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Abstract
This paper proposes an AI-based module for a loading pattern (L/P) optimization algorithm applied to the i-SMR, designed 
for flexible operation. The AI module can be used as a surrogate model in the simulated annealing (SA) screening process, 
which allows for more efficient optimization. The convolution neural network (CNN) model was trained using reactor core 
L/Ps and corresponding core parameter values derived from a realistic core simulation code. For load-following operations, 
we selected core parameters such as control rod insertion depth, radial peaking factor, axial shape index, and effective 
multiplication factor. To calculate the objective function of an L/P during the SA process using core design codes, it takes 
approximately 3 s, while the AI-based module can predict the objective function within about 0.1 ms. During the predic-
tion of selected parameters, we discovered two factors affecting prediction accuracy. First, the model exhibited a significant 
increase in error when trained on dataset containing negative values. Second, utilizing batch normalization (BN) layer and 
squeeze and excitation (SE) module, intended to improve accuracy, resulted in a decrease in performance of the model. 
Our study demonstrated that the CNN-based model achieves excellent prediction accuracy and has an ability to accelerate 
optimization algorithms by taking advantage of artificial intelligence’s inherent computational speed.

Keywords  Convolution neural network · Loading pattern optimization · i-SMR (innovative small modular reactor) · 
Flexible operation · Screening technique · Simulated annealing

Introduction

Nuclear Reactor Core Design and L/P Optimization

Nuclear reactor core design is the process of determining 
the design parameters of a core in a nuclear power plant 
considering safety, reliability and economical operation. 
Disciplines in a nuclear core design can be categorized into 
four main aspects consisting of nuclear design, thermal 
hydraulics design, structure/material design, and safety/reli-
ability evaluation. To determine the optimal design param-
eters, there are strongly coupled calculations and iterative 
design procedures between these disciplines. Nuclear design 
work involves determining the concentration of fissile ura-
nium isotopes in the fuel, reactivity control elements (such 

as control rod as neutron absorbers), and the configuration 
of these fuel and elements. During the process, nuclear 
designer calculates the power distribution and other neu-
tronics parameters after considering core geometry, reac-
tivity control methods and their location, core lifetime and 
more [1].

L/P optimization involves determining the specific loca-
tions of fuel assemblies in terms of uranium enrichment, 
gadolinium burnable absorber, and burnup levels. To meet 
safety constraints and achieve economical operation, reac-
tor core designers have struggled to find an optimal L/P 
during the design and in-core fuel management stages of 
pressurized water reactors (PWRs). Optimization of fuel 
L/P is a challenging task due to its non-deterministic pol-
ynomial-time hard (NP-Hard) complexity. This difficulty 
grows exponentially with the number of fuel assemblies 
loaded in the reactor core. For instance, a two-loop PWR 
like ‘Kori Unit 1’ has 10153 possible loading configura-
tions. Even when we use octant (1/8) symmetric core 
geometry and specific loading rules to restrict the solu-
tion space, numerous cases of potential configurations 
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(approximately 1023) still remained for consideration [2]. 
Traditionally, the fuel L/P optimization problem has been 
solved by core design expert’s knowledge and experience 
to construct patterns, test them with design codes, and 
verify their compliance with design criteria. In an effort 
to automate this process, various optimization approaches 
have emerged, including simulated annealing (SA) [3, 4], 
genetic algorithm (GA) [5], and tabu search [6].

In the currently operating commercial PWRs in Korea, 
composition of fuel assemblies is mainly varied radially, 
with minimal or no variation in their composition along the 
axial direction. Reactivity, which is related to the power of 
each pin and core, can be controlled by soluble boric acid, 
burnable absorbers and control rods. In the commercial 
nuclear power plants, control rods are primarily used for 
urgent power adjustment or reactor shutdown. However, 
in the case of i-SMR, it employs a flexible operation mode 
within a soluble boron-free (SBF) environment in the core. 
There are some issues originating from flexible operation 
and SBF condition. First, due to this flexible operation 
mode, control rods have become the primary option for 
power adjustments in i-SMR. When the control rods are 
inserted downward from the top-side of the reactor, this 
induces an unbalanced axial power profile and power fluc-
tuation in the upper and lower regions of the reactor [7]. 
Second, boric acid plays a role in controlling reactivity to 
suppress the power profile uniformly throughout the entire 
core region. However, under SBF operational conditions, 
burnable absorbers and control rods, which can only affect 
the reactivity peripherally at their locations, must substi-
tute the role of soluble boron [8].

