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Abstract
Pyroprocessing holds the key to unlocking a more sustainable future for nuclear energy by handling various types of spent 
nuclear fuel (SNFs) and reducing radioactive waste volumes. This review examines the role of electrochemical monitor-
ing in molten salt pyroprocessing of SNFs, emphasizing its importance in enhancing process efficiency and nonprolifera-
tion. Challenges associated with the monitoring of multi-element environments, flow environments, and sensor stability 
are discussed. The review suggests that integrating sensor technology with artificial intelligence could lead to significant 
advancements in the field.
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Introduction

Nuclear energy, recognized as a sustainable power source, 
addresses energy security and climate change concerns [1]. 
Recent advancements in small modular reactors (SMRs) 
have expanded nuclear technology applications beyond 
electricity generation to include high-temperature output 
non-electric sectors, such as hydrogen production, synthetic 
chemicals, and metal refining [2, 3]. This broadened scope 
has intensified the focus on nuclear power. Nevertheless, the 
management of spent nuclear fuel (SNF)—nuclear fuel that 
is no longer economically or technically viable for energy 
generation due to diminished fissile material (i.e. 235U) and 
increased neutron poison content (e.g. 135Xe, 149Sm, 157Gd, 
etc.)—poses significant challenges.

SNF still contains substantial quantities of valuable acti-
nides, such as, Pu, and minor actinides (MA) which could 
be reused as fuel. Also, it contains highly radioactive Fission 

Products (FP) that require careful management and appro-
priate final disposal [4–7]. Pyroprocessing offers a potential 
solution by recycling SNF through a high-temperature elec-
trochemical process with the aim of separating U as well 
as transuranic elements (TRU), Pu and MA, from FPs [4, 
8–11].

Operating between 400 and 1000 °C, pyroprocessing 
utilizes molten salt electrolytes to separate actinides from 
FPs and other undesirable elements. As shown in Fig. 1, its 
stages include (1) head-end process (decladding, voloxida-
tion), (2) electrolytic reduction, (3) electrorefining, and (4) 
electrowinning. Contrasting with the PUREX process, which 
uses organic solvents for chemical separation, pyroprocess-
ing is carried out in molten salts at high temperatures. This 
difference gives several advantages to pyroprocessing over 
PUREX. One of the significant advantages of pyroprocess-
ing is its versatility in handling various fuel types even with 
higher burn-up rates and various fuel types, including those 
from fast reactors. Pyroprocessing’s high chloride concentra-
tion without a water medium minimizes the risk of criticality 
accidents [8, 9, 12–14]. The process does not produce pure 
Pu, making the resulting materials less attractive for prolif-
eration [8, 9, 11, 15]. The elimination of organic solvents 
also reduces the environmental and safety hazards associated 
with chemical processing [11]. Nonetheless, it is important 
to recognize that advanced hydrometallurgical processes, 
while not yet industrialized at scale, also offer significant 
advantages, such as not producing pure Pu, as discussed by 
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Taylor et al.[16]. The benefits of pyroprocessing also open 
up possibilities for resolving legacy waste issues that plague 
the nuclear industry such as bespoke one-off fuel types 
developed for research reactors or graphitic wastes [17–20].

As with most chemical processes, real-time monitoring 
of the composition and properties of the system [21–23], 
in this case, the molten salts, is crucial for the safe and effi-
cient operation of pyroprocessing [24–26]. This informa-
tion is used for process control, optimization, and the early 
detection and prevention of problems [27]. Electrochemical 
monitoring enables the direct and continuous measurement 
of key parameters such as concentration of ions, and salt 
potential, providing valuable data for the optimization of 
the pyroprocessing operations [28–32]. For example, oxygen 
concentration is a key aspect of optimizing the oxide reduc-
tion process in pyroprocessing [27], because it is related to 
the reaction rate [33] and anode protection [34]. The advan-
tages of electrochemical monitoring include rapid and real-
time measurement capabilities, suitability across a wide 
electrochemical window of molten salts, and compatibility 
with remote handling operations necessary for worker safety. 
[28–30, 35, 36]. While there is no requirement for calibra-
tion standards, performance in high radiation environments 
has been observed to be generally robust, particularly with 
adequate shielding; however, direct evidence of complete 
unaffectedness is limited. Therefore, electrochemical moni-
toring methods have been developed to monitor U [29, 30, 
37, 38], TRU elements [29], FPs [31], and oxygen concen-
tration [39–42]. However, further development is required 
for applications in environments with high temperatures and 
corrosiveness, especially over long-term operation cycles, 
and where a variety of nuclear species are present [43]. This 
includes advancing the durability and stability of monitoring 
equipment to withstand the harsh operational conditions and 
improving the ability to accurately measure multielements 
simultaneously [37].

The objective of this review is to provide a comprehen-
sive overview of the necessity, development status, and 
suggestions for future research of electrochemical sensors 

designed for utilization in pyroprocessing, a critical tech-
nology in nuclear fuel reprocessing. The review will cover 
the description of processes using molten salts in pyropro-
cessing, the purpose of monitoring in pyroprocessing, major 
elements in pyroprocessing, current electrochemical sensor 
technology applicable to molten salt systems, and sugges-
tions for future research. This review highlights the current 
challenges and outlines future directions for the develop-
ment of advanced electrochemical sensors, including the 
suggested integration of machine learning-coupled electro-
chemical sensors [44, 45]. The advancement is expected to 
focus on enhancing (1) material compatibility, (2) improving 
measurement accuracy, and (3) integrating sensor technol-
ogy with process control systems; thereby contributing to the 
optimization and expansion of pyroprocessing capabilities.

