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Abstract
Oligophagous insects can consume a wide range of different host plant species, but how these host plants vary in their metabo-
lite compositions and the extent to which this variation affects the biochemistry of the insect herbivores is largely unknown. 
An understanding of how defensive metabolites from plants are processed by insects may help us develop more effective 
pesticides. We studied the interactions between the oligophagous insect herbivore Pieris rapae (Lepidoptera: Pieridae) and 
five species of its larval host plants (family Brassicaceae and Cleomaceae) by examining untargeted metabolic fingerprints 
of the plants and the larval herbivores feeding on them. Visualisation of the metabolic fingerprints of the different host plant 
species showed highly distinctive clusters in the PCA-X score plots. Larvae could also be distinguished based on the species 
of host plant they fed on but clusters overlapped to a greater extent. The fingerprints of larvae feeding on Cleome spinosa 
plants were most distinctive due to a large group of abundant metabolites also found in high abundance in C. spinosa, but 
not in the other host plants examined. We conclude that host plants influence the biochemistry of their larval herbivores, and 
that some metabolites are conserved from one trophic level to the next.
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Introduction

Plants are used as a food source by nearly half of all 
insect species (Wu and Baldwin 2010), and there is a 
large body of research examining factors that affect these 

herbivore–plant interactions (Schoonhoven et al. 2005). 
When insect herbivores consume host plants, they take 
in nutritious primary plant metabolites as well as defen-
sive secondary metabolites which can be repellent or even 
toxic. The number of metabolites an insect consumes is 
generally unknown although a single species of plant is 
estimated to contain thousands of metabolites (Davies 
et al. 2010). Due to this large number of metabolites and 
the difficulties in measuring all these small compounds 
within an organism (Allwood et al. 2008) our knowledge 
is incomplete as to which metabolites occur within which 
plants, the concentrations of them and how they relate to 
the metabolites in the herbivores consuming the plants. 
Thus, wider examination of the composition and abun-
dance of metabolites in plants and their insect herbivores 
could lead to a better understanding of insect–plant inter-
actions. Such knowledge could help in the development of 
effective pesticides that are not circumvented by insects; 
assess if insects are affected by the genetic modification of 
host plants or measure the effects upon insects of increases 
in defensive metabolites caused by agricultural prac-
tices. We investigated the effects of host plant metabolite 
composition on the oligophagous butterfly Pieris rapae 
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(Lepidoptera; small white butterfly). Many larval host 
plants used by P. rapae belong to the plant family Bras-
sicaceae (Asher et al. 2001; Beilstein et al. 2008; Stevens 
2001 onwards). This family contains glucosinolates which 
are toxic to some herbivore species (Li et al. 2000; Rohr 
et al. 2009) but are used by other herbivores as ovipo-
sitional cues and phagostimulants (Huang and Renwick 
1994; Renwick and Lopez 1999). Glucosinolates are well 
studied (Kroymann 2011; Rask et al. 2000), however, the 
focus on one group of metabolites may have led to less 
familiar groups of compounds being ignored despite evi-
dence that other important compounds in the Brassicaceae 
family exist (Schroeder et al. 2006). Therefore, widening 
the range of metabolites examined in these host plants may 
bring new, important compounds to our attention and met-
abolic fingerprinting, which can measure the abundances 
of hundreds of metabolites simultaneously (Fiehn 2001), 
has the potential to do this.

Assessment of the herbivore in an insect–plant rela-
tionship usually considers performance factors such as 
growth rate, mortality and fecundity, whereas quantifying 
the metabolome of an insect (the metabolome being all the 
metabolites within an organism; Fiehn 2001) has been less 
common (Jansen et al. 2009; Snart et al. 2015). As with 
plant metabolomes (Bidart-Bouzat and Imeh-Nathaniel 
2008), insect metabolomes are affected by abiotic factors, 
such as temperature (Colinet et al. 2012; Malmendal et al. 
2006; Michaud et al. 2008; Verberk et al. 2013; Williams 
et al. 2014). However, little is known about the effect of diet 
on insect metabolomes, specifically whether insect metabo-
lomes are affected by the species of host plant the insect 
feeds on. Evidence that insect metabolomes may be changed 
by insect diet comes from studies which have focused on 
single plant metabolites or specific metabolite groups (Opitz 
and Müller 2009), but studies that investigate a broader spec-
trum of metabolites from the insect metabolome are lacking. 
For example, once a wider range of metabolites are con-
sidered, the metabolome of an organism might be chiefly 
constant irrespective of diet.

