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Abstract
Combinatorial nature of polymer matrix composites design requires a robust predictive model to accurately predict the 
mechanical properties of polymer composites, thereby reducing the need for extensive and costly trial-and-error approaches 
in their manufacturing. However, traditional prediction models have been either lacking in accuracy or too resource-intensive 
for practical use. This study proposes an advanced Transformer-based predictive model simultaneously considering various 
variables that can influence mechanical properties, while utilizing only a minimal amount of training data. In developing this 
model, we utilize an extensive dataset across 294 types of polymer composites, using a diverse range of polymers and rein-
forcements, providing a comprehensive basis for the model’s predictions. The model employs a Transformer-based transfer 
learning technique, known for its efficiency with small datasets, to predict essential mechanical properties such as tensile 
strength, tensile modulus, flexural strength, flexural modulus and density. It shows high predictive accuracy (R2 = 92%) and 
makes reliable predictions for combinations of polymer composites that have not been trained on (R2 = 82%). Additionally, 
the model’s effectiveness and learning process are validated through Explainable Artificial Intelligence analysis and latent 
space visualization.
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Introduction

Internationally, energy transition policies are being pursued, 
and social demands for sustainable energy are increasing. 
Accordingly, demand in new markets such as renewable 
energy and electric vehicles will increase. In fact, with the 
continued interest of the international market, the green 
mobility market has grown. To solve the problem of green 
mobility energy efficiency, we need to change vehicle 
materials [1]. So, the stable acquisition of new materials is 
important for achieving efficient energy transition. Currently, 
many parts of automobile materials are being replaced by 
heavy steel materials with light aluminium alloy/plastic/
ceramic. As shown in Table 1, replacing each part of an 

automobile with plastic can achieve a weight reduction rang-
ing from a minimum of 22.2% to a maximum of 66.7% [2]. 
Plastic, with the advantages of lightweight, moldability, and 
low production cost, has a distinct drawback of having low 
mechanical strengths, so the need to develop polymer matrix 
composites (PMCs) by supplementing the characteristics 
of plastics with weak strength is required. The material’s 
processability, temperature-dependent strength, and elastic-
ity are major considerations for the practical application of 
materials. The stretching force of the material, the section of 
the force returning to the original shape, the braking force, 
and the temperature at which the deformation occurs can be 
observed in the mechanical properties test (tensile/flexural 
test). The working environment (temperature, the velocity of 
applied force, etc.) to which it is exposed is essential to PMC 
design in consideration of mechanical properties. Mechani-
cal properties are strongly influenced by the product’s 
intended use and the environment to which it is exposed, so 
it is closely related to the safety as well as the performance 
of the product. And the representative mechanical proper-
ties are tensile strength, flexural strength, elastic modulus, 
stress at break, and so on. As mentioned above, polymers 
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have many advantages, but they have the disadvantage of 
weak strength. Therefore, strengths, including tensile and 
flexural strength, are the most important mechanical proper-
ties in PMC design. However, even with the same PMC, the 
mechanical properties change according to the filler content, 
test conditions, and process variables. So, in designing PMC 
with required mechanical properties, controlling variability 
in formulation and test that reflects chemical properties is 
difficult. Consideration of various parameters is required to 
develop a PMC suitable for the application. But even today, 
it is difficult to predict the variability of properties affected 
by various parameters. Many PMC designs are being made 
based on the intuition of the designer’s experience. However, 
during material development, a lot of trial and error and 
invasive tests are made in the testing process to measure 
mechanical properties, which takes a lot of time and physical 
costs in the process. Consequently, research is being con-
ducted on predictive models for the mechanical properties of 
PMCs to enable rapid and accurate material design.

The earliest model developed for predicting the properties 
of PMCs is the rule of mixtures (ROM) model [3–5]. This 
method estimates the properties of the composite material 
based on the properties and proportions of its individual 
components. It is primarily used for predicting the properties 
of composite materials like polymer composites and fiber-
reinforced plastics. However, ROM is based on the overly 
simplistic assumption that the properties of each component 
contribute linearly to the overall properties of the composite. 
This approach fails to account for the effects of interactions 
between the components, manufacturing process variables, 
and testing conditions on the material properties. Therefore, 
the ROM model can only be used for setting a general direc-
tion in the initial design phase through rough estimations. 
Subsequent research is focused on first-principle based mod-
els, primarily utilizing Molecular Dynamics (MD) for the 
prediction of mechanical properties. While the MD model 
can reflect test temperature, test speed, and structural infor-
mation of the constituent materials, it incurs a high compu-
tational cost and requires extensive data about the structure 
and properties of these materials. As evidenced by numerous 
prior studies [6–8], most analyses have been conducted on 
only one type of material, making high-throughput screen-
ing for PMCs under various conditions and combinations 

