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Abstract
Large-scale infrastructures, such as chemical plants and nuclear power plants (NPPs), are pivotal for modern civilization as 
they provide vital resources and energy. However, their operation introduces significant risks, as demonstrated by the tragic 
accidents at Bhopal and Fukushima. While extensive research has been conducted to improve the safety of these safety–
critical systems, the human factor remains as a significant concern. In recent years, as artificial intelligence (AI) is being 
widely adopted in various fields, AI may be a solution for supporting operators and, ultimately, for reducing the overall risk 
of safety–critical systems such nuclear and chemical plants. This review discusses the application of AI in NPP operations, 
with a focus on event diagnosis, signal validation, prediction, and autonomous control. Various application examples are 
presented, highlighting the limitations of classical approaches and the potential for AI overcome such limitations to enhance 
the safety and efficiency of NPP operations. This work is expected to stimulate further investigation into the application of 
AI to support operators in not only NPPs but also other safety–critical systems, such as chemical plants.

Keywords  Nuclear power plant · Safety–critical system · Artificial intelligence · Human factor · Plant operation · Deep 
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Introduction

Chemical and nuclear power plants (NPPs) as large-scale 
infrastructures play a crucial role in meeting the diverse 
needs of modern civilization. Chemical plants synthesize 
a variety of substances for use in various industries 
and by consumers. NPPs, as reliable sources of power, 
steadily generate electricity for industries and households. 
Nowadays, the role of nuclear power has been highlighted as 
an essential component in transitioning toward carbon-free 
electricity without relying on fossil fuels.

However, the operation of such infrastructure has 
introduced unprecedented risks to society. In the case of 
chemical plants, the production and handling of hazardous 
materials may entail the potential risk of leakage. Accidents 
occurring in NPPs may cause a large release of radioactive 
materials [1]. The Bhopal disaster at a pesticide plant and 
two major accidents at commercial NPPs (i.e., the Chernobyl 
and Fukushima Daiichi accidents) stand as tragic examples 
illustrating the catastrophic consequences of such risk [2–5].

In line with this, research and development have been 
actively conducted to ensure the safe operation of these 
safety–critical systems. In the case of chemical plants, 
methods have been proposed to optimize the placement of 
plant facilities to prevent a ‘domino effect’, where a single 
accident causes a chain of accidents in adjacent facilities 
[6, 7]. Eo et al. proposed a framework for determining safe 
distances between high-pressure (HP) gas pipelines by 
considering the probability of a chain accident [8]. Guo 
et al. utilized fuzzy logic to model the risk of the domino 
effect in a plant and combined the result with a mathematical 
programming model to derive the optimal layout with 
minimized risk levels [9]. Another example is the flare 
network system, which collects and burn flammable toxic 
materials to turn them into non-hazardous materials [10]. 
Kabir et al. evaluated the dynamic reliability of the flare 
system using fault tree analysis and Bayesian networks 
[11]. Relatedly, Jo et al. analyzed a dynamic scenario of 
gas blow-by caused by control valve failure using a process 
simulator and recommended the use of slow depressurization 
to prevent vessel failure due to extremely low temperatures 
[12].

In the case of NPPs, the safety goal is analogous to 
that of chemical plants, which is to prevent the release of 
hazardous materials to the public. However, radioactivity 
is a nuclear property that cannot be removed through any 
physical or chemical processes. Therefore, the safety goal 
of NPPs has been typically achieved by containing the 
radioactive materials in a secure manner. To this end, NPPs 

are equipped with multiple barriers including a series of 
physical components such as fuel pellets, fuel cladding, the 
reactor vessel, linear plates, and containment [13]. Plants in 
addition utilize a reactor protection system and engineered 
safety features to terminate nuclear chain reactions and 
maintain the plant in a safe condition. In recently developed 
new plants, such as Gen-IV and small modular reactors 
(SMRs), the reliability of such safety systems is being 
further enhanced by replacing active power sources with 
natural forces [14].

While these efforts have improved the mechanical 
reliability of safety–critical systems, conversely, the 
contribution of human factors to the risk of these systems 
has increased [15]. Statistics from several studies suggested 
that over 80% of failures in chemical and petrochemical 
industries are related to human error [16–19]. Analysis of 
operating records for the NPPs in the Republic of Korea 
(ROK) has revealed that human error was responsible for 
14% of unplanned reactor trips over a recent decade [20, 21].

Especially in NPPs, human error is a significant concern 
as it can have critical consequences when combined 
with mechanical failures [22]. The accident at the Three 
Mile Island (TMI) NPP in 1979 serves as a historical 
demonstration. TMI Unit 2 suffered a loss of coolant 
accident due to a mechanical stuck-open failure of a 
pressurizer relief valve. Although several indicators showed 
related anomalies, such as an unusual decrease in coolant 
pressure, the operators in the main control room (MCR) 
were unaware of what had occurred in the plant and took an 
action that worsened the situation. As a result, the reactor 
core melted down [4].

Reflecting the lessons learned from this event, significant 
efforts have been made to support plant operators through 
advanced systems with enhanced equipment and ergonomic 
designs of human–machine interfaces [23]. For instance, 
the MCR of the APR1400 (Advanced Power Reactor with 
1400 MW electricity) designed by the Korea Electric Power 
Corporation adapted personal computers and a large display 
panel in place of the analog indicators, hand switches, and 
alarm tiles of classical control rooms and substituted paper-
based procedures with a computerized procedure system 
[24, 25]. Likewise, the chemical industry has investigated 
the adoption of advanced distributed control systems with 
automatic control [26], virtual reality and wearable devices 
[27], and a ubiquitous sensor network [28].

