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Abstract
Drought is a major abiotic stress in crop yield and its inevitable consequence is the increased production of reactive oxygen 
species (ROS) and cell damage. To reduce excessive ROS accumulation in soybean, AtYUCCA6 gene was transformed via 
Agrobacterium-mediated transformation. About 3% of transformation efficiency was generated from five batches of the 
transformation experiment. Eighteen transgenic plants were produced with PPT resistance and analyzed for introgression 
of AtYUCCA6. T-DNA insertion and expression were confirmed by PCR, Southern blot and reverse transcriptase-PCR. In 
the drought tolerance tests with transgenic lines #2, #3, and #5, all three lines were less affected by drought treatment and 
survived in the water-deficit conditions while non-transgenic plants did not survive under the same drought condition. The 
physiological aspects of transgenic lines were also much stronger than NT plants by showing higher chlorophyll content and 
lower ion leakage during water-deficit conditions (p < 0.01), indicating the prevention of cell-membrane damage. Measure-
ment of transpiration rate on detached leaves from transgenic plants showed nearly 10% less water loss. Finally, 3 transgenic 
lines (#2, #3, and #5) were investigated for ROS accumulation by DAB staining of detached leaves under water-deficit 
conditions. Unlikely NT plants with severe dark browning after 14 days of drought treatment, transgenic lines #2, #3, and 
#5 did not show significant browning.
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Introduction

As a sessile organism, plants are constantly exposed to exter-
nal adverse environments, such as drought, salinity, heat, 
cold, and heavy metals. Drought is a major abiotic stress that 
causes severe problems in crop growth and yield (Santner 
and Estelle 2009; Manavalan et al. 2009; Zhang et al. 2010). 
One inevitable consequence of drought stress is the increase 
of toxic molecules, reactive oxygen species (ROS), in vari-
ous cell compartments, such as chloroplasts, peroxisomes, 
and mitochondria (Cruz de Carvalho 2008; Blomster et al. 
2011; Chan et al. 2016).

Plants produce various phytohormones, which play 
important roles in regulating growth and development as 
well as the response to diverse environmental stresses. 
Auxin, a plant hormone, regulates many aspects of physi-
ological and developmental process in plants, including cell 
division, expansion, and differentiation, seed dormancy, 
lateral root formation, floral organ formation, and tropic 
responses (Kim et al. 2007; Iglesias et al. 2010; Park et al. 
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2013; Shi et al. 2014; Cha et al. 2015; Cheng et al. 2015). 
Indole-3-acetic acid (IAA), the major auxin, is synthesized 
via tryptophan (Trp)-dependent and Trp-independent path-
ways. In Arabidopsis, the Trp-dependent IAA biosynthetic 
pathway can proceed via four well-defined routes that pro-
duce indole-3-pyruvic acid (IPA), indole-3-acetaldoxime 
(IAOx), indole-3-acetamide (IAM), and tryptamine (TAM) 
as intermediates (Zhao 2012). YUCCA, belonging to plant 
flavin monooxygenase (FMO) family, directly catalyzes the 
conversion of IPA to IAA, which is considered as a pre-
dominant pathway (Zhao 2014). Arabidopsis possesses 11 
YUCCA  gene families, and the proteins play important roles 
in auxin (IAA) biosynthesis and plant development (Kim 
et al. 2011, 2013a, b; Dai et al. 2013; Park et al. 2013; Cha 
et al. 2015; Ke et al. 2015). Overexpression of AtYUCCA6 
in Arabidopsis and potato was found to improve IAA-related 
phenotypes and increase drought tolerance by controlling 
toxic ROS accumulation under drought stress (Kim et al. 
2013a, b; Cha et al. 2015). Despite to these dominant agro-
nomical traits of YUCCA  family genes, genetic transforma-
tion has not been applied to crop soybeans so far. Therefore, 
the development of drought-tolerant soybean varieties will 
contribute not only to coping with environmental changes, 
but also to practical use in agriculture.