unfeasible. To overcome these limitations of existing mod-
els, recent researchers have proposed machine learning-
based models that can simultaneously consider a vast array 
of parameters and accurately reflect the high non-linearity of 
PMCs. However, acquiring the necessary data for develop-
ing predictive models for the mechanical properties of poly-
mer composites requires going through the stages of material 
design, manufacturing, and mechanical testing. Therefore, 
most research has relied on limited data obtained by fixing 
certain variables. The machine learning-based models devel-
oped using such limited data have limitations as outlined in 
Table 2. Additionally, the limitations of recently proposed 
predictive models become evident through Table 3 [5, 9–14]. 
These limitations include the neglect of correlations among 
variables such as the combinations of constituent materials, 
conditions of the manufacturing process, and the proper-
ties to be predicted. As a result, these models only make 
predictions within a very narrow range and fail to consider 
a diverse array of condition variables to be viable for indus-
trial use. In response to these challenges, this study proposes 
a predictive model for the mechanical properties of PMCs 
that incorporates the maximum possible range of variables 
from the design process to mechanical testing. To enhance 
the predictive capability and generalizability of the predic-
tive model, we have employed Transformer-based transfer 
learning technique. This strategy combine the strengths of 
Transformer models, which excel at capturing complex pat-
terns and relationships in large datasets, with the benefits 
of transfer learning, which leverages pre-trained knowledge 
from extensive datasets. This combination aims to allow our 

Table 1   Weight reduction in 
automobile parts and the rate of 
weight reduction [2]

Parts Existing material New material Rate of weight 
reduction (%)

Engine Cylinder head cover Aluminium alloy Plastic 39.0
Fuel tank Steel Plastic 38.6
Fuel hose Steel Plastic 66.7

Chassis Brake pipe Steel Plastic 22.2
Body Loop Steel Plastic 26.3

Table 2   Limitations of existing AI-based predictive models for the 
mechanical properties of PMCs

Limitations list

1 Use of hypothetical data
2 Modelling for only one specific type of polymer
3 Modelling for only one specific type of reinforcement
4 Not reflecting a wide range of compositions
5 No consideration of processing conditions
6 No consideration of testing conditions
7 Prediction of only one mechanical property
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model to consider intricate dependencies and interactions 
between variables, reduce the need for extensive labelled 
data, and improve learning efficiency. By leveraging these 
capabilities, we propose a predictive model that could 
deliver more accurate predictions and effectively manage 
the high non-linearity inherent in PMCs.

Data Collection, Analysis and Split for Model 
Training and Validation

Mechanical Property Data of PMCs

In this study, mechanical property data of PMCs, which 
are based on polymers and reinforcements most commonly 
used in lightweight materials, were utilized [2, 15]. The total 
number and types of data are as shown in Fig. 1. The poly-
mers used for the specimens manufactured for mechanical 
testing are a total of 8 types: Polypropylene (PP), Polycar-
bonate (PC), Polyamide6 (PA6), Polyamide46 (PA46), Pol-
yamide66 (PA66), Acrylonitrile butadiene styrene (ABS), 
Styrene-acrylonitrile (SAN), and Polybutylene terephtha-
late (PBT). The reinforcements used are a total of 7 types: 

Glass fiber (GF), Carbon fiber (CF), Amide fiber (AF), Talc, 
CaCO3, Ethylene Octene Rubber (EOR), and Boron nitride 
(BN). The total number of combinations and compositions 
of the manufactured PMCs is 294. Additionally, 31 process-
related variables were identified for each material, and the 
compositions’ distribution is based on mass fractions of 0%, 
5%, 10%, 15%, 20%, 30%, 40%.

Tensile tests were conducted using a Universal Testing 
Machine (UTM), and the tests were conducted in adherence 
to the globally recognized standard for measuring mechani-
cal properties of plastic materials, ISO 527. The gauge 
length (L0) was set at 50 mm, the test speed for calculating 
the modulus of elasticity was 1 mm/min, and the test speed 
after the modulus of elasticity phase was conducted at 5 
and 50 mm/min. During these tests, parameters such as the 
combination, composition, manufacturing process condi-
tions, and testing conditions of the manufactured PMCs were 
recorded. The thickness and length of the specimens were 
uniformly manufactured to be 4 cm and 10.13 cm, respec-
tively, in accordance with standards. To account for external 
temperature exposure and force speed, the test temperatures 
were set at − 30 °C, 23 °C, 80 °C, and 120 °C, while the ten-
sile speeds were set at 5, 50, and 500 mm/min. Additionally, 

