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Abstract
The performance of crop plants is critically affected by biotic and abiotic stress. These stressors threaten food availability by 
reducing overall crop yield and productivity. Changes in chromatin state by epigenetic modification are part of plant adap-
tive and survival responses and are considered pivotal for improving agronomic traits. Epigenetics is an exciting field that 
involves heritable gene expression changes that do not require changes in DNA sequence. Epigenetic modification is well 
known as a crucial player in plant phenotypic diversity and defense against pathogens. Hence, there is a growing interest in 
unlocking the epigenome for crop improvement. Herein, we highlight the epigenetic modifications implicated in plant biotic 
stress response and their contributions to important agronomic traits. We also discussed adopting epigenetics to expand 
phenotypic diversity and produce desired characteristics in crop plants.
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Introduction

One of the United Nations’ 2030 envisioned sustainable 
development goals is the alleviation of hunger, termed “End 
Hunger,” a process achievable through sustainable food 
production (Nations and Affairs 2015). Food availability is 
highly challenged by the constant adjustments in environ-
mental and climatic conditions. An additional significant 
challenge for crop plants is biotic stress elicited by pests and 
pathogens. These factors directly or indirectly affect crop 
yield, development, growth, and nutritional values, thereby 

threatening food security. For instance, pathogens and pests 
alone account for approximately 30% of the global yield 
loss of major staple crops (Savary et al. 2019). In the mid-
twentieth century, banana commercialization was drastically 
reduced due to the epidemic of banana Fusarium wilt dis-
ease (Dita et al. 2018). In addition, to yield loss, pests and 
diseases reduce the quality of crops and make plants serve 
as vectors of food pathogens (Rizzo et al. 2021). Hence, the 
management of pests and diseases remains indispensable for 
crop improvement and sustainable food production.

In the course of rising food security, the use of fertilizers 
and pesticides was adopted; however, their contribution to 
environmental hazards and health risks limited their applica-
tion; thus, a better alternative become very necessary (Aktar 
et al. 2009; Nicolopoulou-Stamati et al. 2016). Although 
genomic selection and genetic engineering are currently 
making waves in improving agronomic phenotypes and dis-
ease resistance, those approaches rely on alterations of DNA 
sequence (Datta and Security 2013). Therefore, to conserve 
genetic sequence and prevent the potential loss of essential 
genes, epigenetics emerged as a powerful source of pheno-
typic diversity that only influences gene function (Deans and 
Maggert 2015). The term epigenetics was coined by Conrad 
Waddington, denoting “in addition to genetics” (Tronick and 
Hunter 2016). It is a heritable alteration in gene expression 
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that does not result from changes in DNA sequences. Natural 
epigenetic variation can occur spontaneously due to errors 
in the epigenetic maintenance system. It can also be trig-
gered by environmental factors such as stress and genomic 
changes, including transposon insertion and paramutation 
(Springer and Schmitz 2017; Angers et al. 2020).

Epigenetics can be artificially induced using chemical 
agents and a targeted or non-targeted mutation in the epige-
netic machinery (Springer and Schmitz 2017). Plants show 
robust epigenetic variation, which accounts for their phe-
notypic plasticity, i.e., their ability to produce varying phe-
notypes from one genotype (Agarwal et al. 2020, Sun et al. 
2021). DNA methylation, histone modification, and RNA 
silencing are critical epigenetic mechanisms that underpin 
several phenotypic changes in the plant. These epigenetic 
modifications have been found to pass across generations, 
creating a platform for exploiting the epigenetic changes for 
improved crop production (Akimoto et al. 2007; He and Li 
2018; Zhi and Chang 2021). Studies have shown that epige-
netic modifications contribute to important agronomic phe-
notypes and act as key players in plant defense responses 
against pathogens (Gupta and Salgotra 2022; Hannan Parker 
et al. 2022). To this end, a detailed understanding of epige-
netics’ involvement in disease resistance and other important 
agronomic traits remains indispensable for its adoption in 
growing resilient crops that meet agronomic demands.

Epigenetics shapes the plant immune/
defense systems

Plants have a long history of interaction with pathogenic 
soil microbes. This interaction takes the form of an action-
reaction response, described by Jones and Dangl as a zigzag 
model, whereby the action of a pathogen triggers a plant 
immune reaction for survival (Jones and Dangl 2006). The 
primary line of defense in plant immunity is the pathogen/
microbe-associated molecular pattern (PAMP or MAMP)-
triggered immunity (PTI). PTI is elicited by the recogni-
tion of specific molecular patterns (such as bacteria flagel-
lin, peptidoglycan, lipo-oligosaccharides, and elongation 
factor, TU; fungi chitin and xylanase; oomycetes glucan) 
by pattern-recognition receptors (PRR) localized on the 
plant plasma membrane (Boller and Felix 2009; Zipfel and 
Robatzek 2010; Choi and Klessig 2016). The perception of 
PAMP activates downstream signaling components, includ-
ing mitogen-activated protein kinase (MAPK), reactive oxy-
gen species (ROS), and defense hormones (salicylic acid, 
ethylene, and jasmonic acid) for the elimination of invading 
pathogens (Ramirez-Prado et al. 2018; Saijo et al. 2018). 
Pathogens strategize and secrete effector molecules that sub-
vert PTI (Göhre and Robatzek 2008). Plants, in turn, coun-
ter this effector activity through the secondary defense line, 

effector-triggered immunity (ETI). Plants use their resistance 
(R) gene product, particularly the intracellular nucleotide 
binding and leucine-rich repeat (NLR) receptor, to detect 
pathogen effectors and elicit ETI that induce activation of 
disease-responsive genes for pathogen resistance (McDow-
ell and Simon 2008; Cui et al. 2015). Plant immunity and 
defense response are fine-tuned by epigenetic mechanisms. 
Evidence has shown that defense-associated hormone sign-
aling, transcription factors, and defense-responsive gene 
expression are under tight epigenetic control (Zhu et al. 
2016; Ramirez-Prado et al. 2018). Plants utilize this epi-
genetic control to balance active disease resistance and fit-
ness costs associated with constitutive activation of immune 
the response (Richard et al. 2018a, b). Table 1 summarizes 
several epigenetic changes that shape the defense response.

DNA methylation in plant defense framework

DNA methylation is an epigenetic mechanism involving the 
methylation of the DNA base, cytosine in the Carbon-5 posi-
tion. It occurs in three DNA sequence contexts: CG, CHG, 
and CHH (where H could be A, C, or T) (Cokus et al. 2008; 
Zhang et al. 2018). In plants, de novo DNA methylation is 
triggered by small interfering RNA (siRNA), mediated via 
the RNA-directed DNA polymerase (RdDP) pathway, and 
catalyzed by domain-rearranged DNA methyltransferase 2 
(DRM2) (Erdmann and Picard 2020; Gallego-Bartolomé 
2020). The canonical RdDP process involves the synthesis of 
24-nucleotide small interfering RNA (siRNA) by the com-
bined activity of Pol IV, RNA-dependent RNA polymerase 2 
(RDRP2), and dicer-like 3 (DCL3) (Zhang et al. 2018). The 
siRNAs are loaded into Argonaute (AGO) proteins and bind 
complementary Pol V RNA transcript for directing DNA 
methylation Liu et al. 2018a, b). While DRM2 catalyzes de 
novo DNA methylation, other enzymes such as methyltrans-
ferase 1 (MET1), Chromomethylase 3 (CMT3), and CMT2 
maintain DNA methylation in the CG, CHG, and CHH con-
texts, respectively (Erdmann and Picard 2020). Notably, 
DRM2 also plays a crucial role in CHH DNA methylation 
maintenance (He et al. 2011). The removal of the C-5 methyl 
group on cytosine of the DNA sequence (demethylation) in 
plants is mediated by DNA glycosylase members such as 
Demeter (DME), Repressor of silencing 1 (ROS1), Deme-
ter-like 2 (DML2) and DML3 through base excision repair 
mechanisms (Li et al. 2018).