Another promising tool to aid plant operators is artificial 
intelligence (AI). Deep learning models in particular have 
gained attention due to their success in a variety of complex 
cases such as StarCraft II [29], conversational AI (e.g., Chat-
GPT), and image generation [30]. In the chemical industry, 
early research with deep learning models was conducted 
in the 1990s for facility fault detection and autonomous 
process control [31]. Recent advances in computing power 
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have further stimulated these investigations. Lee et  al. 
proposed a chemical process monitoring system using 
an autoencoding deep learning model. They improved 
the system by augmenting the data of rare cases with a 
variational autoencoder (VAE) [32]. Similarly, Xia et al. 
developed a fault diagnosis method for a water chiller 
using a voting-based extreme learning machine with kernel 
entropy component analysis [33]. In research by Son, long 
short-term memory (LSTM) networks were utilized for 
predicting the degradation of adsorbent performance in 
pressure swing adsorption plants [34]. Wang et al. proposed 
a control optimization framework for intelligent thermal 
power plants. The framework employs LSTM networks for 
plant dynamic modeling and a particle swarm optimization 
(PSO) algorithm for tuning the parameters of proportional-
integral-derivative (PID) controllers [35].

In the nuclear energy field, as in the chemical industry, 
the potential of AI to serve as an intelligent assistant for 
plant operators is being actively pursued [36]. Furthermore, 
next-generation NPPs such as the NuScale SMR require a 
high degree of automation to reduce operating costs, which 
is achieved by managing multiple reactors with a minimized 
number of plant operators while maintaining safety [14, 37]. 
For this, AI could potentially serve as an autonomous agent, 
not only as an assistant.

The purpose of this review is to present the current 
progress in the application of AI to NPP operation, with a 
focus on four application domains. The first domain is event 
diagnosis. NPPs are equipped with response procedures 
for irregular events such as pump malfunctions or station 
blackouts. However, identifying such events and engaging 
in the proper procedure can be challenging, even for well-
trained plant operators, due to the complexity of NPPs. In 
this context, AI can identify the events in support of human 
operators. The second domain is signal validation. Since 
the status of the plant is primarily understood through 
sensor signals, abnormal signals can lead to inappropriate 
operator responses and system malfunctions. In addition, 
these abnormal signals may be symptoms of abnormal plant 
conditions. Therefore, the detection of abnormal signals is 
of paramount importance.

The third area of focus is prediction. While analytical 
models have been developed for predicting plant-wise 
behavior or specific phenomena of an NPP, they may face 
limitations when rapid prediction is required or when 
computational resources are limited. The last domain is 
autonomous control. While NPPs have long implemented 
automated systems using classical methods to improve 
efficiency and safety, these methods have difficulty in 
achieving the high level of automation required as the need 
to reduce human error escalates and as next-generation 
plants are developed. In this case, AI could be a solution for 
achieving such high level of automation.

The paper is structured as follows. Sects.  “Event 
Diagnosis” and “Signal Validation” delve into the 
application of AI for event diagnosis and signal validation, 
respectively. Sect.  “Prediction” explores effective AI 
approaches to overcome the limitations of predictions using 
analytical methods. Sect. “Autonomous Control” introduces 
research on autonomous operation with AI technology at a 
high automation level. Finally, conclusions and perspectives 
are presented in Sect. “Conclusion and Perspectives”.

Artificial Intelligence for NPP Operations

Event Diagnosis

To ensure both safety and efficiency, NPPs are equipped 
with operating procedures. In particular, the procedures 
for accidents and abnormal events provide structured 
responses that have been established through detailed safety 
analysis. In general, these procedures can be categorized 
into two types based on event severity. In cases where the 
event significantly compromises plant safety and triggers 
an automatic reactor shutdown, emergency operating 
procedures (EOPs) are implemented (i.e., emergency 
operation). For less severe situations, abnormal operating 
procedures (AOPs) are employed (i.e., abnormal operation) 
[36].