Soybean (Glycine max L.) is one of the most significant 
sources of vegetable oil and plant-derived protein for food. 
Transformation is an optimal technique for developing soy-
bean varieties with desired traits that are difficult to obtain 
from traditional breeding. Agrobacterium-mediated transfor-
mation has been efficiently used to introduce foreign genes 
into soybeans (Verma et al. 2014; Du et al. 2016; Li et al. 
2017). Many researchers have used cotyledonary nodes by 
germinating seeds as the explants for soybean transforma-
tion (Hinchee et al. 1988; Di et al. 1996; Zhang et al. 1999). 
Instead of germinating soybean seeds, soybean transforma-
tion using “half-seed” explants has been improved (Paz et al. 
2006). Using half-seed explants is a preferred method for 
soybeans, because it is less time-consuming, is simple to 
use, and allows easy explant preparation. There are impor-
tant factors to increase the efficiency of the transformation 
process, such as simple wounding, treatment by sonication, 
vacuuming, and additional use of thiol compounds in the co-
cultivation medium. Thiol compounds, including l-cysteine, 
sodium thiosulfate, and dithiothreitol (DTT), can inhibit the 
extensive tissue browning or cell death in the wounded area 
of a shoot pad and significantly improve T-DNA transfer 
and the frequency of transformed cells. (Olhoft et al. 2003; 
Dan 2008; Verma et al. 2014; Kim et al. 2013a, b, 2016, 
2017a, b, 2018).

In this study, soybean plants overexpressing AtYUCCA6 
were produced by Agrobacterium-mediated transformation 
with the expectation they would be stress-tolerant because of 
the reduction of ROS. AtYUCCA6 overexpression exhibited 

low amounts of ROS accumulation and better drought toler-
ance in transgenic soybean plants than in wild-type plants.

Materials and methods

Vector construction and Agrobacterium preparation

The AtYUCCA6 cDNA open reading frame was ampli-
fied from its original vector (provided by Dr. D J Yun at 
Konkuk University, Republic of Korea) using AtYUCCA6-F 
primer (5′-ATG GAA GGT AAA CTA GCA CAT GAC -3′) and 
AtYUCCA6-R primer (5′-TCA ATT CCC ACC ACA ATC ACT 
CTC -3′). The desired destination vector, pPZP-3′PinII-Bar 
(provided by Dr. J K Kim at Myongji University, Republic 
of Korea) was used for the vector construction. The resultant 
plasmid, pPZP-3′PinII-Bar-AtYUCCA6 (Fig. S1), was trans-
formed into Agrobacterium tumefaciens strain EHA105 for 
soybean transformation and subsequently cultured on solid 
YEP media [10 g  l−1 yeast extract, 5 g  l−1 NaCl, 10 g  l−1 pep-
tic peptone, and 1.0% (w/v) plant agar, pH 7.0] containing 
50 mg  l−1 spectinomycin and 25 mg  l−1 rifampicin at 28 °C 
for 2 days. A single colony was chosen and grown in 20 ml 
of liquid YEP medium containing 50 mg  l−1 spectinomycin 
and 25 mg  l−1 rifampicin at 28 °C for a day until  OD600 
reached between 0.6 and 0.8. Competent cells were then 
prepared by mixing equal volumes of 30% (v/v) glycerol. 
Aliquots of competent cells were frozen and kept at − 70 °C 
until used.

Soybean transformation

Mature soybean seeds of Korean cultivar Kwangankong 
were used in Agrobacterium-mediated soybean transforma-
tion by following the method described by Kim et al. (2012, 
2013a, b, 2016, 2017a, b, 2018). Five batches of the transfor-
mation experiment were carried out with 120–130 soybean 
seeds each time. To identify putative transformants express-
ing the Bar gene, two trifoliate leaves from  T0 plants were 
screened using an herbicide paint assay. The upper surface 
of a leaf was painted with the mixture of 100 mg  l−1 PPT and 
Tween 20 using a brush. The response to this herbicide assay 
was screened after 3–5 days of PPT leaf painting. Plants with 
PPT resistance were grown in a greenhouse until maturity, 
and  T1 seeds were harvested (Fig. S2).