These factors necessitate additional consideration of the 
axial variation in the arrangement of fuel and burnable 
absorbers, unlike the current focus on the radial arrange-
ment in existing commercial PWRs in Korea. Therefore, 
while it was previously sufficient to optimize L/P by 

Fig. 1   Flowchart for fuel-reloading pattern optimization using 
DAKOTA-GA and CNN [14]

Fig. 2   Flowchart for SA algorithm with screening technique and CNN [6]
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considering only the radial direction, it is now necessary to 
design with consideration for axial compositional variation 
and the control rod positions for power adjustment. This 
means that the dimension for analysis has expanded from 
2 to 3D, vastly increasing the number of L/Ps that required 
to be analyzed. For example, when allowing for duplica-
tion, the number of possible configurations for arranging 
five types of fuel batch in an i-SMR is 569 , and if 1/8 core 
symmetry is allowed, there are 513 possible configurations. 
If we extend this ideally in the axial direction, there are 
24 layers in the depth direction of each fuel batch, and 8 
different fuel compositions can be selected in each layer. 
Thus, advanced techniques are necessary to expedite the 
L/P optimization process, despite already employing a 
meta-heuristics algorithm. It should be noted that due to 
the fabrication problem, axially only a few different zones 
would be practically feasible.

CNN‑Based Core Parameter Prediction

A convolutional neural network (CNN)-based surrogate 
model has been developed to accelerate the fuel loading 
pattern (L/P) optimization algorithm in this study. Com-
monly, CNNs have been widely employed for vision appli-
cations such as image classification, object recognition, 
and segmentation. However, as deep learning technolo-
gies have advanced, machine learning frameworks have 
grown more user-friendly, making it easier for researchers 
without deep learning knowledge to apply machine learn-
ing techniques to their specific fields. During the 1990s, 
neural networks were utilized in nuclear engineering to 
predict reactor core parameters, but its use was limited to 
specific cases of L/Ps rather than being generally applica-
ble [9]. With advancements in both CNN models [10, 11] 
and computational power, the model is now capable of 
distinguishing certain characteristics from intricated pat-
terns in image data. Early applications of CNNs in reactor 
core parameter prediction focused on the eigenvalues and 
eigenvectors of diffusion equations such as multiplication 
factor (keff), neutron flux and power distributions within 
the core by utilizing core L/Ps [12, 13]. Subsequent studies 
were conducted to predict core parameters such as power 
peaking factor, cycle length, boron concentration at the 
beginning of the cycle (BOC), moderate temperature coef-
ficient (MTC) by CNN with L/Ps as an input data and the 
calculation results of reactor design code as a labeled data 
[14].

Advanced Approaches of L/P Optimization

Various meta-heuristic algorithms are being adapted for 
optimization problems. But it is also time-consuming that 

evaluating each L/P generated by the algorithm with the 
actual design code. While hundreds to thousands of L/Ps 
are assessed during this process, the computational cost of 
the design code itself significantly contributes to the overall 
assessment time. In addition, in the case of L/P optimization, 
it is difficult to compare the performances of each algorithm. 
First, their differences of performance are not significant 
[15, 16]. It is hard to determine the superiority of the sets of 
objective functions derived from each algorithm. In addi-
tion, even if some algorithms derive better objective func-
tions, they might have slower convergence speeds. In order 
to improve base algorithms, several approaches have been 
devised: parallel meta-heuristic algorithm [17, 18], probabil-
istic sampling approaches [19], and integration of surrogate 
model into algorithms [20–22].

In some cases where surrogate model approaches are 
used, only the model itself is employed to derive objective 
functions [20, 22]. Wan et al. [22] examined the efficiency 
of combined model of CNN with GA. Their study was 
conducted on the CNP-1000 PWR core to predict critical 
boron concentration at specified burnup state and power 
peaking factors. They selected four characteristic param-
eters of fuel rod, namely fuel enrichment, burnup, num-
ber of burnable rods, and number of cycle burned. These 
parameters are used as input data for the CNN model. Each 
loading pattern’s burnup and power peaking factors were 
calculated using the design code, SPARK as target data. 
The corresponding flowchart can be seen in Fig. 1.