When such events occur, operators should diagnose 
them and follow appropriate procedures. However, event 
diagnosis can be mentally taxing for the plant operators, as it 
requires rapidly analyzing complex information from alarms, 
plant parameters, and system statuses [38]. Furthermore, 
during emergencies, plant and system conditions rapidly 
change and decisions must be made involving the risk that 
inaccurate diagnosis could lead to improper responses and 
potential core damage. In abnormal situations, diagnosis is 
complicated by a wide range of possibilities. For instance, 
the APR1400 has of a total of 82 AOPs with 224 sub-
procedures with different entry conditions [39], making it 
even more difficult for operators to select the appropriate 
procedure. In addition, abnormal situations may result in 
only minor changes in the plant status, requiring operators 
to spend more time on diagnosis. Due to these reasons, 
event diagnosis has been known as a significant challenge 
even for well-trained operators. In addition, incomplete 
or intermittent information from sensors can also lead to 
incorrect diagnosis since sensor information forms the basis 
of operators’ situation awareness. In the TMI accident, 
inaccurate indication of the status of the relief valves 
contributed to the operators’ misdiagnosis and improper 
responses [4, 40]. With this backdrop, event diagnosis has 
emerged as the primary application of AI techniques in NPP 
operation.
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Due to the high complexity of NPPs, analytical 
approaches for event diagnosis are often considered imprac-
tical. Instead, data-driven approaches have been widely 
investigated [38, 41]. When an event occurs in an NPP, it 
causes changes in plant parameter trends and equipment and 
system states, as shown in Fig. 1. Therefore, the purpose of 
the data-driven approaches is to identify patterns in these 
changes for each event and the normal state, and to con-
struct a model that understands these patterns and outputs 
the appropriate class for novel situations. Several diagnostic 
models have been investigated. For instance, Kwon et al. 
utilized hidden Markov models that can address temporal 
patterns in parameter trends for NPP accident diagnosis [42]. 
Yangping et al. proposed a fault diagnosis process that inte-
grates a genetic algorithm into an expert knowledge basis 
expressed by event tree and fault tree analyses [43]. Rocco 
S. et al. implemented one-class and multi-class support vec-
tor machines (SVMs) to first identify whether an event was 
trained or not (i.e., the “known” and “unknown” classes) and 
then classify the trained one into the most appropriate class 
[44]. As an intuitive alternative to the above-mentioned diag-
nosis models, Park et al. suggested a methodology involving 
a database of simulation results [45]. In this approach, all 
transient scenarios of the NPP secondary system registered 
in a simulator are simulated in advance, and the current plant 
status is compared with the result database. In addition, the 
authors reduced the number of parameters that should be 
monitored using a principal component analysis [45].

Artificial neural networks (ANNs) have also been studied 
extensively for NPP event diagnosis. An ANN is a set of 
multiple interconnected neurons, inspired by the structure 
and functioning of the human brain. Within an ANN, each 
neuron receives input signals from its connected neurons, 
processes them, and produces an output signal. These 
networks are capable of learning complex patterns and 

relationships within data through a training process. During 
training, the network adjusts its internal parameters to 
minimize the difference between its predicted output and 
the desired output, thereby optimizing its performance. 
ANNs are effective in capturing the nonlinear relationships 
between input signals, promising outstanding generalization 
performance. This is especially valuable when the conditions 
of real applications deviate from those of the training data.

Research on adopting ANNs for event diagnosis started 
from the early 1990s [46–49]. In 1992, Bartlett et  al. 
implemented ANNs that distinguished seven accident 
scenarios and the normal full-power steady-state operation 
by monitoring 27 plant parameters. However, due to limited 
computational power at the time, the authors regulated the 
number of neurons by starting with only a few neurons and 
adding more until the trained network achieved the desired 
accuracy [48]. Bartal et al. introduced a probabilistic neural 
network that can measure the proximity of a given situation 
to the trained situations and identify novel untrained 
situations [49]. Following these early attempts, diagnostic 
frameworks with multiple networks have been proposed. Lee 
et al. developed an accident diagnosis advisory system using 
two types of neural networks: a modified dynamic neural 
network for digital discrete signals, and a dynamic neuro-
fuzzy network for continuous analog signals. Both networks 
perform independent accident diagnosis and provide more 
informative results to the operator [50]. Mo et al. proposed a 
diagnostic system that utilizes a level 1 classifier for accident 
type recognition and a level 2 classifier for predicting the 
accident severity and location. In particular, the level 2 
classifier comprises multiple neural networks, and their 
results are aggregated to make predictions [51].

In recent years, the advancement of computing power has 
made it possible to implement ANNs with millions of intrin-
sic parameters, leading to the emergence of deep learning. 

Fig. 1   Example of plant parameter trends following events: a anticipated transient without scram, and b main steam line break inside contain-
ment [42]
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Moreover, specialized advanced neural network architectures 
have been developed. As illustrated in Fig. 1, temporal pat-
terns play a crucial role in event diagnosis. Therefore, recur-
rent neural networks (RNNs) and their derivatives, including 
LSTM [52] and gated recurrent units (GRUs) [53], which are 
ANNs designed specifically for sequential data, have been 
utilized in event diagnosis tasks. For example, Yang et al. 
proposed an accident diagnosis algorithm using an LSTM 
network [54]. Compared to a simple vanilla RNN, where 
each neuron has a single state updated when each input at a 
certain time step is given, an LSTM neuron includes an addi-
tional cell state that can more effectively retain information 
from previous time steps. The implemented LSTM network 
considers a 10-time-step record of 100 plant parameters, 
which are normalized by min–max scaling, and outputs a 
real-time diagnosis result, as shown in Fig. 2.

Similarly, GRU, which is an alternative of LSTM, was 
used by Kim et al. [39]. GRU simplifies its architecture by 
eliminating the separate cell state of LSTM and merging the 
state-updating gates found in LSTM. The authors employed 
GRU networks to tackle the issue of abnormal event diag-
nosis, a problem recognized as more complex than accident 
diagnosis primarily because AOPs encompass a larger num-
ber of cases compared to EOPs. In addition, symptoms of 
abnormal events may not be as evident, whereas accidents 
typically cause a clear deviation in the plant’s status. To 
resolve these challenges, the authors developed a two-stage 
diagnosis process inspired by the structure of AOPs, as illus-
trated in Fig. 3. First, the main GRU network predicts the 
AOP, and subsequently, a GRU network corresponding to 

each AOP identifies the appropriate sub-procedure. In the 
case study, which included 20 sub-procedures, the model 
achieved a diagnosis accuracy of over 99% on datasets gen-
erated by a simulator of a generic 1400 MWe pressurized 
water reactor similar to the APR1400.