Confirmation of transgene in transgenic plants

Genomic DNA was extracted from leaf tissues of non-trans-
genic (NT) and transgenic plants using cetyltrimethylammo-
nium bromide. The polymerase chain reaction (PCR) analy-
sis was performed using KOD FX (TOYOBO, Osaka, Japan) 
according to the manufacturer’s instructions with a thermal 
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cycler (Takara, Japan). The primer sets were designed in 
the regions of AtYUCCA6 (5′-AGG TAA ACT AGC ACA TGA 
CCA CCG -3′/5′-TCA ATT CCC ACC ACA ATC ACT CTC -3′) 
and Bar (5′-AGA CAA GCA CGG TCA ACT TCC GTA -3′/5′-
CCG GCA GGC TGA AGT CCA GC-3′) genes. To evaluate the 
T-DNA insertion into the plant genome, additional primers 
of DNA from Bar gene to left border (LB) (5′-AGA CAA 
GCA CGG TCA ACT TCC GTA -3′/5′-TGG CAG GAT ATA TTG 
TGG TGT AAA -3′) and from right border (RB) to AtYUCCA6 
gene (5′-GTT TAC CCG CCA ATA TAT CCT GTC A-3′/5′-TCA 
ATT CCC ACC ACA ATC ACT CTC -3′) were used to amplify 
both end regions of the vector.

For Southern blot analysis, 20 µg of genomic DNA from 
NT and transgenic plants were digested overnight using Hin-
dIII, fractionated on 0.8% (w/v) agarose gel by electropho-
resis, then transferred onto Hybond N+ nylon membrane 
(Amersham Pharmacia, USA). Hybridization, washing, 
and detection were performed using a digoxigenin (DIG)-
labeled DNA probe and a chemiluminescent system (Roche, 
Germany) according to the manufacturer’s instructions. The 
DIG-labeled probe was prepared by PCR amplification with 
the Bar primers (5′- AAC TTC CGT ACC GAG CCG CA-3′/5′-
TCG TAG GCG TTG CGT GCC TT-3′).

RNA analysis of transgenic plants

Total RNAs were isolated from both NT and transgenic  T0 
plants using plant RNA purification reagent (Invitrogen, 
USA) according to the manufacturer’s instructions. Reverse 
transcriptase-PCR (RT-PCR) was conducted using the RT-
PCR Remix Kit (Genetbio, Korea) according to the manu-
facturer’s instructions. The primer sets used in the RT-PCR 
were as follows: AtYUCCA6, 5′-AGG TAA ACT AGC ACA 
TGA CCA CCG -3′/5′-TCA ATT CCC ACC ACA ATC ACT 
CTC -3′; Bar, 5′-AGA CAA GCA CGG TCA ACT TCC GTA 
-3′/5′-CCG GCA GGC TGA AGT CCA GC-3′. The constitutive 
TUB (5′- TGA GCA GTT CAC GGC CAT GCT/5′-CTC GGC 
AGT GGC ATC CTG GT-3′) was used as an internal control 
to normalize the amount of leaf RNA in the soybeans.

Drought‑stress treatment in transgenic plants

To analyze the drought tolerance in AtYUCCA6 transgenic 
plants, NT and transgenic plants  (T2) were grown in the 
same volume of soil and identical containers in a growth 
chamber with the conditions of 25 °C, 18 h light/6 h dark, 
and 60% humidity for 3 weeks, until the leaves on two 
nodes were fully expanded. Under the same conditions of 
plant growth, the phenotype of drought-stressed plants was 
monitored by the exposure of no-irrigation for 14 days and 
resuming irrigation for 3 days after the end of the drought 
treatment.

Measurement of total chlorophyll and relative ion 
leakage

Total chlorophyll from leaves of NT and transgenic plants after 
drought-stress treatment was isolated in 80% (v/v) acetone. 
The chlorophyll content was calculated using a spectropho-
tometer, as described by Wu et al. (2008). Statistical analysis 
was also performed using the Excel t test program to confirm 
significant differences.

