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Zusammenfassung Fragestellung
Vor kurzem untersuchten wir die
Moglichkeit, reduzierte Schlaf-
Wach-REM Informationen bei Pa-
tienten mit Verdacht auf Schlaf-
apnoe zu erhalten, dabei benutzten
wir nur EKG und Atmungssignale.
Der Nutzen eines solchen Systems
kann dadurch beeintrachtigt sein,
dass sich unter den Patienten Per-
sonen mit OSAS (in verschiedener
Auspréigung) befinden. Die vorlie-
gende Studie tiberpriift die Effekti-
vitédt dieses Systems bei einer Per-
sonengruppe ohne schlafbezogene
Atmungsstérungen.
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Sleep staging using cardiorespiratory signals

Patienten und Methode Die
Studie untersuchte 31 ménnliche
Personen (Alter =42.0 = 7.4 Jahre,
BMI =30.7 £ 3.0 kg/m?). Es lagen
keine schlafbezogenen Atmungs-
storungen bei den Probanden
(AHI=1.4+1.2 Fille/Stunde) vor.
Es wurde bei jedem eine Polysom-
nographie mit EEG, submentalen
EMG und EOG durchgefiihrt. Ein
automatisches Schlafphasenerken-
nungssystem, basierend auf einem
einzelnen EKG Signal und einem
Atmungssignal (Induktionsple-
thysmographie), wurde entwickelt.
Parameter zur Unterscheidung der
Schlafzustdnde wurden abgeleitet
und die Leistung einer linearen
und quadratischen Diskriminanz-
analyse bezogen auf eine epochen-
weise Schlafstadienklassifikation
bestimmt. Der Einsatz einer zeitab-
hingigen A-Priori-Wahrscheinlich-
keit im Klassifizierungsmodell
wurde auch untersucht.

Ergebnisse Das beste Ergebnis
erzielte ein lineares diskriminantes
Klassifizierungsmodell unter Ein-
satz einer zeitabhdngigen A-Priori
Wabhrscheinlichkeit. Fiir ein 3-Kate-
gorien-System (W, S, R) wurde eine
Ubereinstimmung mit k =0.45 ge-
funden, welche sich auf k =0.57 er-
hoht, wenn ein einfaches 2-Katego-
rien-System (W, S/R) betrachtet
wurde. Dies entspricht einer
Genauigkeit von 89 % bei einer
Schlaf-Wach-Klassifikation.

Schlussfolgerung Kardiorespira-

torische Signale konnen eine
Schlaf-Wach-Phasenerkennung
liefern, welche mit dem Aktigraph
vergleichbar ist. Das Vorhanden-
sein oder Fehlen schlafbezogener
Atmungsstorungen verdndert die
Klassifizierungsgenauigkeit nur
unwesentlich. Eine kardiorespirato-
risch basierte Schlafphasenerken-
nung kann eine niitzliche Ergédn-
zung zur ambulanten Schlafapnoe-
Untersuchung sein.

Schliisselworter ostruktive
Schlafapnoe - Schlafphasenerken-
nung - EKG - Aktigraphie -
Kardiorespiratorische Kopplung -
schlafbezogene Atmungsstorung

Summary Question of study We
recently investigated the possibility
of obtaining simplified Sleep-
Wake-REM sleep stage information
from subjects being assessed for
Obstructive Sleep Apnea Syndrome
(OSAS), using only electrocardio-
gram and respiration signals. The
utility of such a system may be
limited somewhat by the presence
of OSAS in the patient group (in
various degrees of severity). This
study examines the effectiveness of
such a system when applied to a
subject group in which Sleep Dis-
ordered Breathing (SDB) is absent.
Patients and methods The study ex-
amined a database of 31 male sub-
jects (Age=42.0%7.4 years,
BMI=30.7 £3.0 kg/m?). There was
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no significant presence of SDB in
any of the subjects (AHI=1.4+1.2
events/h). A full polysomnography
recording was obtained for each
subject, including EEG, submental
EMG and EOG for sleep staging. An
automated sleep-staging system
based solely on a single electrocar-
diogram signal and an inductance
plethysmogram estimate of respi-
ratory effort was developed. Fea-
tures providing useful discrimina-
tion of sleep states were derived
and the performance of both linear
and quadratic discriminant classi-
fiers were compared in correctly la-

beling 30-second epochs. The use
of a time-dependent a priori proba-
bility in the classifier models was
also investigated. Results The best
performance obtained was
achieved by a linear discriminant
classifier model using a time-de-
pendent a priori probability. For a
3-class (W, S, R) system an agree-
ment of kK =0.45 was seen, which
increases to Kk =0.57 when a simpli-
fied 2-class (W, S/R) system is con-
sidered. This corresponds to an
epoch sleep-wake classification ac-
curacy of 89 %. Conclusions Car-
diorespiratory signals can provide

S.J.Redmond et al.

sleep-wake staging accuracy which
is comparable to actigraphy. Classi-
fication accuracy is not signifi-
cantly altered by the presence or
absence of sleep disturbed breath-
ing. Cardiorespiratory-based sleep
staging may be a useful addition to
home sleep apnea monitoring sys-
tems.

