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Abstract
Abiotic stresses such as drought, salinity, frost, etc., affect plant yield manyfold. These stresses can decrease the plant yield of 
important major crops up to 50%. The abiotic stress-related genes or other transcription factors (TFs) have multiple functions, 
as it increases proline content, leads closing of stomata to decrease the transpiration rate, enhances the production of some 
important stress-related protective enzymes, etc. and hence increases abiotic stress tolerance. Many TFs and other stress-
related genes have been identified and characterized and transformed to many important cultivated plants against drought 
and others abiotic stresses. The transformed plants show better morpho-biochemical and physiological performances than 
non-transgenic plants. Many genetically engineered plants have been developed against drought stress including wheat, rice, 
tomato, soybean, cotton and many more. The efficiently engineered clustered regulatory interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated nuclease 9 (Cas9) system is now becoming a preferred choice of researchers to edit plant 
genomes for introgression natural resistance against a range of abiotic stresses. It leads genome editing by precise manure 
with minimal or no effect on growth and development of plants. Very limited reports are available to develop drought-tolerant 
plants using CRISPR/Cas9 system. Here we discuss transgenic plant technology and new [CRISPR Cas9 and Virus-Induced 
Gene Silencing (VIGS)] techniques to confer drought tolerance in important plant species.
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Introduction

Global food security is one of the key issues due to change 
of world climate condition and by the increase of population. 
Drought, salinity, heat, etc., stresses significantly affect 
plant yield and productivity (Nouri et  al. 2015; Singh 
et al. 2018). Drought and salinity affect about one-third 
of our cultivated land and it cause loss of approximately 
1,500,000 ha crop land/year (Peng et al. 2011). In recent 

years, drought stress significantly decreased the plant yield 
manyfold by disturbing its morpho-biochemical processes 
(Azevedo et al. 2011). Even lower heat and drought stress 
affect plant yield. These stresses reduced crop yield by up to 
50%. The plants in reproductive stages are more sensitive to 
these stresses and thus affect yield of many important plant 
species (Lamaou et al. 2018).

Plants are more susceptible to these extreme 
environmental stresses as compared to any other living 
organisms. Plants respond poorly to high environmental 
stresses, as it affects both biochemical and physiological 
processes. So, the development of new engineered plants 
is important to fight against these stresses (Ramonell and 
Somerville et al. 2002). Decreasing the water amount up 
to 40% declines the yield of maize and wheat by as much 
as 40% and 21% (Daryanto et al. 2016). The important 
cultivated cowpea yield is affected up to 68% by drought 
stress (Farooq et al. 2017). About 40% of soybean yield loss 
occurs due to drought stress (Specht et al. 1999). It also 
reduces cell division, spreading of leaf surface, retards stem 
growth and root propagation (Anjum et al. 2015). Long-term 
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exposure of drought stress may cause death of plants (Gill 
and Tuteja 2010). In sunflower, it affects the chlorophyll 
a, b and a + b content (Manivannan et al. 2007). Drought 
stress enhances oxidative damage, stomatal closure, affects 
other cellular structures and decreases the exchange rate of 
gases (Hasanuzzaman et al. 2017). It also increases the ROS 
and leads to breakage of cellular physiological homeostasis 
(Fernández-Ocana et al. 2011).

The high-level drought and frost stresses in soil affect 
plants morpho-biochemical processes. Plants’ response to 
these environmental stresses has been extensively studied 
through various genetic engineering methods (Gosal et al. 
2009). The stress genes regulate important drought stress-
related pathways and hence increase drought tolerance 
in plants. Several drought-resistant genes have been 
characterized in many plant species whose function is still 
unknown. Therefore, reverse genetics approaches are useful 
for proper identification of these abiotic stress-related genes 
(Azevedo et al. 2011). The conventional breeding techniques 
are not enough to provide long-term resistance against 
abiotic stresses. Therefore, identification and cloning of 
important stress-related gene families is important to provide 
long-term resistance against abiotic stresses (Shinwari et al. 
1998; Narusaka et al. 2003; Jan et al. 2016a, 2017).