The extent of ion leakage from NT and transgenic plants 
after the drought-stress treatment was measured by means 
of its conductivity. One gram of leaf samples was soaked in 
10 ml of distilled water for 24 h at room temperature. The 
conductivity of the solution (Lt) was measured using an EC-
400L conductivity meter (Istek, Korea). The leaf samples 
were then returned to the solution in the tubes, which were 
sealed and incubated at 95 °C for 20 min. The solution (L0) 
was then cooled to room temperature, and conductivity was 
re-measured. The Lt/L0 × 100 values were calculated and used 
to evaluate the relative electrolyte leakage (Fan et al. 1997). 
Statistical analysis was also performed using the Excel t test 
program to confirm significant differences.

Examination of transpiration rate

NT and transgenic plants were grown under the same condi-
tions, including identical containers, the same volume of soil, 
a long day photoperiod (18 h light/6 h dark), and 60% humid-
ity in the growth chamber. The fully expanded leaves from 
two nodes were detached and weighed for 200 min at 40-min 
intervals and compared to the initial weight on a sterile bench 
in an extractor hood. Statistical analysis was performed using 
the Excel t test program to confirm significant differences.

Detection of ROS content in transgenic plants

Drought treatment was applied to NT and transgenic plants 
for 14 days under the same conditions as mentioned above. 
The leaves of similar developmental stages were then detached 
from randomly chosen sites, immersed in 3,3′-diaminoben-
zidine (DAB) staining solution (1 mg  ml−1, pH 3.8; Sigma, 
USA) for 4 h, incubated in 100% ethanol at 95 °C for 15 min 
until chlorophyll was cleared, and then observed with a ster-
eomicroscope. Quantitative analysis of DAB staining was 
performed using image analysis software (ImageJ 1.52a; Java 
1.8.0_112) (Sekulska-Nalewajko et al. 2016).
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Results

Production of transgenic soybean plants using 
Agrobacterium‑mediated transformation

To produce transgenic soybean plants, pPZP-3′PinII-Bar-
AtYUCCA6 plasmid (Fig. S1) was used for the soybean 
transformation with half-seed explants of the Korean soy-
bean cultivar Kwangankong (Fig. S2), following the modi-
fied protocol described by Kim et al. (2012, 2013a, b, 2016, 
2017a, b). About 3% of transformation efficiency was gener-
ated from five batches in the transformation experiment, in 
which 100–120 soybean seeds were used each time. Eight-
een transgenic plants were produced with PPT resistance. 
Among them, eight well-grown and early harvested trans-
genic plants (lines #2, #3, #4, #5, #9, #10, #12, and #14) 
were selected to confirm the integration of the transgene, and 
these lines were examined using PCR with AtYUCCA6 and 
Bar primers to amplify the DNA fragments of 1281 bp and 
552 bp in size, respectively. In addition, T-DNA insertion 
was also confirmed by amplifying both end regions of the 
vector construct (Fig. 1). All eight transgenic lines showed 
the expected amplification of transgene sequences. To ana-
lyze the transcription level of AtYUCCA6 and Bar genes, 
reverse transcriptase-PCR (RT-PCR) was conducted with 
RNAs extracted from those eight transgenic plants (Fig. 2). 
The transformed AtYUCCA6 and Bar genes were expressed 
in all transgenic lines as expected, while those were not 
detected in non-transgenic (NT) plants.

To investigate the number of transgene insertions in the 
selected eight transgenic lines, genomic Southern blot analy-
sis was carried out using leaf samples from  T2 seedlings 
(Fig. 3). Genomic DNAs from NT and transgenic plants 
were digested with HindIII and hybridized with Bar probe. 
All eight transgenic lines (#2, #3, #4, #5, #9, #10, #12, and 
#14) showed multiple insertion events. Lines #4 and #5 

showed similar patterns in the result; they seem to be clones 
generated from the same shoot pad.