In this paper, we use untargeted metabolomics to measure 
the abundances of a large number of polar metabolites, but 
without identifying these metabolites by name, to address 
two questions. First, we confirm that there are differences 
in the metabolic fingerprints of five species of Brassicales 
host plants before examining whether or not there are dif-
ferences in the metabolic fingerprints of P. rapae raised on 
those host plants. Second, we examine differences among the 
five groups of P. rapae insects by differentiating the large 
number of metabolites we detect and cross-referencing the 
metabolites among these groups. This determines the num-
ber of metabolites found in all larvae irrespective of host 
plant and the number of metabolites that are characteristic 
to insects fed a specific host plant.

Methods

Plant and insect rearing

We studied P. rapae on five of its host plants (Asher et al. 
2001; Braby and Trueman 2006; Eeles 2018). Four plant 
species were from the family Brassicaceae, namely Arabi-
dopsis thaliana (thale cress; seeds from Penfield lab, John 
Innes Centre, UK), Barbarea vulgaris (yellow rocket; 
Thompson and Morgan, Suffolk, UK), Brassica oleracea 
(cabbage; Groves Nurseries, Dorset, UK) and Lunaria 
annua (honesty; Chiltern Seeds, Oxfordshire, UK) and 
one from the related family Cleomaceae, Cleome spinosa 
(spider flower; Chiltern Seeds, Oxfordshire, UK). The host 
plant species studied were chosen from those that P. rapae 
larvae had been reported to feed on, would grow readily in 
the greenhouse and that would span as wide a phylogenetic 
range of host plants as possible, allowing us to examine 
plants likely to have contrasting chemical compositions.

Plant seeds were sown in trays using Leving-
ton F2 + S seed and modular compost (added N:P:K 
150:200:200 mg/l) over a 2-week period in an unheated 
glasshouse in July and August which varied in temperature 
between 10 and 30 °C. Plants were grown under natu-
ral daylight and watered daily. Four to six week old plant 
material was harvested on the same day between 9 am 
and 10.30 am and flash frozen for metabolomic analysis. 
Leaves were taken from 13 individuals per plant species to 
make 13 biological replicates per host plant species. Sam-
ples comprised the youngest leaves of the plants although 
the number of leaves had to vary to obtain sufficient plant 
material for analysis and account for variation in size of 
the plants. Therefore, the single youngest leaf of B. olera-
cea and L. annua, the three youngest leaves of B. vulgaris 
and C. spinosa, and the whole rosette of A. thaliana were 
sampled. These sampled leaves reflected the parts of the 
plants that the larvae were observed typically to consume.

P. rapae larvae were the F1 offspring of 16 adult 
female butterflies caught in York, UK (53°95′N, 1°08′W) 
in August. Female butterflies were kept individually in a 
glasshouse, provided with honey solution and potted B. 
oleracea plants for oviposition. Five days after hatching, 
second instar larvae were transferred using a paint brush 
and randomly assigned to different host plants. Larvae 
were placed in plastic boxes (175 × 116 × 52 mm3; 13 
boxes per plant species) with fine netting taped over the 
front. Ten larvae, from a mixture of females, were placed 
in each box to ensure there were sufficient larvae for analy-
sis despite mortality. Cut plant leaves, similar to those 
taken as samples for metabolite analyses, were placed in 
vials of water inside boxes, except for A. thaliana plants 
(which quickly wilted using this method) which were left 
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in soil in small pots. Plant material was replaced daily as 
required and thus larvae were provided with excess fresh 
leaves during the experiment. Larvae in boxes were kept 
in temperature-controlled cabinets (Sanyo, MLR 350) at 
21 °C under a photoperiod of 16L:8D. When the majority 
of larvae in a box had developed to fifth-instar (between 
13 and 22 days after hatching), four larvae from a box 
were randomly chosen, pooled and flash frozen for metab-
olomic analysis after the head and gut were removed to 
avoid analysing undigested plant material. Subsequently, 
the fat body was voided of haemolymph. A total of 13 
pooled larval samples was analysed for each of the five 
host plant species.