Myriads of studies have shown that DNA (de)methyla-
tion regulates the expression of defense responsiveness. As 
DNA methylation is attributed to gene silencing and DNA 
demethylation to gene activation, it is found that treat-
ment of rice plants with DNA methylase inhibitors such as 
5-azacytidine or 5-aza-deoxycytidine causes activation of 
disease-resistance genes and the development of disease 
resistance in rice plants (Akimoto et al. 2007; Atighi et al. 
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2020). In the same line, studies in the model plant, Arabi-
dopsis thaliana reveal that mutant strains bearing defective 
DNA demethylation exhibit compromised MAMP-triggered 
immunity, resulting in susceptibility to bacteria pathogens 
(Yu et al. 2013; Huang et al. 2022). In contrast, mutants 
with impaired RdDM and DNA methylation maintenance 
exhibit high resistance to the Pseudomonas syringae pv 
tomato DC300 (pst) (biotrophic pathogen) compared to the 
wild type (Dowen et al. 2012; Yu et al. 2013). Correspond-
ingly, salicylic acid (SA) signaling-related genes, including 
pathogenesis-related (PR) genes are downregulated in for-
mer mutants and upregulated in the later mutants, demon-
strating the crucial role of DNA demethylation in PTI and 
activation of defense-responsive genes. More so, partners in 
the RdDM pathway, including AGO4, PiolV, and DCL, have 
also been shown to be involved in plant immunity (Agorio 
and Vera 2007; Zhu et al. 2016).

Genome-wide DNA methylation profiling in plants shows 
that DNA methylation is conserved mainly in transposable 
elements (TE) and repeat sequences and correlates with the 
silencing of nearby genes in cis (Bender 2004; Tirnaz and 
Batley 2019a, b). Hence, (de)methylation of promoter TE 
of defense-related genes upon biotic stress promotes their 
expression/suppression to modulate immune response, as 
shown in Fig. 1. For instance, TE insertion upstream of 
ZmCCT, a resistance gene for maize Gibberella stalk rot 
disease, causes enrichment of methylated GC, resulting in 
ZmCCT suppression and disease susceptibility (Wang et al. 

2017a, b, c). DNA demethylases mainly target the promoter 
transposons and repeat elements of the stress-responsive 
genes, triggering their activation for enhanced disease resist-
ance (Le et al. 2014). Studies show that the promoter trans-
posable and repeat elements of Xa21G (Oryzae resistance 
gene), RMG1 (Arabidopsis bacteria resistance gene), and 
RLP43 gene (Orphan immune receptor gene) are hypometh-
ylated and expressed upon pathogen infection for enhanced 
disease resistance (Akimoto et al. 2007; Halter et al. 2021). 
DNA methylation of the promoter in the Miniature inverted-
repeat TEs (MITEs) of PigmS (susceptible to rice blast, 
Magnaporthe oryzae) represses PigmS expression. This 
methylation hinders PigmS-mediated inhibition of PigmR, 
a gene known to confer resistance to rice blast diseases 
(Zhai et al. 2017). Moreover, the constitutive expression of 
PigmR has an associated yield loss; hence, DNA methyl-
ation-induced regulation of PigmS expression is essential 
to balance the PigmR-incurred yield cost and associated 
disease resistance (Zhai et al. 2017). Although promoter 
cytosine methylation is often attributed to the repression of 
defense-responsive genes, it is crucial to note that this does 
not apply to all cases. The enhanced expression of the rice 
blast resistance gene, pib, under hypermethylation of the 
promoter region (Li et al. 2011) is a typical example reveal-
ing that DNA methylation of the promoter sequence can also 
function as a positive regulator of defense gene expression.

In contrast to promoter TE DNA methylation, the expres-
sion of genes bearing cytosine methylation in the gene body 

Fig. 1  Epigenetic involvement in plant immune response and disease resistance. Biotic stress induces epigenetic modifications at defense-related 
genes, resulting in gene expression changes and increased disease resistance
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is context-dependent, where CG methylation positively regu-
lates gene expression and CHG/CHH methylation negatively 
regulates gene expression (Zhang et al. 2006; You et al. 
2012; Wang et al. 2017a; b, c). CG methylation is predomi-
nant in the gene body, however, whole-genome methyla-
tion analysis of the NLR genes of common bean (Phaseolus 
vulgaris) shows surprisingly high gene body methylation in 
the three sequences, CG, CHG, and CHH, correlating with 
low NLR gene expression (Richard et al. 2018a, b). In gen-
eral, it can be deduced that DNA (de)methylation regulates 
several aspects of plant immune response to biotic stress. 
With the growing evidence of target manipulation of DNA 
methylome and their transgenerational inheritance, DNA 
methylation represents a promising approach for improving 
disease-resistance phenotype of crop plants.

Histone modification regulates plant immunity

DNA is packaged in the chromatin as a bead-like repeat unit 
called nucleosome, comprising eight core histone proteins 
(two H2A/H2B dimers and one H3/H4 tetramer) in which 
DNA bases wrap (Jansen and Verstrepen 2011). An external 
linker histone H1 binds nucleosome 10 bp at both entry and 
exit site of the core nucleosome to form the chromatosome 
complex (van Holde and Zlatanova 2007; Cutter and Hayes 
2015). The function and architecture of the chromatin sys-
tem is regulated by post-translational modification in his-
tone tails. Histone modification entails adding one or more 
chemical groups, including acetyl, methyl, ubiquitin, phos-
phoryl, SUMO, carbonyl, and glycosyl, to the histone tail by 
histone writers. These modifications regulate the function of 
chromatin by determining the transcriptional conditions of 
genes (Kouzarides 2007; Gelato and Fischle 2008). Acety-
lation and methylation of core histone proteins are the key 
chromatin modifications that regulate plant defense against 
biotic and abiotic stress (Kumar 2018; Varotto et al. 2020). 
Histone ubiquitination and Linker histone H1 have also been 
implicated in stress response at the epigenetic level (Rutow-
icz et al. 2015; Zarreen et al. 2022).