Other cases use a design code after the surrogate model 
[21]. Several candidate L/Ps are first prepared by heuristic 
algorithm. Then, the AI-based surrogate model predicts their 

Table 1   Major design features of i-SMR [26]

Reactor type Integral PWR

Plant capacity (number of reactor 
modules)

680 MWe (4)

Thermal/electrical capacity per reactor 520 Mwt/170 MWe
Reactor coolant pump Vertical canned motor type
NSSS operating pressure 15 MPa
Core inlet/outlet coolant temperature 295.5/320.0 ℃
Fuel type/assembly array UO

2
/17 × 17 square pitch

Number of fuel assemblies in the core 69
Fuel enrichment  < 5 w/o
Core discharge burnup  < 62,000 MWD/MTU
Refueling cycle, months 24
Reactivity control (soluble boron free) Control rod, burnable 

absorber rods, moderator 
temperature

Steam generator Helical once-through type
Safety systems Fully passive
Design life, years 80
Seismic design (SSE) 0.5 g
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objective functions and reduces the number of candidate 
L/Ps. Finally, the selected L/Ps with better objective func-
tions are calculated using the design code. If we derive the 
objective functions throughout the entire procedure using a 
surrogate model, we can take advantage of the convergence 
speed. However, the inherent uncertainty of the surrogate 
model could result in a less optimal L/P compared to using 
only a design code with a heuristic algorithm.

The probabilistic sampling technique presented by Liao 
et al. [19] constructs a probability distribution between 
operations (fuel assembly exchange and rotation) and their 
impact on objective functions. If an operation positively 
improves the objective function, the probability of that oper-
ation is increased through dynamic probability adjustment, 
improve optimization process.

In probabilistic sampling techniques, there is also a 
method called the screening technique. Screening technique 
employs both the probabilistic approach and the surrogate 
model. It can take the benefits of accelerating with partially 
resolve the uncertainty of artificial neural networks through 

probabilistic screening techniques. Instead of assessing all 
L/Ps using the design code, the screening technique was uti-
lized to select only the valuable ones for examination. This 
method employs a surrogate model to predict the range of 
core characteristic parameters, thereby reducing the number 
of cases that require design code calculation. The flowchart 
for the screening technique and CNN surrogate model can 
be seen in Fig. 2.

Unlike Liao et al. [19], this screening technique uses a 
predetermined distribution function for the L/Ps and their 
objective functions. Specifically, the distribution function 
is constructed using the differences between the objective 
functions calculated by the design code and the surrogate 
model for the same L/P. This distribution is then used to 
determine whether a transition occurs in the given SA opti-
mization algorithm. If the values predicted by the surrogate 
model lie within a specific reliable range of the probability 
distribution, they are accepted and used in the optimization 
process. Otherwise, a detailed analysis using the design code 
is performed. Finally, if the objective function value of the 
new L/P’s being better than the current L/P is significant, the 
transition is allowed; otherwise, it is not [4, 23, 24].

Overview of i‑SMR with Flexible Operation

The i-SMR (innovative small modular reactors) is a small 
modular reactor being developed in Korea that offers sig-
nificant advantages over conventional nuclear power plants 
in terms of safety, economic viability, and operational 

Table 2   Gadolinium burnable poison rod options

Rod type U-235 w/o Density [g/cm3] Gd w/o

None-Gd 4.00 10.2863 0
Gd-A 2.35 9.9066 8.0%
Gd-B 3.60 10.1887 1.0%
Gd-C 3.35 10.2715 3.0%

Fig. 3   Gadolinium burnable 
poison rod options



AI‑Based Prediction Module of Key Neutronic Characteristics to Optimize Loading Pattern for…

flexibility. It features a 520 MW thermal power output, an 
integrated reactor coolant system (RCS) configuration that 
eliminates large pipes, and a fully passive safety system. The 
i-SMR can be utilized for various applications beyond elec-
tricity generation, including industrial heat supply, seawater 
desalination, and hydrogen production. Table 1 represents 
the major design features of the i-SMR.

Traditionally, nuclear power plants have been utilized 
as baseload power sources. However, the rise of renewable 
energy generation, such as solar and wind power, has led to 
inconsistent power supply–demand depending on weather 
conditions, resulting in either insufficient or excessive power 
supply. Traditionally, nuclear power plants have been uti-
lized as baseload power sources. However, the rise of renew-
able energy generation, such as solar and wind power, has 
led to inconsistent power supply–demand depending on 
weather conditions, resulting in either insufficient or exces-
sive power supply. In power systems, carbon-based sources 
(such as coal and natural gas) have traditionally served as 
flexible generation sources. However, due to their green-
house gas emissions, decarbonization of the power system 
has become necessary.