Metabolic fingerprint analyses

Leaf and insect material was stored at − 80 °C and then 
freeze dried for 16 h. Material was ground for 2 min at 
20 rpm in a ball mill. 10 mg samples were extracted twice 
with 400 µl of 80% methanol on ice. 1.98 µg of umbellifer-
one per ml of the methanol extraction buffer was added as 
an internal standard for quality control (Perera 2011). Sam-
ples were sonicated, vortexed and the supernatant removed. 
The two supernatants were combined and filtered through a 
0.4 µm (PVDF) syringe filter.

Metabolite profiling of leaf and insect material was per-
formed using a QToF 6520 mass spectrometer coupled to a 
1200 series Rapid Resolution LC system. To analyse sam-
ples in a random order, they were randomized in the tray 
which was kept at 5 °C. 5 µl of sample extract was loaded 
onto a Zorbax StableBond C18 1.8 µm, 2.1 × 100 mm2 
reverse phase analytical column (LC/MS and column, Agi-
lent Technologies, Palo Alto, USA). Features were detected 
in positive ionisation mode only. In retrospect, a negative ion 
mode would have given greater coverage of the metabolome. 
Mobile phase A comprised 5% acetonitrile with 0.1% formic 
acid in water, and mobile phase B was 95% acetonitrile with 
0.1% formic acid in water. The following gradient was used: 
0 min—0% B; 1 min—0% B; 5 min—20% B; 20 min—100% 
B; 30 min—100% B; 31 min—0% B; 7 min post time. The 
flow rate was 0.25 ml min−1 and the column temperature 
was held at 35 °C for the duration of the chromatographic 
run. The source conditions for electrospray ionisation were 
as follows: gas temperature was 325 °C with a drying gas 
flow rate of 9 l min−1 and a nebuliser pressure of 35 psig. 
The capillary voltage was 3.5 kV. Skimmer and fragmentor 
voltages were 115 V and 70 V respectively. The scan range 
used was 50–1700 m/z. Reference ions (positive ion mode: 
121.0509 and 933.0098) were directly infused through a 
second nebulizer to enable a reference ion correction every 
scan. Calibration was corrected using the reference ions with 
every scan. This method could have been improved if pooled 
samples had been run intermittently among the samples.

Precursor ion scans (full scan mode) were followed by 
automated MS/MS scans to aid putative identification of 
metabolites of interest during post processing. For acqui-
sition, four full scans per second were performed and the 
five most abundant precursor ions were selected for MS/
MS. The collision induced dissociation (CID) values 
were automated and applied using the following equation: 
(slope) × (m/z)/100 + offset where the slope was 3.5 V and 
the offset 5 V. The m/z refers to the precursor ion mass 
selected by the acquisition software during the full scan.

Metabolic fingerprint data pre‑processing

The Molecular Feature Extractor (MFE) in MassHunter 
software (Agilent Technologies, Palo Alto, USA) identified 
features (potential metabolites) from peaks produced by the 
LC/MS. Features eluting within the first minute are con-
tained within the ‘dead’ volume, and features post 27 min 
are within the re-equilibration period. These particular fea-
tures were excluded. During Mass Hunter deconvolution, 
ion abundance was set to 100. During deconvolution, the 
software included sodium and potassium adducts, but other 
adducts such as ammonium ions and neutral losses such as 
water and phosphates were excluded to minimise errors in 
identifying unique features. For deconvolution the mass 
resolution was 25 ppm. The scope of the instrumentation 
relied on a tolerance of up to 20 ppm so further information 
regarding retention time and fragmentation was found to be 
of use when eliminating false hits.