Histone acetylation and defense response

The histone writer, histone acetyltransferase (HAT), is 
responsible for adding an acetyl mark to the lysine residue 
of histone. In contrast, histone deacetylase (HDAC) is the 
eraser that removes the acetyl mark from histone. Histone 
acetylation is associated with euchromatin formation (tran-
scription activation), which has been shown to regulate plant 
immunity and defense response. For, instance the NLR genes 
(SNC1) of Arabidopsis thaliana demonstrates high expres-
sion with enhanced pathogen resistance in histone deacet-
ylase HDA9 loss of function mutation upon pathogen pst 
infection (Yang et al. 2019). The Chip-Seq analyses reveal 

that HDA9 deacetylates H3K9 in the gene loci, suggesting 
that acetylation in this locus (due to the HDAC mutation) is 
linked to the NLR gene expression and the pathogen resist-
ance observed. More so, H4K12ac has been shown to modu-
late the expression of defense response genes such as the R 
protein families during common bean interaction with fungal 
rust (Uromyces appendiculatus) pathogen (Ayyappan et al. 
2015). Interestingly, histone acetylation mediates resistance 
against pathogens by inducing SA defensive signaling and 
the PTI response. For example, histone acetylation defective 
mutants, HAC1/5, exhibit impaired induction of PR1/2 genes 
(SA-responsive genes), leading to reduced basal resistance 
to bacterial infection (Jin et al. 2018). A loss of function 
mutations of the histone acetylation enzyme Histone Acetyl 
Transferase 1 (HAC1) reduce PTI priming, thereby enhanc-
ing susceptibility to bacterial infection in environmentally 
challenged plants (Singh et al. 2014). It was found that 
environmental stress induces the enrichment of the histone 
acetylation mark on PTI-responsive genes, which keep the 
chromatin in an open state such that, upon bacterial infec-
tion, these genes are transcribed to inhibit bacteria growth. 
HACI mutants did not resist bacterial infection even though 
they underwent repeated stress induction, suggesting that 
environmental stress promotes plant immunity by inducing 
histone acetylation (Singh et al. 2014).

Similarly, silencing of histone deacetylase701 (HDT701), 
a histone H4 deacetylase in transgenic rice, results in ele-
vated transcription of PTI-related genes, ROS production, 
and resistance to the rice fungal pathogen Magnaporthe 
oryzae and the bacterial pathogen, Xanthomonas oryzae pv 
oryzae (Ding et al. 2012). In addition to the proven implica-
tion of histone acetylation in plant defense, the finding that 
the soya bean pathogen, Phytophthora sojae, produces an 
effector, PsAvh23, that disrupts the acetylation function of 
HAT as a counter-defense mechanism to promote disease 
susceptibility (Kong et al. 2017) supports the positive cor-
relation between histone acetylation and PTI induction. In 
addition, loss of function mutations of the histone deacety-
lases, HDA19 and HDA6, promote increased resistance to 
bacteria and activation of SA-responsive genes (PR genes) 
(Choi et al. 2012; Wang et al. 2017). A contrasting report 
by Kim et al. related HDA19 loss of function mutation to 
bacteria susceptibility and reduced induction of SA-respon-
sive genes (Kim et al. 2008). However, a separate study by 
Choi and partners demonstrated that HDA19 mutants dis-
play enhanced expression of SA defense-responsive genes 
(PR1 and PR2) with a boost in bacterial resistance (Choi 
et al. 2012). The Chip-assay in this later study revealed a 
higher level of H3Ac in the promoter regions of PR1 and 
PR2 of HDA19 mutants than in the wild type. Given this 
evidence, the difference in these studies could be attrib-
uted to varying experimental conditions. Correspondingly, 
exogenous treatment of plants with SA or its analogue 
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(2,6-dichloroisonicotinic acid) evokes the acetylation of 
histones 3 and 4 at PR1 and PR2 promoters to facilitate 
gene expression (Choi et al. 2012; Jin et al. 2018; Chen 
et al. 2020). Since similar SA defense signaling is elicited 
upon plant challenge by a biotrophic pathogen, it implies 
that histone acetylation is necessary for defense against bio-
trophs (Alvarez-Venegas et al. 2007; Yang et al. 2015; Jin 
et al. 2018). Therefore, artificial modulation of HAT could 
enhance plant resistance to biotrophs. On the other hand, 
jasmonic acid (JA) and ethylene are integral to plant defense 
against the necrotrophic pathogen (Berr et al. 2010). HDA19 
and HDA6 transcripts are induced by JA and ethylene treat-
ment and mediate resistance against the necrotrophic patho-
gen; thus, they could be required for defense priming against 
necrotrophic pathogens (Ding and Wang 2015; Zhu et al. 
2016; Ramirez-Prado et al. 2018).

Histone methylation and defense response

Histone methylation occurs both in lysine and arginine. 
The histone methylation writer includes the lysine writer, 
histone lysine methyltransferase (HKMT), and the arginine 
writer, protein arginine methyltransferase (PRMT). Methyl 
marks on histone lysine residues are removed in plants by 
two histone demethylation enzymes, lysine-specific demeth-
ylase-1 and Jumonji C (JmjC) (Bannister and Kouzarides 
2011; Ding and Wang 2015). The HKMT of plants is a 
SET domain-containing protein involved in various pheno-
typic changes in response to both biotic and abiotic stress 
(Huang et al. 2016; Lee et al. 2016). Histone methylation 
could be a repressive or active mark depending on the lysine 
residue involved and the number of methyl groups involved; 
for instance, methylation of lysine 4 residues of histone 3 
(H3K4me) is associated with transcription activation and 
induction of different readouts that induce gene expression. 
H3K36me3 (Histone 3 lysine 36 trimethylation) is also a 
transcriptional activating mark, while H3K9, H3K27 and 
H4K20 di- and tri-methylations are linked to gene silencing 
(Li et al. 2007; Liu et al. 2010; Jørgensen et al. 2013).

Histone lysine methylation is a conserved mechanism that 
regulates defense responses against pathogens by modulat-
ing the expression of defense marker genes and SA, JA, 
and ethylene signaling. Arabidopsis SET Domain Group 
8 (SDG8), an HKMT that catalyzes H3K36me3, has been 
shown to promote plant defense against necrotrophic fungi 
via the induction subset genes of the JA and ethylene sign-
aling (Berr et al. 2010). SDG8 loss of function mutants 
maintain the same level of JA/ethylene as wild type but 
exhibit impaired induction of JA/Ethylene pathway genes 
and reduced fungal resistance. The Chip analysis reveals that 
SDG8 targets and methylates H3K4 of defense marker genes 
downstream of JA/Ethylene pathway. As such, the induction 
of these genes is impaired in the SDG8 mutants, suggesting 

that SDG8-induced H3KA methylation of the JA/ethylene 
pathway genes is critical for defense against necrotrophic 
fungi (Berr et al. 2010).

Another plant HKMT important in regulating the expres-
sion of disease-resistance genes is Arabidopsis trithorax 1 
(ATX1). A Loss of function ATX1 mutants demonstrates 
increased P. syringae susceptibility and downregulation 
of WRKY70 genes and PR genes (Alvarez-Venegas et al. 
2007). WRKY70 is a transcription factor at the node of 
convergence between two antagonist pathways (the SA and 
JA pathways), mediating activation of the SA and repres-
sion of the JA defense response. ATX1 establishes H3K4 
methylation mark on WRKY70, thereby driving activation 
of the downstream PR genes of SA defense signaling. Inter-
estingly, the ATX1-induced H3K4me3 mark also exists in 
both the active PR genes and the repressed JA-responsive 
genes, suggesting that this mark could function to keep the 
genes prepared for rapid transcriptional change (Alvarez-
Venegas et al. 2007). In addition, the histone methyltrans-
ferase, KRYPTONITE, coordinates with CMT3 and medi-
ates transcriptional gene silencing of viral genomes (Sun 
et al. 2015).