Key words obstructive sleep
apnea syndrome - sleep staging -
ECG - actigraphy - cardiorespira-
tory - sleep disturbed breathing

Introduction

Within the field of sleep research, the development of
technologies for robust, cost-effective and non-intrusive
measurement of sleep has been ongoing for many years.
The goal of such developments is both to simplify the
clinical practice of sleep medicine and to enhance the
feasibility of measurements of sleep over longer periods
of time, and in more natural environments. The current
gold standard of clinical sleep medicine (technician-at-
tended laboratory based polysomnography) provides
accurate and detailed measurements of physiology dur-
ing sleep. However, it has several drawbacks, particularly
the relatively expensive diagnostic equipment and facil-
ities of a sleep laboratory, the need for expert technical
support,and the interruption to “normal” sleep patterns
due to instrumentation and change-of-environment ef-
fects. In particular, the cost of full polysomnography
combined with the relatively high prevalence of sleep
disorders in the general population, indicates a clear
need to develop lower-cost simplified systems for mea-
surement of sleep, ideally suitable for reliable utilisation
in the home environment.

One promising technology is actigraphy, which has
been extensively evaluated. Actigraphy is a method of
measuring the movement of subjects using sensitive ac-
celerometers, typically worn on either the wrist or ankle.
The American Academy of Sleep Medicine Practice
Guidelines [28] indicate that actigraphy does provide a
reliable method of measuring sleep in a normal healthy
adult population, but that its use in routine diagnosis,
assessment of severity, or management of any of the
sleep disorders is not yet indicated (though there is evi-
dence of its potential utility). One potential application
of actigraphy is in assessing rest/activity patterns dur-
ing portable sleep apnea testing, and Elbaz etal. have
shown a modest improvement in estimating sleep apnea
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severity through the addition of actigraphy to polygra-
phy [10]. However, there is still some debate concerning
the potential utility of actigraphy; for example, Pollak
etal. [18] contend that low accuracies of sleep/wake dif-
ferentiation disqualify actigraphy as a valid sleep/wake
indicator. In a rebuttal, Tryon [31] argues that differ-
ences between the gold standard (polysomnography)
and actigraphy should be expected, and have a pre-
dictable error which can be accounted for.

Regardless of the achievable levels of accuracy for
sleep-wake classification using actigraphy, it can be
safely said that actigraphy provides limited physiologi-
cal information, as it only reflects movement. In a previ-
ous paper, we have proposed an alternative methodol-
ogy for measurement of sleep/wake patterns using an
approach based on simultaneous measurement of respi-
ratory effort and electrocardiogram. The motivation for
such an approach is that many proposed solutions for
portable home-based sleep apnea screening or diagno-
sis are likely to routinely measure such parameters. Re-
cent examples of such technology include the Embletta
system (Medcare, Reykjavik, Iceland) which measures
respiratory effort, pulse rate, airflow, oxygen saturation,
position and activity [8], and the NovasomQSG (Sleep
Solutions, Palo Alto, USA) [21] which measures airflow,
respiratory effort, oxygen saturation, and pulse rate.
These systems can directly assess changes in the respi-
ratory patterns, and hence be used to recognise apnea
and hypopneas. Other recent work has focused on the
use of the surface electrocardiogram (ECG) obtained
from Holter monitoring to discriminate those suffering
from obstructive sleep apnea [6,7,22-24,29]. These sys-
tems work by monitoring characteristic time-domain
variations in heart rate (Cyclical Variations in Heart
Rate, CVHRs), which are associated with obstructive ap-
nea events, and through the use of ECG-derived respira-
tion signals.

However, a limitation of both respiration-based and
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ECG-based systems is that they provide no information
about sleep state to the clinician, even at the level of dis-
tinguishing sleep-wake states.

Sleep staging is clinically useful in the assessment of
sleep apnea for several reasons: the Apnea-Hypopnea
Index counts only apneas and hypopneas which occur
during sleep; and an overall level of sleep quality or sleep
disruption can be judged by the relative distribution of
sleep stages. Therefore, systems which attempt to derive
an Apnea Hypopnea Index should ideally incorporate
some mechanism for determining sleep state. Moreover,
a system based on cardiorespiratory measurements only
may also have utility in other sleep disorders such as
insomnia, and circadian rhythm disorders such as
Delayed Sleep-Phase Syndrome, Advanced Sleep-Phase
Syndrome and Non-24-Hour Sleep-Wake Disorder [1,
3].

Since sleep state by definition is based on EEG analy-
sis [19], it is non-trivial to seek to determine sleep state
by measurement of other physiological variables. How-
ever, it is not unreasonable to expect that correlates of
the EEG-defined sleep stages can also be present in the
ECG, primarily through autonomic modulation of car-
diac activity. Indeed, previous studies have shown that
the ECG contains relevant information about sleep
stages [5,13,16,17,25,33]. In these studies, several ECG
derived features (powers in the VLF, LF and HF spectral
bands, and the LF/HF ratio) have been described which
allow discrimination with various degrees of accuracy
between sleep stages. Changes in respiration have also
been observed with respect to sleep state. For example,
it is generally accepted that respiration tends to be more
irregular during REM sleep than non-REM [12]. Kantel-
hardt et al. have proposed that long-range temporal cor-
relation properties differ for REM and non-REM sleep
[14].

A previous study investigated whether cardiorespira-
tory measurements alone (ECG and respiratory effort)
would be sufficient to provide information about the
sleep state of the subject suffering from OSAS [20]. The
results indicate that, while it is possible to obtain some
sleep stage information from cardiorespiratory mea-
surements alone, the presence of OSAS in the subject
group degrades the performance achieved.