The alignment of features across samples, filtering out 
noise, and missing value imputation were performed using 
an in-house alignment algorithm, ‘Kernel Feature Align-
ment’. This included normalisation of the data using a log2 
transformation followed by calculating the total volume 
using all the feature’s areas from across the extract. The 
internal standard was also used in the alignment process 
(Perera 2011). Plant and insect data had to be aligned sepa-
rately due to the large number of samples and metabolites 
examined. Thus, we could not directly match metabolites 
found in the insects with those recorded in the plants, and 
instead we carried out manual searches of the plant data-
set using the mass and retention times of metabolites of 
interest found in insects. Features that were not detected in 
at least 7 out of the 13 replicates were excluded from the 
dataset, reducing the number of features detected in plants 
from 50,958 to 12,023 and in insects from 25,479 to 1481. 
Principal component analyses (PCAs) were performed on 
the datasets before and after the removal of these features 
to ensure their exclusion did not qualitatively alter the 
conclusions of the analyses, and we only present the more 
conservative analyses based on their removal. Prior to data 
analysis, missing value imputation (MVI) was applied in 
those cases where metabolites were detected in more than 
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seven but fewer than 13 replicates (Hrydziuszko and Viant 
2012). The algorithm used for MVI combined the Gauss-
ian Expectation Maximization (GEM) and kth nearest 
neighbour (kNN) methods (Perera 2011). Data were log2 
transformed and mean centred before multivariate analyses. 
While a large number of metabolites were measured, it is 
acknowledged that this will not be all of the metabolites in 
the metabolomes. While there is not one single method to 
extract and detect all metabolites, negative ionisation mode 
would have increased the number of metabolites measured 
in this experiment.

Visualisation of data

Multivariate analyses were carried out in Simca-P software 
(Umetrics UK Ltd, Windsor, UK). PCA was used to sum-
marise the metabolomic data to compare patterns of metabo-
lites among plants and among insects. Plant and insect data 
from each of the five plant species studied were analysed in 
two separate PCAs. Outliers falling outside Hotelling’s T2 
using a 95% confidence level (a generalization of Student’s 
t-distribution applied in multivariate situations; Prokhorov 
2011) were identified and excluded to prevent their having 
a disproportionate influence on the analysis (one B. vul-
garis plant sample and one B. oleracea insect sample were 
excluded). However, the exclusion of these two samples did 
not have a visible effect on the general sample patterning, 
as indicated by the PCA score plots. To visualise the data, 
plant and insect replicates were plotted according to their 
principal component (PC) scores.

In addition to the PCA, a Partial Least Squares Discri-
minant Analysis (PLS-DA) model was fitted to the insect 
metabolomic data (in Simca-P software) whereby this super-
vised model used the identity of samples (i.e., identity of 
larval host plant species) to maximize discrimination among 
groups. The latent variable scores produced are equivalent 
to principal component scores in PCA. To avoid over-fitting 
the data, the PLS-DA model was cross-validated using per-
mutations by excluding a seventh of the data in turn and 
testing the predictive ability of a model fitted to the remain-
ing data. If a PLS-DA model has low predictive ability, the 
model cannot be validated implying that there are no differ-
ences among the groups being examined. Simca-P software 
presents the predictive ability of the model as a Q2 value, 
ranging between 0 and 1, with values closer to 1 indicating 
better predictive ability.

A further cross-referencing analysis considering only the 
qualitative presence of a metabolite in the different insect 
groups (opposed to presence as well as abundance consid-
ered in the multivariate analyses) determined the number 
of metabolites that were unique and shared among insects 
on different hosts. These metabolites were presented as 

proportions of the total number of metabolites measured 
across all the insect groups.

Isolating important metabolites

To identify metabolites responsible for distinguishing larval 
samples feeding on a particular plant species, an Orthogo-
nal Projections to Latent Structures Discriminant Analysis 
(OPLS-DA) was performed on the insect metabolic finger-
print data. This supervised analysis explains the maximum 
amount of variation between two chosen groups of samples 
(in this case, insects on one host plant and insects on all 
other host plants). The OPLS-DA model was performed on 
a balanced dataset (13 replicates of larvae fed on one plant 
species vs. 13 replicates from a mixture of the other four 
insect groups) so that the larger dataset would not skew the 
analysis. This group of 13 larval replicates from the other 
four larval groups was chosen by performing a PCA on the 
data and selecting replicates which reflected the full range 
of PC 1 scores whilst ensuring each of the four host plant 
groups were represented.

To confirm the differences in individual metabolites, 
statistical differences in insect metabolite abundances were 
analysed using ANOVAs carried out in R (R Core Team 
2013) with host plant species as a fixed factor, once paramet-
ric assumptions were met. The P values from each analysis 
were converted to q values to correct for false discovery 
rates following the large number (1481) of analyses per-
formed (Benjamini and Hochberg 1995; similar to the more 
common Bonferroni correction). To compare how abundant 
metabolites of interest were in an insect feeding on one plant 
species, the average abundances of the 13 larvae samples 
and the larval group with the next highest average abun-
dance were used to calculate the fold difference (number of 
times greater) in abundance. Fold differences in abundance 
were also calculated for equivalent metabolites found in the 
equivalent plant samples.