The flexible operation of nuclear power can help decrease 
the share of carbon-based generation while preventing the 
curtailment of renewable energy sources. In addition, it 

can help reduce the operational and maintenance (O&M) 
costs of the power system. By achieving flexible operation 
of nuclear power plants, we can improve the performance 
of nuclear systems by addressing issues such as reactivity 
fluctuations caused by xenon and enhancing the reliability 
of nuclear fuel and structural materials. Consequently, there 
is a growing demand for the flexible operation of nuclear 
power plants [25].

The i-SMR is developed to meet this demand with its 
innovative design. It employs a soluble boron-free (SBF) 
operation mode for load-following capability. In addition, 
the i-SMR features a high level of autonomous opera-
tion, which reduces operator burden during multi-module 

Table 3   Categories of fuel 
batches

Category Number 
of Gd 
rods

Low 0, 12
Intermediate 16, 20
High 24, 28

Fig. 4   Categories of fuel 
batches

Fig. 5   L/P preprocess with macroscopic cross-sections
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Fig. 6   a–d Data distributions of Fr, rod position, ASI, k-eff, respectively. e Rod depth vs k-eff in the same L/P dataset
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operation. Furthermore, the integrated RCS configuration 
inherently eliminates the possibility of a large break loss-of-
coolant accident (LB-LOCA), further enhancing the safety 
of the i-SMR [26]. Researches have been actively conducted 
in Korea for i-SMR that operating under load-following and 
SBF conditions. Researches include developing methodolo-
gies for optimizing fuel loading patterns for load-following 
operation [27], analyzing candidate safety system designs 
[28], and confirming the applicability of burnable absorb-
ers [29].

Methodology

This study aims to predict key reactor core parameters at 
BOC, including power peaking factor, control rod inser-
tion depth, keff, and Axial Shape Index (ASI). We achieve 

this by employing a neural network model trained on both 
core loading patterns and calculation results generated by 
the ASTRA design code. The main focus of this study is to 
predict these parameters efficiently while maintaining a suf-
ficient level of precision using CNN-based model.

Research Object: i‑SMR

This section illustrates the design features of the i-SMR, 
particularly focus on the effect of SBF condition. Here are 
the two key considerations for SBF operation:

(1)	 Increased control rod reactivity worth: unlike conven-
tional reactors relying on a combination of BA (burn-
able absorbers), control rods, and dissolved boron for 
reactivity control, the i-SMR’s boron-free core requires 
only control rods and burnable absorbers to manage 
excess reactivity [29]. This necessitates increased con-
trol rod reactivity worth, which influence reactor design 
and operational strategies.

(2)	 Enhanced dependency on burnable absorbers for power 
profile: in conventional reactors, dissolved boron flat-
tens the axial and radial power profile within the core. 
In the SBF condition, i-SMR rely more heavily on 
burnable absorbers rods embedded within the fuel 
assemblies for this purpose. Careful consideration is 
required during the design stage include the quantity 
and placement of these absorber rods to ensure an 
optimal power profile, effective reactivity control, and 
material integrity during load-following operations 
[30].

Fig. 7   a Control rod layout of quarter core. b Rod insertion strategy

Table 4   Pseudocode for control rod transformation algorithm

Rod_banks = [R4, R3, R2, R1]
R4-R1 varies 0 to 100
# condition 1: [0, 0, R2, R1], R1 ! = 100
if R1 ! = 100:
single_encoded_value = R1 – 150
# condition 2: [0,R3,R2,100], R2 ! = 100
elif R2 ! = 100 and R1 =  = 100:
single_encoded_value = R2–100
# condition 3: [R4,R3,100,100], R3 ! = 100
elif R3 ! = 100 and R2 =  = 100 and R1 =  = 100:
single_encoded_value = R3–50
# condition 4: [R4,100,100,100], R1,R2,R3 =  = 100
elif R3 =  = 100 and R2 =  = 100 and R1 =  = 100:
single_encoded_value = R4
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Data Preparation and Preprocess

Input Data

(1) Batch type and composition
In this study, we considered 24 batch types of fresh fuel 

assemblies as a part of input data. Each batch type represents 
a fuel assembly with a unique composition and arrangement 
of fuel and burnable absorber rods. The enrichment of U-235 
within the fuel assemblies has two options: 4 and 4.95 w/o 
However, at the initial cycle, only the 4 w/o Batch A type 
assembly will be used. In addition, each batch type includes 
gadolinium (Gd) burnable absorber rods in six variations: 0, 
12, 16, 20, 24, and 28 rods as shown in Table 3 and Fig. 4. In 

addition, these Gd rods are classified into three types based 
on the specific combinations of UO2 and Gd2O3, as shown 
in Table 2 and Fig. 3.