Given this background, the aim of the present study
is to investigate whether measurements of ECG and res-
piration can provide a classification at the level of Wake,
REM Sleep and Non-REM Sleep (denoted W, R,and S) in
a subject group devoid of significant levels of SDB, with
the goal of determining whether SDB is a significant
confounding factor in cardiorespiratory sleep staging.
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Methods
Subject database

Full polysomnographic data (Jaeger, Hochberg, Ger-
many) was obtained from 31 adult subjects at St. Vin-
cent’s University Hospital, Dublin, Ireland. All subjects
gave written informed consent, and the study protocol
was approved by the St Vincent’s Hospital Ethics and
Medical Research Committee. These were carefully
characterised as being normal subjects and, in particu-
lar to be free of any sleep or medical disorder. None were
taking any regular therapy. Sleep staging, and subse-
quent respiratory event scoring was carried out by a sin-
gle experienced polysomnogram technician using the
acquired EEG,EMG and EOG signals. The PSG data were
used to rule out any significant presence of SDB.

In this study we only consider the ribcage respiratory
effort as measured by inductance plethysmography, and
the ECG (modified lead V2). The ribcage respiratory ef-
fort signal was sampled at 8 Hz and the ECG signal at 256
Hz.

Table 1 summarises the demographic and clinical
data for all subjects. Also included are the respective
sleep latencies and the time spent in each of the six
stages of sleep.

Electrocardiogram preprocessing

A Hilbert transform based R peak detector was used to
find the R peak locations in each subject’s ECG [4]. The
accuracy of the detector is estimated at approximately
98 % [26]. The R peak locations are used both to derive
RR-based features which may directly provide informa-
tion about sleep stage, and in the calculation of an ECG
derived respiration (EDR) signal. No attempt was made
to distinguish NN beats (normal sinus rhythm) from
others.

RR interval processing

In an attempt to remove subject-dependence from the
features derived later, we carried out a normalisation
step on the RR interval series. For each subject, a nor-
malised RR series was calculated by dividing by the
mean RR interval (producing an RR sequence with a
unity mean). This normalised RR interval series is de-
noted as RR,,,,m. However, since we may want to calculate
spectral features in cycles/second as well as cycles/inter-
val, we retain both normalised and raw RR series.

Some error correction is applied to the RR interval
series to compensate for missed beats and erroneous
beat detections. This is achieved by comparing the RR
interval to a median filtered version of itself. Any differ-
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Sleep staging using cardiorespiratory signals

ence between the signals which breeches a specified
threshold is corrected for by the inclusion or deletion of
an RR interval as needed. See [20] for more detail on the
error correction technique applied.

The RR interval series exhibits significant variation
over the entire night’s sleep. An interesting marker of
changes in sleep state may be the relative changes in the
RR interval series rather than the absolute value. We
quantified the relative changes in the RR series by de-
trending the RRy, series with a 15-minute moving
average. We denote this deviant of the RR series as
RR jetrena- The detrended RR is simply the current RR ;o
interval length minus the average RR i, length over the
previous 15 minutes. This may help to account for un-
derlying variation in the ECG due to circadian rhythm.

ECG derived respiration signal

Even though we will subsequently use a directly acquired
measure of respiratory effort (inductance plethysmo-
graph), it was decided to determine the utility of a respi-
ratory estimate directly acquired from the ECG. It has
been previously shown by several researchers that the
magnitude of the ECG signal is amplitude modulated by
respiration [15,30]. Other factors may also cause changes
in amplitude such as variations in electrode contact re-
sistance (or capacitance) caused by movement, or a
changein the electrical axis of the heart caused by altered
body position. Hence our processing is aimed towards
extracting the modulation that is the result of respiration
and rejecting any electrode or body position influences.
We label the derived estimate of respiration as the ‘ECG
derived respiration’ (EDR) signal.

We have found that a useful EDR signal can be con-
structed by tracing the envelope of the T peaks, or for a
more noise robust estimate, integrating several samples
around each T wave peak. For a detailed description of
the EDR signal generation technique see [20].

Inductance plethysmogram preprocessing

Inductance plethysmography estimates rib-cage effort
by measuring the cross-sectional area of the chest. This
is achieved by wrapping a wire, usually woven into an
elasticated band, around the torso. The electrical induc-
tance, which is proportional to the area formed by the
loop of wire, is then measured. The resulting signal is
termed the inductance plethysmogram.

Features directly related to respiration can be deter-
mined by analysis of the inductance plethysmogram sig-
nal. This signal is processed as follows. Firstly, the signal
is low pass filtered with a 10% order Butterworth filter
with a cut-off of 0.8 Hz, to remove high-frequency noise
and variation above respiratory frequencies. Since, the
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inductance plethysmogram will in general be uncali-
brated in terms of absolute tidal volume, we normalised
it for each subject, and considered only relative differ-
ences.

The inductance plethysmogram signal is normalised
by first detecting the turning points and then calculat-
ing the difference between sequential peaks and
troughs. The median peak-to-trough amplitude over the
entire record is then determined and the signal is nor-
malised by dividing through by this value, so that the
median peak-to-trough amplitude is unity.

Feature extraction

Given the set of ECG and respiration signals described
above, we now consider the design of an automated sleep
staging system based on those signals. In designing our
sleep stager, we decided to extract features from each 30
second epoch which are consistent with those suggested
by the literature.