Results

Host plants and insects fed on them have distinct 
metabolic fingerprints

The metabolic fingerprints of the five host plant species 
were distinguished by the first two principal component (PC) 
scores in a PCA analysis (Fig. 1). All five species clustered 
separately although C. spinosa was completely separate from 
the other four plant species. The clusters of B. oleracea and 
B. vulgaris were adjacent to each other as were L. annua 
and A. thaliana. Together the first two PCA components 
explained 30.1% of the variation in the metabolite data. As 
a well-studied group of compounds, glucosinolates were 
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suspected to account for the differences among the plant 
species. Thus, an estimate was made of the relative impor-
tance of glucosinolates compared with other metabolites in 
discriminating plant species based on their metabolic fin-
gerprints. We obtained the molecular weights calculated 

(m/z) for around 120 glucosinolate compounds from existing 
databases (Fahey et al. 2002, KEGG, http://www.genom e.jp/
kegg/ligan d; METLIN, metlin.scripps.edu/metabo_ search_
alt2; KNApSAcK, http://www.kanay a.naist .jp/knaps ack_jsp/
top) and 19 metabolites in our plant samples were putatively 
identified as possible glucosinolates using this molecular 
weight. To visualise the influence of these metabolites that 
are likely to be glucosinolates, relative to the other measured 
metabolites, we highlight their PCA loadings in plots from 
the PCA analysis performed on the plant metabolic finger-
prints, but none of the 19 metabolites had high loadings 
(Fig. 2). Thus, we conclude that variation in glucosinolates 
was unlikely to be important in distinguishing among host 
plant species based on their metabolic fingerprints.

Of the 12,023 metabolites measured in the plants, only 
6.89% were found in all five of the plant species and 68.56% 
were unique to only one of the plants. The largest number 
of unique metabolites were found in C. spinosa (1573 
metabolites).

Next, we analysed the metabolite composition of the 
insect fat bodies. Compared to the distinctiveness of plant 
metabolic fingerprints (Fig. 1), PCA revealed less differ-
entiation in metabolic fingerprints amongst larvae raised 
on different host plants (Fig. 3). This demonstrates that 
differences among the insect metabolomes are smaller than 
among the plant metabolomes. In the PCA analysis, only 
those larvae that fed on C. spinosa could be distinguished 
from other larvae (Fig. 3), and when these larvae were 
excluded from the analysis, we found no differentiation 
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among larvae fed on the other four host plants. A super-
vised PLS-DA confirmed the findings of the PCA in that 
larvae fed C. spinosa could be distinguished from other 
larvae (first latent variable of the PLS-DA; ESM. 1). How-
ever, where the unsupervised PCA had failed to distin-
guish, the next three latent variables of the PLS-DA were 

able to discriminate among larvae reared on the other host 
plants (Fig. 4). Thus, host plants influence the metabolic 
fingerprints of P. rapae larvae and these changes are espe-
cially large in larvae feeding on C. spinosa.

To further investigate metabolite differences among 
insects feeding on the five host plant species, the number 
of metabolites that were unique to insects on each host 
plant species was calculated. The number of metabolites 
that were found in common across insects on all five plant 
species was also recorded (Fig. 5). Of the 1481 metabolites 
measured in insects, 37% were unique to only one of the 
host plant groups. A large number of unique metabolites 
were found in those insects that had eaten C. spinosa (199 
metabolites) reflecting the large number of unique metabo-
lites found in the C. spinosa plant. (A) thaliana (130) had 
the second largest number of unique metabolites compared 
with insects that had eaten the other host plants (B. olera-
cea 64, (B) vulgaris 85 and L. annua 66). We found that 
28% of all insect metabolites recorded in the study were 
found in all five insect groups, indicating that only about 
a quarter of metabolites were present in P. rapae irrespec-
tive of larval host plant, and the remaining three quarters 
of metabolites depended on larval diet.