Besides methylation, demethylation of repressive his-
tone methylation marks induces activation of the defense 
response, as has been demonstrated using the histone lysine 
demethylase, Jumonji C domain protein JMJ705, which trig-
gers removal of the repressive methyl mark H3K27me2/3 
under pathogen (Xanthomonas oryzae) infection, causing 
increased rice resistance to Xanthomonas bacterial blight 
disease (Li et al. 2013). Similarly, JmjC domain-containing 
protein 27 (JMJ27), an H3K9 demethylase, is expressed 
under pst infection, and its loss-of-function mutants show 
weakened PR gene expression and poor resistance to the 
bacterial pathogen, demonstrating that JMJ27 is involved 
in mediating defense against the bacterial pathogen (Dutta 
et al. 2017).

Histone ubiquitination and defense response

Ubiquitin is a small regulatory protein that is marked on 
the lysine residue of substrate protein by the coordinated 
action of three enzymes; ubiquitin-activating enzyme E1, 
ubiquitin conjugase E2, and ubiquitin ligase E3 (Neutzner 
and Neutzner 2012). This modification is reversed by the 
ubiquitin-specific proteases or deubiquitinases. Ubiquitina-
tion process including monoubiquitination (Single ubiquitin 
per lysine residue) and polyubiquitination (chain of ubiquitin 
per lysine residues) regulate diverse cellular processes in 
both plant and animals (Sadanandom et al. 2012; Sampson 
et al. 2023). While polyubiquitination is known to target 
proteins for proteasome degradation, monoubiquitination 
is involved in non-proteolytic function including chromatin 
modification, protein translocation, and protein interactions 
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hence histone monoubiquitination is more predominant than 
polyubiquitination (Nakagawa and Nakayama 2015; Mat-
tiroli and Penengo 2021; Magits and Sablina 2022).

H2A and H2B monoubiquitination identified as H2Aub 
and H2Bub, respectively, is the most studied histones ubiq-
uitination. H2Aub is catalyzed by polycomb group (PcG) 
repressive complex 1 (PRC1) and is associated with a het-
erochromatin state (Bratzel et al. 2010; Kalb et al. 2014; 
Barbour et al. 2020). H2Aub colocalizes with the transcrip-
tional repressive histone mark HK3me to regulate several 
developmental and abiotic stress responses by mediating 
gene silencing (Lee et al. 2015). In plants, H2Bub is cata-
lyzed by E2 ubiquitin-conjugating enzymes (UBC1, UBC2 
and UBC3) and E3 histone monoubiquitination 1 (HUB1) 
and HUB2 (Fleury et al. 2007; Cao et al. 2008; Xu et al. 
2009). Contrary to H2Aub, H2Bub is associated with an 
active chromatin state, and its diverse role including pho-
tomorphogenesis, circadian clock regulation, development 
and stress responses is linked to its ability to promote tran-
scription activation (Zarreen et al. 2022). Although the role 
of histone ubiquitination in plant immunity and biotic stress 
response is still emerging, studies using HUB and UBC 
mutants demonstrate that H2Bub facilitate the expression 
of defense-responsive gene during pathogen invasion (Dha-
wan et al. 2009; Hu et al. 2014; Zhang et al. 2015a, 2015b).

Linker histone H1 in epigenetic and defense response

Unlike core nucleosome histones, the role of H1 in chro-
matin structural modification and overall epigenetic state 
is poorly characterized. H1 proteins are known to facilitate 
chromatin compaction and stability (Fyodorov et al. 2018; 
Willcockson et al. 2021) They are found to be enriched in 
the heterochromatin region thus, they are associated with 
transcription repression (Zlatanova 1990). However, the 
growing interest in dissecting the role of H1 at the epigenetic 
level shows that H1 is not a global transcriptional repressor 
as H1 depletion does not lead to significant expression of 
some genes (Fan et al. 2005). Hence, H1 modulates epige-
netic state by altering the transcription of specific genes. 
Studies show that H1 regulates gene expression by interfer-
ing with histone modification and DNA methylation (Yang 
et al. 2013; Willcockson et al. 2021).

In plants, H1 regulates development and gene imprinting 
in a manner that is linked to DNA methylation changes at 
specific gene loci (Wierzbicki and Jerzmanowski 2005; Rea 
et al. 2012; Rutowicz et al. 2019). Some H1 variants have 
been associated with adaptive stress response in plants. For 
instance, H1-3 variant of Arabidopsis thaliana, H1-S vari-
ant of tomato, H1-C and H1-D variant of tobacco and H1-D 
variant of wild tomato L. pennellii are identified as vari-
ants that show high expression under abiotic stress induc-
tion, thus they are called stress-induced variants (Wei and 

O'Connell 1996, Scippa et al. 2004, Wang, Wang et al. 2014, 
Rutowicz et al. 2015). Compared to abiotic stress response, 
the role of H1 variants in plant immunity and biotic stress 
response is under-examined. A recent study by Sheik et al. 
investigated the implication of H1 variant mutants in plant 
immunity and defense priming (Sheikh et al. 2023). It is 
found that H1 variants h1-1, h1-2, and h1-3 triple mutants 
are totally resistance to bacteria pst DC3000 and fungal 
Botrytis cinerea infections but not the single mutants. The 
expression of PR1 genes and the levels of defense-related 
hormones and enzymes are elevated in the h1 triple mutant 
plants showing an increase in basal immunity (Sheikh et al. 
2023). Interestingly, the h1 triple mutant plants are insensi-
tive to flg22 defense priming and this is attributed to changes 
in DNA methylation and histone acetylation implying that 
H1 influences the epigenetic landscape of defense genes to 
modulate plant immunity response.

Antiviral defense and RNA silencing

Plants have developed multiple defense mechanisms against 
viruses. Their fundamental line of antiviral defense is 
through RNA silencing (Wang et al. 2012; Moon and Park 
2016; Akhter et al. 2021). Induction of resistant (R) genes 
and PTI-mediated defense response against the invading 
virus has also been identified (Soosaar et al. 2005; Calil 
and Fontes 2017; Sett et al. 2022). However, the mecha-
nism underpinning extracellular virus recognition for PTI-
mediated antiviral defense is not fully understood, as viruses 
do not encode PAMP (Leonetti et al. 2021). RNA silencing, 
which is the dominant virus defense mechanism in plants, is 
a conserved mechanism for regulating gene expression under 
the direction of small RNAs (sRNA). Two major sRNAs 
employed in plant antiviral defense mechanisms via RNA 
silencing are micro-RNA (miRNA) and small interfering 
RNA (siRNA) (Wang et al. 2012). RNA silencing regulates 
gene expression at the transcriptional level via siRNA and 
post-transcriptional level via either siRNA or miRNA (Sijen 
et al. 2001). The mechanism of RNA silencing involves 
the dicing of precursor sRNAs by DCL and loading of the 
synthesized sRNA into an AGO containing RNA-induced 
silencing complex (RISC), from where they are directed to 
the target genome for degradation or translational repression 
(Baulcombe 2004; Ding and Voinnet 2007). Perfectly paired 
long dsRNA serves as a precursor for siRNA synthesis while 
imperfectly paired short hairpin RNA serves as a precursor 
for miRNA synthesis (Guleria et al. 2011). miRNAs origi-
nate endogenously and target different loci from their source 
of generation. siRNAs in contrast, originate either endog-
enously or exogenously (virus, transposons or transgene 
precursors) and target the same loci from where they are 
generated (Tang et al. 2003; Ding et al. 2004). This feature 
makes siRNA well suited for antiviral defense hence siRNA 
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has been historically associated with plant natural antiviral 
immunity. Recent studies have postulated the involvement 
of miRNA in plant antiviral immunity (Llave 2004; Pérez-
Quintero et al. 2010). The success of artificial miRNA in 
plant viral defense also confirms the antiviral properties of 
miRNA (Satish et al. 2021).