Thus in this review, we focus on the negative impact 
of drought stress on plants and discuss various genetic 
engineering approaches to confer resistance against drought 
stress.

Regulons involved in abiotic stress tolerance 
in plants, transcription factors (TFs) 
and specific drought‑related genes

Abiotic stresses disturb normal morpho-biochemical and 
physiological processes, hence affect yield. The response 
to these stresses varies according to genotype (Wang et al. 
2018). The plant genes are activated by TFs in combination 
with other transcription binding sites (Chaves and Oliveira, 
2004; Kimotho et al. 2019). These TFs attached the cis-
acting elements of upstream regions of all gene promoters 
(Ciarmiello et  al. 2011). In additions, TFs activate or 
suppress the activity of DNA polymerase enzyme and play 
a key role in gene expression (Riechmann et al. 2000). TFs 
activate many stress-related genes and enhance drought 
tolerance response. The key basic amino acids are involved to 
confer resistance to plants against abiotic stress (Annunziato 
2008). TFs are useful by providing protection to plants in 
both biotic and abiotic stress conditions (Umezawa et al. 
2006). In model Arabidopsis plants, about 34 families have 
been identified containing approximately 1533 TFs which 
have been classified (Riechmann et al. 2000). Recently, Wen 
et al (2019) reported the tolerant response of an important 

tree species Betula platyphylla (birch). They identified 2917 
drought stress-related genes through RNA-Seq method. 
Among these genes, some drought-related TFs families, 
i.e., ethylene responsive factor and myeloblastosis oncogene 
were found to be maximum. In addition, they found that 
BpERF2 and BpMYB102 TFs enhance plant response against 
drought. These two TFs further activate several other stress-
related genes and provide drought tolerance. Sakuma et al 
(2002) described various types of DREBs transcription 
factors in model Arabidopsis plant. They envisaged that 
DREB1A and DREB2A bind to a specific six-nucleotide 
sequence (A/GCC​GAC​) of DRE and increase drought and 
cold tolerance in Arabidopsis plant. However, the specificity 
of these transcription factors varies with change in second 
and third nucleotides in the sequence (A/GCC​GAC​) of 
DRE. They further classified these proteins into different 
classes including AP-2 subfamily, RAV subfamily, DREB 
subfamily, ERF subfamily, and others. Agarwal et al. (2010) 
reported that the DREB genes belong to AP2/ERF (apetala2 
and ethylene responsive factors) class of TFs and present 
in different plant species. The DREB1 and DREB2 activate 
other stress-related genes which leads enhanced tolerance 
in plants against these environmental extreme conditions. 
Shinozaki et al. (2003) have clarified that incorporation of a 
single transcription factor has enhanced tolerance in plants 
against salt, drought and cold stresses though activation of 
several stress-tolerant gene against these stresses (Fig. 1). 
They noted that DREB gene with DRE-containing promoter 
enhances tolerance in plants against abiotic stresses. The 
detailed process of activation of biotic and abiotic stress-
related genes via different TFs is given in Fig. 2. 

These TFs are classified into different families, i.e., AP2 
transcription factors (Liu et al. 1998), B ZIP transcription 
factors (Uno et al. 2000), MYB transcription factors ( Fujita 
et al., 2007) and zinc finger transcription factors (Sugano 
et al. 2003). Grill and Himmelbach (1998) stated that the 
two pathways adopted by the plant for the stress response, 
i.e., abscisic acid-dependent and abscisic acid-independent 
gene expression are activated by a number of transcription 
factors such as ABFs proteins (ABRE-binding factor), 
ABA responsive element binding protein (AREB proteins), 
MYB/MYC proteins, DREB factors (dehydration responsive 
element binding factors) and NAC proteins (NAM, ATAF1-
2, and CUC domains). The CBF/DREB1 transcription 
factors act in abscisic acid-independent pathway for the 
induction of stress-responsive gene by cold stress signal. 
The bZIP and ABRE transcription family activate stress-
responsive gene in abscisic acid-dependent stress signal 
pathway. Most of the abscisic acid-inducible genes have a 
nine base pair conserved cis-acting sequence (PyACG​TGG​
C) namely ABA responsive element in their promoter.