(2) Cross-section data of each batch types
Fast and thermal group macroscopic cross-section data 

of each batch types produced by the KNF’s lattice phys-
ics design code, KARMA, and ENDF/B-VI.8 library has 
been used. Macroscopic cross-section consists of five types 
of cross-section; fission, ν-fission, capture, transport and 
scattering. Since the thermal group does not have scatter-
ing cross-section data, this is because only neutrons of the 
fast group scatters into the thermal group, while the oppo-
site scattering (up-scattering) is negligible and is consid-
ered as 0 in the two-group cross-sections. Each batch types 
have nine cross-section coefficients related with their own 
composition.

(3) Random L/P generation
There are two components to the random L/P generation 

algorithm: In the first part, three fuel batches were selected 
from three different categories defined by the unique number 
of gadolinium rods without any duplicates shown in Table 3 
and Fig. 4. Then, from the remaining batches, two or three 
more batches were selected at random.

This process generates approximately 66,000 data repre-
senting L/Ps made up of varying quantities of gadolinium 
rods in each fuel assembly for the consideration of power 
distribution flattening. In the second section, approximately 

Fig. 8   Example of control rod transformation algorithm

Fig. 9   SE block
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33,000 extra data points were generated after five unique 
fuel batches were selected to establish the L/P.

(4) Loading pattern preprocess
The randomly generated layout results were pre-pro-

cessed before being used as input data for a CNN. Since 
raw characters could not be directly handled by neural 
networks, we converted them into suitable numerical data. 
Each batch type characters (e.g., A01, A06, and A84) were 
first transformed into a composition ID (see Fig. 5).

The algorithm then referenced these IDs in the ASTRA 
library, based on the ENDF (evaluated nuclear data file) 
database, and assigned the corresponding macroscopic 
cross-section data. In addition, empty positions without 
assemblies were filled with a value of zero. As a result, 
the original 9 × 9 2D plans were converted into 3D shapes 

with dimensions of 9 × 9 × 9, where the last dimension rep-
resents the nine cross-section channels.

Target Data

(1) Data distribution and features
Four parameters were chosen for analysis: Fr, ASI, con-

trol rod position, and keff. The data distributions for these 
parameters are presented in Fig. 6. Each data point repre-
sents the output of a specific fuel L/P (referred to as input 
data) simulated with the ASTRA code.

The regulating control  rod banks (R1 ~ R4) 
have fixed locations in the core (see Fig.  7 (left)). 
These control rods undergo a sequential operation 
of insertion (R4 → R3 → R2 → R1) or withdrawal 
(R1 → R2 → R3 → R4) with a 50% overlap ratio. For exam-
ple, when the insertion depth value of R4 falls below 50 
(indicating injection) from its fully withdrawn position 
(100), the next control rod (R3) begins its insertion. The 
same sequential operation applies to R2 and R1 as well.

Compared to the actual value range of 0–100 and 
− 150–100, the neural network sometimes predicted val-
ues outside of this range. Therefore, we chose to limit the 

Table 5   Core parameter prediction error

keff Fr (%) ASI (%)

Mean relative error 0.05% 0.80 1.02
Max relative error 0.25% 6.25 17.31
Proportion of error ≥ 3% None 1.57 4.60
Proportion of error ≥ 5% None 0.10 1.81

Table 6   Rod position prediction 
error

Rod position Encoded rod position

R4 R3 R2 R1 R4 R3 R2 R1

Mean absolute error 0.47 0.59 0.73 0.58 0.36 0.53 0.58 0.32
Max absolute error 11.21 7.91 6.96 6.68 11.74 7.39 7.42 6.99
Proportion of error ≥ 3 (%) 1.67 0.86 0.91 0.22 2.01 1.15 0.74 0.12
Proportion of error ≥ 5 (%) 0.30 0.04 0.02 0.01 0.39 0.05 0.02 0.01

Fig. 10   CNN model
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Fig. 12   a Relative error and b training loss of radial peaking factor (Fr)

Fig. 13   a Relative error and b training loss of axial shape index (ASI)

Fig. 11   a Relative error and b training loss of multiplication factor (keff)
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range of existence using overlap between control rods and 
encoding and decoding.