Lee et al. addressed the abnormal event diagnosis prob-
lem using a convolutional neural network (CNN) [55]. A 
CNN consists of convolutional layers responsible for extract-
ing features from the input data. Each convolutional layer 
applies convolution operations between the input data and 
a set of learnable filters. These filters are small-sized matri-
ces that slide across the input data, computing element-wise 
multiplications and summations to produce feature maps. 
Since the convolution operations can effectively capture spa-
tial patterns between adjacent data points, a CNN is typi-
cally used with image input data. The authors converted the 
records of plant parameters into a set of square two-dimen-
sional (2D) images to incorporate into the CNN, as shown in 
Fig. 4. To account for temporal patterns, they computed the 
deviation of plant parameters over a specified time period 
and transformed it into a 2D image using the same method as 
above. Both of these 2D images were then supplied to each 
input channel of the CNN. In an experiment, the two-channel 
2D CNN outperformed a simple ANN, GRU, and SVM in 
terms of diagnosis accuracy.

Chae et al. proposed an accident diagnosis algorithm 
using a graph neural network (GNN) [56]. A GNN is 
designed for graph data, where nodes are interconnected 
by edges, representing spatial relationships between input 
parameters [57]. Leveraging the physical relationships 

Fig. 2   Accident diagnosis algorithm using an LSTM network proposed by Yang et al. and real-time diagnosis result for a malfunction injected at 
30 s [54]
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between plant parameters, the authors structured the graph 
data, as illustrated in Fig. 5, and used it to train the GNN. 
The performance of accident identification was compared 
with a CNN, and the results demonstrated that the GNN 

outperformed the CNN in accuracy, especially for sce-
narios in which two accidents occurred simultaneously.

Building upon past work aimed at mitigating the 
risk of incorrect diagnoses when given situations differ 
significantly from the training data [49], Yang et al. and 

Fig. 3   Abnormal event diag-
nosis process utilizing GRU 
networks in two stages [39]

Fig. 4   Example of generating square 2D images from records of 1004 plant parameters [55]

Fig. 5   Graph structure representing the physical relationships between plant parameters [56]. (PZR pressurizer, RCP reactor coolant pump, SG 
steam generator, HP high pressure, LP low pressure, TBN Turbine, CDN Condenser.)
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Kim et al. employed autoencoders [58, 59]. An autoencoder 
is an ANN trained to reproduce input data. When the given 
data resembles the trained data, the input is accurately 
reconstructed. Conversely, when the given data differs 
significantly, the reconstruction error is higher compared to 
the trained data. Hence, by monitoring the residual between 
input and reconstructed input, situations that were not 
considered during training can be filtered out. Yang et al. and 
Kim et al. incorporated an LSTM-based autoencoder and 
variational autoencoder, respectively, to distinguish between 
trained and untrained situations for accident and abnormal 
diagnosis, respectively.

The success of such ANN-based approaches has led 
to further studies for enhancing their adaptability for real 
plants. Since the operating data of NPPs are typically 
confidential and the data for accident and abnormal events 
are rare, most studies have trained their models using 
datasets from plant simulators. However, differences exist 
between simulator data and plant field data in various 
aspects, and these differences may limit the application 
of data-driven models. For instance, the noise typical of 
field signals can degrade the performance of data-driven 
models. A test conducted by Shin et al. showed that only 
2% Gaussian noise reduces the accuracy of a GRU-based 
diagnosis model by 55% [60]. To address this concern, 
the authors suggested implementing smoothing filters on 
time-series trends of plant parameters and augmenting the 
training data with artificial noise [60].

In addition to noise, there are also differences in the 
values and scales of the parameters, even when the overall 
trends are similar. Lee et al. tackled this problem by con-
structing a diagnosis model with high generalization abil-
ity using meta-learning methods [61]. First, they converted 
time-series records of plant parameters into images that can 
highlight the general trends instead of the specific values. 
Figure 6 shows an example of this conversion. Then they 
trained a CNN-based feature extracting neural network, 
which outputs reduced-dimensional representations of the 
training images, in the direction where the representations 
are clearly clustered according to the events. The inputs 
are classified to each event according to the distance of its 

representation from the prototypes, which are mean repre-
sentations of the trained data for each event (i.e., prototypi-
cal learning). The generalization capability of the model 
using meta-learning and prototypical learning methods was 
demonstrated by a case study in which a model trained on 
simulator data was applied to a distinct dataset from a dif-
ferent plant simulator.

When multiple events occur simultaneously, operators 
may be confused by the intertwined symptoms of the events, 
in which case ANNs trained on single-event datasets may be 
limited. This limitation has been addressed with the GNN 
diagnosis model developed by Chae et al. [56]; however, 
the collection of training data for possible combinations of 
multiple events is required, which can be impractical. To 
address this impracticality, Cho et al. suggested a framework 
where the multi-abnormal events that should be trained as 
independent events are selected based on a one-versus-rest 
classifier [62]. In contrast, Shin et al. proposed a method 
utilizing only single-event training data [63]. In this method, 
multiple sub-models for each single event were utilized. 
The CNN-based sub-models determine whether the given 
situation corresponds to each event or not, and results of 
each model are aggregated to output the diagnosis result. 
The authors further employed an extremely randomized trees 
classifier to select the input parameters for each sub-model.