Several other DREB-related genes have been 
characterized and transformed to important cultivated plant 
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species against abiotic stresses. Like, Maruyama et al (2004) 
reported 38 different classes of DREB genes. They also 
showed that the transgenic plants express these genes that 
have multiple functions against drought and salt. Dubouzet 
et al (2003) isolated and constructed five different CDNAs 
of DREB1A genes: OsDREB1A, OsDREB1B, OsDREB1C, 

OsDREB1D, and OsDREB2A from rice and their functions 
were also characterized. Among these genes, OsDREB1A 
and OsDREB1B were highly activated in drought and 
cold conditions while OsDREB2A showed a high level of 
expression in drought and high salt condition. The resulting 
OsDREB1A from rice was transformed to Arabidopsis plant 
and the resulting transgenic plant showed multiple abiotic 
stress tolerance. From their work, they concluded that 
OsDREB1A gene show functional similarity with AtDREB1A 
gene and it is very useful to transform OsDREB1A gene 
in monocots to produce tolerance against these extreme 
environmental stresses. The DREBs transcription factors 
are further classified into three DREB1A and five DREB2A 
proteins, these two proteins have a main role in the activation 
of multiple genes against abiotic stresses. Chen et al (2008) 
isolated GmDREB2 gene from Soybean (Glycin mix) and was 
transformed to Arabidopsis plant. The resulted transformed 
Arabidopsis plant showed better response and higher 
survival rate under drought, salt and cold stress conditions 
than control plants. Schramm et al (2008) reported that 
DREB2A transcription factor has a key role in the activation 
of several heat stress-related proteins especially HsfA3 
which provide protection to tested Arabidopsis plant under 
extreme thermal conditions. Wang et al (2008) reported 
that DREB gene enhances abiotic stress tolerance in plants. 
Yamaguchi and Shinozaki (2007) also recorded similar 
results in Arabidopsis plants by expressing DREB1A gene. 
The expression analysis revealed that transformed plants 
showed enhanced tolerance to abiotic stress but also retarded 
normal plant growth. The DREB1A cDNA has an important 
role in many agriculturally important crops by gene transfer 

Fig. 1   Effect of cold, salt loading and dehydration on expression of 
stress-related genes. The activation of stress-related genes enhanced 
plant tolerance against drought (Shinozaki et al. 2003)

Fig. 2   Activation of transcription factors to improve biotic and 
abiotic stress tolerance in plants (Fujita et al. 2007)

Fig. 3   The functions of drought stress-inducible genes in stress 
tolerance and response. Two types of proteins are produced in 
response to drought stress. The first group includes function proteins 
that probably function in stress tolerance and the second group 
includes regulatory proteins that function in signal transduction and 
gene expression of other abiotic stress-related genes (Shinozaki and 
Yamaguchi-Shinozaki 2007)
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method. They described that the 35S CaMV promoter 
also leads to several morphological changes in transgenic 
Arabidopsis plants. Li et al (2005) isolated three different 
types of DREB genes from Soybean (Glycin mix) namely 
GmDREBa, GmDREBb, and GmDREBc under drought, and 
salt stress conditions. The expression analysis showed that 
GmDREBa, GmDREBb genes are expressed in leaves under 
salt and drought stress condition, while GmDREBc is only 
expressed in roots under extreme drought and salt condition. 
From their results, they concluded that these three types of 
DREB genes promote plant response against drought and 
salt. Kasuga et al. (1999) studied transformation of DREB1A 
gene to tobacco and found enhanced tolerance against both 
drought and cold. Details about the function of DREB1A and 
DREB2B are given in Fig. 3.