Composition of Spent Nuclear Fuel

Commercially operating reactors include light-water mod-
erated reactors (LWRs), heavy-water moderated reactors 
(PHWRs), graphite moderated reactors, and fast breeder 
reactors. Among these, LWRs are the most widely used and 
constructed, thus this paper will primarily focus on SNF 
from LWRs, unless specified otherwise.

Natural U predominantly consists of fertile 238U (99.3%) 
and fissile 235U (0.7%), along with trace amounts of other 
isotopes such as 233U, 234U, and 236U. To use U as fuel for 
LWRs, it should be enriched up to 2–5% of 235U [46]. When 
going through the process of nuclear fission, the composi-
tion of the nuclear fuel changes. The nuclear fission process 
alters the composition of the fuel, with the specific compo-
sition of SNF depending on the initial fuel type, chemical 
composition, level of enrichment, neutron energy spectrum, 
and “burn-up”—the thermal energy generated per unit mass 
of fuel [47]. Fuel is classified as “spent” once it loses effi-
ciency for nuclear fission, primarily due to a reduction in fis-
sile material and an accumulation of neutron-absorbing FPs. 

Fig. 1   Schematic flowsheet of the pyroprocessing
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Table 1 shows the typical changes in LWR fuel composition 
from enriched fresh fuel to SNF at a burn-up of 46 GWD/tU.

Handling SNF is challenging due to its high heat genera-
tion and radioactivity. The radioactivity of SNF at typical 
burn-up increases to the order of 1017 Bq/MT compared to 
fresh fuel because of the radioactive decay of the elements 
inside of the fuel; particularly the short- and intermediate-
lived radioisotopes. For the first 100 years after removal 
from a reactor core, the radioactivity of the SNF is domi-
nated by FPs emitting beta and gamma rays. Thereafter, it is 
dominated by the actinides undergoing alpha decay.

Strategies for managing SNF include direct disposal in 
deep geological repositories (DGRs) without recycling, 
and reprocessing to separate usable nuclear materials (U 
and TRUs) from wastes (FPs) [4–7]. The purpose of direct 
disposal in a DGR is for the isolation of SNFs from the bio-
sphere until the radiotoxicity of the SNFs decays enough. 
Reprocessing seeks to efficiently use U and other actinides 
while reducing waste volume and radiotoxicity.

Historically, few countries have decided to engage in 
reprocessing their SNF: China, France, India, Japan, Nether-
lands, Russia and U.K [15]. Among these, the only countries 
that currently operate commercial scale reprocessing facili-
ties are France and Russia, with the U.K. choosing to close 
their Magnox and Thorp reprocessing plants in 2022 and 
2018, respectively [16, 17], and the startup of the Rokkasho-
Mura plant in Japan facing perpetual delays. A major reason 

inhibiting the widespread use of reprocessing is the concern 
about nuclear proliferation [15]. The aqueous reprocessing 
process PUREX, which is commercially available, can sepa-
rate pure Pu from the spent nuclear fuel which enhances the 
nuclear proliferation risk. However, pyro-processing, which 
is being actively researched as an alternative to PUREX, 
uses molten salts. It produces a mixed ingot of U, Pu, and 
MA which can lower nuclear proliferation risk. To convert 
the TRU-U ingot from pyroprocessing into weapons-grade 
material, an additional processing step, such as using a cov-
ert PUREX plant, would be required, making the process 
more complex and easier to detect [15].

Main Steps of Pyroprocessing

Pyroprocessing technology, initially developed for treating 
metallic fuel, has expanded to include recycling of SNF, 
such as oxide fuel from Pressurized Water Reactors (PWRs) 
[8]. This review primarily considers pyroprocessing for 
oxide fuel, given that PWRs are predominant in Korea and 
globally. Pyroprocessing aims to recycle SNF by separating 
valuable materials such as U and TRUs from SNF, thereby 
reducing the volume and toxicity of nuclear waste and con-
tributing to a sustainable nuclear fuel cycle. The process 
involves several key stages: (1) head-end process (disas-
sembly, rod extraction, cutting, and decladding, oxide feed 
fabrication, off-gas treatment process), (2) oxide reduction 
process, (3) electrorefining process, (4) electrowinning pro-
cess, and (5) waste treatment process [9]. Oxide reduction, 
electrorefining, and electrowinning are all electrochemical 
processes that utilize molten salt as a solvent and an electro-
lyte with high radiation resistance.