The black-box nature of ANNs is also an issue that needs 
to be addressed for practical applications. Since ANNs typi-
cally provide only diagnostic results without any explanation 
why such decisions were made, operators may be kept out 
of the loop and operator backup may be prohibited when the 
diagnosis fails [64, 65]. To solve this problem, Shin et al. 
interpreted their CNN diagnosis model using techniques 
such as saliency mapping, guided gradient-weighted class 
activation mapping, and deep learning important features 
with Shapley values [66]. Figure 7 illustrates an exam-
ple outcome of these techniques for the input data of 60 s 
(y-axis) recording of 944 parameters (x-axis). The param-
eters contributing to diagnosing each event are highlighted 
based on their importance as measured by each technique. 
The authors validated these parameters by comparing them 
to the parameters illustrated in the entry conditions of AOPs 

Fig. 6   Example of a trend 
image generation [61]. Each 
segmentation region that 
represents a parameter trend is 
color-coded
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and constructing an ANN model using only these param-
eters. Similarly, Park et al. developed a diagnosis model 
using a light gradient boosting machine (LightGBM), a type 
of decision tree approach, and applied the Shapley values 
technique to identify diagnostic evidence [67]. Combining 
the LightGBM model, the interpretation technique, and an 
autoencoder model for classifying untrained situations, the 
authors designed a reliable intelligent diagnostic assistant 
and validated its effectiveness on several abnormal opera-
tion scenarios.

In addition to the studies introduced so far, other notable 
advances have been made. A diagnosis model that combines 
a CNN and LSTM has been suggested [68], attention 
mechanisms have been incorporated in a diagnosis model 
[69, 70], and an event diagnosis method utilizing infrared 
photography from drones has also been proposed [71].

Signal Validation

Validating the integrity of signals from sensors and plant 
systems is crucial not only for the diagnosis of events but 
also for all operational activities within NPPs. A common 
method for signal validation is to compare the signals with 
predictions of models trained on datasets with valid signals. 
If the given signals closely resemble the trained ones, 

the difference (i.e., residual) between the signals and the 
predictions will be minimal, and by establishing a threshold 
for this residual, invalid signals can be detected.

As discussed in the previous section, analytic models 
are limited due to the intricate nature of NPPs. Therefore, 
extensive research has focused on data-driven models such 
as auto-associative kernel regression (AAKR) [72, 73], sin-
gular value decomposition [74], and ANNs [75, 76]. Among 
them, ANNs have been highlighted since they can effectively 
capture complex relationships between sensor signals and 
operating conditions. For instance, Choi et al. suggested a 
signal validation algorithm with a VAE and LSTM [77]. 
By leveraging the ability of LSTMs to capture temporal 
patterns and the capability of VAEs to robustly reconstruct 
signals, the suggested method was able to be applied in 
emergency situations where signals rapidly vary. In a more 
recent advancement, Liu et al. applied a gate attention net-
work (GAT) for detecting multiple faults in NPPs [78]. As 
shown in Fig. 8, sensor signals are fed into the graph struc-
ture and the hidden state hij and correlation values aij are 
updated, corresponding to each sensor and the relationship 
between sensors, respectively. Given the hidden state, the 
LSTM network predicts the signal values of the sensors. 
This reconstruction pipeline effectively captures both tempo-
ral (LSTM) and spatial (GAT) information. In addition, this 

Fig. 7   Importance map of a 
plant parameter (x-axis) and 
time instant (y-axis) given by 
different interpretation tech-
niques [66]
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research deployed an additional pipeline for the correlation 
values with an adversarial autoencoder; this architecture thus 
utilizes two reconstruction errors, namely for sensor signals 
and correlations between sensors.

In contrast to the above signal validation approaches, 
Choi et al. suggested a novel approach for sensor fault detec-
tion using a consistency index [79]. Instead of utilizing data-
sets with valid signals, the authors artificially synthesized a 
dataset with faulty signals referring to sensor error modes 
reported in industrial data. They then assigned a consistency 
index of 1 to the valid signals and 0 or lower than 1 to the 
invalid signals and trained an LSTM network to predict the 
index of given input sequences. The authors further devel-
oped a sensor fault-tolerant accident diagnosis system that 
can isolate the impacts of faulty signals on event diagnosis 
using a GRU-decay network [40]. Finally, they integrated the 
sensor fault detection and fault-tolerant diagnosis systems, 
as shown in Fig. 9, and tested the integrated system on sen-
sor faults during accidents, verifying its effectiveness [80].

Since invalid signals may stem from abnormal 
reactor states, attempts have been made to detect plant 
anomalies by validating signals [81]. Compared to the 

event diagnosis approaches, signal validation approaches 
require only normal operation data. This point has spurred 
the application of these methods for detecting plant 
anomalies caused by various factors. For instance, Gursel 
et  al. employed a signal validation method to identify 
anomalous instances attributable to human error by NPP 
operators [82]. In this research, a generative adversarial 
network was utilized for anomaly detection, in which the 
residuals in the latent space of an ANN were compared. 
Likewise, Zhang et  al. utilized AAKR for detecting 
cyberattacks on NPPs by monitoring network flow patterns 
and plant operating parameters [83, 84].