The maize WRKY TF (ZmWRKY4) provides drought, 
salinity and temperature stress resistance in transgenic 
Arabidopsis. The gene up-regulates other abiotic stress-
tolerant genes in transformed plants. In addition, it also 
increases important stress-related enzymes, i.e., peroxide 
dismutase and catalase and increases drought tolerance 
(Wang et  al. 2018). Similarly, wheat TF (TaWRKY33) 
enhances resistance in transformed Arabidopsis plants 
against both drought and salt (He et al. 2016). The DREB2 
and antioxidant enzyme gene (CAT1) in bread wheat enhance 
drought resistance. The relative water content (RWC), total 
chlorophyll content and catalase activity was found to be 
maximum in wheat cultivar (Kavir) under drought stress 
condition. So, these two genes are important for drought 
resistance (Eftekhari et al. 2017). The transgenic wheat lines 
expressing mutated TF (HaHB4) of sunflower enhance water 
use efficiency under abiotic stress (González et al. 2019). 
The high expression of ERF1-V in wheat provided tolerance 
against powdery mildew disease and salt and drought 
stresses (Xing et al. 2017).

The rice Rab family proteins, i.e., Rab7 (OsRab7) 
enhance drought and heat stress response in transformed 
rice genotypes. The overall morpho-biochemical and 
physiological responses were higher in transformed plants 
than wild rice genotypes under both stresses. In addition, 
malondialdehyde (MDA), hydrogen peroxide and electrolyte 
leakage was lower in transgenic plants. High yield was noted 
for transgenic rice than non-transgenic plants (Masood et al. 
2005; El-Esawi and Alayafi 2019).The TFs (CUC2, ATAF1-
2, and NAM) play a key role in plant developmental stages 
and abiotic stress conditions. At vegetative stage, the high 
level of OsNAC14 expression increases tolerance in drought 
condition in engineered rice plants. RNA-sequencing data 
showed that OsNAC14 increased the expression of other 
stress-related genes, plant defense, DNA repair system 
and biosynthesis of strigolactone (Shim et al. 2018). Also, 
ZmWRKY58 increases drought tolerance in transformed 
rice (Cai et al. 2014). The higher expression of SNAC1gene 

increased drought tolerance in rice. The engineered plants 
showed higher seed setting (22–34%) at reproductive stage 
than non-transgenic plants. In addition, no adverse effect was 
found in plant morphology and yield. The DNA chip data 
also showed that overexpression of SNAC1 gene activates 
other TFs (NAM, ATAF, and CUC​ (NAC) hence, improved 
drought and salt tolerance (Hu et al. 2006). The transgenic 
indica rice genotype expressing AtDREBIA gene shows 
drought tolerance at both vegetative and reproductive stages 
in T1, T2, and in following generations. The transgenic rice 
shows better physiological responses than wild plants. The 
tolerance, spikelet fertility and grain yield response were 
found to be maximum in homozygous lines than non-
transgenic plants (Ravikumar et al. 2014). In another report, 
the overexpression of OsERF71 enhances drought tolerance 
in transgenic rice (Lee et al. 2016).

The drought tolerance is found maximum in cotton 
TM-1 genotype due to high expression of several coding 
TFs and other regulatory and enzymes controlling genes 
(ERF, ERFB, DREB, etc.). The TM-1 genotype showed 
maximum biochemical and physiological performance 
and healthy chloroplast structure under drought condition 
(Nakashima et al. 2000; Mosfeq-Ul Hasan et al. 2018). 
WRKYs in soybean promote drought tolerance. The 
activation of GmWRKY12 in tissues is minimal under 
normal conditions than drought condition. In hairy root 
culture, GmWRKY12 is responsible for higher proline and 
MDA content production, thus provides tolerance against 
drought and salt stresses in transgenic plants seedlings 
(Shi et al. 2018). Transgenic soybean expressing AtABF3 
shows both drought and salt tolerance even at the end of 
20 days of stress. Various physiological changes were noted 
during these stress conditions. The chlorophyll amount was 
found to be higher in transformed plants than control plants. 
Maximum stomata were found closed at stress condition. In 
addition, the engineered plants showed normal and stable 
cell membrane structure and lower transpiration rate at both 
stress conditions. The transgenic plants showed more total 
seed weight than NT plants. However, the drought and salt 
stress responses varied with types of genotype (Kim et al. 
2018).