Head‑End Process

The head-end process (Fig. 2) is the initial series of steps 
preparing SNF for recycling and waste minimization, trans-
forming the spent fuel assembly into a form suitable for fur-
ther processing like oxide reduction and electrorefining. The 
key objectives and methods involved include follows [9]:

Table 1   The chemical composition of 4 wt% enriched LWR fresh 
fuel and 46 GWD/tU burnup spent nuclear fuel [126]

a Np, Am, Cm
b Transition metals, lanthanides (e.g. Sm, Gd, Eu), long lived radioiso-
topes (e.g. 90Sr, 137Cs, 99Tc, 129I)

Element/isotope Fresh fuel compo-
sition (wt%)

Spent fuel com-
position (wt%)

U 235U 4.00 0.67
236U Trace 0.50
238U 96.00 93.06

Pu – 1.68
Minor actinidesa – 0.10
Fission productsb – 4.00

Fig. 2   Schematic flowsheet 
of the head-end process in 
pyroprocessing
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Disassembling, Rod Extraction, and Cutting Process: This 
stage involves disassembling spent fuel assemblies to extract 
individual fuel rods. The rods are then mechanically cut into 
shorter segments suitable for decladding. This process is 
critical for breaking down the fuel assemblies into manage-
able pieces for further processing. Utilizing tele-operated 
manipulator systems ensures precision and safety due to the 
high radioactivity of SNF, enhancing the efficiency of sub-
sequent processing steps by preparing the fuel in a more 
accessible form.

Decladding Process: It aims to remove the metal cladding 
encasing the fuel material, achieved through mechanical 
means or oxidative methods. The choice of method depends 
on factors like fuel burn-up rates and the desired efficiency 
of material recovery. This step is crucial for exposing the 
fuel material for further processing while ensuring valuable 
materials are not lost in the cladding [9].

Oxide Feed Fabrication Process: Following decladding, 
the fuel material is processed to create a suitable feed for 
the oxide reduction step. This may involve converting the 
fuel into powders or pellets that have specific characteristics, 
such as a porous structure for rapid reduction or a dense form 
to prevent contamination by salt carryover [9]. The goal is to 
prepare the fuel in a form that maximizes the efficiency of 
subsequent electrochemical processes [48]. The processed 
SNF (UO2 + TRUs + FPs) is then placed in a cathode basket 
for the oxide reduction step in LiCl-Li2O molten salt.

Off-gas Treatment Process: This step is concerned with 
treating fission gases released during the head-end process. 
The treatment aims to capture volatile (Kr, Xe, 14C, 3H) and 
semi-volatile fission products (Cs, I, Tc, Ru, Mo, Rh, etc.), 
preventing their release into the environment [49]. This step 
is crucial for environmental protection and for recovering 
valuable or hazardous materials contained in the gas form 
[9, 10, 50].

Molten Salt Process: Oxide Reduction

The oxide reduction process aims to convert spent oxide fuel 
into metallic form, facilitating further processing and recy-
cling (Fig. 3). This process uses a molten salt electrolyte, 
typically LiCl-Li2O, which serves as the medium for the 
electrochemical reduction of spent nuclear fuel oxides. Elec-
trodes play a vital role in the process, with the spent oxide 
fuel acting as cathodes where the reduction occurs, and Pt 
or carbon based materials [51, 52], serving as anodes. The 
process reactions involve the transfer of electrons to oxide 
fuels, reducing it to its metallic form, while oxygen ions are 
transferred to anodes, completing the circuit (Fig. 4).

Cathode ∶ MxOy + 2ye− → xM(actinide) + yO2−,

The molten salt electrolyte not only facilitates these reac-
tions but also acts as a medium for dissolving certain FPs 
(Cs, Ba, Sr), thereby separating them from the fuel [53–56]. 
This step is crucial for reducing the volume and heat load of 
the SNF, making it easier to handle and process further. The 

Anode ∶ 2O2−
→ O2(g) + 4e− at Pt anode,

C + O2−
→ CO(g) + 2e− at graphite anode,

C + 2O2−
→ CO2(g) + 4e− at graphite anode.

Fig. 3   Schematic flowsheet of the oxide reduction process in pyropro-
cessing

Fig. 4   Schematic diagram of the oxide reduction cell
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development of efficient electrode designs and the optimiza-
tion of salt composition are ongoing challenges in enhancing 
the efficiency and scalability of the oxide reduction process 
in pyroprocessing [33, 57, 58].

Molten Salt Process: Electrorefining

The objective of electrorefining in pyroprocessing is to 
extract purified U from the metallic form of SNF (Fig. 5). 
This purification process is essential for recycling these 
materials into new fuel, significantly reducing waste and the 
need for fresh U mining [59]. Typically, a LiCl–KCl eutectic 
serves as the electrolyte in this process, dissolving actinide 
chlorides to enable the selective deposition of U at the solid 
cathode. Meanwhile, TRUs and REs are either retained in 
the electrolyte or collected at the anode, achieved through 
meticulous control of the cell’s electrochemical potential 
[56, 60–62].

The anode is where the spent metallic fuel is introduced, 
and dissolution occurs, releasing U and other actinides into 
the molten salt. The cathode is typically made from a stable, 
inert material, such as Mo [63–65], Fe [64, 65], graphite 
[66], stainless steel (Grade-304) [67], and tungsten [67], 
where U is deposited in a pure form. The anode material 
can also be chosen for its scraping characteristics [66, 67]. 
The process reactions involve the oxidation of metallic U at 
the anode to form U chloride, which then migrates through 
the molten salt to be reduced back to metallic U at the cath-
ode (Fig. 6).

Through electrorefining, not only is U efficiently 
recovered, but the separation of REs and actinides is also 
achieved, contributing to a closed fuel cycle and reducing 
the long-term radiotoxicity and heat load of nuclear waste. 

Anode ∶ U → U3+ + 3e−,

M(actinide and fission products) → Mx + + xe−,

Cathode ∶ U3+ + 3e− → U.