Furthermore, anomaly detection systems have been 
implemented with signal validation approaches on real 
operating nuclear reactors. Kim et al. applied an RNN-
based online anomaly detection system to the operational 
records of a research reactor at the University of Wiscon-
sin [85]. Similarly, an autoencoder-based anomaly detec-
tion system was applied to a real operating research reactor 
in the ROK (HANARO), as shown in Fig. 10 [86].

Fig. 8   Architecture of a devel-
oped sensor fault detection 
system with a GAT, LSTM, and 
adversarial autoencoder [78]

Fig. 9   Integrated sensor fault 
detection and fault-tolerant 
diagnosis systems [80]
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Prediction

Simulating the plant behavior under a given operating 
scenario is fundamental for the operation of NPPs. Typically, 
simulations are conducted using analytic approaches such 
as thermal–hydraulic (TH) system codes and computational 
simulation codes for specific domains, such as reactor 
physics or materials behavior. The best estimation results 
obtained from these codes are considered analyzable and 
highly reliable, and accordingly, these codes are utilized 
in the design of reactors and form the backbone of plant 
simulators for operator training. However, it is worth 
noting that these codes demand substantial computational 
resources. For instance, TH system codes required 4.3 h 
and 1 h to simulate a single transient of a passive safety 
system [87] and a single accident scenario of an NPP [88], 
respectively. Therefore, to provide a more rapid and timely 
analysis when needed, fast surrogates of system codes can 
be utilized. Recently, deep-learning models have been 
intensively investigated as such surrogate models.

Various ANN-based surrogate models have been sug-
gested according to their application domains. For instance, 
predicting future plant parameter trends can be useful for 
plant operators during accidents. However, predictions 
should be done in real-time for maximum effectiveness. 
To achieve real-time prediction, Radaideh et al. proposed 
a neural network–based time-series forecasting model [88]. 
The authors constructed simple ANNs and LSTM networks 
for each parameter, including core pressure, reactor water 
level, and fuel temperature, and trained them to predict 
future trends under an accident (i.e., loss of coolant acci-
dent [LOCA]). Similarly, Bae et al. employed ANNs, LSTM 

networks, and RNNs to forecast critical parameter trends for 
monitoring safety functions of the plant during emergencies, 
as shown in Fig. 11 [89]. The authors tested various multiple 
time step prediction strategies and also considered opera-
tor responses (i.e., device control). They concluded that the 
multi-input multi-output (MIMO) strategy is optimal and 
showed that a model with LSTM networks and the MIMO 
strategy can identify different future parameter trends under 
various accidents and operator actions. Expanding on this 
investigation, Ahn et al. further developed an operation vali-
dation system that raises an alarm when the current operator 
action could worsen future parameter trends [90].

Ryu et al. also conducted similar research [91], but rather 
than for operator support, their purpose was to reduce uncer-
tainty in safety assessment by analyzing a wide spectrum of 
accident scenarios using a surrogate model instead of TH 
system codes. To achieve this, they proposed a novel deep-
learning model, namely ensemble quantile recurrent neu-
ral network (eQRNN) with bidirectional LSTM networks, 
positional encoding, and quantile regression, as shown in 
Fig. 12. A comparison study showed its superiority com-
pared to the sole LSTM network in previous studies.

Following these achievements, Kim et al. also exploited 
bidirectional LSTM networks [92]. The authors utilized 
sequence-to-sequence learning to retain a single predictive 
network and a conditional VAE to quantify the predictive 
uncertainty, expanding the prediction horizon up to 120 
time steps. Other research on plant parameter prediction has 
focused on predictions under scenarios of control element 
withdrawal at full power [93], optimization of the training 
hyperparameters of LSTM networks with TH system code 
data of a boiling water reactor [94], interpretation of a 

Fig. 10   User interface of the anomaly detection system implemented in HANARO [86]
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GRU prediction model using the SHAP technique [95], and 
application of transformer neural networks [96].

Alongside the prediction of future parameter trends, there 
is active investigation into using deep-learning methods to 
predict plant features, which can be useful for the operators 
but are typically not directly measurable and require 
significant computation time with analytic approaches. 
For example, fuzzy neural networks have been utilized to 
estimate severe accident features such as the break size [97] 
and critical flow [98] of LOCA, the reactor vessel water 
level [99] and hydrogen concentration [100] during a severe 
accident, the leakage rate in post-LOCA circumstances 
[101], and the remaining time for actuating the safety 

injection system (i.e., emergency core cooling system) in 
an accident [102].

Since NPPs comprise numerous mechanical components 
such as pumps, pipes and valves, deep-learning approaches 
for detecting any degradation of these components have been 
suggested. Chae et al. developed deep-learning models with 
CNNs and LSTM networks, respectively, that can predict 
the degree of pipe thinning based on vibration signals [103]. 
Lee et al. addressed the problem of small leakage detection, 
which is limited in traditional leakage detection methods, 
using bidirectional an LSTM network. In this research, the 
LSTM network was trained to predict the relative humidity 
of a leakage area based on the temperature and relative 

Fig. 11   Illustrative description 
of the parameter trend-predic-
tion model [89]

Fig. 12   Overall structure of 
eQRNN (left) and examples of 
prediction results (right) [91]
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humidity at the measurement position and the distance 
between the leak area and the measurement position [104].