RR-interval series features

Spectral representations of the RR interval series have
been widely used previously for a variety of applications
[30]. To calculate a power spectral density estimate, the
data (RRyorm intervals falling within the epoch) from the
epoch is zero-meaned, windowed (using a Hanning win-
dow), and the square of its Discrete Fourier Transform
(DFT) is taken as a single periodogram estimate of the
interval based power spectral density. The x-ordinate of
this estimate is in cycles/interval, which can be con-
verted to cycles/second by dividing by the mean RR for
the epoch. From this spectral estimate, five features are
calculated: (1) the logarithm of the VLF (power in the
0.01-0.05 Hz band) (2) the logarithm of the LF (power
in the 0.05-0.15 Hz band), (3) the logarithm of the HF
(power in the 0.15-0.5 Hz band), (4) the LE/HF power ra-
tio, (5) the mean respiratory frequency, which is defined
by finding the frequency of maximum power in the HF
band, and (6) the logarithm of the power at the mean
respiratory frequency.

In addition to the RR spectral features, we also used
a range of temporal RR features for each 30 second
epoch. These features are: (1) the mean RR,orm, (2)
standard deviation of RRyorm, and (3) mean value of the
RRetrend in the epoch.

ECG derived respiratory features

The EDR epoch is taken as the EDR points correspond-
ing to the R peaks falling within the epoch. The spec-
trum is calculated as for the RR interval series. From the
EDR spectrum, the logarithms of the VLF (0.01-0.05
Hz), LF (0.05-0.15 Hz), HF (0.15-0.5 Hz) powers, respi-
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ratory frequency, and the power at respiratory fre-
quency are estimated.

RR-EDR cross-spectral features

The logarithms of the VLF (0.01-0.05 Hz), LF (0.05-0.15
Hz), HF (0.15-0.5 Hz) powers were calculated from the
cross-spectrum of the RR interval series and EDR for
each epoch. Also estimated were the respiratory fre-
quency and the power at that frequency.

Ribcage respiratory effort features

As described earlier, an inductance plethysmogram esti-
mate of respiratory effort was obtained for each subject.
As with the RR interval series and the EDR, we calculate
the ribcage respiratory effort spectrum as the square of
the DFT of the ribcage respiratory effort signal for that
epoch, windowed with a Hanning window. From the
spectrum we calculate the logarithm of the power in the
3 bands - VLF (0.01-0.05 Hz), LF (0.05-0.15 Hz) and HF
(0.15-0.5 Hz). The definition of these bands is taken di-
rectly from the corresponding definitions for ECG sig-
nals. Furthermore we estimate the respiratory frequency
as the frequency of peak power in the range of 0.05 Hz -
0.5Hz, and also the logarithm of the power at that fre-
quency.

A novel feature explored in this study is the variation
of the respiration frequency over various time scales.
The standard deviation of the respiratory frequency
over 5 epochs (150 seconds), 7 epochs (210 seconds) and
10 epochs is calculated (300 seconds). We denote these
features V(150), V(210) and V(300).As an illustration the
following describes how the standard deviation is calcu-
lated for 5 epochs. The 150 seconds of signal, corre-
sponding to the 5 epochs, is divided into ten 15 second
non-overlapping segments. The frequency associated
with the maximum value of a single periodogram esti-
mate of the power spectral density is used to estimate
the respiratory frequency for each segment. The ten re-
sulting respiratory frequency estimates are linearly de-
trended. Finally the standard deviation of the ten fre-
quency estimates is calculated.

In addition we derive several time domain features
from the ribcage respiratory effort signal. The first fea-
ture captures the breath-by-breath correlation. We de-
fine a breath cycle as the time from the trough of one
breath to the trough of the next. We find the cross-cor-
relation of the adjacent breaths. Clearly in most cases the
breaths will be of different lengths, in this case the
shorter is padded with zeros to make it of equal length.
We find the maximum cross-correlation value and di-
vide it by the maximum of the energy of either breath
alone to normalise the maximum cross-correlation
value. The maximum cross-correlation values, for all
pairs of adjacent breaths in the epoch, are then averaged.
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We denote this feature “Breath-by-Breath Correlation”.
The third time domain feature is a further measure of
breath-by-breath variation. We take the standard devia-
tion of the time between peak locations, similarly we
take the standard deviation of the time between trough
locations. We then take the mean of these two devia-
tions. We denote this “Breath Length Variation”. Finally
we derive a second estimate of the respiratory fre-
quency, using non-spectral means. We calculate the
mean time between adjacent peaks and between adja-
cent troughs. The frequency of respiration is calculated
as the inverse of this time. We denote this feature “Time
Domain Respiratory Frequency”.

One final note to make in this section is that all esti-
mates of respiratory frequency were further normalised
by subtracting (from each epoch’s estimate of the fre-
quency) the median value of that parameter over all
epochs for the entire night. This was deemed a necessary
step as the mean respiratory frequency will vary from
subject to subject. The median was subtracted as it is
more robust than the mean to outliers.

The complete list of features for each 30 second epoch
is given in Table 2.

Classifier models

Following the feature extraction stage described above,
each 30 second epoch now has an associated set of 30
features - 9 RR-based, 5 EDR-based, 5 cross-spectral-
based and 11 inductance plethysmogram based. We
compare two classifier models, a linear discriminant
classifier and a quadratic discriminant classifier. Both
classifiers assume Gaussianity of the feature distribu-
tions.