The ongoing development of this technology focuses on 
improving the efficiency of U recovery and the purity of the 
product (without undesired TRU), ensuring that recycled 
fuel meets the necessary standards for re-use in reactors [55, 
68–70].

Molten Salt Process: Electrowinning

Electrowinning follows electrorefining in the pyroprocessing 
sequence in order to recover valuable metals, primarily U 
and TRUs, from the spent electrolyte. As depicted in Fig. 6, 
the majority of U is already recovered during the electrore-
fining step. The electrowinning process is then applied to 
the molten salt electrolyte, which still contains residual U 
and TRUs, by changing the cathode to a liquid cadmium 
cathode (LCC) [9]. In electrowinning, the objective is to 
co-deposit the U and TRUs on LCC from the molten salt, 
which contains the dissolved metals [71, 72]. This process 
further minimizes waste and enables the recycling of all 
usable materials from SNF. Electrodes in electrowinning 
are uniquely configured to facilitate the deposition of met-
als on LCC. Recent studies are exploring the use of liquid 
bismuth (Bi) as well as cadmium (Cd) electrodes as cath-
ode materials in the electrowinning step of pyroprocessing, 
showing promising alternative methodologies for metal 
recovery [73–77]. The research explored the use of liquid 

Fig. 5   Schematic flowsheet of the electrorefining and electrowinning 
process in pyroprocessing

Fig. 6   Schematic diagram of electrorefining cell
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Bi electrodes due to their lower melting point and poten-
tial for reduced toxicity compared to Cd, with the added 
potential for enhanced separation efficiency of lanthanides 
and actinide [77]. For instance, Sohn et al. investigated the 
spatial distribution of CeBi2 within Bi-Ce alloys under vari-
ous conditions to explore density-based separations between 
intermetallic compounds of actinides (An) and lanthanides 
(Ln) in used molten salt from pyroprocessing [77]. Further 
research should focus on utilizing density-based methods 
within liquid Bi metals to achieve low toxicity and high 
separation efficiency of actinides and lanthanides.

The anodes are generally made from inert materials that 
do not participate in the reaction, while the cathode is a 
pool of liquid metal such as Cd and Bi, which selectively 
accumulates U and TRUs from the electrolyte for prolifera-
tion resistance. The process reactions involve the reduction 
of metal ions from the molten salt onto a liquid metal cath-
ode, where they form intermetallic compounds or dissolve 
into Cd or Bi. Table 2 shows the formal potentials of U, Pu, 
and Np at Mo and liquid metal cathode, respectively, and 
the activity coefficients for the intermetallic compounds. U 
has a much higher activity coefficient compared to Pu and 
Np, which makes it harder to form intermetallic compounds 
resulting in more negative formal potential than at the Mo 
cathode. Pu and Np both have low activity coefficients, 
which makes it easier for them to form intermetallic com-
pounds, resulting in more positive formal potential than at 
the Mo cathode. As a result, the formal potentials of U and 
TRUs become much closer at the liquid metal cathode than 
at the Mo cathode. By applying voltage using the LCC, the 
combined intermetallic compound can be formed rather than 
the pure forms. At the anode, when an inert anode is used, 
chlorine gas is produced (Fig. 7) [78].

  
Electrowinning’s capacity to distinguish TRUs from REs 

allows for the recycling of these elements into new reac-
tor fuel, playing a crucial role in reducing high-level waste 

Cathode ∶ U3+ + 3e− → U (Cd),

TRU3+ + 3e− → TRU (Cd),

Anode ∶ 2Cl− → Cl2 + 2e−.

volumes and advancing nuclear power sustainability by 
closing the fuel cycle. Future advancements in molten salt 
compositions and electrode configurations are expected to 
increase the selectivity and efficiency of the electrowinning 
process [79]. The challenges in electrowinning include opti-
mizing the process to maximize recovery rates, minimize 
impurities, and ensure the efficient separation of actinides 
from REs.

Purpose of Electrochemical Monitoring 
in Pyroprocessing

Process Efficiency

The primary goal of real-time electrochemical monitoring 
in pyroprocessing is to enhance process efficiency. Moni-
toring allows for the adjustment of processes in response to 
the changing conditions of the molten salt medium, directly 
impacting the effectiveness of each pyroprocessing stage. By 

Table 2   Formal potentials of 
U, Pu, Np at Mo, liquid Cd, and 
liquid Bi vs. Ag+/Ag (1 wt%) 
and their activities in LiCl–KCl 
eutectic molten salts at 773K

E0′ (V) at Mo [127] E0′ (V) at liquid 
Cd [127]

Activity at 
liquid Cd [5]

E0′ (V) at liquid Bi Activity 
at liquid 
Bi[128]

U −1.248 −1.310 7.5×10 −0.970 [127] 2.7×10–5

Pu −1.506 −1.345 1.4×10–4 −1.080 [129] 4.5×10–10

Np −1.485 −1.376 8.2×10–3 −1.066 [130] 4.0×10–8

Fig. 7   Schematic diagram of electrowinning cell
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fine-tuning operational parameters, electrochemical monitor-
ing plays a direct role in optimizing the efficiency of criti-
cal stages, including oxide reduction, electrorefining, and 
electrowinning.