(2) Multi-variable regression issue: control rod inser-
tion depth

Our initial approach was to predict all four target vari-
ables (R4-R1) simultaneously using a neural network 
regression model. The results showed significant errors, 
so we initially judged that multiple-output prediction was 
the main cause, because it is commonly known that mul-
tiple-output regression typically yields lower performance 
compared to single-output task [31]. To circumvent this 
issue, we devised an encoding process (see Table 4 and 

Fig. 14   a–d Absolute error plots of control rod position R4–R1. e Absolute error plot of encoded control rod position (single integer value). f 
Training loss plot

Table 7   Device specification

CPU processor 12th Gen Intel(R) Core(TM) i7-1255U 1.70 GHz

RAM 32.0 GB
OS Windows 11 Pro (23H2 version)
System Type 64-bit operating system, × 64-based processor
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Fig. 8) based on the overlapping insertion sequence of the 
control rods. By adjusting rules, four of each control rod 
insertion depth values (R4-R1) could be encoded into one 
single integer value.

(3) Negative value issue: ASI, control rod insertion depth
In this study, the relative error (between predicted and 

labeled values) increased considerably when training data 
included both positive and negative values for ASI and 
control rod insertion depth. Even after controlling for other 
factors such as model structure, hyperparameters, and utiliz-
ing the same dataset, relatively large errors were observed 
in many cases during analysis. To address this issue, we 
applied a value-shifting step to both control rod insertion 
depth and ASI data. The initial range for encoded control 
rod insertion depth data was − 150 to 100 (see Fig. 3). We 
shifted all values by adding a constant of 150, resulting in 
a new range of 0–250. Similarly, ASI data inherently range 
from − 0.3 to 0.3. To avoid potential problems caused by 
negative values during training, we added 0.3 to all ASI 
values, shifting the range to 0 to 0.6 and then we subtracted 
0.3 from predicted values.

Neural Network Architecture

Module

(1) Residual block module
We employed residual block as the main module of our 

network. It consisted of several convolution layers with dif-
ferent kernel sizes. Due to the limited dimensions of the core 
L/P (9 × 9 × 9, which are smaller than typical image sizes 
such as 128 × 128 or 256 × 256 pixels), we set the convolu-
tion window stride value to 1. In addition, we employed 
‘padding’ option to maintain the width (horizontal shape) 
until the pooling layer of the network. When data enter the 
residual block, it is simultaneously processed by the first 
convolutional layer and the shortcut layer. The output of the 
first layer is then passed into the second layer. Meanwhile, 
the shortcut layer handles the original input independently. 
Following that, the outputs of the second layer and the short-
cut layer are combined element-wise, pixel by pixel. Finally, 
this module generates the output.

(2) Candidate methods: SE module, batch normalize layer

We evaluated using the Squeeze-and-Excitation (SE) [32] 
module and the batch normalize layer to improve the accu-
racy of the network’s predictions. In prior studies on dif-
ferent types of reactor cores, we found that these strategies 
were efficient in reducing errors between predictions and 
labeled data across multiple core parameters. The SE mod-
ule is designed to multiply weights for particular channels, 
allowing the network to focus on important channels within 
each layer. These channels are located in the last dimension 
of the layer's output tensor. For instance, in images sized 
256 × 256 × 3, this dimension comprises the 3 RGB chan-
nels. The process is summarized in Fig. 9.

Batch normalization is a typical technique for mitigat-
ing overfitting, gradient vanishing, and accelerating training 
speed. It works by preventing internal covariate shifts from 
one layer to another. Internal covariate refers to the problem 
of learning instability caused by changes in input distribu-
tion in each layer. To address this issue, batch normalization 
layer adjusts the mean of inputs to zero and standardizes the 
variance to one, thereby facilitating stable learning across 
each layer of the network [33].

Neural Network Model

(1) Model architecture
The model architecture consists of three key parts: resid-

ual blocks, a global pooling layer, and a dense layer. All 
residual blocks used the same filter size of 99. This configu-
ration was chosen after experimenting with various com-
binations of filter sizes (36, 72, 99, 108, 144), number of 
residual blocks (2–5), and kernel sizes (e.g., (5, 2, 2), (5, 3, 
3), (7, 2, 2), (3, 3, 3)). We also explored different training 
parameters. The optimal performing model is presented in 
Fig. 10.

The residual block performs a convolutional operation 
to extract features from the input data. Next, a global aver-
age pooling layer converts the output from these blocks into 
a single-dimensional (1D) vector. This vector contains the 
most important features. Finally, a dense layer processes 
this 1D vector, and the output layer generates the model’s 
prediction.