Both classifiers are derived as follows. Let w; signify
the ith class. In this application there are three classes, S,
W, and R. Let x denote the feature vector corresponding
to a certain epoch. The feature vector in this case con-
tains 30 elements, which are a selection the features de-
scribed in the previous section. Using Bayes’ rule we
wish to find the class i which will maximise the posterior
probability:

P(w;) p(x | w;)

Plolx) =—

(1)

Maximising the left hand side of (1) is equivalent to
maximising its logarithm. The class conditional proba-
bility density p(x | @;) is modelled with a Gaussian dis-
tribution;

p(x| w;)
(2)

= G 30w,
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Table2 Acomplete list of all features used in the system. Some features are ratios
and as a result are dimensionless. This is denoted by the ‘~* symbol in the units co-
lumn

Feature  Feature Name Units  Feature Group
Number
1 RRVLF band dB RR based
2 RR LF band dB Interval
3 RR HF band dB Features
4 RR standard dev. S
5 RR resp freq. Hz
6 RR resp power 2
7 LF/HF ratio =
8 Detrended RR mean s
9 RR mean S
10 EDR VLF band dB EDR based
1 EDR LF band dB Features
12 EDR HF band dB
13 EDR respiratory frequency Hz
14 EDR respiratory power mV?2
15 RR-EDR cross spectrum VLF band dB RR-EDR based
16 RR-EDR cross spectrum LF band dB Cross Spectral
17 RR-EDR cross spectrum HF band dB Features
18 RR-EDR cross spectrum freq Hz
19 RR-EDR cross spectrum power s-mV
20 Ribcage Respiratory effort VLF band ~ dB Inductance
21 Ribcage Respiratory effort LFband ~ dB Plethysmogram
22 Ribcage Respiratory effort HF band ~ dB Features
23 Ribcage Respiratory effort freq. Hz
24 Ribcage Respiratory effort power mV?
25 Breath by breath correlation -
26 Breath length variation s
27 Time domain respiratory frequency ~ Hz
28 V(150) Hz
29 V(210) Hz
30 V(300) Hz

where Y; is the covariance matrix of the ith class, and p;
is the mean vector of the ith class. After substituting (2)
into the natural logarithm of (1) and maximising the re-
sulting likelihood function, our problem is transformed
into finding the class i which maximises the discrimi-
nant value g(x) for a given test feature vector x:

gi(x) =x"Wx +wx +k;
(3)

where:

W, = —%E;‘, wi= Y
ki= —zl My, _211n|2i| +In P(w)

Equation (3) gives a quadratic discriminant (QD) func-
tion. This may be transformed to a linear discriminant
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(LD) function by assuming that the covariance matrices
for each class, X, are identical, hence W; will be identi-
cal for all classes and the quadratic term may be ignored
during the maximisation process. This will give the fol-
lowing function to be maximised:

gi(x)=vx+¢;
where:

Vi= Zi_llli

=~k X i+ In P()

The class with the highest discriminant value is chosen
as the assigned class for that feature vector. To construct
the QD classifier, therefore, we must estimate the
covariance matrix and mean for the features corre-
sponding to each class, and also the a priori probability,
P(w;), of the class occurring. The common covariance
matrix for the LD classifier is calculated as a weighted
sum of the covariance matrices for each of the three
classes. For a detailed treatment of discriminant classi-
fiers see [9].

Time dependent “a priori” probabilities

We note that the process of sleep is not stationary. At any
chosen time the probability of observing a particular
sleep state is not necessarily the same as at some other
time. For example, the subject will almost definitely be
awake at the start and end of the recording, and it is un-
likely that they will reach REM sleep inside the first half
hour of recording.

In an effort to try and capture this non-stationarity in
the sleep process, we introduce the concept of using a
time dependent a priori probability, P,(®;), in the dis-
criminant classifier - where ¢ denotes the epoch number
from the start of the recording.

The estimation of P(w;) is obtained by simply count-
ing the relative frequency of occurrence of each sleep
state = W, S or R. The estimation of P(w;) is performed
by taking all classification labels from each subject in the
database and over-laying them in time so that all the
first epochs are aligned, all second epochs are aligned,
etc. Then the proportion of occurrences of each class at
each time step are noted. The counts are then nor-
malised to represent probabilities. If these probabilities
are plotted against time at this stage, the result will be a
very jagged curve. Hence, a median filtering operation is
performed on the probabilities to smooth them. Finally,
the probabilities are re-normalised so the sum of the
probabilities across all classes occurring at a given time
step is unity.

In this study each sleep recording is scored twice -
firstly with constant a priori probabilities, P(w;), and sec-
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ondly with time-dependent a priori probabilities, P(w;)
- and the results are compared.

Experimental design

In order to obtain an unbiased estimate of the perfor-
mance of such a system, on a general population, a leave-
one-out crossfold validation was performed. Features
from 30 subjects were pooled together to form the train-
ing data for the classifier, training a 3-class W, R, and S
classifier by estimating the class a priori probabilities,
covariance matrices, and means. This was repeated 31
times, leaving one subject out of the training data each
time. In each case the remaining subject was used to test
the system.

The above experiments were run several times to in-
vestigate the effects of using a linear discriminant clas-
sifier versus a quadratic discriminant classifier, and also
the effect of using a fixed a priori verses a time-depen-
dent a priori probability.