The synthesis of siRNA is accompanied by second-
ary amplification via RNA-dependent-RNA polymerase. 
Through secondary amplification, more siRNAs are pro-
duced and spread to unaffected parts, providing immunity 
against the virus in those parts. This phenomenon explains 
one of Wingard’s (1928) observations while studying the 
symptoms of tobacco ringspot disease. He found that newly 
formed leaves in a tobacco ringspot virus-infected plant 
display a symptomless phenotype, implying the spread of 
antiviral immunity to these leaves (Wingard 1928). Simi-
larly, host recovery from virus infection has been reported 
in several other plants (Chellappan et al. 2004; Palukaitis 
2011; Nie and Molen 2015). SiRNA secondary amplifica-
tion is also important in maintaining defense against patho-
gens under artificially induced gene silencing (Song et al. 
2018). Defense against DNA viruses such as geminivirus 
is mediated via the RdDM pathway-associated DNA meth-
ylation and silencing of the viral genome by siRNA (Raja 
et al. 2008; Butterbach et al. 2014). Studies have shown 
that invading viruses counter RNA silencing defense by 
producing viral RNA silencing suppressors (vRSS) (Roth 
et al. 2004; Burgyán and Havelda 2011). Geminiviruses 
encode proteins that hijack RdDM machinery to impede 
transcriptional gene silencing (TGS). This process enables 
viral accumulation, and a typical example is a geminivirus-
encoded transactivator, AC2, which inhibits KYP-induced 
DNA methylation and transcriptional gene silencing (Sun 
et al. 2015). Following the ETI-mediated immune response, 
plants can in turn counter virus secondary pathogenicity by 
exploiting suppression of TGS, to upregulate expression of 
R genes under virus infection (Pumplin and Voinnet 2013; 
Moon and Park 2016; Diezma-Navas et al. 2019). Through 
this mechanism, the fitness cost associated with a long-term 
activation of defense genes is reduced, as R genes are acti-
vated only during infection.

The growing advances in RNA technology have facili-
tated the large-scale engineering of dsRNA, siRNA, hpRNA 
for improving plant immunity (Taliansky et al. 2021). In 
practice, exogenous treatment of plants with virus-derived 
dsRNA has been shown to confer resistance against viruses 
in several plants (Konakalla et al. 2021; Patil et al. 2021). 
RNA silencing presents a promising approach in agricul-
tural biotechnology as the knowledge of RNA silencing has 
been extrapolated for improving other agronomic character-
istics. However, RNA silencing technology still faces some 
limitations like off-target effect and decreasing effectivity 

across generations, which needs improvement for optimum 
application.

Epigenetics contribute to plant morphology, 
stress response, and nutritional value

The phenotypic diversity of important agronomic traits, 
such as flowering time, growth, nutritional value, yield, and 
others, has often been attributed to DNA sequence poly-
morphism. However, evidence has revealed that genetic and 
epigenetic modifications contribute to these traits. This con-
tribution is evident in epialleles, which are loci with altered 
chromatin states due to DNA methylation variation (Srikant 
and Wibowo 2021). Epialleles display phenotypes that vary 
from those of their wild type which can be passed across 
generations (Weigel and Colot 2012). Cases of phenotypic 
reversion to the wild-type phenotype are observed among 
epiallelic populations and correlate with reversion in the 
chromatin modification at the concerned locus (Jacobsen 
and Meyerowitz 1997; Cubas et al. 1999), clearly revealing 
that the phenotypic variations arise from epigenetic could 
only modification. Such reversion infers that epialleles are 
not stable across generations like genomic alleles. Naturally 
occurring epialleles were first reported in the Linaria vul-
garis Lcyc gene. The Lcyc epimutants, unlike the wild types, 
are heavily methylated and transcriptionally silent, resulting 
in floral morphology (radial symmetry) different from the 
wild type (bilateral symmetry) (Cubas et al. 1999). Similar 
spontaneous epimutation resulting from hypermethylation of 
the SBP-box promoter at the Colorless non-ripening (Cnr) 
locus has been reported in tomatoes and found to cause rip-
ening defects (Manning et al. 2006).

In rice plants, a related situation has been reported, where 
the promoter of the gene encoding adenylate kinase is hyper-
methylated, resulting in epialleles (Epi-ak1) that exhibit the 
albino phenotype in leaves and panicles (Wei et al. 2017). 
Besides hypermethylated epialleles, hypomethylation of the 
transcription termination region of the epigenetic short pani-
cle (Esp) gene and Fertilization-Independent Endosperm1 
(FIE1) gene, respectively, results in a gain of a function epi-
alleles, causing short panicle architecture and dwarf stat-
ure in rice (Zhang et al. 2012; Luan et al. 2019). Several 
other naturally occurring epialleles of agronomic value are 
associated with genetic influence, mainly from the spread of 
DNA methylation from the transposable element and repeat 
sequences. These include epialleles causing a transition from 
male to female sex in melon (Martin et al. 2009), epialleles 
causing dwarf phenotype and small grain size in rice (Miura 
et al. 2009; Zhang et al. 2015) and epialleles causing vitamin 
E accumulation in tomato (Quadrana et al. 2014). Paramuta-
tion is another source of epialleles that has been shown to 
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affect pigmentation and phosphate accumulation in maize 
(Chandler 2007; Pilu et al. 2009).

In addition to naturally occurring epialleles, experi-
mentally induced changes in DNA methylation produce 
heritable phenotypic changes in complex traits, as dem-
onstrated among epigenetic recombinant inbred lines 
(EpiRILs) (Springer and Schmitz 2017). EpiRILs are 
genetically identical homozygous lines that segregate 
at the DNA methylation level. EpiRIL population has 
been successfully constructed in A. thaliana by crossing 
homozygous DNA methylation defective mutants with 
the isogenic wild type (Johannes et al. 2009; Cortijo et al. 
2014). The EpiRIL population shows heritable variations 
in complex traits, which are accounted for by differential 
DNA methylation induced by the parent mutants (Johannes 
et al. 2008). Using the differentially methylated regions 
as biomarkers, epigenetic quantitative trait loci  (QTLepi) 
associated with phenotypic variation are mapped (Kooke 
et al. 2015). This process has been used to demonstrate the 
influence of epigenetics on complex traits such as flow-
ering time, plant height, root length, and abiotic stress 
response (Johannes et al. 2009; Cortijo et al. 2014; Kooke 
et al. 2015).