Table 3   Related study in predicting mechanical properties of PMCs and limitations

Authors Title Limitations

Kaweesa et al. [5] Prediction and validation of composite mechanical properties resulting from voxel-based microstruc-
tural design in material jetting

1, 2, 3, 5, 6

Liu et al. [9] Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite 
based on molecular dynamics simulation

1, 2, 3, 5

Ho et al. [10] Development of artificial intelligence-based model for the prediction of Young’s modulus of polymer/
carbon-nanotubes composites

1, 3, 5, 6, 7

Zhang et al. [11] Predicting stress–strain curves using transfer learning: knowledge transfer across polymer composites 2, 3, 4, 6
Gulihonenahali et al. [12] An artificial neural network prediction on physical, mechanical, and thermal characteristics of giant 

reed fiber reinforced polyethylene terephthalate composite
3, 5, 6

Al-Jarrah et al. [13] A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of 
green fibers for better composite manufacturing

4, 5, 6

Iqbal et al. [14] Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete 
environment using fuzzy metaheuristic models

1, 2, 3, 5

Fig. 1   Acquired mechanical property data of polymer composite materials
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the specimens were stored in a constant temperature and 
humidity room maintained at 23 °C and 50% humidity for 
over 72 h before testing. The properties obtained included 
tensile modulus and tensile strength.

The flexural tests were also conducted using the same 
UTM equipment in a constant temperature and humidity 
room maintained at 23 °C and 50% humidity. Following the 
international testing standard ISO 178, these tests were per-
formed with a span distance of 64 mm and a testing speed 
of 2 mm/min. The properties obtained from these tests were 
flexural modulus and flexural strength. Additionally, to 
accurately measure the density of the synthesized materi-
als, a densimeter (EW-300SG, Alfa Mirage) was used in the 
same constant temperature and humidity room. The specific 
gravity was measured and then multiplied by the density of 
water at 23 °C to calculate the density of the specimens. 
Measurements were taken using flexural specimens, and 
each composition involved five specimens that were stored 

in the constant temperature and humidity room for over 72 h 
before the data was recorded.

Examination of Correlations Between Mechanical 
Properties and Process Variables

To begin with, Fig. 2 allows us to conduct a basic analy-
sis of five mechanical properties. The tensile and flexural 
strengths can be observed in Fig. 2a, c, respectively, with 
most of the values concentrated below 150 MPa. This indi-
cates that the mechanical properties of the polymer, which is 
the matrix of the PMC, are significantly reflected. As shown 
in Fig. 2b, d, the modulus values are primarily distributed 
between 1000 and 3000 MPa, and Fig. 2f reveals that both 
the tensile modulus and flexural modulus have considerable 
dispersion. Lastly, through Fig. 2e, f, the density of PMCs 
based on 15 different constituent materials is found to vary 
significantly, ranging from a minimum of 0.888 g/cm3 to a 

Fig. 2   Analysis results of PMC mechanical properties raw data
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maximum of 1.61 g/cm3, approximately a twofold differ-
ence. The material with the highest mechanical strength in 
the collected data is a PMC manufactured with PA6 and 
CF as filler at 40 wt%, which exhibits a tensile strength of 
344 MPa and a flexural strength of 353 MPa. For lightness 
of materials, PMCs reinforced with CF and using PA6, 
PA66, PA46 as the polymer matrix generally showed high 
mechanical strength. However, without simultaneous analy-
sis of the other 22 variables, including process and testing 
conditions, these trends cannot be simply accepted. In other 
words, it is not clear from this simple analysis whether the 
superior mechanical properties of certain combinations are 
due to random arrangements and bonds formed during the 
polymer and material mixing process or improved due to 
optimal manufacturing conditions. To clearly analyze the 
correlation between processing conditions and the targeted 
mechanical properties, a Pearson Correlation Coefficient 
(PCC) analysis was conducted [16]. The PCC is a statistical 
technique measuring the strength and direction of a linear 
relationship between two variables, ranging from − 1 to 1. 
A PCC of 1 indicates a perfect positive linear relationship, 

− 1 indicates a perfect negative linear relationship, and 0 
indicates no linear relationship. Generally, a value of ± 0.2 
or higher is considered indicative of a correlation between 
variables [17].