Like the aforementioned study by Ryu et al. [91], deep-
learning models have also been utilized for plant safety 
assessment with TH system codes. In research conducted 
by Park et al. [105], an ANN was trained to predict wall 
temperature, which is a critical parameter affecting the heat 
transfer rate between the reactor and coolant, to save the 
computational time. Moreover, Chae et al. suggested the 
AI-utilized physics related information-based simulation 
method [106], in which a physics-informed neural network 
is deployed to solve partial differential equations, the 
foundation of TH system codes. Although the case studies 
were conducted in a highly limited manner, the results 
demonstrated the potential of neural networks to accelerate 
or substitute TH system codes.

Compared to the previous studies on resolving the com-
putation burden of simulating numerous accident scenar-
ios by substituting TH system codes with deep-learning 
models [91, 106], Bae et al. proposed a more conservative 
approach that integrates both deep learning and TH system 
codes [107]. In this research, the authors introduced Deep-
SAILS, short for deep learning-based searching algorithm of 
informative limit surfaces/states/scenarios. This algorithm 
aims to reduce the computational burden by directing the 
TH system code to intensively simulate the scenarios close 
to the limit surface, referring to the boundary between acci-
dent scenarios with and without plant damage. Since the sur-
face is ambiguous at the beginning, a deep-learning model 

designed to predict a critical parameter that determines plant 
damage or not repetitively estimates the surface, directs the 
TH system code, learns the simulation results, and estimates 
the surface again. Figure 13 shows an example of the result 
with Deep-SAILS.

Autonomous Control

NPPs are equipped with automation systems such as PID 
controllers, programmable logic controllers, and field-
programmable gate arrays. However, these systems play 
limited predefined roles, while most complex decision 
making has been made by plant operators [108]. Yet recent 
trends are pushing for a higher degree of automation. Even 
though the reliability of mechanical systems has increased, 
the risk of human error remains a significant concern 
for satisfying the stringent risk requirements for NPPs. 
Essentially, a high level of automation can prevent or reduce 
the impact of human error. The development of SMRs has 
further emphasized the importance of automation, as the 
loss of economies of scale in SMRs can be compensated 
by implementing automated systems while minimizing the 
number of operators required per modular reactor [109].

Nowadays, the advancement of AI technology, as 
well as its success in various NPP operational tasks 
such as diagnosis, signal validation, and prediction, 
is increasing the possibility of achieving such higher 
levels of automation [110]. Autonomous control, as an 

Fig. 13   Limit surface (white 
region between red and blue 
areas) estimated by the deep-
learning model and simulated 
scenarios (green and red dots), 
which are mostly located near 
the surface [107]
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essential component for high-level automation, has also 
been addressed using AI technology [111]. For instance, 
at the component level, Na et al. designed a genetic fuzzy 
controller that can adjust the water level of NPP steam 
generators [112]. Similarly, Mehrdad et al. proposed a 
reactor core power controller for electricity load following 
using RNNs and fuzzy systems [113]. In addition, 
Mousakazemi et al. fine-tuned PID controllers for reactor 
core power using the PSO algorithm [114].

Autonomous control has also been investigated at the 
system level with detailed frameworks integrating multi-
ple functions. Lee et al. proposed a function-based hierar-
chical framework for the autonomous operation of safety 
systems during emergency operations, outlined in Fig. 14 
[115]. In the case study, an LSTM network was designed 
following the suggested framework and trained using 
simulated emergency operation records of well-trained 
students presuming the actions of plant operators. Kim 
et al. further expanded this framework and proposed a 
conceptual design of an autonomous emergency opera-
tion system (A-EOS) integrating separate LSTM networks 
for autonomous control and accident diagnosis, and rule-
based systems for performance monitoring and strategy 
selection [116]. The authors also implemented a prototype 
A-EOS in a simplified NPP simulator, as shown in Fig. 15.

In the last decade, deep reinforcement learning (DRL), 
which combines deep learning with classical reinforce-
ment learning (RL) methods, has emerged as a promising 
approach for implementing autonomous control systems in 
NPPs [108, 117, 118]. Unlike classical approaches, DRL 
trains autonomous agents using limited feedback on their 

trial-and-error experiences, making it well suited for com-
plex systems such as NPPs. Early attempts with NPP simula-
tors have shown promising results. For example, Lee et al. 
utilized RL to train an LSTM network model capable of 
selecting appropriate actions for reactor power control dur-
ing power increase operations in NPPs [119]. Integrating 
the RL-based agent with rule-based systems, the authors 
proposed an algorithm for autonomous power increase oper-
ations, as depicted in Fig. 16. Similarly, Park et al. imple-
mented a DRL algorithm to train an autonomous agent to 
control the pressurizer pressure and water level during the 
reactor heating process [120].

There is also research on incorporating classical 
approaches with DRL. For instance, Lee et al. suggested a 
PID controller tuned by DRL and compared its performance 
with a standalone DRL agent and a classical PID controller 
on pressurizer level and pressure control tasks during cold 
shutdown operations of an NPP [121]. Similarly, Wei et al. 
proposed a novel model predictive control method in which 
the model parameters are optimized by DRL and applied the 
method to reactivity control for reactor power change [122].