Another line of evidence can be obtained by pheno-
typing plants with defective DNA methylation emanating 
from 5-azacytidine treatment or mutation in the DNA (de)
methylation enzymes. Studies have shown that 5-azacyti-
dine treatment produces early flowering phenotypes, prema-
ture ripening of tomatoes, red pigmentation in apples, and 
reduced somatic embryogenesis in Arabidopsis (Kondo et al. 
2006; Zhong et al. 2013; Grzybkowska et al. 2018; Ma et al. 
2018). Related morphological effects, including aberrant 
developmental phenotypes, are observed among DNA (de)
methylation mutants (Kakutani et al. 1996; Li et al. 2018; 
Zhang et al. 2018). Recently, Liu et al. identified the thick-
ened aleurone mutants (ta2-1) in rice that emanate from a 
mutation in the DNA demethylase OsROS1 (Liu et al. 2018). 
Aleurone is a cell layer in seed endosperm, rich in protein, 
vitamins, and minerals; hence, the thickened aleurone of 
ta2-1 mutants depicts high nutritional content. It is observed 
that the ta2-1 mutants exhibit elevated DNA methylation in 
the CG and CHG of the endosperm when compared with 
the wild-type. In addition, two putative transcription fac-
tors for aleurone differentiation are hypermethylated and 
underexpressed in the ta2-1 mutants, implying that they are 
the target of OsROS1-induced DNA demethylation that hin-
ders the increase in several aleurone layers in rice (Liu et al. 
2018). In effect, altering OsROS1 activity could be a valu-
able approach for improving the nutritional value of rice.

Similarly, studies have shown that DNA demethylation is 
critical in accumulating prolamine, a seed storage protein in 
wheat and barley (Wen et al. 2012). Although prolamines are 
a rich source of plant dietary proteins, they are harmful to 

people with celiac disease because they contain autoimmune 
epitopes that trigger autoimmune reactions in these people 
(Gil-Humanes et al. 2010; Osorio et al. 2012). Analysis of 
the methylation status of the barley B-hordein gene, a pro-
lamine gene of barley, shows that the promoter CpG of the 
endosperm is demethylated (Sørensen 1992), thus proving 
that hypomethylation is necessary for prolamine accumula-
tion. Since DME is primarily expressed in the central cell 
of the female gametophyte that forms the endosperm, it is 
likely that DME-induced hypomethylation is responsible 
for prolamine gene activation in the endosperm. Hence, to 
develop celiac-tolerable wheat, Wen and associates show 
that RNAi-induced silencing of DME causes a reduction 
in prolamine level of about 67% (Wen et al. 2012). With 
the growing evidence of the contribution of DNA (de)meth-
ylation to agronomic traits, it follows that manipulating the 
activity of DNA (de)methylation enzymes could be a power-
ful means of developing desired phenotypes in crops.

More interesting is the active contribution of histone 
modification to phenotypic variations in the plant, especially 
in the regulation of flowering time. This is well noted in ver-
nalization, a situation in which flowering is enhanced under 
prolonged cold conditions. Vernalization-induced flower-
ing is mediated by silencing of the Flower Locus C (FLC) 
gene through modification of FLC locus with the H3K9 and 
H3K27 di- and trimethylation marks (Bastow et al. 2004). 
This silencing epigenetic mark is maintained even after ver-
nalization has ended but becomes erased during embryogen-
esis to ensure activation of FLC and continuous requirement 
of vernalization in every season (Sheldon et al. 2008). The 
epigenetic memory created during vernalization is main-
tained by the polycomb repressor complex and is mitotically 
transferred to the next generation of cells (De Lucia et al. 
2008). Similarly, several adverse environmental conditions 
that cause abiotic stress, such as high temperature, drought, 
flood, and high salinity, among others, induce an epigenetic 
response. This response is somatically memorable, enabling 
improved tolerability and performance of plants under sub-
sequent exposure to such stress (He and Li 2018).

Epigenetics for expanding phenotypic 
variation and epi‑modifications in plants

The completion of the genome mapping of many important 
plants has provided plant breeders with new or improved 
tools such as genome-wide association studies, which allow 
for a clearer understanding of the relationship between many 
genes and their phenotypes, encouraging more intense gene-
based breeding. This knowledge has significantly reduced 
the choice of high-performing cultivars and has significantly 
narrowed genetic diversity (Esquinas-Alcázar 2005; Morrell 
et al. 2011; Palmgren et al. 2015). Dense monocropping of 
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such high-performing cultivars is often a means to improve 
the value of the cultivated land in large commercial farm-
yards (Bruce 2012). Pitiably, though, such dense monocrop-
ping of genetically identical plants is highly vulnerable to 
host-adapted pests and diseases (Zhi and Chang 2021). It 
then becomes imperative to introduce advantageous disease-
relevant phenotypic variations while maintaining genetic 
integrity or to create enabling conditions for variations to 
appear when necessary (Forsman 2014). Disease-relevant 
phenotypes of interest may include the differential accu-
mulation of specific compounds, changes in photosynthetic 
activity, transpiration rate, leaf surface temperature, gas 
exchange, chlorophyll, and carotenoid concentration (Oerke 
et al. 2006; Bürling et al. 2011; Mahlein 2016; Cahon et al. 
2018; Reynolds et al. 2020). It may be possible to modify 
these phenotypes for crop pathogen resistance through epi-
genetic manipulations. Studies assert that changes in the 
“chromatin landscape” may be an important determinant 
of plant phenotypic variation and form a basis for rapid 
response or evolution under stress (Zhang et al. 2013; Diez 
et al. 2014).

The role of epigenetic mechanisms—DNA methylation, 
histone modifications—in controlling disease-relevant and 
other agronomic phenotypic variations through transcrip-
tome reprogramming when plants are subjected to biotic or 
abiotic stress has been demonstrated in several studies (Wal-
ley et al. 2008; Dowen et al. 2012; Yu et al. 2013; Johnson 
et al. 2015; Rambani et al. 2015; Kellenberger et al. 2016; 
López Sánchez et al. 2016; Muñoz-Viana et al. 2017; Anna-
condia et al. 2018; Wang et al. 2018; Geng et al. 2019; Yang 
et al. 2019; Atighi et al. 2020). Although the effects of modi-
fication of the epigenetic profile are not fully understood, it 
is possible to artificially control the induction of transcrip-
tome reprogramming towards the formation of desirable 
disease-resistance phenotypes capable of transgenerational 
inheritance. In this case, genetically identical epi-modified 
plants imbued with disease-relevant phenotypic variations 
would be produced (Cubas et al. 1999; Manning et al. 2006; 
Baubec et al. 2009; Martin et al. 2009; Long et al. 2011; 
Mirouze and Paszkowski 2011; Telias et al. 2011; Chen 
and Zhou 2013; Liu et al. 2015; Griffin et al. 2016). Such 
induced transgenerational epialleles, together with naturally 
occurring epialleles associated with disease-resistant phe-
notypes can be used for epi-breeding in which genetically 
identical plants with different epigenetic profiles are crossed 
to obtain a desired phenotype variation while preserving the 
genotype (Gallusci et al. 2017; Springer and Schmitz 2017; 
Latutrie et al. 2019; Tirnaz and Batley 2019a, b; Varotto 
et al. 2020).