In the PCC analysis for tensile strength, shown in Fig. 3a, 
14 out of the 19 process parameters exhibited a PCC value 
of ± 0.2 or higher. Similarly, for flexural strength, Fig. 3c 
reveals that 15 out of 19 process parameters have a PCC 
value of ± 0.2 or higher. These results clearly demonstrate 
the significant relation and collinearity between the mechan-
ical properties of PMCs and the manufacturing process vari-
ables obtained. This indicates that manufacturing process 
variables can be effectively utilized as input features in 
predicting the mechanical properties of PMCs. However, as 
shown in Fig. 3b, d, there is no clear correlation between the 
tensile modulus, flexural modulus, and the process param-
eters. This suggests that the modulus of elasticity, which is 
primarily related to the basic bonding characteristics of the 
material, might be less influenced by the stress distribution 
within the material during the extrusion process compared to 
its impact on strength. It is important to note that Pearson’s 

Fig. 3   Analysis results of correlation between mechanical properties 
and processing conditions. a PCC analysis between tensile strength 
and variables. b PCC analysis between tensile modulus and variables. 

c PCC analysis between flexural strength and variables. d PCC analy-
sis between flexural modulus and variables
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Correlation Coefficient (PCC) analysis only identifies linear 
relationships, and thus cannot detect higher order nonlinear 
correlations. Further verification of this aspect was con-
ducted in Sect. 4 through feature engineering, as part of the 
predictive result analysis process.

Data Preparation for Model Performance Validation

The original dataset contained 31 process-related variables. 
However, as indicated in Fig. 3, some of these variables 
exhibited very high correlations with each other. To improve 
computational efficiency and reduce dimensionality, 9 of 
these highly correlated variables were replaced with their 
average values, specifically averaging the temperatures of 
Heating Zones 1 to 6 and the temperatures of Barrel 1 to 
Barrel 3. This resulted in a total of 24 input features. The 
24 input features and 5 outputs in the collected data exhibit 
vastly different scales. The data with the largest scale is the 
flexural modulus, with a scale around 104, while the data 
with the smallest scale is the composition data, with a scale 
of 10–1, resulting in a maximum scale difference of 105. 
Large differences in scale can cause several issues. Firstly, 
the disparity in scales can significantly decrease the learn-
ing efficiency of machine learning-based models that utilize 
optimization techniques like gradient descent, potentially 
slowing down or rendering the learning process inefficient. 
Moreover, features with larger sizes might have a dispropor-
tionately large impact on the results, hindering the proper 
learning of genuinely important features. Therefore, to main-
tain the original distribution of the data while scaling all 
features to a range between 0 and 1, the MinMax scaling 
technique was applied.

The MinMax scaling technique can be defined by the fol-
lowing Eq. (1), where Xscaled represents the adjusted data, 
and Xmin, Xmax, and X are the minimum, maximum, and orig-
inal values in the dataset, respectively. Utilizing MinMax 
scaling for range adjustment not only aids in model training 
but also reduces the impact of outliers and maintains the dis-
tribution of data that does not follow a normal distribution.

In this study, two data partitioning methods were adopted 
to thoroughly verify the reliability and accuracy of the 
model. First, the entire dataset was randomly divided into 
training and validation sets in an 8:2 ratio for model training. 
This approach was taken to assess the predictive accuracy of 
the model when the composition, process variables, and test 
variables change within the combinations of trained PMCs.

Second, a method of selectively removing specific data-
sets from the training data to measure predictive accuracy 
was used. By excluding the entire data of certain PMC 

(1)X
scaled

=

X − X
min

X
max

− X
min

.

combinations from the training data and verifying predictive 
accuracy, the model’s performance in predicting untrained 
PMC combinations was evaluated. The three combinations 
with the most data were selected from the entire dataset as 
shown in Table 4 to assess the model’s performance.