Of these unique metabolites found in the insects a larger 
proportion of those in the C. spinosa fed insect group 
(62 out of 199, 31%) were found to match the mass and 
retention times of metabolites’ presence in the C. spinosa 
plant. Fewer mass and retention time matches were found 
between the other insect groups and their respective plants 
(A. thaliana 8 out the 130, 6%, B. oleraea 5 out of 64, 8%, 
B. vulgaris 9 out of 85, 11% and L. annua 5 out of 66, 8%).
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Identification of abundant metabolites in larvae 
feeding on C. spinosa

To understand why the metabolic fingerprints of C. spi-
nosa-fed larvae were different, those metabolites that dis-
tinguished these larvae from other larvae were found by 
performing an OPLS-DA model (ESM. 2). The OPLS-DA 
produced an ‘S-plot’ which was used to visualise the rela-
tive importance of different metabolites and to highlight 
metabolites that were highly abundant in those insects 
feeding on C. spinosa. We focused on metabolites that 
were at least four times more abundant in C. spinosa-fed 
larvae than in other larvae, to ensure that any selected 
metabolites represented a major difference in abundance 
compared to other larvae. Using this criterion, 44 metabo-
lites were found to be highly abundant in C. spinosa-fed 
larvae. Putatively annotated chemical identities for some 
of these metabolites were obtained using the molecular 
masses of metabolites as determined by the LC-MS and 
from molecular masses in metabolic databases (KEGG, 
METLIN, and KNApSAcK). Putative matches were found 
for six out of the 44 metabolites, with some metabolites 
matching multiple isomers (ESM. 3), and the tandem MS 
spectra for these metabolites were compared with refer-
ence spectra in databases using the Kernel Feature Align-
ment software (Perera 2011). For one metabolite with 
mass of 456.35 Da at retention time 22.36 min the tandem 
MS fragments were similar to the spectrum for oleanolic 
acid. However, a fragmented standard run through the 
same machine used to analyse the insect samples failed to 
confirm this and so none of the metabolites characterising 
the insect fingerprints raised on C. spinosa were defini-
tively identified.

To establish whether the metabolites that were abundant 
in larvae feeding on C. spinosa originated from the host 
plant, the plant metabolic fingerprints were examined for 
metabolites with the same masses and retention times as 
those in insects. Of the 44 metabolites most influential in 
distinguishing the metabolic fingerprints of larvae fed C. 
spinosa from other larvae, 42 matched metabolites in the 
plant fingerprint data based on equivalent mass and reten-
tion times. Furthermore, the abundances of these metabo-
lites were many times higher in C. spinosa plants compared 
with other plant species (fold difference minimum 4.4 and 
maximum 176; ESM. 3). Thus, we conclude that the major-
ity (95.5%) of metabolites detected in larvae feeding on C. 
spinosa plants, which distinguished them from other lar-
vae, originated directly from the C. spinosa host plants. The 
other two distinguishing metabolites are hypothesised to be 
metabolisation products.

Discussion

The advantage of untargeted metabolomics is that a wide 
range of metabolites are examined, thereby providing a more 
comprehensive overview of changes to metabolomes. We 
note that the coverage of the metabolome would be improved 
if the samples were analysed in negative ionisation mode as 
well as positive. Nevertheless, by applying this untargeted 
metabolomics approach to insect herbivores as well as their 
host plants we could evaluate the effect of host plant spe-
cies on the insect metabolome. Our discovery of a group of 
metabolites likely to have transferred from the host plant C. 
spinosa to P. rapae larvae was possible because an untar-
geted approach was used rather than focusing primarily on 
a single group of known metabolites.

One of our aims in this study was to investigate if the 
metabolome of an insect herbivore is determined by the host 
plant it feeds on. While the differences among insects raised 
on different host plants were less than differences among 
the plants themselves (Fig. 1), they were still apparent. An 
unsupervised PCA could only separate those insects raised 
on C. spinosa (Fig. 3), but a supervised PLS-DA could dis-
criminate among the other four groups of larvae (Fig. 4). 
Thus, host plants influence the metabolite composition in the 
fat body of P. rapae larvae and these changes are especially 
large in larvae feeding on C. spinosa.