Exploiting epigenetics for crop improvement

Environmental pressure and chemicals to which plants are 
constantly exposed generally affect the performance of 
plants by altering gene expression. Environmentally induced 
phenotypic changes are likened to epigenetics rather than 
genetic variation. For instance, a study showed that two 
populations of mangrove plant species grown under differ-
ent environmental pressure (salt Marsh and Riverside) show 
distinct phenotypes and extensive DNA methylation varia-
tion but little genetic variation; implying that their pheno-
typic differences are more a consequence of epigenetics than 
genetics (Lira-Medeiros et al. 2010). It is well established 
that plants can memorize past stress and use such memory 
to increase adaptive advantages against future stress (Odoh 
2017; He and Li 2018; Kenneth et al. 2018; Sun et al. 2021). 
In fact, plants previously exposed to stress perform better on 
subsequent exposure to the same stress than the native plants 
(Lämke and Bäurle 2017). In addition, exposure to one 
stress can induce adaptive advantages for another different 
stress, as exemplified in the enhanced herbicide resistance 
of grass weed Alopecurus myosuroides exposed to drought 
stress (Mohammad et al. 2022) and enhanced biotic stress 
resistance of A. thaliana plant exposed to cold, heat and 
salt stress (Singh et al. 2014). This phenomenon referred to 
as “priming against future stress” is attributed to epigenetic 
modifications in the stress-responsive genes (Conrath 2011; 
Jaskiewicz et al. 2011; Sun et al. 2021).

More interestingly, the stress-induced epigenetic state is 
somatically heritable, necessitating the application of this 
approach in training crops for smart performance under 
stress (Sani et al. 2013). Although there is limited evidence 
of transgenerational inheritance of these environmentally 
induced epigenetic traits as they are mostly reverted during 
meiosis, few studies have, however, shown that offspring 
of primed plants acquire differential DNA methylation of 
their parents and demonstrate enhanced stress tolerance 
(Paszkowski and Grossniklaus 2011; Cong et  al. 2019; 
Feiner et al. 2022). Therefore, effectors of DNA methyla-
tion should be considered in employing this approach for 
breeding stress-resilient crops. It is important to note that 
maintenance of stress-induced epigenetic memory is costly, 
especially when the stress is no more; hence, resetting the 
epigenetic state is an essential phenomenon adopted by 
plants to reduce associated fitness costs.

As discussed in previous paragraphs, DNA methyla-
tion loss of function mutation and the chemical inhibitors 
of DNA methylation such as 5-azacytidine and zebularine 
are valuable sources of epigenetic variation. They cause 
genome-wide perturbation of DNA methylation and pro-
duce several phenotypic variations of agronomic interest. 
However, their non-specific and broad effect (i.e., targeting 
varieties of genes) could produce undesired phenotypes such 
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as developmental abnormality, limiting their application in 
breeding specific traits (see Fig. 2). Nevertheless, they are 
employed in epigenome-wide studies to investigate the effect 
of DNA modification in plants and identify good candidate 
genes for targeted epigenome modification (Fieldes and 
Amyot 2000; Griffin et al. 2016; Agarwal et al. 2020). For 
instance, In EpiRIL studies, the differentially methylated 
regions serve as biomarkers for mapping quantitative trait 
loci which are potential sites for target-specific epigenome 
editing (Cortijo et al. 2014).

Target manipulation of the epigenome to alter the expres-
sion of a gene of interest, as shown in Fig. 2, is critical. 
This precise epigenome engineering is made possible by the 
use of genome editing tools; zinc finger protein (ZF), tran-
scription activator-like effector (TALE), and clustered regu-
larly interspaced short palindromic repeats (CRISPR) and 
CRISPR associated (Cas) (CRISPR/Cas) system (Waryah 
et al. 2018; Gallego-Bartolomé 2020; Shin et al. 2022). In 
simple modifications of these systems, the gene editing tools 
which serve as tailor-made DNA binding domains are linked 
with effector epigenome modifiers, likely an epigenetic mod-
ifying enzyme or the recruiter for site-directed epigenetic 
modification. These tools have been successfully utilized 
to alter the expression of disease-related genes in animals, 
particularly inducing the re-expression of tumor suppressor 
genes (Huisman et al. 2016). Several studies have demon-
strated the application of ZF and TALE in producing specific 
desired phenotypes in plants. A typical example is targeted 
DNA methylation of FLOWER WAGENINGEN (FWA) epi-
allele using zinc finger protein fused with SUVH2, a SET 
and ring-associated (SRA) domain-containing protein (John-
son et al. 2014). The FWA gene is normally methylated and 
silenced, displaying an early flowering phenotype, whereas 
FWA epimutants are gain-of-function mutants exhibiting 

DNA methylation loss with ectopic expression of FWA and 
late flowering phenotype (Soppe et al. 2000). In those stud-
ies, it is found that ZF-SUVH2 construct, directed to FWA 
epialleles restores the early flowering phenotype of the wild-
type FWA gene due to targeted DNA methylation at the FWA 
locus that causes silencing of this gene (Johnson et al. 2014).

In another study, targeted demethylation of FWA using ZF 
fused with human demethylase, TET1 (Ten-Eleven Translo-
cation 1) causes FWA upregulation and heritable late flower-
ing phenotype like that of FWA epialleles (Gallego-Barto-
lomé et al. 2018). Recently, Veley et al. showed the relevance 
of epigenome editing in improving cassava resistance to cas-
sava bacterial blight disease. In the study, ZF combined with 
RdDM protein DMS3 (defective in meristem silencing 3) is 
used for targeted methylation of effector binding element 
(EBE) of cassava susceptibility gene meSWEET10a. The tar-
geted methylation prevents the expression of meSWEET10a 
and inhibits the binding of the pathogenic bacteria effector, 
TAL20, to this site, yielding cassava plants with increased 
resistance to bacterial blight (Veley et al. 2022).

Although ZF and TALE tools have proven valuable for 
epigenome editing, their labor-intensive, cost and time-
consuming nature necessitate the adoption CRISPR-Cas9 
system for targeted epigenome modification. CRISPR-Cas9 
is a robust and widely used genetic editing tool, composed 
of single-guide RNA that binds complementary DNA and 
a Cas9 endonuclease that produces a double-stranded break 
on the homologous DNA (Han and Kim 2019). This tool 
has been repurposed for epigenome modification using 
deactivate/dead Cas9 (dCas9) which has been fused with 
an effector enzyme (Waryah et al. 2018). The CRISPR-
dCas9 system is currently used to produce targeted tran-
scriptional modulation, histone modification, and DNA de/
Methylation in both plants and animals (Selma and Orzáez 

Figure. 2  Approaches to epigenome editing. The genome contains 
methylated and non-methylated regions. Targeted epigenome modifi-
cation such as DNA demethylation of gene A using epigenetic edit-
ing tools (CRISPR-dCas9, ZF, TALE) triggers specific DNA dem-