Methods

Representations and Tokenization of PMCs

In this study, since a natural language processing model is uti-
lized, it is necessary to convert PMCs into SMILES, a natural 
language form. The Simplified Molecular Input Line Entry 
System (SMILES) notation, which represents molecular struc-
tures as natural language, is the most widely used molecular 
structure representation and provides richer structural infor-
mation compared to chemical fingerprints based on general 
functional groups. To use SMILES representation as input 
and output for the Transformer model, SMILES strings need 
to be tokenized into individual characters and then encoded 
into one-hot vector representations (a vector with all values 
set to 0 except for the position of the current token). This 
process is similar to tokenization of sentences in natural lan-
guage processing, and the key lies in building a vocabulary 
that accurately represents the structures of polymers and rein-
forcements. For this purpose, a vocabulary was constructed 
using the collected polymer and reinforcement data, especially 
for pre-training in the transfer learning process. By utilizing 
polymer data, efficient extraction of representations within 
polymers was possible. The constructed vocabulary consists 
of tokens for 372 different SMILES structures. Figure 4 illus-
trates the process of tokenizing polymer SMILES using the 
constructed vocabulary. When building a vocabulary with 
general chemical SMILES, tokenization based on elements 
like carbon (C), hydrogen (H), oxygen (O) leads to a smaller 
vocabulary size, but the tokenized SMILES become very long, 
increasing the dimensionality of the data to be interpreted. This 
can result in increased memory usage for training and longer 
training times and can also cause sparsity issues for rarely used 
elements, potentially hindering proper learning. Additionally, 
including too many words can make the model overly spe-
cialized in certain specific words, complicating generalization. 
However, by constructing a new vocabulary through polymer 
data, it is possible to effectively reflect structural information 
of polymers by reducing the size of the vocabulary while con-
verting frequently used SMILES expressions, i.e., functional 

Table 4   Polymer composite 
material combinations for 
verifying model extrapolation 
capability

Polymer matrix Reinforcement

PA46 CF
PP GF
ABS GF
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groups, into single words. Figure 4 shows the tokenization 
process for Polyamide 66 (nylon 66), one of the PMCs data 
used in modelling, demonstrating how CH functional groups 
or chains like CCCCC are efficiently converted into single 
words within the tokenization process.

The size of the constructed vocabulary is 372, and it 
includes specific tokens and indices added for the structure 
of polymers and reinforcements, as well as other vocabu-
lary, such as: (‘<unk>’ 368), (‘<pad>’ 369), (‘<bos>’ 370), 
(‘<eos>’ 371). Among these, <bos> and <eos> are used to 
denote the beginning and end of SMILES strings, respec-
tively. The <unk> token was added to substitute for expres-
sions not present in the dictionary. Lastly, <pad> is used to 
fill SMILES strings that are shorter than the model’s input 
size to make their length equal to the input size. Addition-
ally, considering that most of the SMILES representations of 
polymers and reinforcements in the entire dataset are within 
40 characters, the size of the input SMILES was set to 40 
characters each.

Design of Transformer‑Based Predictive Model 
Through Transfer Learning

The Transformer model used in this study is based on an 
encoder-decoder architecture and has been widely used in 
cheminformatics for predicting molecular properties and 
reactions [18–21]. Particularly, it has been observed in pre-
vious studies that utilizing transfer learning of SMILES 
shows superior performance compared to other modelling 
techniques, especially when modelling with a small amount 
of data. Previous research has demonstrated the success of 
Transformer-based transfer learning techniques for vari-
ous molecular properties, such as physical properties (e.g., 
melting point, solubility), molecular orbital properties (e.g., 
HOMO, LUMO), and environmental, health, and safety 
(EHS) characteristics (e.g., mutagenicity, toxicity) [22–24]. 
Therefore, it was anticipated that the prediction of mechani-
cal properties of PMCs using a pre-trained Transformer 

model, based on the limited PMC database in this study, 
could be achieved in a similar manner.

The basic design outline of the model is as shown in 
Fig. 5, and the model development process consists of pre-
training and fine-tuning. The key to this Transformer-based 
transfer learning framework lies in the pre-training phase. 
By pre-training on SMILES data, the model can learn the 
representation of SMILES and efficiently extract complex 
functional group information, effectively distributing the 
information represented by SMILES in a latent space. This 
process allows for the compression of high-dimensional 
SMILES into a smaller dimension, focusing on learning only 
the most crucial information, thus increasing the efficiency 
of the predictive model. Additionally, through pre-training, 
the Transformer model can learn various patterns and lan-
guage structures from a larger dataset, enabling it to perform 
effective learning with less data compared to other machine 
learning-based models and achieve high performance and 
reliability.

Since the mechanical property prediction model for 
PMCs takes SMILES as input, the ability of the Transformer 
model, a natural language processing model, to accurately 
interpret the SMILES of the constituent materials is critical 
to the model’s performance and reliability. Therefore, a self-
supervised learning approach was used to enable the predic-
tive model to learn SMILES syntax. While it is typical for 
pre-training databases in chemical SMILES to encompass 
a wide variety of molecules, in this study, the target mate-
rials are polymers and reinforcements, not typical chemi-
cal molecules. Therefore, feature extractors obtained from 
training on general chemical molecules may not guarantee 
effective extraction of key information from polymers and 
reinforcements. Consequently, we constructed a pre-training 
dataset that could effectively learn and extract the structural 
characteristics of PMCs.