Two other targeted studies support the idea that larval 
diet affects the metabolites found within insects: the con-
centration of cardenolide compounds in dogbane tiger moths 
(Cycnia tenera) are dependent on the species of Asclepias 
plant larvae feed on (Cohen and Brower 1983), and P. rapae 
larvae were found to contain pinoresinol at the end of their 
glandular hairs if they fed on B. oleracea (Schroeder et al. 

in all 
insect groups

in 4 groups

in 3 groupsin 2 groups

B. vulgaris

unique to 
one insect 

group
37%

28%

10%

10%15%

Fig. 5  The total number (1481) of metabolites measured in insects 
and the proportions found in only one group of insects (white area; 
i.e., unique to larvae feeding on a particular host plant species) or in 
multiple groups of insects (grey and black areas). The species of host 
plant the larvae fed from are in italics
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2006). Our study is the first to examine the wider insect 
metabolome to demonstrate dietary effects.

Larvae raised on C. spinosa and A. thaliana had the high-
est number of unique metabolites found only in their metab-
olomes (Fig. 5). C. spinosa is listed as a host plant for the 
Asian subspecies P. rapae crucivora but not for European 
P. rapae used in this study (Robinson et al. 2011). Similarly 
A. thaliana grows at a different time of the year to when P. 
rapae larvae feed in the UK and is, therefore, not a natu-
ral host plant. This may suggest why the insects feeding on 
these unfamiliar plants showed more distinctive metabo-
lomes. It is possible that plants not usually encountered by 
a population are more likely to contain metabolites that the 
insect cannot metabolise.

Several metabolites that occurred in high abundance were 
responsible for observed differences between the metabolic 
fingerprints of larvae-fed C. spinosa and larvae fed on other 
plants. It is highly likely that these chemicals originated 
from C. spinosa plants because metabolites with similar 
molecular mass and retention times were also found in high 
abundance in C. spinosa plants (ESM. 3). Unfortunately, 
we were unable to identify these metabolites, although we 
demonstrated that some metabolites can transfer from C. spi-
nosa plants into larvae of P. rapae with unchanged chemical 
structures. Other studies have shown examples of sequestra-
tion of metabolites by insects from their host plants (Opitz 
and Müller 2009) including the cardenolide metabolites 
from milkweed host plants (Asclepiadaceae) sequestered for 
defence by monarch butterflies (Danaus plexippus; Brower 
et al. 1967). Therefore, active sequestration of C. spinosa 
metabolites by P. rapae larvae is one possibility. Alterna-
tively, these metabolites may have no function in the insects 
but be passively absorbed and bioaccumulate because larvae 
are unable to digest, break down or excrete the compounds. 
There is evidence from other studies revealing the toxicity of 
Cleome sp. to lepidoptera larvae, for example, concentrated 
extracts of Cleome arabica were toxic to larvae of Spodop-
tera littoralis and Cleome droserifolia caused mortality in 
the first instar larvae of Phthorimaea operculella (Ladhari 
et al. 2013; Soliman 2012). However, no mortality of larvae-
fed C. spinosa was observed in our study, and other feeding 
trials have not shown increased mortality or reduced growth 
rates in first instar P. rapae fed C. spinosa (Riach unpub-
lished data).

The host plants of oligophagous insect herbivores have 
not previously been examined in relation to their metabolic 
fingerprints. We showed that host plants of P. rapae have 
very different metabolomes (Fig. 1) which is to be expected 
since the metabolome is essentially the end product of the 
genome (Sumner et al. 2003) and species are genetically 
unique. Much research has focused on differences between 
Brassicaceae host plants in terms of glucosinolates (Hasapis 
et al. 1981; Koritsas et al. 1991; Rodman and Chew 1980), 

and glucosinolates might be expected to account for the dif-
ferences in plant species metabolic fingerprints detected 
in this study. However, our fingerprint data suggests that 
among Brassicaceae host plant species, there are many other 
metabolites that have larger variations in abundance than 
glucosinolates (Fig. 2). The study of insect–Brassicaceae 
interactions may benefit from considering other metabo-
lites in addition to glucosinolates. This consideration of a 
larger range of metabolites could more accurately reflect 
how insects experience difference host plants.

In summary, we have provided new perspectives on inter-
actions between plants and insects and discovered metabo-
lites in the plant C. spinosa that are likely to be transferring 
between trophic levels. It was not possible in this study to 
identify these metabolites, however, as databases of profiled 
metabolites improve this could be easier in the future. This 
study raises the possibility of identifying chemical proper-
ties of metabolites that prevent insects from breaking down 
the chemical which could aid in the development of effective 
pesticides.
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