In the oxide reduction stage, the concentration of O2− ions 
is critical to the anode reaction [34]. At low O2− concentra-
tions, Pt dissolution occurs as Pt is converted to Pt2+ ions, 
releasing electrons. Conversely, high O2− concentrations 
lead to Pt corrosion, forming Li2PtO3 through the reaction 
with Li ions and electrons. The concentration of FPs like 
Cs and Sr can increase during oxide reduction process [54]. 
They influence O2− concentration, which affects the effi-
ciency of the oxide reduction process [53].

In the electrorefining stage, the focus is on extracting 
purified uranium from SNF’s metallic form. The salt compo-
sition, including the concentrations of U and Pu, is directly 
related to the current density and, consequently, the deposi-
tion rate [80]. Pu can be deposited on the solid electrode, 
affecting the purity of the recovered U, at low concentrations 
of U ion [62, 81]. Lastly, the salt composition can determine 
the time to progression to the electrowinning with optimum 
efficiency. During electrowinning, U, TRU, and rare earth 
elements (REE) are recovered from the salt transferred from 
the electrorefining process. The composition of the salt and 
the metal composition in cadmium are crucial parameters. 
The current density, influenced by both the salt and metal 
compositions, dictates the efficiency of metal recovery [60].

Nonproliferation

Electrochemical monitoring plays a critical role in the 
nonproliferation aspect of pyroprocessing by monitoring 
the concentration of nuclear materials. Nuclear material 
accounting activities are carried out to establish the quanti-
ties of nuclear material present within defined areas [82]. 
Real-time accounting presents challenges, such as the inho-
mogeneity of the salt and the variation in the concentra-
tion of fissile materials near the anode and cathode during 
electrorefining [83]. The near-anode concentration of fis-
sile material, such as Pu and U, tends to increase, while it 
decreases near the cathode, posing a challenge for accurate 
accounting and inventory control. Monitoring the concen-
trations of these materials in the molten salt and combining 
with computational simulation is vital for maintaining an 
accurate account of nuclear materials. Anomaly detection 
is another critical aspect, where monitoring sensor readings 
for unexpected changes in salt composition or redox poten-
tials can indicate attempts at material diversion [84]. Such 

Pt → Pt2+ + 2e−,

Pt + 2Li+ + 3O2−
→ Li2PtO3 + 2e−.

real-time monitoring capabilities are essential for promptly 
identifying and addressing potential nonproliferation risks, 
thereby ensuring the secure and compliant operation of 
pyroprocessing facilities.

Major Elements in Pyroprocessing

As an input of pyroprocessing, SNF is comprised of a com-
plex mix of materials, including U, TRUs, along with a 
plethora of FPs. The composition of SNF depends on opera-
tion conditions. U is the predominant element in SNF, serv-
ing as the primary fuel used in nuclear reactors. TRUs such 
as Pu, Np, Am, and Cm are generated within the nuclear 
reactor through neutron capture and beta-decay processes 
starting from U. These TRUs are of particular interest in 
pyroprocessing due to their long half-lives and potential 
for reuse in nuclear reactors. During the fission process, U 
atoms split to produce a range of other elements, including 
rare earth elements (La, Ce, Nd, etc.), Cs, Sr, Zr, and noble 
metals. Table 3 gives summary of this section. The electro-
chemical properties of these elements are well-detailed in 
Zhang’s review [85].

In pyroprocessing, the actinides—specifically U and Pu, 
alongside Np, Am, and Cm—are the primary elements of 
interest. The emphasis on U and Pu is due to their abundant 
presence in SNF and as fuel in nuclear power plants [5]. 
Monitoring these elements in real-time within the molten 
salt facilitates optimal control of electrorefining and elec-
trowinning processes, ensuring the product meets purity 
specifications. Furthermore, from a nonproliferation stand-
point, precise accountability of fissile materials, especially 
Pu and Cm, are crucial [84]. Efficiently tracking actinide 
levels also minimizes losses to waste streams, and enhancing 
the overall process efficiency by optimizing electrorefining 
and electrowinning process by combining with computa-
tional models. In electrorefining stages, the concentration of 
U typically starts high (~ 10 wt%) [86] and decreases as it is 
deposited, whereas Pu concentration increases as it is dis-
solved from SNF. During electrowinning, the process dura-
tion and termination are dictated by the targeted actinide 
concentrations.

Fission products, including lanthanides (La, Ce, Nd, Sm, 
etc.), Cs, Sr, Zr, and noble metals, are diverse and abundant 
in pyroprocessing [9]. Monitoring these elements is essen-
tial for several reasons: evaluating the separation efficiency 
of electrorefining, controlling impurities that may impact 
process or product quality [9], and managing waste streams 
for safe disposal. The presence and buildup of specific fis-
sion products can significantly affect the efficiency [87] and 
safety of the process.

Oxygen concentration plays a critical role in the oxide 
reduction process in pyroprocessing [25, 39, 41]. Proper 
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management of oxygen levels is also crucial for protecting 
anode material which is precious metallic Pt [34]. During 
oxide reduction processes, the method of oxygen removal 
varies: in electrolytic reduction, oxygen is extracted at the 
anode, while in chemical reduction, it reacts to form Li2O. A 
2–3 wt% of Li2O is considered as ideal for the oxide reduc-
tion process [4]. Throughout pyroprocessing, maintaining 
precise control over oxygen concentrations is vital to prevent 
the unwanted precipitation of oxides [58].