Pre-training with SMILES can be conducted in various 
ways, with the most commonly used methods being mask-
ing-based learning and standardization-based learning. 

Fig. 4   SMILES tokenization 
result
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The first method involves masking specific tokens within 
the entire SMILES string and then predicting parts of these 
masked SMILES as a pre-train task, as shown in Fig. 6. The 
second method involves converting non-canonical SMILES 
into canonical SMILES, as illustrated in Table 5. Based on 
the analysis that pre-training by converting non-canonical 
SMILES to canonical SMILES yields higher performance, 
this study also selected this approach as the pre-training task 
[21].

For pre-training, the constructed SMILES database 
contains information on 8512 polymers and reinforce-
ments. The detailed database construction process began 

with collecting the types of polymers and reinforcements 
from PolyInfo [25], followed by converting their chemi-
cal names to SMILES in PubChem to build the database 
[26]. Subsequently, the pre-training used non-canonical 
SMILES as input, and the model was trained to predict 
canonical SMILES as output. Examples of input–output 
data for this pre-training process are shown in Table 5. 
The performance improvement of the predictive model 
through this pre-training process was analyzed in detail 
in Sect.  4.2. To develop predictive models for tensile 
strength, tensile modulus, flexural strength, flexural mod-
ulus, and density, the pre-training process in Fig. 5a was 

Fig. 5   Development flowchart 
of transfer learning-based 
mechanical properties predic-
tion model. a Unsupervised 
pre-train. b Supervised learning 
to predict mechanical properties 
and density of PMC

Fig. 6   Masked SMILES pre-
training with transformer

Table 5   Input and output 
examples of pretraining process

Pre-training input (non-canonical SMILES) Pre-training output (canonical SMILES)

C(CCC[C@@H](C(=O)*)N*)SC©=O *N[C@@H](CCCCSC©=O)C(*)=O
*N[C@H](C(=O)*)CCCCSC(==O)C *N[C@@H](CCCCSC©=O)C(*)=O
C(CCC[C@H](N*)C(=O)*)SC(C)=O *N[C@@H](CCCCSC©=O)C(*)=O
O=C©SCCCC[C@H](N*)C(=O)* *N[C@@H](CCCCSC©=O)C(*)=O
C(CC[C@@H](C(=O)*)N*)CSC©=O *N[C@@H](CCCCSC©=O)C(*)=O
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used to adjust the parameters of the Transformer encoder, 
which was then further fine-tuned.

Specifically, the encoder component of the pre-trained 
Transformer model is used to extract the core features 
of the input polymers and reinforcements, acting as a 
molecular fingerprint. For example, for a molecule with a 
SMILES string of N characters, the encoder generates an 
N-dimensional latent representation vector. Since different 
molecules have SMILES of varying lengths, the input size 
for the downstream model can vary for each polymer and 
reinforcement SMILES. Therefore, a convolutional neu-
ral network (CNN) with Max pooling structure is applied 
to the downstream predictive model to accommodate the 
original sentence classification. This design allows the 
model to accommodate various input lengths and operate 
regardless of the length of the polymer and reinforcement 
SMILES representations. However, since the encoder of 
the pre-trained model only takes polymers and reinforce-
ments SMILES as input, it cannot reflect various input 
variables such as process parameters and mechanical test-
ing variables. To incorporate these, as shown in Fig. 5b, 
an additional input layer with a recurrent neural network 
was attached to develop a multi-input model that reflects 
the process and testing parameters of PMCs. The over-
all structure of the model is divided into two parts: one 
that receives the SMILES of PMCs as input and another 
that receives additional process and mechanical testing 
conditions as input. The model structure for the part that 
receives the PMCs SMILES as input was designed based 
on the results optimized during the pre-training process, 
and subsequently, the structure of the feedforward neu-
ral network attached as a mechanical property predic-
tion regressor was further optimized through Bayesian 
optimization.

Results and Discussion

Impact Analysis of Input Features

To validate the performance of the model developed in this 
study, the first step undertaken was an analysis of the impact 
of process conditions and mechanical testing conditions 
on the predictive model. Due to the significant time cost 
of validating all data, verification was conducted focusing 
on tensile strength, which had the most data available. For 
this verification, two models were developed and tested: one 
that only received PMCs SMILES and composition as input, 
excluding process and mechanical testing conditions, and 
another that included all inputs, incorporating process condi-
tions and mechanical test conditions.