Performance metrics

The performance metrics we used to assess the perfor-
mance of the various described experiments were clas-
sification accuracy, Cohen’s kappa coefficient, the mean
sleep efficiency error and the standard deviation of the
sleep efficiency error. To be clear, sleep efficiency error
is defined here as the cardiorespiratory system’s esti-
mate of sleep efficiency minus the expert estimate of
sleep efficiency.

Classification accuracy is the percentage of epochs
classified correctly. Cohen’s kappa coefficient is a mea-
sure which accounts for the relative frequency of occur-
rence of each class and provides a more insightful mea-
sure of system performance than classification
accuracy.

Sleep efficiency is defined as the percentage of time
spent asleep out of the total time in bed. The sleep effi-
ciency estimates are derived from the results of the 2-
class (S/R versus W) system. The 2-class classification is
obtained by training a 3-class system (W, S, and R) and
then considering S and R as the same class.

The sleep efficiency derived from the epoch labels of
2-class system generally provided a biased estimate of
the true sleep efficiency (this will be considered in more
detail in the Discussion section). To correct this bias the
trained system was used to classify each epoch and then
estimate the sleep efficiency of each recording in the
training data. Each sleep efficiency estimate was com-
pared to the actual sleep efficiency and the mean sleep
efficiency bias over the training data determined. This
correction factor was then applied to all sleep efficiency
estimates of the test recordings.
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The obtained accuracies, kappa coefficients, k, mean
sleep efficiency errors and standard deviations from
each of the 31 cross validation runs, are averaged for an
overall estimate of generalised system performance.

Results

Table 3 details the results for four systems which were
trained and tested using various combinations of classi-
fier model and a priori probabilities. For each system a
3-class classifier was trained. This was then converted to
a 2-class classification by collapsing ‘S’ and ‘R’ into one
class, denoted ‘S/R’.

Shown is the average accuracy of each classifier when
classifying each of the individual sleep stages - S, R and
W for the 3-class system, and S/R, W for the 2-class sys-
tem. Also shown is the average accuracy when consider-
ing all epochs - denoted ‘Total Accuracy’.

Additional information is also provided relating to
the estimated sleep efficiency. Particularly, sleep effi-
ciency estimates before and after correction for an ex-
pected sleep efficiency bias. We elaborate further on the
sleep efficiency bias in the Discussion section.

Table 4 provides a detailed exposition of the results
for the best performing classifier model for each subject
(linear discriminant classifier with a time-dependent a
priori probability).

Table 3 Shown are the results for the described sleep staging system when using
fixed or time-dependent a priori information, linear or quadratic discriminant clas-
sifier models, and 3-class or 2-class classification. Sleep efficiency is calculated
based on the results of the 2-class system. Shown are the mean percentages of S,
R, or W correctly classified. Also shown is the mean percentage of all epochs cor-
rectly classified and Cohen’s Kappa coefficient, k. Corrected sleep efficiency reports
the errors in sleep efficiency when the known bias due to the classifier methodo-
logy is removed

Quadratic Linear Quadratic
Fixed Varying Varying

Linear
Fixed

Classifier Type

a priori

3-class system

S Accuracy (%) 64.9 69.3 89.5 78.2

R Accuracy (%) 60.6 43.6 27.9 30.4

W Accuracy (%) 64.8 65.6 65.2 65.3

Total Accuracy (%) 64.3 64.8 76.1 68.9

Mean 0.37 0.35 0.46 0.36

2-class system

S/R Accuracy (%) 87.3 83.4 93.9 85.8

W Accuracy (%) 64.8 65.6 65.2 65.3

Total Accuracy 83.6 80.4 89.0 82.5

Mean 0.47 0.41 0.60 0.44

Sleep Efficiency Bias -109 -137 -7.5 -10.4
(Uncorrected) (%)

Sleep Efficiency Bias 0.8 34 0.0 32
(Corrected) (%)

Standard deviation of Sleep  10.9 16.8 6.25 14.3

Efficiency error (%)
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Table4 Detailed results for the best performing classifier model — a linear discriminant classifier with a time-dependent a priori probability. Shown as anillustrative exam-
ple are the results for a 3-class classification problem. For each subject we list the accuracies obtained when classifying each of the 3 simplified sleep stages. The overall ac-
curacy (Acc.) is also listed beside the Kappa coefficient for each record. Also shown are the sleep efficiencies. We see that without correction the sleep efficiency estimate
will have a negative bias. The corrected estimate is almost completely unbiased. ‘NaN’" denotes the occurrence where the expert scorer did not score any epochs into that