Electrochemical Sensor for Pyroprocessing 
Monitoring

Electrochemical sensors, crucial for analyzing molten salt 
compositions and monitoring corrosion within pyropro-
cessing, are under development. These sensors, classified 
into voltammetric and amperometric types, offer real-time 
measurement capabilities across the extensive electrochemi-
cal window of molten salts, maintaining functionality even 
under high radiation levels [28–30, 35]. However, operat-
ing at high temperatures (650 °C for oxide reduction and 
500 °C for electrorefining and electrowinning) presents sig-
nificant challenges for long-term stability and reliability of 

electrochemical sensors. High-temperature environments 
can cause material degradation and corrosion, significantly 
limiting the choice of durable materials for sensor compo-
nents. For example, Pyrex is a useful ceramic material for 
reference electrodes; however, it is unsuitable above 600 °C 
due to phase transitions that cause structural failures [88]. 
Especially, defining the surface area of the working electrode 
is challenging due to the fluctuation in salt levels during the 
process [28–30]. Fluctuation in salt levels can cause thermal 
fatigue of sensor material by cyclical changes in tempera-
ture. Furthermore, pyroprocessing operates in a salt that dis-
solve diverse elements, from relatively high concentrations 
of U to lower concentrations of actinides such as Am, Np, 
and lanthanides such as Nd and La. It is challenging to meas-
ure ion concentration using electrochemical techniques when 
multiple other ions are present in higher concentrations [37, 
89–91]. Deploying these sensors in flow environments intro-
duces additional challenges, including the significant impact 
of natural convection on electrochemical measurements.

Current State‑of‑the‑Art: Materials

One of the critical challenges in the implementation of 
pyroprocessing is the material degradation and corrosion 

Table 3   Major target elements for monitoring in pyroprocessing

Major element Pyroprocessing stage Necessity for measure-
ment

Electrochemical 
measurement feasi-
bility

Electrochemical 
property measurement 
references

Remarks

U Electrorefining, elec-
trowinning

Process efficiency 
(purity of the 
product, signal of 
moving to next step), 
nonproliferation

Yes [29, 30, 110, 131–136] High concentra-
tion measurements 
method is needed

Pu Electrorefining, elec-
trowinning

Process efficiency 
(purity of the 
product, signal of 
moving to next step), 
nonproliferation

Yes [29, 131, 132, 137] Multi-element meas-
urement method is 
needed

Cm Electrorefining, elec-
trowinning

Nonproliferation Yes [138, 139] Multi-element meas-
urement method is 
needed

Zr Electrorefining, elec-
trowinning

Process efficiency 
(purity of the prod-
uct)

Yes [140–146] –

Sr Oxide reduction Waste management 
(highly heat generat-
ing elements—high 
level waste (waste 
volume))

No – –

Rare earth elements Electrorefining, elec-
trowinning

Process efficiency 
(TRU ingot quality, 
TRU ingot prolifera-
tion)

Yes La [147–150], Ce[151, 
152], Nd [132, 153], 
Sm[154, 107, 108]

Multi-element meas-
urement method is 
needed

Oxygen Oxide reduction Process efficiency Yes [92, 94] –
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that occur in high-temperature molten salt environments. 
This degradation primarily affects the longevity and reli-
ability of sensor components crucial for monitoring and con-
trolling the electrochemical processes. High temperatures 
combined with corrosive molten salts can lead to acceler-
ated wear and tear on conventional materials (such as Tef-
lon, plastic) used in manufacturing sensors. For molten salt 
monitoring electrode materials, both metal and carbon (e.g., 
glassy carbon, graphite) are utilized. W [92], Mo [93], Ta 
[94], and Pt [57] are preferred for working and counter elec-
trodes due to their stability in chloride and fluoride molten 
salt environments [95]. Ceramic materials like alumina, 
boron nitride (BN), magnesium oxide (MgO), quartz, and 
Pyrex serve various roles, including in sensor bodies and 
membranes, chosen for their durability at high temperatures 
[88, 96–100].

The material of the working electrode determines the 
electrochemical potential window. Cyclic voltammograms 
obtained from Mo, Pt, W, and C electrodes in LiCl molten 
salt are shown in Fig. 8. The cathodic limit of Pt and C 
occurs at higher voltages due to lithium deposition than Mo 
and W. Cathodic limit decided by the deposition potential 
of intermetallic compound of metal and major cation such 
as Li+ and K+ or Li metal. The anodic limit occurs in the 
order of Mo, W, and Pt by the anodic dissolution of metal, 
while chlorine gas evolution reactions set the anodic limit at 
carbon electrodes. Therefore, the selection of working elec-
trode materials should consider the electrochemical window 
depending on the element of interest.