(2) Training parameters and validation method

Table 8   Comparison of 
absolute errors with and without 
BN layer (rod position)

Rod bank Batch normalize layer Non-batch normalize layer

Absolute mean Absolute max Absolute mean Absolute max

R4 1.64 30.02 0.62 14.16
R3 3.85 23.68 0.95 9.80
R2 6.05 27.93 1.05 9.80
R1 3.30 25.80 0.50 7.29
Total average 3.71 26.86 0.78 10.26



AI‑Based Prediction Module of Key Neutronic Characteristics to Optimize Loading Pattern for…

In terms of training parameters, we used the ‘ReLU’ acti-
vation function and the Adam optimizer to train the model 
for 150 epochs (learning rate = 0.001). To avoid potential 
overfitting issues, we investigated using Dropout layers and 
L1/L2 regularization. However, because these techniques 
resulted in higher prediction errors and slower convergence 
speeds, we decided to exclude them from the model.

We used the K-fold cross-validation process to evaluate 
both overfitting of the model and to assess the presence of 
dataset imbalance. During the K-fold procedure, the dataset 
was divided into five subsets. The model was then trained 
five times, each using a different subset as the testing set and 
the remaining data as the training set.

Results

Prediction Error

Overall prediction errors are presented in Tables 5 and 6. 
‘Proportion of Error ≥ 3%’ and ‘Proportion of Error ≥ 5%’ 
indicate the proportion of data points exceeding 3% and 5% 

of errors in the entire prediction dataset. The relative errors 
and loss of the target core parameters are shown in Figs. 11, 
12, 13 and loss of control rod positions are shown in Fig. 14.

(1) Core parameters: keff, Fr, ASI
It is noted that when predicting keff, we use a differ-

ent dataset unlike the other parameters. Since keff and rod 
position search employ different calculation modes in the 
ASTRA code, we obtained a total of 50,000 data points from 
the ASTRA results.

(2) Rod insertion depth
Prediction errors of ‘rod position’ and ‘encoded rod posi-

tion’ can be seen in Table 6 and Fig. 14. The error values in 
the ‘Encoded Rod’ column of Table 6 were obtained by cal-
culating the errors after restoring the single encoded value 
into R4 ~ R1, which was used to plot Fig. 14e. Except for the 
encoding process, other conditions were the same during the 
training. It can be observed that the prediction error for the 
rod position is lower when it is encoded as a single value 
compared to when it is not encoded.

Fig. 15   a–d Absolute error plots for the control rod insertion depths of R4–R1 (using BN layer)
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Computational Time

Computational time was measured in the following environ-
ment without GPU acceleration. Device specification used 
in this study can be seen in Table 7.

For 16,559 cases, the computational time per L/P of BOC 
using the ASTRA code averaged 2.980 s, with a minimum 
time of 2.476 s, a maximum time of 10.853 s, and a stand-
ard deviation of 0.448. Regarding the prediction time for 
variables using CNN surrogate model, the time taken by the 
model to predict 9884 L/P cases was measured. The average 
time was 0.101 ms per each L/P and total time was 1.002 s.

Discussions

Comparison with Other Studies

We conducted predictions for keff, Fr, ASI and control rod 
position. Prior studies focused on predicting keff, Fr, boron 
concentration, and cycle length. However, the i-SMR oper-
ates in a flexible mode within a soluble boron-free core envi-
ronment. Consequently, factors such as control rod positions 
and ASI are more important than other parameters. Unlike 

Fig. 16   a–d Absolute error plots for the control rod insertion depths of R4–R1 (non-BN layer)

Table 9   Comparison of 
absolute errors with and without 
SE block (rod position)

Rod bank SE block Non-SE block

Absolute mean Absolute max Absolute mean Absolute max

R4 1.37 31.71 0.82 19.27
R3 2.33 17.30 1.21 15.00
R2 2.43 16.72 1.20 10.45
R1 1.04 10.73 0.51 7.96
Total average 1.79 19.11 0.94 13.17
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prior research, our study aimed to verify whether these spe-
cific variables could be predicted effectively.