ethylation and results in the expression of gene A. DNA methylation 
mutants and chemical methylation inhibitor cause genome-wide DNA 
demethylation
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2021). For instance, the direct fusion of Arabidopsis histone 
acetyltransferase 1 (AtHAT1) to dCas9 improves drought-
resistance stress by promoting targeted gene expression acti-
vation of AREB1 a drought-responsive gene (Roca Paixão 
et al. 2019). dCas9 fused with ROS1 demethylase has also 
been shown to induce targeted reactivation of methylated-
silenced genes in Arabidopsis (Devesa-Guerra et al. 2020). 
Because the direct fusion of effector to dCas9 is associated 
with low modulation level, a modified version whereby 
effectors are recruited to CRISPR-dCas9 through aptamers 
such as Sun Tag, SAM (Synergistic Association Mediator), 
ScRNA (Scaffolding RNA) is developed (Konermann et al. 
2015; Papikian et al. 2019). This new model not only pro-
duced amplified expression but also accommodate the use 
of different effectors within a single CRISPR-dCas9 sys-
tem. The aptamer-dCas9 model has been demonstrated in 
plants with Sun Tag-TET1-dCas9 targeted on FWA genes 
and MS2-dCas9 system targeted on FT gene of Arabidopsis 
thaliana (Gallego-Bartolomé et al. 2018; Lee et al. 2019). 
In the latter construct, the MS2 is linked to effector VP64 
transcriptional activator, p300 HAT1 domain or KYPTON-
ITE, and produces altered flowering time phenotype based 
on the activation/repression of FT genes by each construct 
(Lee et al. 2019). These studies clearly validate the compe-
tence of this approach in generating desired characteristics in 
plants. Although epigenome editing is still emerging, several 
positive outcomes from these studies prove that epigenome 
editing serves as an effective and reliable means of creating 
desired agronomic phenotypes for crop improvement. Nev-
ertheless, there are technological shortcomings that need to 
be overcome for the effective translation of this approach in 
industries. One challenge is the inherent substrate promiscu-
ity of some effector enzymes which likely affect the study 
of specific substrate modification. Another critical challenge 
is the off-target DNA binding site observed when the con-
centration of the effector remains high following target site 
saturation. Optimizing the epigenome editing technology 
to overcome these limitations would improve the overall 
biotechnological application of this fascinating technology.

Future perspective

DNA methylation profiles respond quickly to environmen-
tal stimuli and can direct the evolutionary path of an entire 
genome (Tirnaz and Batley 2019a, b). Different DNA meth-
ylation profiles of introns, exons, and intron–exon bound-
aries are strongly associated with the regulation of DNA 
splicing events, which can generate novel functional or non-
functional genes or even inactivate genes (Zilberman et al. 
2007; Regulski et al. 2013; Tirnaz and Batley 2019a, b). In 
addition, the movement of TE, which mediates the evolu-
tion of resistance genes through transposon-mediated gene 

modifications such as copy number variations (CNV), seg-
mental and tandem gene recombination, or whole-genome 
multiplications, is determined by DNA methylation and 
other epigenetic marks, and the observation has been dem-
onstrated in several model plants, including rice, wheat, and 
cassava (Walker et al. 1995; Franzke et al. 2011; Lisch 2013; 
Saijo and Reimer-Michalski 2013; Sun et al. 2014; Wang 
et al. 2015; Wang et al. 2017; Neupane et al. 2018). It may 
be possible to epigenetically preprogram splicing events or 
control the movements of TE to create or destroy functional 
or dysfunctional genes or to inactivate genes in response to 
specific environmental stimuli, such as pathogen infection, 
in the whole plant or tissues exposed to pathogens, thus epi-
genetically creating genetically dynamic plants. This idea 
could be termed epigenetically directed genetic recombi-
nation if it is achieved someday.

While TE movements may be beneficial for increasing 
evolutionary plasticity, TE insertions are not always desir-
able as such movements may disrupt essential genes, espe-
cially artificially inserted genes that may not have indigent 
genes' epigenetic marks. Studies show that, in nature, DNA 
methylation has been used to control TE movements for 
genome stability through selective CG methylations. Such 
sequence-specific methylation guides can be used to pro-
tect artificially inserted genes (Biémont and Vieira 2006; 
Ito et al. 2013; Cavrak et al. 2014). However, more studies 
involving more plants are required to sufficiently understand 
the concept.

Some studies suggest that the epigenetic profile induced 
by certain biotic and abiotic stress is characteristic, con-
sistent, replicable, and stable down several generations of 
a plant (Manning et al. 2006; Tricker et al. 2013; Cortijo 
et al. 2014). Rodriguez and Wilkinson termed the epigenetic 
profile characteristic of certain biotic or abiotic stressors, 
the epigenetic fingerprint of the stressor and proposed the 
use of DNA cytosine methylation pattern—especially 5mC 
methylations as a possible biomarker for epigenetic finger-
printing (Rodríguez López and Wilkinson 2015). If stable 
epigenetic biomarkers are identified that accurately predict 
a phenotypic state, such epigenetic biomarkers could be 
considered the epi-fingerprints of the phenotype, then epi-
fingerprinting could find application in breeding and varietal 
selection—where epi-fingerprinting can be used to quickly 
identify individuals that will manifest a desired epi-depend-
ent phenotype. It will be possible to diagnose diseases or 
pest activities at the early stages of infection or infestation 
and to also diagnose asymptomatic pathologies using disease 
epi-fingerprints—epigenetic profiles resulting from patho-
gen activity (Rodríguez López and Wilkinson 2015).

The relationship between epigenetic variations and 
plant phenotypes can be explored using statistical or 
process-based epigenetic models built by codifying exist-
ing knowledge on epigenetic mechanisms and related 
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biological processes. Such models can reveal the rela-
tionship between DNA methylomes and transcriptomes, 
epigenetic variations, and plant phenotypes (Angel et al. 
2011; Buck-Sorlin 2013; Colicchio et al. 2015; Gallusci 
et al. 2017). Such tools can be applied in epi-breeding to 
predict the link between epi-variations and plant pheno-
types or to guide the decision to activate or deactivate 
certain epi-variations to improve disease resistance (Zhi 
and Chang 2021).

Conclusion

Global food security is besieged by the constantly increas-
ing threat of pests and diseases. These pests and diseases 
project their impact on the socioeconomic progress of 
nations and are not without environmental implications. It 
is estimated that 20 to 40% of crop production efficiency is 
lost due to pests and diseases, with economic implications 
of up to $220 billion annually (Zeng et al. 2022). The need 
to develop improved crops with enhanced resistance to 
pests and diseases, among other desirable characteristics, 
cannot be over-emphasized. Epigenetics is a promising 
complement, if not an alternative, to current efforts in the 
fight against crop pathogens. The rapid growth of inter-
est in epigenetics is evidenced by the enormous growth 
of literature in the area. This interest is undoubtedly due 
to the growing knowledge of epigenetic mechanisms and 
their applications. The potentials of epigenetics lie in the 
transgenerational stability and heritability of some epige-
netic markers such as DNA methylation patterns, certain 
histone modifications, and chromatin assemblies. The pat-
tern of occurrence of these markers has been linked to the 
pattern of expression of disease-resistance genes in plants 
and, consequently, a change of disease-resistance pheno-
type. In terms of crop improvement, epigenetic mecha-
nisms provide a more dynamic, less invasive approach to 
breeding disease-resistant, environmentally responsive 
crops compared to genetic mechanisms. Epigenetics pre-
sent a vast, intriguing source of phenotypic variations 
and can be exploited in the production of epi-modified 
plants, epi-breeding, genome stabilization, epi-modeling, 
and epi-fingerprinting, all of which can be used for crop 
improvement.

However, epigenetics is still faced with many challenges 
and limitations, and many questions remain unanswered. 
Epigenetic marks are not as stable as genetic transforma-
tion as they may be altered by biotic and abiotic stress and 
are usually erased during meiosis or can spontaneously be 
lost after several generations. It then becomes necessary 
to determine which regions of the genome are stably epi-
modified and which are not. A mechanism for ensuring the 

stability of desirable epialleles or for predicting unstable 
epialleles needs to be developed to ensure perpetuation 
where such is desired. In addition, most studies have been 
on model plants and as such may not be freely extrapolated 
to all plants. It then becomes important to determine the 
relationship between the epigenetic profiles of genes of the 
same family across different plants.

Data availability The data sets for this study are available from the 
corresponding author upon reasonable request.
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