Reference electrodes, vital for precise potential measure-
ments, vary based on the salt composition and operational 
temperature. In oxide reduction processes using LiCl-Li2O 
[57, 101, 102], Bi-Li alloys [102], Ni/NiO [39, 52, 55, 92, 
103, 104], and quasi-reference electrodes such as Pt [52] 
are utilized. For electrorefining processes in LiCl–KCl, 
Ag/AgCl [92, 105] electrodes are commonly used. The 
membrane material for these reference electrodes in high-
temperature applications includes Pyrex, alumina, mullite 
(3Al2O3·2SiO2), and quartz, selected for their high-temper-
ature resilience [88]. For instance, mullite, while excellent 
for high-temperature applications above 650 °C due to its 
stability and low potential deviations, is less suitable for 
the lower temperatures typical of electrorefining and elec-
trowinning processes. Additionally, the considerable time 
mullite requires to reach equilibrium can hinder efficiency 
in processes that necessitate quick sensor responses. Pyrex 
faces its own set of challenges, particularly its vulnerability 
to phase transitions around 600 °C [106]. This characteristic 
makes it less ideal for processes like oxide reduction, which 
operates around 650 °C. The structural changes induced by 
exposure to high temperatures can cause deformations or 
failures in the sensor, compromising measurement integ-
rity and accuracy. Quartz, although it demonstrates good 
mechanical strength and stability at temperatures exceed-
ing 800 °C, is not as effective in the temperature range of 
500 °C to 650 °C, which is crucial for many nuclear recy-
cling processes. The lengthy stabilization period needed 
for quartz at these temperatures can impact the speed and 

Fig. 8   Cyclic voltammograms 
obtained from Mo, Pt, W, and C 
electrode in 923 K LiCl molten 
salt
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efficiency of electrochemical reactions, posing a problem 
for precise process control and throughput. These examples 
underscore the importance of selecting the appropriate mem-
brane based on the specific operational requirements and the 
challenges of high-temperature conditions in pyroprocessing 
environments.

Challenge and Solving Approach: Surface Area 
of Working Electrode

Voltammetry, a technique that measures changes in current 
in response to voltage alterations, relies on the proportion-
ality between the current magnitude and the working elec-
trode’s surface area. Accurately determining this surface area 
is crucial for precise measurements but poses challenges in 
molten salt environments due to the high temperatures and 
reactive nature of the salts against structural materials for 
electrodes. One way to define the surface area is by using 
metal electrodes encased in non-conductive materials such 
as glass or ceramic [30, 107, 108]. However, this approach is 
limited by the potential reaction between the non-conductive 
material and the molten salt, and the differential thermal 
expansion between materials, which can lead to cracking. 
In the case of W, it was confirmed that the thermal expan-
sion coefficient has a range of 4.358 ~ 5.160 × 10–6  ℃−1 
from room temperature to 1000 ℃ through the relationship 
with temperature [109]. In the case of alumina, the ther-
mal expansion coefficient was confirmed to have a value of 
7 ~ 9 × 10–6 ℃−1. The difference in thermal expansion values 
between alumina and W can cause stress and cracking in 
the alumina. Therefore, if the method of encapsulating with 
nonconductive material is chosen, the nonconductive mate-
rial should be selected to minimize the difference in thermal 
expansion with metal electrodes.

Another approach to accurately define the surface area of 
the working electrode involves utilizing a vertical translator 
to precisely adjust the electrode’s exposure [29, 110]. Tylka 
et al. developed a method, that improves upon traditional 
techniques, using surface area difference and cathodic peak 
current difference measured by changing the depth of the 
electrode using a vertical translator, significantly enhancing 
measurement accuracy [29]. This method allows for actinide 
(U, Pu) measurement with cyclic voltammetry (CV) tech-
nique and the concentration measured with electroanalytical 
method show good agreement with the concentration meas-
ured by ICP-AES. However, this approach may be depend-
ent on the U concentration in the salt. In high concentration 
environments, the signal in the cyclic voltammogram can 
become saturated, potentially hindering accurate measure-
ments. Similarly, Rappleye et al. used the same technique to 
control of the surface area and tested various electrochemi-
cal techniques (CV, NPV, CA, and OCP) to measure U and 
Mg binary mixture [110]. Their work showed that NPV was 

found to be the most accurate method for measuring the 
concentrations for U and Mg in molten salts. Together, these 
studies present the method to solve surface area problem by 
using vertical translator and CV measurements. However, 
the measurement for correcting the electrode area should 
be conducted at least twice, and measurement at another 
time causes an error because it is impossible to distinguish 
between the concentration change and the electrode area 
change.

The other approach is that the surface area of electrodes 
can be calculated by using the current peak difference 
between electrodes with known length differences [28]. The 
method using a reduction peak current to define the surface 
area immersed in molten salt has an advantage for long-
term in-situ monitoring. This method has the advantage of 
long-term stability because of its simple working electrode 
configuration which are metal rods. However, this method 
using the Randles–Sevcik equation operates under several 
assumptions: there is no mass transport by migration or con-
vection; the reaction is reversible and diffusion-limited; the 
activity of the deposited substance is assumed to be unity; 
and the diffusion process is approximated as linear [111]. 
The use of this method for process monitoring is limited by 
these assumptions, especially since forced or natural convec-
tion is difficult to avoid in pyroprocessing [108, 112]. To 
handle the problem, machine learning can be the solution 
[113]. The surface area predicting model could be trained 
with electrochemical data with multiarray electrodes from 
the simulated pyroprocessing environment.

Challenge and Solving Approach: Multi‑element 
Environment

The interpretation of cyclic voltammograms transcends the 
simplistic linear superposition of individual responses due 
to the manifestation of electrochemical–chemical–electro-
chemical (ECE) reaction mechanisms in a multi-species 
environment. This complexity underscores the inadequacy 
of directly summing the voltammetric responses, as it over-
looks the nuanced interdependencies introduced by interven-
ing chemical reactions.