The results of the verification can be seen in Fig. 7. Fig-
ure 7a shows the tensile strength prediction results of the 
Transformer model using only PMC SMILES, while Fig. 7b 
presents the results of the Transformer model that also 
includes process and testing variables. When only SMILES 
were used as input, the R2 value based on the validation 
data was 63%, and when process and testing variables were 
also included, the R2 value increased to 81%, an increase of 
approximately 18%. This significant improvement demon-
strates the importance of process conditions and mechanical 
testing conditions as vital input features in predicting the 
mechanical properties of PMCs.

Analysis of Model Performance Changes Through 
Pre‑training

In this part, we analyzed the impact of pre-training on the 
performance of the model. This analysis was conducted in 
two ways. First, a predictive model without pre-training was 

Fig. 7   Tensile strength prediction result comparison with different input features. a Using SMILES as input feature (R2: 63%). b Using SMILES, 
process conditions, test conditions as input feature (R2: 81%)



	 J. Lee et al.

developed through supervised learning with mechanical 
property data, and its predictive performance was compared 
to that of a model developed with transfer learning. The 
comparison of prediction results can be seen in Fig. 8. The 
model trained solely with supervised learning achieved an 
R2 value of 81% on the validation data. In contrast, the trans-
fer learning-based model resulted in a significantly higher 
R2 value of 95%. This demonstrates a clear performance 
improvement of approximately 14% with the incorporation 
of pre-training. This demonstrates the effectiveness of the 
Transformer predictive model development framework with 
pre-training in predicting mechanical properties of PMCs.

Second, to prove the performance of the Transformer 
predictive model developed through pre-training, the latent 
space of the Transformer model was examined. Both models 

with and without pre-training were used, and the latent rep-
resentation vectors distributed in the latent space when the 
SMILES of PMCs were input were observed. This involved 
compressing the high-dimensional 512-dimensional latent 
representation vectors into a two-dimensional space for 
visualization, using the uniform manifold approximation 
and projection (UMAP), which is most effective for embed-
ding SMILES [27]. Figure 9a shows the latent representation 
vectors of the tensile strength prediction model developed 
through supervised learning, while Fig. 9b shows those of 
the model developed with transfer learning. The X and Y 
axes represent the dimensions of the reduced latent space, 
and the colors of the data points represent the magnitude 
of tensile strength. While Fig. 9a shows that mapping to 
the latent space according to tensile strength is indistinct, 

Fig. 8   Tensile strength prediction results. a With supervised learning only (R2: 81%). b With transfer learning (R2: 95%)

Fig. 9   Latent space of tensile strength prediction model. a With supervised learning only. b With transfer learning
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Fig. 9b clearly shows distinct mappings according to ten-
sile strength. Remarkably, without employing any cluster-
ing or classification techniques, five distinct clusters can be 
observed in accordance with tensile strength, as if clustering 
based on tensile strength had been performed. This indi-
cates that the encoder of the Transformer, through transfer 
learning, is more effective in extracting features critical to 
the mechanical properties of PMCs. Based on the analysis 
of these two cases and the various transfer learning-based 
studies discussed in Sect. 3.2, we have determined that trans-
fer learning would have a significant positive impact on the 
prediction of other mechanical properties as well.

Analysis of Predictive Model Performance 
by Mechanical Properties

Through the various analyses conducted, the applicability of 
the model development framework using transfer learning 
has been validated. Consequently, the results of predicting 
tensile strength, tensile modulus, flexural strength, flexural 
modulus, and density using transfer learning were examined. 
The data were split using the method described earlier, ran-
domly dividing the entire dataset into training and validation 
sets at a ratio of 8:2 for learning and prediction. The results 
of the model training can be seen in Fig. 10. The perfor-
mance of the model was evaluated based on the R2 value for 
the validation data. The performances of the predictive mod-
els for tensile strength, tensile modulus, flexural strength, 
flexural modulus, and density were found to be high, with 
respective R2 values of 95%, 93%, 90%, 91%, and 92%.

In the problem of Quantitative Structure–Property Rela-
tionship (QSPR) for predicting mechanical properties from 
the molecular structure of chemical substances, the most 
crucial aspect is the extrapolation ability of the model. To 
test this, three types of PMCs with the most data among the 
entire mechanical property dataset were used as validation 
data to assess the model’s extrapolation capability. These 
types are composites of PA46 and CF, PP and GF, and ABS 
and GF. All data for these three combinations were excluded 
from the training process, and their prediction performance 
was evaluated. The results are shown in Fig. 11, and the pre-
diction performance for these three types of PMCs is 87%, 
81%, and 79% based on R2, respectively. These validation 
results confirm that the model can robustly predict not only 
interpolations but also extrapolations for previously unseen 
combinations of PMCs.