One challenge with DRL-based approaches is training the 
agent to achieve multiple objectives simultaneously. This 
can be accomplished by properly harmonizing the training 
feedback for each objective. However, this clearly requires 
significant human intervention. To address this challenge, 
Kim et al. introduced a prediction-based strategy [123] in 
which an LSTM network predicts the future trends of plant 
parameters for possible combinations of candidate actions 
for each objective when there is a conflict in controlling 
certain components. These predicted trends are then scored 

Fig. 14   Function-based hierarchical framework for the autonomous operation of NPP safety systems [115]
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based on the limiting conditions for NPP operation, and the 
action with the optimal score is selected.

Another recent advancement addressing multi-objective 
operation has been achieved by Bae et al. [124]. In their 
research, the authors designed a DRL algorithm to provide 
positive feedback only when the objectives are achieved, 
unlike previous studies where positive feedback was con-
tinuously given based on the distance from a predefined 
operational path. The authors addressed the challenge of 
sparse feedback by employing advanced DRL algorithms 
and tested their approach on the reactor heating process in 
an NPP. As a result, the trained agent identified a way to 
increase the temperature while properly adjusting the pres-
sure and volume of the reactor coolant with very limited 

feedback. In addition, the agent succeeded to some extent 
in untrained objectives, such as decreasing the temperature, 
as shown in Fig. 17.

Conclusion and Perspectives

Recent advancements in AI technologies, particularly the 
emergence of deep learning, have spurred applications 
across various industries, including safety–critical infra-
structure. NPPs, as representatives of such infrastructure, 
have also embraced AI technologies. This paper introduced 
the current progress of AI applications with a particular 
focus on plant operations and plant operators. Figure 18 
summarizes the introduced applications. As illustrated in 
this figure, AI techniques are incorporated based on their 
efficacy and alignment with the objectives of the target 
application. While our discussion here covered four applica-
tion domains—event diagnosis, signal validation, prediction, 
and autonomous control—it is important to note that active 
investigations are being conducted beyond these domains.

As highlighted in this paper, much of the extensive 
research on AI applications for NPP operations has been 
conducted in the ROK. The main factor contributing to this 
is the advanced adoption of digital technologies in Korean 
NPPs. Figure 19 illustrates the MCR of the APR1400, a 
plant currently installed in the ROK and exported to the 
United Arab Emirates [125]. In addition to the devices vis-
ible in the image, such as personal computers and the large 
display panel, the instrumentation and control system and its 
software are fully digitalized in this plant. In addition, Korea 
Hydro & Nuclear Power Co., Ltd., the vendor of NPPs in 
the ROK, has established a centralized monitoring & diag-
nosis center [126] and is currently developing a digital twin 

Fig. 15   Functional architecture of the A-EOS (left) and human–machine interface of its prototype (right) [116]

Fig. 16   Schematic of the algorithm for autonomous power increase 
control in an NPP, where rule-based controls and continuous controls, 
illustrated in the operating procedures, are automated by rule-based 
logics and a DRL agent, respectively [119]
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of the man–machine interface system (MMIS) deployed in 
Korean NPPs [127]. This industrial progress has supported 
ambitious research endeavors in the application of AI tech-
nologies for NPP operations.

However, limitations remain that must be addressed 
for practical adoption in real NPPs. Much of the research 
conducted thus far has relied on data from TH system codes 
or NPP simulators due to the confidentiality of operational 
data from actual plants. While this has enabled significant 
progress, there is a concern that AI models trained solely 
on artificial data may not perform optimally when deployed 
in real plants. This issue has been partially addressed, as 
discussed here in Sect.  “Event Diagnosis” about event 
diagnosis; however, further research and development 
should be conducted to ensure robust performance with 
field data.

Another critical limitation is the validation and 
verification (V&V) of software implementing AI technology. 
As highly safety–critical infrastructures, NPPs require a high 
degree of reliability for their components and software. 

Current V&V processes are well suited for software with 
deterministic logic but may not be directly applicable to 
software with AI technology, as deep-learning models are 
sets of logical units that perform incomprehensible logics. 
Therefore, new V&V methodologies specifically tailored to 
AI-based software are needed.

A similar limitation is on the regulatory side. Regulatory 
bodies such as the Nuclear Safety and Security Commission 
of Korea and the Nuclear Regulatory Commission (NRC) of 
the U.S. are responsible for regulating everything related to 
nuclear safety in accordance with strict standards. However, 
there is no precedent for regulatory experience regarding 
AI applications, which may cause a period of stagnation. 
To avoid such a period, regulatory bodies should establish 
an organizational framework to review AI applications in 
advance, as exemplified by the activities of the NRC [128].

While addressing these drawbacks, further research 
should also suggest proper systematic frameworks for 
efficiently harmonizing human operators and machine 
systems including AI technologies. The cognitive process 

Fig. 17   Operating records of the DRL agent for the untrained objective of decreasing temperature [124]
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of human operators should be taken into account [65] 
for diluting the information given to the operators [129] 
and selecting the proper tasks to be automated [130]. 
We believe that AI technology integrated with such 
appropriate schemes can reduce the burden of plant 
operators and ultimately improve the safety of NPPs.
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Fig. 18   Illustrative summary of the introduced AI applications for plant operations
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