In such environments where multi-element ions coex-
ist, both oxidation–reduction reactions between ions and 
deposited metal coexist. This results in the simultaneous 
presence of electrochemical and chemical reactions. Con-
sequently, the cyclic voltammogram is different from the 
simplistic linear superposition of individual cyclic voltam-
mograms due to chemical reaction with deposited metal and 
the other metal ions in molten salt (ECE reaction) (Fig. 9) 
[111, 114]. In addition, metal deposition on the working 
electrode while performing the electrochemical measure-
ment causes an increase in the working electrode’s surface 
area. The change in the surface area of the working electrode 
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by deposited metal on electrode while measuring causes a 
non-linear relationship between concentration and current.

Researchers have explored various electrochemical 
detection methods to address the challenges of correlating 
concentration with current in multi-element environments. 
Lizuka et al. used normal pulse voltammetry (NPV) and 
square wave voltammetry (SWV) for measuring U, Pu, 
Gd, and Np in a coexisting salt matrix [91]. NPV showed a 
robust approach for the actinide concentration measurement 
method, in the presence of Gd, without interference from 
other components. Huan Zhang et al. investigated the use 
of CV and SWV for real-time measurement of minor metal 
ion concentration (using CeCl3 as a surrogate for PuCl3) in 
the presence of high concentrations of UCl3 [37]. They were 
able to obtain reproducible peak currents for CeCl3, and as 
the concentration of U increased from 5 wt% to 10 wt%, 
the peak current for CeCl3 increased by only 8.3%. pulse 
voltammetry such as NPV and SWV show potential for a 
multi-element environment, however, as an in-situ monitor-
ing method it appears to be inappropriate. This is because, 
pulse voltammetry requires fine voltage control, but in high-
radiation environments, measurements necessitate longer 
cables for equipment shielding from radiation, which acts 
as noise [115] and imposes limitations on real-time measure-
ments due to the difficulty in fine voltage control. Secondly, 
compared to CV, the longer measurement times of SWV 
imply a longer response time. If the response time is too 
long, valuable information in the process data may be lost, 
and fault information cannot be obtained promptly [116].

In an aqueous system, strategies to overcome the difficulty 
of multi-element detection are developed using microfluidic 

devices or microelectrodes [117–119], but these methods can-
not be used in high-temperature molten salts because of the 
absence of long-term stability of microelectrodes and absence 
of microfluidic devices used at process temperatures [108, 120, 
121]. Recently, the method of combining AI algorithms and 
electrochemical measurements has been widely investigated, 
but it requires big data for training the AI algorithm [122, 123]. 
By employing parallel electrochemical cells to gather measure-
ment data across varied concentration environments, it is fea-
sible to collect a dataset adequate for training AI algorithms, 
potentially overcoming the multi-element detection challenge.

Challenge and Solving Approach: Flow environment

Electrochemical sensors developed in the static environment 
for molten salt applications may face significant challenges 
when deployed in flow environments [70]. Recent research 
underscores the profound influence of natural convection on 
electrochemical measurements [112, 124]. Notably, Ge et al. 
showed abnormal natural convection patterns observed in 
molten LiCl–KCl, showing its arising time varied with tem-
perature, significantly influencing electrochemical measure-
ments [112]. Although the use of microelectrodes has been 
proposed to mitigate these effects, their long-term stability 
in molten salt conditions remains unproven [108]. In addi-
tion, Zhu et al. detailed an in situ method to measure the con-
centration of soluble redox species in molten LiCl–KCl by 
combining simulation natural convection environment [124]. 
Their study verified the presence of strong natural convection 
leading to steady-state currents during CV tests at low scan 
rates, suggesting a novel methodology to assess diffusion coef-
ficients and concentration ratios by utilizing natural convection 
phenomena.

Simulating molten salt flow presents a viable strategy for 
improving the accuracy and reliability of electrochemical 
analysis in dynamic environments. This approach could lead 
to the development of new empirical models that more accu-
rately describe ion concentrations in fluctuating molten salt 
systems. A suggestion by Zhe et al. involves the introduction 
of a concentration correction factor that could effectively inte-
grate flow considerations into analytical frameworks. In addi-
tion, by collecting simulated electrochemical data with various 
geometry of electrode from simulated flow environments and 
applying machine learning techniques, it is possible to opti-
mize various electrode designs could have a simple concentra-
tion correction factor or a simulated empirical model [125].

Conclusion

This review has systematically explored the molten salt pro-
cesses involved in pyroprocessing, the critical role of moni-
toring, the significance of major elements, and the current 
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tions [114]



	 W. Yang et al.

developments, challenges, and future directions for electro-
chemical sensors in the pyroprocessing of SNF. Integrating 
AI with electrochemical techniques emerges as a promising 
approach to existing challenges, such as accurately deter-
mining the working electrode’s surface area and achieving 
selective measurements in environments with multiple ele-
ments. The other future research direction is development 
of advanced electrode including long-term stability micro-
electrodes and flow optimized electrode. The integration of 
flow condition computational models and experimental data 
in static cells through machine learning algorithms can give 
flow optimized electrode that optimized to give have a sim-
ple concentration correction factor or a simulated empirical 
model. Such advancements in electrochemical sensor tech-
nology mark significant progress toward the realization of 
sustainable nuclear energy, enhancing economic, safety, and 
nonproliferation aspects of process monitoring.
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