1 
estimates of caterpillar richness suggest Pirenópolis, JBB, 
and FAL were the most species rich sites (Table S6). The site 
with the smallest amount of gallery forest (IBGE) had cater-
pillar diversity comparable with sites with 5–19 times more 
forest (Table 1; Table S1). Parasitism levels were slightly 
higher in the dry (16.2%) and dry-rainy seasons (16.7%) than 
in the rainy (13.9%) and rainy-dry seasons (12.9%).

Bayesian models indicate caterpillar abundance and 
richness were higher in the wet relative to the dry season, 
and caterpillar abundance and richness were higher when 
Piper was more abundant. Posterior distributions of beta 
coefficients describing interaction richness (the number of 
unique plant–herbivore or herbivore-parasitoids interactions 
per plot) were very small and credible intervals were mostly 
centered on zero in response to seasonal change and Piper 
abundance (Table 2). No patterns between gallery forests 
differing in size emerged (Fig. 1).

Caterpillar communities changed across seasons 
(MSI = 0.20 ± 0.06). No two seasons were the same in 
species composition, but the rainy-dry and dry seasons 
were more similar than any other combination of sea-
sons (Table 3). Differences between seasons were greater 

Table 3  Pairwise similarity matrix of seasonal changes in caterpillar 
species

Season Dry Dry-rainy Rainy Rainy-dry

Dry 1.000 0.005 0.098 0.218
Dry-rainy 1.000 0.199 0.000
Rainy 1.000 0.179
Rainy-dry 1.000
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Fig. 2  Complete network of all Piper-caterpillar-parasitoid interactions across seasons and sites
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Fig. 3  Seasonal networks of Piper-caterpillar-parasitoid interactions. The size of the parasitoid boxes in the dry-rainy season are not drawn to 
scale; each parasitoid species was represented by only one individual

Table 4  Components of 
interaction turnover between 
seasons

βWN total interaction turnover; βOS changes in species interactions (rewiring); βST turnover in species com-
position

Seasonal comparison Full dataset Subset of seasonally balanced 
data

βWN βOS βST βWN βOS βST

Rainy–rainy-dry 0.91 0 0.91 0.86 0 0.86
Rainy–dry 0.92 0.17 0.75 0.92 0.17 0.75
Rainy–dry-rainy 0.91 0 0.91 0.95 0 0.95
Rainy-dry–dry 0.87 0.47 0.40 0.80 0.09 0.71
Rainy-dry–dry-rainy 0.98 0 0.98 0.97 0 0.97
Dry–dry-rainy 0.96 0 0.96 0.98 0 0.98
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than differences between study sites (MSI = 0.37 ± 0.03; 
Table S6). Between site differences were not related to the 
distance between study sites or turnover in Piper species 
(Tables S7, S8). When comparing caterpillar communities 
on P. arboreum alone, similarity was only slightly greater 
between sites, indicating differences across forests in spite 
of the identity of the host plant (MSI = 0.42 ± 0.05).

These patterns are further reflected in seasonal interaction 
networks (Figs. 2, 3). There was a high degree of turnover 
in networks between seasons, driven primarily by changes 
in community composition (βST > βOS; Table 4). Results 
were the same when comparing the full dataset and the sub-
sampled dataset (Table 4). Changes in interactions between 
species shared across seasons only contributed to network 
dissimilarity when comparing the (i) rainy-dry and dry sea-
sons and (ii) the rainy and dry seasons (see Table S5 for a 
list of caterpillars and their parasitoids by season).

Network parameters varied across seasons (Tables 5, S9; 
Fig. S5). Connectance in the rainy season was the highest 
(0.52). The rainy-dry season was the least connected (0.14) 
and most nested (WNODF = 10.46) network. The dry sea-
son was the least nested (WNODF = 0) network and had 
the lowest value of interaction evenness (0.44). The dry-
rainy season did not have any values that differed from null 
expectations, although it was the most specialized and had 
the highest interaction evenness. The rainy season was the 
least modular (0.18) while the dry-rainy season was the most 
modular (0.37).

Discussion

Studies of seasonal variation in plant–insect interactions in 
the cerrado demonstrate a high degree of specialization and 
seasonal turnover. Only about 40% of plants typically host 
caterpillars across multiple seasons (Scherrer et al. 2016; 

Lepesqueur et al. 2018). In our study, focused on a single 
genus in cerrado gallery forests, caterpillars were recorded 
on our most abundant host plant throughout the year and on 
other common host plants for multiple seasons. These pat-
terns suggest gallery forest species may be more consistent 
hosts across seasons, even as caterpillar species experience 
substantial turnover.

Another study from the cerrado that divided the year into 
four seasons found 70% of caterpillars were only present in 
a single season, while only 3.5% of species were found year-
round (Lepesqueur et al. 2018). We similarly found 14 of 
67 Lepidoptera species (20%) in more than one season, and 
only one species, Memphis moruus (Nymphalidae), occurred 
in all four seasons. The greatest caterpillar richness occurs 
in the rainy-dry season in the cerrado; in our study in gal-
lery forests, the highest richness was similarly observed in 
the rainy season.