Drought tolerance of YUCAA6 transgenic soybean 
plants

Drought tolerance tests were done with transgenic lines #2, 
#3, and #5, from which we were able to harvest  T2 seeds 
relatively quickly out of the eight transgenic lines that under-
went proliferation in the greenhouse. We investigated the 
response to drought stress in these three lines and compared 
them with NT plants. All plants were drought-treated for 14 
days under the same conditions. Among them, NT plants 
started to lose vigor on the 11th day of drought, and all 
had withered completely at the end of the 14-day drought 
treatment. On the other hand, transgenic lines #2, #3, and 
#5 were less affected by drought treatment and survived in 
the water-deficit conditions. When re-watered for 3 days, 
NT plants did not survive and eventually died, whereas the 

Fig. 1  Confirmation of introduced genes from AtYUCCA6 transgenic 
soybean plants  (T0) using PCR. Genomic DNAs were extracted from 
transgenic plants  (T0). a AtYUCCA6 gene. b Bar gene. c The DNAs 
between Bar gene and left border (LB). d The DNAs between right 
border (RB) and AtYUCCA6 gene. NT, non-transgenic plant; #2, #3, 
#4, #5, #9, #10, #12, and #14, AtYUCCA6 transgenic lines  (T0)

Fig. 2  Transcript level of AtYUCCA6 and Bar genes in transgenic 
plants  (T0) using reverse transcriptase-PCR (RT-PCR). Total RNAs 
were extracted from AtYUCCA6 transgenic plants  (T0), and RT-PCR 
was used to confirm gene expressions. TUB gene was used as a quan-
titative control. NT, non-transgenic plant; #2, #3, #4, #5, #9, #10, 
#12, and #14, AtYUCCA6 transgenic lines  (T0)

Fig. 3  Genomic Southern blot analysis of AtYUCCA6 transgenic 
soybean. Twenty micrograms of genomic DNAs were digested with 
HindIII and hybridized with Bar probe. The approximate DNA size 
markers are indicated on the right. NT, non-transgenic plant; #2, #3, 
#4, #5, #9, #10, #12, and #14, AtYUCCA6 transgenic lines  (T2)
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transgenic lines #2, #3, and #5 fully recovered and contin-
ued to grow (Fig. 4a). And then, we confirmed the rela-
tive expression level of AtYUCCA6 at 14 days after drought 
stress by qRT-PCR and found that the expression was con-
firmed in all transgenic lines #2, #3, and #5 (Fig. 4b).

The physiological aspects of transgenic lines were inves-
tigated by measuring changes in chlorophyll content and 
ion leakage during water-deficit conditions. The chlorophyll 
contents of transgenic lines #2, #3, and #5 were significantly 
higher than those of NT plants after 14 days of drought 
treatment (p < 0.01); the increased drought tolerance may 
have resulted from the maintenance of chlorophyll content 
(Fig. 4c). Moreover, ion leakage was increased in transgenic 
lines #2, #3, and #5, but significantly less (p < 0.01) than 
in NT plants; these transgenic lines were less affected by 
drought treatment because of the prevention of cell- mem-
brane damage (Fig. 4d).

The water loss by transpiration was investigated by 
weighing detached leaves from transgenic and NT plants 
for 200 min at intervals of 40 min (Fig. 5). The leaves in NT 
started to curl up as a withered phenotype from 120 min after 
detached, while those in transgenic lines did not (Fig. 5a). 

After 200 min of drought treatment, the water content of NT 
plant leaves was only 47% of the initial leaf weight (Fig. 5b). 
In contrast, those of transgenic lines #2, #3, and #5 were 
about 5 to11% greater than that of the NT plants (p < 0.05 
in lines #3 and #5). This result suggests that the AtYUCCA6 
gene appeared to have a positive effect on drought tolerance 
by slowing water loss.