The transgenic tomato genotypes overexpressing the 
AnnSp2 gene show tolerance to both drought and salinity 
stresses. In severe stress condition, the AnnSp2 gene 
enhances ABA content, hence increased rate of closing 
stomata and decreased water loss. In addition, the transgenic 
plants showed better biochemical and physiological 
responses and lower ROS content (Ijaz et al. 2017). The 
ATAF1 gene from NAC family may increase drought 
resistance in tomato (Awais et al. 2018).

The SsDREB TFs of Suaeda salsa enhance drought and 
salt tolerance in tobacco plants. The chlorophyll, proline 
and soluble sugar content and photosynthetic rate were 
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found to be maximum in transgenic plants as compared to 
control plants (Zhang et al. 2015). The high expression of 
Pennisetum glaucum Rab7 in tobacco plant increases both 
salt and osmotic stress resistance (Agarwal et al. 2008). 
Cong et al (2008) reported that transgenic Tobacco plant 
expressed the Brassica juncea DREB1B gene. The resulted 
transgenic plants showed a high level of proline content as 
compared to non-transgenic plant which leads to enhanced 
abiotic stress tolerance in transformed plants.

Many TFs belonging to family AP2/ERF were 
overexpressed in plants and provide resistance to different 
types of stresses (Mizoi et al. 2012; Phukan et al. 2017). 
The high expression of SpERF1 in engineered A. thaliana 
improves drought resistance (Yang et  al. 2016). The 
AhDREB1gene in Arabidopsis increase ABA level and 
activate many drought-tolerant genes (RD29A, P5CS2, 
NCED1, and P5CS1). The resulted transgenic plant showed 
higher drought tolerance as compared to non-transgenic 
plants. In addition, at osmotic stress condition, the histone 
acetylation significantly affects the regulation of AhDREB1 
gene, hence increases tolerance against drought (Zhang 
et al. 2018).The overexpression of AtRabG3e in Arabidopsis 
increases both salt and osmotic stresses tolerance (Mazel 
et al. 2004).The engineered Arabidopsis plants having a low 
amount of lignin and xylan acetylation shows maximum 
drought tolerance response as compared to control plants. 
The lower lignin content is due to expression of QsuB, which 
enhance abscisic acid (ABA) response for germination 
of seed and stomata closing. In addition, the low xylan-
modified plants showed high amount of galactose and sugar 
(Yan et al. 2018). PYR1/PYL/RCARs play a key role in ABA 
signal transduction. The ZmPYLs is important in various 
abiotic stress conditions. Transgenic Arabidopsis-expressing 
ZmPYL increased sensitivity to ABA. The transformed 
plants having ZmPYL12, ZmPYL9, and Zmpyl8 show more 
resistance to drought. The accumulation of a high amount 
of protective protein (proline) further justifies the drought 
tolerance capability of ZmPYL genes in plants (He et al. 
2018). MtMYBS1 increases both drought and salt tolerance 
in engineered Arabidopsis plants (Dong et al. 2017). The 
high expression of GaMYB62L in transformed Arabidopsis 
plants increases drought tolerance (Butt et al. 2017). Triple 
mutation of snrk2.2/3/6 removes the ABA response and 
increases drought susceptibility (Fujii and Zhu 2009). 
SnRK2.6 enhances the expression of regulating the ubiquitin 
E3 ligase activity of RZFP34/CHYR1 and promotes drought 
tolerance (Ding et al. 2015). HAI PP2Cs enhance the content 
of proline (an important osmo-regulator) and promote 
drought tolerance (Bhaskara et al. 2012). The high-level 
expression of epidermal patterning gene (OsEPF1) from rice 
increased drought tolerance by decreasing stomatal density 
in transgenic plants. The low stomata density allows rice 
plant to store about 60% of water between weeks 4 and 5 

post-germination. Elevated CO2 level enables transgenic 
plants to survive in high drought and temperature (40 °C) 
conditions for a longer time period. In addition, low stomatal 
density enhances plant yield and helps plant to adapt better 
under warm climate condition (Caine et al., 2019). The 
overexpression of Cycling Dof Factor 3 enhances drought, 
salt and frost tolerance in Arabidopsis (Corrales et al. 2017). 
Details of different TFs or stress-related genes transformed 
into important plant species are given in Table 1.