class
3 way classification Sleep Efficiencies (%)
Sleep REM Wake Uncorrected Correction Corrected [Expert - Corrected]
1 78 0 53 0.38 66 69.3 76.3 7.7 84.0 14.7
2 97 0 54 0.53 78 86.8 759 7.4 83.4 34
3 97 4 77 0.36 68 84.7 83.4 7.5 90.9 6.3
4 90 31 86 0.50 83 96.6 849 73 92.2 4.4
5 96 10 79 0.44 81 94.1 87.5 7.5 94.9 0.8
6 92 39 90 0.52 83 95.6 89.0 7.3 96.3 0.7
7 92 31 62 0.49 79 91.2 86.9 7.4 94.3 3.1
8 96 26 98 0.52 81 98.7 89.6 7.4 97.0 1.6
9 89 21 93 0.42 72 98.3 89.4 73 96.7 1.6
10 80 33 97 0.46 74 95.2 76.4 74 83.8 1.4
1 93 16 64 0.48 77 84.3 66.9 7.2 74.0 10.3
12 94 25 74 0.46 79 95.8 91.9 7.4 99.3 34
13 88 20 99 0.47 79 98.4 82.8 73 90.1 83
14 85 19 99 0.50 76 98.0 773 73 84.6 13.5
15 87 52 56 0.51 77 90.6 86.6 7.5 94.1 3.5
16 81 54 75 0.52 77 96.2 78.2 73 85.4 10.8
17 88 19 95 0.52 78 92.0 74.7 7.2 81.8 10.2
18 87 31 59 0.39 Al 94.4 89.3 73 96.6 23
19 86 43 73 0.45 80 95.6 88.5 7.4 95.9 0.3
20 75 4 79 0.16 62 92.6 728 7.6 80.4 12.2
21 89 52 83 0.58 83 929 89.4 7.5 96.9 4.0
22 90 26 97 0.38 76 98.7 88.8 7.5 96.3 25
23 98 6 4 0.41 74 84.6 82.6 7.6 90.2 5.7
24 97 15 27 0.26 62 57.9 81.2 8.8 90.0 32.1
25 95 9 74 0.38 76 96.2 84.4 7.4 91.8 4.4
26 91 44 86 0.62 87 94.1 86.2 73 93.5 0.6
27 90 NaN 42 0.40 79 85.8 84.9 7.8 92.7 6.9
28 89 57 58 0.55 75 83.7 83.1 7.7 90.8 7.0
29 86 40 70 0.54 78 82.0 775 7.5 85.0 3.0
30 72 66 57 0.37 67 70.5 68.1 7.8 759 5.4
31 93 33 81 0.64 81 92.1 79.9 7.5 87.3 47
Epoch 90 28 65 0.46 76 Standard Deviation of Sleep Efficiency Error 6.3
weighted
average
Corrected Sleep Efficiency Bias 0.02
Fig. 1 provides an illustrative example of a compara- Discussion

tive hypnogram for Subject 31. The top and middle plots
show the expert scoring in 6 stages and the simplified 3-
stage scoring, respectively. The bottom plot shows the
sleep staging which results from using cardiorespiratory
signals and a linear discriminant time-dependent a pri-
ori classifier model.

We note from Table3 that the system which performs
best, on both the 2-class (k =0.57) and 3-class (x = 0.45)
classification problem, is that which uses a time-depen-
dent a priori probability in the classifier model, and a
linear discriminant classifier. The system which per-
formed worst was that using a fixed a priori and a qua-
dratic discriminant classifier. The strength of the linear
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Fig. 1 A sample hypnogram for a single night's re-
cording. The subject chosen for this illustration was
Subject 31, whose recording was scored with an
agreement to the expert scoring of k = 0.64 and an
accuracy of 81 %. The top plot shows the expert scor-
ing with all six sleep stages displayed. The middle
plot again shows the expert scoring; however, sleep
stages 1 to 4 have been replaced with a single stage
representing Non-REM sleep. The bottom plot shows
the scoring obtained using cardiorespiratory signals,
a linear classifier model, and a time-varying a priori
probability W

-wa—‘;Ué
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discriminant classifier in this context appears to be that
it has less free parameters than a quadratic discriminant
classifier and hence remains relatively robust across var-
ious cross-validation runs. Also, the time-dependent a
priori provides a performance gain by reducing the
number of non-REM epochs classified in error. How-
ever, this happens at the cost of classifying more REM
epochs in error. Fortunately, for the k coefficient and the
Total Accuracy, there are more non-REM epochs than
REM epochs so overall the performance increases.

However, there is a caveat associated with the use of a
time-dependent a priori. The time-dependent a priori
imposes a structure on the sleep record. If this structure
is broken, say by a subject suffering from insomnia, it is
possible that the scoring will be worse than if a fixed a
priori was used.

It is an interesting property of the classification sys-
tem, that in general the system which performs best in
per-epoch accuracy will typically produce quite strongly
biased sleep efficiency estimates. This is an easily ex-
plained phenomenon, but since it has not been explicitly
noted by previous workers in the field, we will include a
brief explanation. Consider the two-class problem with
Wake Epochs denoted as W and Sleep Epochs as S. We
denote the number of epochs correctly classified as W
by TW, correctly classified as S by TS, falsely classified as
W by FW, and falsely classified as S by FS. We also denote
N=TW +TS+FW +FS as the total number of epochs
classified. The sleep/wake per-epoch accuracy of such a
system is given by the expression (TS+TW)/N.If the cost
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of all errors is equal, then this is the quantity which will
be maximised by a discriminant classifier. However, the
expert estimate of sleep efficiency is given by
(TS+FW)/N and the system’s estimate is given by
(TS+FS)/N. Hence, in general there will be a bias be-
tween the sleep efficiencies reported by a human expert,
and that reported by the classifier. The sleep efficiency
bias is given by (FS-FW)/N. Since in Table 3, the bias is
always negative, FW exceeds FS. This makes sense since
in our data, there are more sleep epochs than wake, so if
the probability of error is equal either way, we will end
up with many more FW than FS epochs. As described in
the methods section the average sleep efficiency bias (i.e
the value of (FS-FW)/N) was determined on the training
data and this correction factor applied to the test record-
ing. The “Corrected Sleep Efficiency Bias” row in Table 3
shows these results. These results show the overall im-
provement in the bias.