Low ROS accumulation of AtYUCCA6 transgenic 
soybean plants

ROS is known to accumulate under drought stress, and trans-
genic leaves of Arabidopsis and potato overexpressing the 
AtYUCCA6 gene have been reported to have levels of ROS 
lower than those in leaves of the wild-type plants (Park et al. 
2013; Cha et al. 2015; Chan et al. 2016). Thus, we analyzed 
ROS accumulation using DAB staining of detached leaves 
from transgenic soybean plants under water-deficit condi-
tions (Fig. 6). By observing DAB stained leaves under the 
stereomicroscope, ROS accumulation could be visualized 
by the brown color in leaves of NT plants at the 11th day of 
drought treatment, and severe dark browning shown after 

Fig. 4  Drought tolerance of AtYUCCA6 soybean transgenic plants 
 (T2). a Analysis of drought tolerance of AtYUCCA6 transgenic plants 
compared with NT plants. Plants were grown on soil until leaves were 
fully expanded on two nodes under the same conditions. Plants were 
deprived of water for 14 days, and then re-watered for 3 days (n = 12 
each). The photographs were taken 7, 11, and 14 days after drought 
stress and 3  days after re-watering. b AtYUCCA6 gene expression 

with detached leaves at 14 days after drought stress using real-time 
PCR (qRT-PCR). c, d Calculation of chlorophyll content and ion 
leakage at the indicated days after drought treatment from two-node 
leaves (n = 6 each). NT, non-transgenic plant; #2, #3, #4, #5, #9, #10, 
#12, and #14, AtYUCCA6 transgenic lines  (T2). Error bars indicate 
mean ± standard deviation. Asterisks indicate significant changes 
compared with NT (*p < 0.05; **p < 0.01)
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14 days of drought treatment. However, transgenic lines #2, 
#3, and #5 did not show significant browning until day 14 of 
drought treatment (Fig. 6a). To confirm the intensity of DAB 
staining in drought-treated transgenic plants, ROS accumu-
lation was quantified by the image analyzing program. In 
transgenic lines #2, #3, and #5, accumulation of ROS was 
significantly less than NT plants after 14 days of drought 
treatment (p < 0.05 in lines #2 and #3) (Fig. 6b).

Discussion

Auxin, an essential regulator of plant growth and develop-
ment, plays an important role in responses to environmen-
tal stress, such as drought, salinity, and pathogens. ROS is 
known to be accumulated under drought stress in plants 
(Miller et al. 2010). YUCCA6 as a flavin monooxygenase 
enzyme converts IPA to auxin which is a downstream step 
of Trp aminotransferase (TAA1/TAR1/TAR2) converting 
Trp to IPA (Zhao 2012, 2014). Overexpression of the AtY-
UCCA6 gene in Arabidopsis and potato plants exhibited 
auxin overproduction and drought tolerance. These trans-
genic plants also showed less ROS than did wild-type plants 
under drought stress conditions (Park et al. 2013; Cha et al. 
2015; Chan et al. 2016).

Our stable Agrobacterium-mediated soybean transforma-
tion has been established based on the half-seed (Paz et al. 
2006) and cotyledonary-node (Hinchee et al. 1988) methods. 
This method included a mixture of thiol compounds, such 
as l-cysteine, sodium thiosulfate, and dithiothreitol, in a co-
cultivation medium, which inhibited the activity of enzy-
matic browning and cell death in the wounded area. These 
additional treatments resulted in significantly increased 
T-DNA delivery into cotyledonary cells (Olhoft and Somer 
2001; Olhoft et al. 2003). Thus, our modified transformation 
protocol enabled us to produce stable transgenic soybean 
plants with agronomically important genes for practical use 
in agriculture. Based on the evidence from previous studies, 

Fig. 5  The water loss content of AtYUCCA6 transgenic plants  (T2). 
Plants were grown on soil until leaves were fully expanded on two 
nodes; leaves were detached (n = 6 each) and weighed at the indicated 
times after drought treatment (a, b). NT, non-transgenic plant; #2, #3, 
#4, #5, #9, #10, #12, and #14, AtYUCCA6 transgenic lines  (T2). Error 
bars indicate mean ± standard deviation. Asterisks indicate significant 
changes compared with NT (*p < 0.05; **p < 0.01)