In the cerrado, plant–herbivore interactions are more 
generalized in the dry season with caterpillars consuming a 
wider variety of plants (Scherrer et al. 2016). In contrast, our 
data demonstrate specialization in plant–herbivore–parasi-
toid interactions was lowest in the rainy season. This could 
be because only two host plant species were included in 
rainy season plots, while four were present in the dry season 
plots. Cerrado plants flush new leaves in the dry-rainy sea-
son, and leaf production of deciduous and evergreen species 
alike peaks at the end of the dry-rainy season (Gutierrez de 
Camargo et al. 2018). This is also the time of year when 
the greatest herbivory is observed in the cerrado (Marquis 
et al. 2001). The abundance of new leaves and the fact that 
young leaves are often highly defended (Kursar and Coley 
2003; Massad et al. 2014; Wiggins et al. 2016; Coley et al. 
2018) may promote the specialization we observed in dry-
rainy season and the greater abundance and α-diversity 
of caterpillars observed in the rainy season as resources 
become abundant. Studies of plant–insect interactions in 

Table 5  Network metrics 
by season for networks of 
plant–herbivore–parasitoid 
interactions

Observed values that were significantly higher than null expectations are in bold; values significantly lower 
than null expectations are italic. Z scores are denoted in parentheses next to observed values
a Realized proportion of possible links (Dunne et al. 2002)
b Weighted nestedness metric based on overlap and decreasing fill (WNODF; Almeida-Neto and Ulrich 
2011)
c Average number of links per species (Bersier et al. 2002)
d Alatalo interaction evenness (Muller et al. 1999)
e Network specialization (H2’; Blüthgen et al. 2006)

Connectancea Nestednessb Linkage  densityc Interaction  evennessd Specializatione

All seasons 0.13 (− 4.78) 8.77 (− 4.23) 13.95 (− 2.21) 0.46 (− 0.87) 0.63 (6.33)
Rainy 0.52 (− 0.30) 6.53 (1.12) 11.2 (1.75) 0.86 (− 1.5) 0.55 (− 0.41)
Rainy-dry 0.14 (− 5.04) 10.3 (− 5.00) 7.47 (− 2.72) 0.49 (− 0.63) 0.69 (5.78)
Dry-rainy 0.50 (− 0.80) 0.00 (0) 3.77 (− 0.88) 0.96 (− 0.80) 1.00 (0.80)
Dry 0.23 (− 1.23) 0 (− 5.18) 5.19 (− 2.38) 0.44 (− 2.04) 0.7 (3.95)
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the cerrado focused on other insect orders similarly show 
important temporal changes. Changes in plant phenology 
and the expression of traits like extrafloral nectaries change 
ant-plant networks (Lange et al. 2013; Vilela et al. 2014; 
Moura et al. 2021). In addition, as the climate warms, floral 
resources become more concentrated temporally, resulting 
in more herbivory (Vilela et al. 2018).

Bottom-up forces do not operate in isolation, and the 
presence of herbivores may also be influenced from the 
top-down, regardless of plant quality (Myers 1981; Janzen 
1993). In our study, plant–herbivore–parasitoid interactions 
were most specialized in the dry-rainy season. Percent para-
sitism was slightly higher in the dry and dry-rainy seasons, 
and connectance was highest in the dry-rainy seasons, indi-
cating herbivore species were more evenly attacked by para-
sitoids at that time. Herbivore seasonality may therefore be 
driven by bottom-up changes in resource availability or by 
top-down limitations. This requires further study in gallery 
forests. In tropical dry forest the presence of young leaves 
seems to be more important than the risk of parasitism in 
determining leaf miner phenology (Hopkins and Memmot 
2003).

Gallery forests provide important islands of habitat within 
a sea of cerrado. The forests support Piper species and cater-
pillars shared with the Amazon and the Atlantic Rainforest 
(authors, pers. obs.). The size of the gallery forests where 
our plots were located varied from 0.04 to 1.25  km2, but 
there were no patterns of association between forest area 
and the abundance or richness of plants or herbivores. Rar-
efaction curves suggest that the two largest sites may have 
the highest caterpillar richness, as predicted by the well-
established species-area relationship (Fig. S4; Preston 1962). 
Although there was a high degree of dissimilarity between 
caterpillar assemblages collected in our different study sites, 
some species of caterpillars were widespread. Other stud-
ies have also recorded Lepidoptera with broad distributions, 
overlapping the cerrado and the Amazon or Atlantic Rain-
forest (Camargo and Becker 1999; Amorim et al. 2009). 
Patterns of herbivore biogeography are therefore similar to 
those of plants, with gallery forests housing multiple spe-
cies found in both the Amazon and the Atlantic Rainforest 
(Oliveira-Filho and Ratter 1995).

In other regions of South and Central America, higher 
than expected plant richness occurs in gallery forests 
because they house plant species typically found in tropi-
cal moist forests (Meave et al. 1991). Predictions based on 
island biogeography (MacArthur and Wilson 1967) may 
therefore not be met for gallery forest islands because they 
effectively act as corridors for Amazonian and Atlantic Rain-
forest species (Oliveira-Filho and Ratter 1995). The role of 
gallery forests as corridors is of great value to conservation 
and may become more important as climate change affects 
both the Amazon and the Atlantic Rainforest (Sörensson 

et al. 2010; Penalba and Rivera 2013). The specificity of her-
bivore communities as well as the inclusion of widespread 
species contribute to the substantive conservation value of 
cerrado gallery forests.

In spite of their importance as corridors, our data also 
showed considerable turnover in the herbivore fauna 
between gallery forests, even when sampling on the same 
host plant species. These results emphasize the importance 
of creating robust natural history databases to document bio-
diversity and species interactions across landscapes. Pro-
tecting gallery forests is necessary to maintain their roles 
as corridors for widespread species and as islands where 
species with narrow ranges are isolated. Natural history data 
from gallery forests could potentially be used to support an 
expansion of the size of Permanent Protected Areas (Áreas 
de Preservação Permanentes; https:// www. embra pa. br/ en/ 
codigo- flore stal/ enten da-o- codigo- flore stal/ area- de- prese 
rvacao- perma nente) in the cerrado.
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