A goal of this study was to evaluate whether the pres-
ence of OSAS strongly confounded the feasibility of per-
forming sleep staging using cardiorespiratory signals. It
seems highly plausible that OSAS should have a delete-
rious effect, as it causes significant changes in both res-
piration and heart rate. The system described in [20] re-
ports a performance of k =0.33 and a Total Accuracy of
68 %, for a fixed a priori quadratic discriminant three-
class classifier, tested on a database consisting of sub-
jects with mild OSAS (AHI of less than 10 events per
hour). The results obtained here (x =0.34, Total Accu-
racy =63 %) using an identical classifier, on a database

N
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of subjects with no significant presence of OSAS, are
consistent with these findings and suggest that sleep ap-
nea is not the primary limitation in the use of cardiores-
piratory signals to score sleep. In particular, in this ear-
lier paper, the classification accuracy was marginally
higher for the high-AHI class. For comparison, we note
that Hedner et al. report a modest decrease in sleep-
wake classification accuracy using actigraphy as they
move from normal to severe OSAS subjects [11].

It is instructive to compare the sleep/wake classifica-
tions achieved using cardiorespiratory measurements
with those achieved using actigraphy in several repre-
sentative publications. (Recall: the best performing car-
diorespiratory classifier system gave an accuracy of
89 %, with the other classifiers tested providing accura-
cies between 80.4 % and 83.6%.) In [27], a group of 34
older adults being treated for chronic primary insomnia
was studied. The overall accuracy of epoch classification
was 83.1 %, with most errors occurring due to wake be-
ing classified as sleep. Hedner etal. [11] evaluated wrist
actigraphy in 228 subjects ranging from normal adults
to those with severe sleep apnea. The accuracy of sleep-
wake classifications ranged from 86 % (normals) down
to 80% (severe obstructive sleep apnea). In [18], the
sleep/wake classification accuracy was 86.6% (mea-
sured in 14 healthy subjects, over a seven night period).
We conclude that the performance of the proposed car-
diorespiratory system on an epoch-based accuracy basis
is comparable with existing actigraphy methods.

There are several limiting factors in this study (some
of which are generally applicable to other studies in the
field). Firstly, the gold standard we use (polysomnogra-
phy scoring of sleep stage) has limited accuracy itself,
even for distinguishing sleep from wake. For example, in
Anderer etal. [2], the sleep/wake classification agree-
ment between two human expert scorers is reported as
close to 90 %. In particular, there will always be relatively
high inter-scorer variability on distinguishing Stage 1
sleep from wake.

We have focused our efforts in this analysis on per-
epoch sleep/wake classification and sleep efficiency.
There are other parameters (e.g., sleep onset latency,
wake time after sleep onset, and number of awakenings)
which may have more physiological and clinical utility,
but which we have not reported here.

Our three-class classifier system attempts to distin-
guish REM from NREM and wakefulness. However, in
our polysomnography annotation we do not differenti-
ate between phasic and tonic REM. Phasic REM is asso-
ciated with characteristic changes in heart rate [32] and
respiration, so it is reasonable that tonic and phasic REM
might give rise to quite different cardiorespiratory fea-
tures.

Finally, the studied population is composed solely of
men, with an average BMI of over 30, and a mean age of
42.0ne can speculate that the cardiorespiratory markers
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of sleep may be more robust across a younger subject
group with a lower BMI. While the data presented here
provide no evidence to support such an extrapolation,
we do expect the system to perform at least as well on a
more general population.

Apart from the obvious gains which would be associ-
ated with discovering that the general population is
physiologically well-behaved with regards to cardiores-
piratory sleep staging, we must also strive to adjust our
algorithm so as to improve our performance on the sub-
ject group presented here - as such advances will likely
provide an improvement in the results for the general
population.

Current avenues of interest include a more intricate
use of the knowledge of how sleep stages unfold as a
function of time, an investigation of further features to
complement the existing cardiorespiratory features dis-
cussed here, and possibly the addition of other routinely
or easily recorded signals - such as photoplethysmogra-
phy - which will facilitate the enhancement of the fea-
ture set described above.

Conclusions

We have designed and tested a system for automatic
sleep staging which relies solely on an electrocardio-
gram signal and an inductance plethysmogram estimate
of respiratory effort. The system has been tested on a
database of middle-aged subjects with an average BMI
of 30.7. A number of classifier models have been com-
pared. The best performance obtained was achieved by
a linear discriminant classifier model using a time-de-
pendent a priori probability. For a 3-class (W, S, R) sys-
tem an agreement of K =0.45 was seen, which increases
to kK =0.57 when a simplified 2-class (W, S/R) system is
considered. However, there is a possible draw-back as-
sociated with the use of a time-dependent a priori if the
assumed structure of the sleep record is not obeyed. The
classification performance in this OSAS-free population
did not differ significantly from that reported in a pop-
ulation with OSAS.

To conclude, cardiorespiratory signals provide rea-
sonable sleep-wake classification accuracy, comparable
to that shown by actigraphy. We suggest that cardiores-
piratory-based sleep staging may be a useful addition to
home sleep apnea monitoring systems which lack EEG
measurement capability, and hence cannot distinguish
sleep from wake.
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