Fig. 6  Low ROS accumulation in AtYUCCA6 soybean transgenic 
plant leaves  (T2). a ROS accumulation visualized by DAB staining. 
Plants were grown on soil until leaves were fully expanded on two 
nodes and deprived of water for 14 days. Detached leaves subjected to 
drought stress were stained with DAB (1 mg  ml−1, pH 3.8) to exam-
ine ROS accumulation. b Quantitative analysis of DAB staining. ROS 
accumulation in detached leaves shown in a were quantified by ana-
lyzing the image analyzer. Data represent that mean ± SE from two 
biological replicates. NT, non-transgenic plant; #2, #3, #4, #5, #9, 
#10, #12, and #14, AtYUCCA6 transgenic lines  (T2). DAD, day after 
drought treatment. Asterisks indicate significant changes compared 
with NT plants (*p < 0.05; **p < 0.01)
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the AtYUCCA6 gene was transformed into soybean via Agro-
bacterium-mediated transformation to identify increased 
drought tolerance. Transgenic soybean plants showed nor-
mal growth under drought stress, whereas NT plants with-
ered and died eventually. Drought stress resulted in a signifi-
cant increase in ion leakage and low chlorophyll contents 
from leaves of NT plants. However, the phenotypic changes 
of transgenic plants were less affected by drought condi-
tions, their cell membranes were protected, and chlorophyll 
content was also maintained. These physiological responses 
showed that drought tolerance was significantly increased by 
introducing the AtYUCCA6 gene into transgenic soybeans.

A correlation between AtYUCCA6 overexpression and 
low ROS accumulation was also investigated in soybean 
leaves. ROS, the result of the partial reduction of atmos-
pheric  O2, is continuously produced in plants under normal 
conditions with a relatively low level in organelles, such as 
chloroplasts, mitochondria, and peroxisomes, that function 
as components of a stress-signaling pathway. When plants 
are exposed to environmental stresses, such as drought, 
the production of ROS is significantly increased. A certain 
level of ROS toxicity results in oxidative damage to cel-
lular membranes and other cellular components, including 
membrane lipids, chlorophyll, nucleic acid, and proteins. 
ROS can cause membrane lipid peroxidation, ion leakage, 
and chlorophyll loss that lead to cell death. Chloroplasts 
are particularly susceptible to ROS because of their damage 
in the photosynthetic electron-transfer system. In addition, 
when the concentration of ROS exceeds a certain range, it 
activates a programmed cell-death response in cells (Wang 
et al. 2005; Cruz de Carvalho 2008; Yasar et al. 2008; Gill 
and Tuteja 2010; Miller et al. 2010; Wu et al. 2008). When 
ROS accumulation was visualized by DAB staining in soy-
bean leaves subjected to drought stress, the severe brown 
color related to ROS accumulation was detected in non-
transgenic leaves. In contrast, lower ROS accumulation was 
exhibited by transgenic leaves. Among the transgenic plants 
(lines #2, #3, and #5), line #5 showed the greatest drought 
tolerance and the lowest ROS accumulation, which seemed 
to be associated with the highest level of AtYUCCA6 expres-
sion. Our results suggest that the level of AtYUCCA6 expres-
sion was correlated with the change of ROS accumulation. 
Low ROS accumulation resulted in the protection of cell 
membranes and the maintenance of chlorophyll content, and 
finally increased drought tolerance in AtYUCCA6 transgenic 
plants under drought treatment.

In our previous study, soybean transgenic plants over-
expressing the AtABF3 gene reduced stomatal opening 
and increased drought tolerance under water-stress condi-
tions (Kim et al. 2018). However, closure of stomata had a 
negative effect on plant height. AtYUCCA6 overexpressing 
soybean transgenic plants are not likely to have a negative 
impact on plant growth, since they are associated with ROS 

scavenging instead of stomatal closure. Under the natural 
condition, a field test of AtYUCCA6 transgenic soybeans will 
be carried out in the near future.

Soybean, a drought-sensitive crop, is severely affected 
by drought stress, which is the major yield-limiting factor 
in crop plants. In this study, we introduced the AtYUCCA6 
gene from Arabidopsis into soybean using Agrobacterium-
mediated transformation to increase drought tolerance with 
low ROS accumulation. As always, the modest significance 
of our work is to test any available gene from a model plant 
in field-crop soybeans to evaluate its potential. The valuating 
gene via genetic transformation is urgently needed in the era 
of outpouring of genomics.
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