Interpretation of the Predictive Model Through XAI 
Analysis

The developed mechanical property prediction model is 
a Transformer-based black-box model, which does not 

provide an understanding of the criteria for its predic-
tions. To assess the reliability of this model, Explainable 
AI (XAI) techniques were introduced, and the Local Inter-
pretable Model-agnostic Explanation (LIME) algorithm 
was employed for model analysis.

LIME is an XAI algorithm that approximates the model 
near a data point of interest into an interpretable white-
box model, providing explanations for the predictions of 
the black-box model. In this study, the data point with 
the highest predicted tensile strength was inputted for 
model interpretation. The analysis results can be seen in 
Fig. 12. The XAI results indicate that mechanical strength 
increases with lower test temperatures, slower injection 
speeds, higher filler composition ratios, and lower side 
feed speeds for the reinforcements. These insights are 
consistent with expert knowledge in the field of polymer 
composite design, thereby validating the reliability of the 
model. Specifically:

•	 Lower Test Temperatures At lower temperatures, poly-
mer materials exhibit higher stiffness and strength due 
to reduced mobility of polymer chains. This decreases 
the thermal motion of molecules, inducing stronger 
intermolecular interactions.

•	 Slower Injection Speeds A slower injection speed 
allows the polymer melt to flow more uniformly within 
the mold, leading to more uniform cooling and crys-
tallization. This minimizes internal stress and forms a 
more uniform microstructure, improving the material’s 
mechanical properties.

•	 Higher Filler Composition Ratios Reinforcements dis-
persed within the polymer matrix increase the inter-
action between polymer chains and help distribute 
external stress throughout the material, increasing its 
resistance to load.

•	 Lower Side Feed Speeds A lower feed speed for rein-
forcements reduces internal stresses during the injec-
tion process, leading to more uniform flow of the melt 
and decreased stress concentration. This reduces the 
occurrence of microdefects or voids within the mate-
rial, contributing to the improvement of mechanical 
properties, especially tensile strength.

By verifying that the model’s interpretation aligns 
accurately with expert knowledge, the reliability of the 
model is validated. Additionally, the LIME analysis pro-
vides clear insights into how specific input variables (e.g., 
process conditions) affect mechanical properties such as 
tensile strength. This understanding helps to ensure that 
the model’s predictions are based on plausible and scien-
tifically sound relationships, further enhancing confidence 
in its predictive capabilities.
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Conclusions

Design of polymer matrix composites depends largely on 
the experience and intuition of designers, necessitating 
numerous repetitive experiments and high costs due to the 
variability in constituent material combinations, process-
ing conditions, and testing environments. This study pro-
posed an integrated mechanical property prediction model 

that reflects all the variables such as the combination of 
constituent materials, processing conditions, and testing 
conditions to mitigate these issues and effectively utilize 
accumulated experimental data. Given the limited available 
data and the need to consider a wide range of input vari-
ables, we suggested the use of transfer learning techniques: 
these techniques involve pre-training on a vast amount of 
unlabelled data followed by fine-tuning with a smaller set 

Fig. 10   Mechanical properties prediction results for PMCs
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of labelled data, thereby enhancing the predictive model’s 
performance. The developed model is capable of predicting 
various mechanical properties like tensile strength, tensile 
modulus, flexural strength, flexural modulus, and density, 
demonstrating high accuracy with an average performance 
of 92% on validation data.

The proposed Transformer-based model was effective in 
predicting the mechanical properties of polymer compos-
ites with limited data, showing a significant performance 
improvement depending on whether pre-training was 
involved. It was also verified that in order to enhance the 
accuracy and reliability of the mechanical property predic-
tion model for polymer composite, it is necessary to uti-
lize training data with variability in composite variables, 
processing conditions, and testing conditions. The perfor-
mance of the mechanical property prediction model showed 
a notable difference of 14% depending on the inclusion or 
exclusion of processing conditions, underscoring its vital 
importance.

The model also showed high prediction accuracy for 
polymer composites not included in the training data, 
indicating its strong generalization capabilities. Further-
more, The use of LIME in XAI analysis and latent space 
visualization not only verified that the Transformer model 
effectively learned the specialized knowledge required for 
designing polymer composites through data but also con-
firmed its high suitability as a mechanical property predic-
tion model for polymer composites, effectively acquiring 
and applying the necessary knowledge. The development 
of a mechanical property prediction model for polymer 
composites can be utilized as a predictive model in an 
automatic inverse design system and is expected to con-
tribute significantly to material innovation across various 
industrial sectors.
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