Advanced genomic methods used to confer 
drought resistance in important plant 
species

Transgenic technology is very expensive, time consuming 
and difficult. In addition, this technology is not successful in 
many important cultivated crops (Slade et al. 2005). Various 
techniques like acetylation (Kim et al. 2012), methylation 
(Fu et al. 2013, 2017) and ubiquitination (Chen et al. 2018) 
are important to produce drought-tolerant genotypes. Some 
other efficient and quick technologies have been developed 
recently for crop improvement and for specific gene analysis 
like VIGS and CRISPR/Cas9 (Senthil-Kumar and Mysore 
2014; Khatodia et al. 2016) (Tables 2, 3).

VIGS is an RNA-based antiviral defense technique 
commonly used to confer resistance against viruses. 
However, the virus vectors having genes can target the 
corresponding mRNAs. This method has been exploited in 
plants for analysis of gene function and has been adapted for 
high-throughput functional genomics. Various RNA viruses 
were engineered as viral vectors to check the function of 
abiotic stress-related genes (Lu et al. 2003). The knock-down 
of drought-inducible variant (H1-S) in tomato increased 
drought tolerance and stomata closing (Scippa et al. 2004). 
The overexpression of TaH2A.7 variant in Arabidopsis 
increased drought response and decreased water loss 
efficiency (Xu et al. 2016). The knock-down TaH2B-7D gene 
via VIGS in common wheat increases the relative electrolyte 
leakage rate and malondialdehyde amount. In addition, it 
decreases proline and percent relative water content, hence 
provides drought tolerance. The knock-down plants shows 
dwarf phenotype and symptoms of wilting as compared to 
non-knock-down genotypes. It means that TaH2B-7D gene 
provides tolerance under drought condition in common 
wheat (wang et al. 2019). The upregulation of AtHUB2 gene 
enhances cotton response against drought (Chen et al. 2018). 
The knock-down of three important genes (SpMAPK1, 
SpMAPK2, and SpMAPK3) in Solanum pimpinellifolium 
reduced drought tolerance. The silencing of GhWRKY27a 
gene enhances drought tolerance in cotton (Yan et al. 2015a, 
b). The VIGS of two important genes (GhNAC79 and JUB1) 
decrease drought response in cotton and tomato (Tasaki et al. 
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Table 1   Detailed functions of different stress-related genes/TFs against drought and other abiotic stresses in important plant species

Gene/TF Crop Stress response Reference

OsRab7 Rice Drought and heat El-Esawi and Alayafi (2019)
OsNAC14 Rice Abiotic stresses including drought Shim et al. (2018)
OsERF71 Rice Drought Lee et al. (2016)
ZmWRKY58 Rice Drought Cai et al. (2014)
AtDREBIA Rice Drought Ravikumar et al. (2014)
SNAC1 Rice Drought and salt Hu et al. (2006)
ERF, ERFB, DREB, others Cotton Drought Mosfeq-Ul Hasan et al. (2018)
GmWRKY12 Soybean Drought and salt Shi et al. (2018)
AtABF3 Soybean Drought and salt Kim et al. (2018)
ATAF1 Tomato Drought Awais et al. (2018)
AnnSp2 Tomato Drought and salt Ijaz et al. (2017)
AtNHX1 and TVP1 Tomato Drought and salt Khoudi et al. (2009)
HaHB4 Wheat Drought González et al.(2019)
DREB2and CAT1 Wheat Drought Eftekhari et al. (2017)
ERF1-V Wheat Drought, salt and powdery mildew Xing et al. (2017)
AtHDG11 Wheat Drought Li et al. (2016)
ZmPEPC Wheat Drought Qin et al. (2016)
DREB1A Wheat Drought, salt and frost Pellegrineschi et al. (2004)
DREB1A Wheat Drought and salt Shen et al. (2003)
OsMYB55 Maize Drought and heat Casaretto et al. (2016)
ZmARGOS1 Maize Drought Shi et al. (2015)
AtLOS5 Maize Drought Lu et al. (2013)
ZmPIS Maize Drought Liu et al. (2013)
NPK1 Maize Drought Shou et al. (2004)
SoP5CS Sugarcane Drought Li et al. (2018)
BcZAT12 Sugarcane Drought and salt Saravanan et al. (2018)
AtHDG11 Groundnut Drought and salt Banavath et al. (2018)
MuWRKY3 Groundnut Drought Kiranmai et al. (2018)
AtDREB1A Groundnut Drought and salt Sarkar et al. (2014)
SsDREB Tobacco Drought and salt Zhang et al. (2015)
AtNPR1 Tobacco Oxidative Srinivasan et al. (2009)
DREB1B Tobacco Drought and salt Cong et al. (2008)
DREB1A Tobacco Drought and cold Kasuga et al. (2004)
Rab7 Tobacco Salt and osmotic stress Agarwal et al. (2008)
ZmWRKY4 Arabidopsis Drought, salt, and temperature Wang et al. (2018)
ZmPYL12, ZmPYL9, and Zmpyl8 Arabidopsis Drought He et al. (2018)
AhDREB1 Arabidopsis Drought Zhang et al. (2018)
MtMYBS1 Arabidopsis Drought and salt Dong et al. (2017)
GaMYB62L Arabidopsis Drought Butt et al. (2017)
Cycling Dof Factor 3 Arabidopsis Drought, salt, and frost Corrales et al. (2017)
TaWRKY33 Arabidopsis Drought and salt He et al. (2016)
SpERF1 Arabidopsis Drought Yang et al. (2016)
DREB Arabidopsis Drought, salt, and cold Wang et al. (2008)
GmDREB2 Arabidopsis Drought, salt, and cold Chen et al. (2008)
DREB1A Arabidopsis Drought, salt, and cold Wang et al. (2007); Dubouzet et al. (2003)
DREB Arabidopsis Drought and salt Li et al. (2005)
AtRabG3e Arabidopsis Salt and osmotic stress Mazel et al.(2004)
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2016; Thirumalaikumar et al. 2018). The silencing of two 
important genes (SISR1L and SlGRX1) led to lower drought 
tolerance in tomato (Guo et al. 2010). The list of abiotic 
stress-related genes silenced through VIGS technique is 
given in Table 2.

The CRISPR/Cas9 system was discovered early in 
prokaryotic organisms that act as source of defense against 
the foreign phages by cleaving its genome through RNA-
guided DNA nuclease by specialized mechanism (Sorek 
et  al. 2013). Recently, this system has been used as a 
major source of genome editing for many living organisms 
including plants (Belhaj et al.2015; Khurshid et al. 2017; 
Shinwari et  al. 2017; Xing et  al. 2014). CRISPR/Cas9 
technology has been extensively used as a novel technique 
for conferring drought resistance in plants (Singh et al. 
2018).The SlNPR1 cis-acting element provides drought 
tolerance in tomato. The CRISPR/Cas9-based mutation of 
mutant tomato slnpr1 mutants showed lower resistance to 
drought with a higher amount of electrolyte leakage and 
stomatal opening, hydrogen peroxide and MDA content 

than wild type. These findings showed that SlNPR1 is 
involved in drought tolerance response in tomato (Li et al. 
2019). The maize ARGOS8 variants produced by CRISPR/
Cas9-based method showed tolerance to drought and gave 
maximum yield (Shi et al. 2017). The detailed importance 
of CRISPR/Cas9 system against drought stress in important 
plant species is given in Table 3.

Conclusions

Drought condition has been increased globally over the last 
few decades and it is one of the major constraints that limit 
our crop productivity and sustainable agriculture. The drought 
condition decreased food and feed dramatically especially 
in the last 2 decades. Therefore, it is vital to develop novel 
drought resistance varieties for further crop improvement. 
The transgenic technology can solve this problem by the 
production of new drought-resistant genotypes with no or 
minimal effect on plant morpho-biochemical and physiological 
performances. A large number of environmental stress-related 
genes have been isolated and transformed to various cultivated 
plants and the resulted engineered plants showed enhanced 
drought tolerance. Detailed steps of genetic transformation 
are given in Fig. 4a. New in planta (tissue culture free)-based 
transformation protocols should be developed for genotypes 
having problems with tissue culture protocol and long 
germination to maturity time periods (Fig. 4b). Many other 
novel techniques have been developed that are more efficient, 
precise and quick than genetically modified (GM) technology. 
VIGS is a quick and robust method to check the function of 
genes, involved in abiotic stress tolerance in plants. However, 
this technique has been successfully used for only few model 
plants and there is a need to extend this technique to check the 
function of others abiotic stress-related genes in the model 

Table 2   List of some important 
abiotic stress-related gene 
silenced in model and other 
comically important plant 
species using VIGS

Target gene Crop Stress response Reference

TaH2B-7D Wheat Drought Wang et al. (2019)
G18431620 (GH 3.5) Cotton Drought Kirungu et al. (2019)
AtHUB2 Cotton Drought Chen et al. (2018)
GhNAC79 and JUB1 Cotton and tomato Drought Thirumalaikumar et al. 

(2018); Tasaki et al. (2016)
ApDRI15 Alternanthera philoxeroidsi Drought Bai et al. (2017)
TaH2A.7 Arabidopsis Drought Xu et al. (2016)
GhWRKY27a Nicotiana benthamiana Drought and salt Yan et al. (2015a, b)
CaMLO2 Chili pepper Drought Lim and Lee (2014)
TaEra1 Wheat Drought Manmathan et al. (2013)
TdAtg8 Wild emmer wheat Drought Kuzuoglu-Ozturk et al. (2012)
HvHVA1 Barley Drought Liang et al. (2012)
SISR1L and SlGRX1 Tomato Drought Guo et al. (2010)
H1-S Tomato Drought Scippa et al. (2004)

Table 3   Recent examples of some important drought stress-related 
genes studied via CRISPR/Cas9 technology ( modified from Singh 
et al. 2018)

Gene name Crop Reference

SlNPR1 Tomato Li et al. (2019)
AREB1 Arabidopsis Paixao et al. (2019)
GT79B2,UGT79B3 Arabidopsis Li et al. (2017)
PtoMYB216 Arabidopsis, Poplar Xu et al. (2017)
ARGOS8 Maize Shi et al. (2017)
slmapk3 Tomato Wang et al. (2017)
OsSAPK2 Rice Lou et al. (2017)
mir169a Arabidopsis Zhao et al. (2016)
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and other economically important crop species. Therefore, 
developing new viral vectors for model and other organisms 
need to be well optimized. Recently, novel CRISPR/Cas9 plant 
genome editing protocols have been developed by different 
researchers. It is one of the novel methods of plant genome 
editing and provides resistance against drought stress. This 
system also helps us to know about the gene knock outs/knock 
in, epigenetic mechanism and gene regulation. However, 
several modifications are needed to develop some new 
drought-resistant engineered plants using CRISPR technology. 
The CRISPR/Cas9 method may produce some new transgenic 
plants against drought stress with minimal or no biosafety 
issues in near future. Only few transgenic plants have been 
developed against drought stress using CRISPR/Cas9 system. 
Therefore, new drought-resistant plants should be developed 
using this technology. In addition, new stress models and 
multiple stress markers data should be developed. The new 
drought avoidance, escape and tolerance strategies should be 
used for providing long-term drought tolerance in plants.
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