About prior AI-based surrogate models, Li et al. [20] uti-
lized a simple fully connected neural network (FCNN) as a 
surrogate model, incorporating fuel burnup cycles as input. 
But the specifics of additional input data were not detailed 
in their study. This model was used to predict key param-
eters such as keff and power peak factor (PPF). Meanwhile, 
Yamamoto [21] employed FCNN to determine Fr and cycle 
length, achieving approximately 3–4% error for Fr and 1–2% 
for cycle length predictions. Wan et al. [22] used uranium 
enrichment in fuel assemblies and the number of burnable 
absorbers as inputs. Although specific computer specifica-
tions were not specified, individual evaluation times for 
loading models averaged 0.0005 s across 8000 test datasets. 
Our study distinguishes itself from prior studies by utilizing 
macroscopic cross-section of each fuel assembly, rather than 
using enrichment and number of burnable absorbers.

In addition, we identified data and model factors that pose 
obstacles to improving accuracy. Regarding the data, data-
sets containing negative values exhibited high errors. Con-
cerning the model structure, we found that two commonly 
used techniques to improve CNN performance, namely SE 

modules and BN layers, negatively impacted prediction 
accuracy.

About computational speed, based on BOC, it takes 
0.1 ms per individual L/P, which is over 1000 times faster 
than the design code that takes an average of 3 s. This speed 
could be further enhanced with a GPU-based system.

Limitations of the Current Model and Expectations 
for Practical Usage

Limitations of this study include the relatively high error in 
ASI prediction. Furthermore, the model only makes predic-
tions for Beginning of Cycle (BOC) rather than the entire 
core cycle. Currently, the ASI prediction shows a high maxi-
mum error of 17.31%. ASI, measures the difference between 
power generated in the lower and upper halves of the core, 
divided by their sum. However, in this study, we only pro-
vided 2D data to the model. We expect that the model’s 
performance could be improved by incorporating additional 
axial information. For instance, if we give control rod depth 
data as an additional input, the model could utilize 3D infor-
mation using a combination of 2D and 1D data.

Fig. 17   a–d Absolute error plots for the control rod insertion depths of R4–R1 (using SE block)
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Regarding the core cycle, there is the issue related to the 

depletion of fissile material in the core, which is related to 
the power of the core. As the fuel burns up, there is a prob-
lem of reactivity decrease. It is necessary to improve the 
model to predict the core characteristics’ changes due to 
fuel depletion and to analyze the core throughout the entire 
cycle. For this, there is a method using 3D convolution lay-
ers that process continuous images like video. If we consider 
the core loading pattern as an image and depletion as a time 
dimension, it should be possible to account for fuel depletion 
using this 3D convolution technique.

This prediction module will be used in the core load-
ing optimization module. As mentioned in the introduction, 

flexible operation requires consideration of axial composi-
tion changes. In addition to the 513 possibilities based on 
1/8 symmetry core condition, we also consider composition 
changes along the axial direction for 24 layers. Even if we 
simplify these 24 layers into just 3–5 regions, the number 
of cases requiring analysis increases dramatically. If we 
use only the surrogate model without the core design code, 
we expect to fully benefit from the computational speed 
advantage during the optimization process. However, when 
considering the design code as the absolute standard, the 
surrogate model has a relatively low prediction accuracy of 
about 95% on average. Consequently, the optimal LP derived 
using the surrogate model would likely be inferior to that 
obtained from the optimization process using the core design 
code. We anticipate that by utilizing screening techniques, 
we can achieve a solution closer to the optimal LP while still 
partially benefiting from the enhanced computational speed.

Error‑Inducing Factors

This section discusses the factors that influence the errors 
discovered during model improvement. These issues can be 
divided into two categories: errors caused by neural network 

Fig. 18   a–d Absolute error plots for the control rod insertion depths of R4–R1 (non-SE block)

Table 10   Comparison of relative errors caused by negative values

Value range Average error (%) Maximum 
error (%)

Control rod 
(R4-R1)

− 150 ~ 100 14.86 121.58
0 ~ 250 4.22 46.73

ASI − 0.3 ~ 0.3 5.94 187.63
0 ~ 0.6 2.22 37.86
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training procedures (layers, modules, activation functions, 
etc.) and errors caused by the training data itself. Instead of 
evaluating all core parameters, we focus only on the two that 
consistently provide the largest prediction errors: control rod 
position and ASI.

(1) Batch normalize layer
We compared the errors with and without using the BN 

layer. Table 8 shows the relative errors of the encoded single 
values of rod insertion depth. We observed that batch nor-
malization resulted in larger mean and maximum errors than 
non-BN. In addition, the variance of the predicted values 
during training was also substantial. Figures 15 and 16 show 
plots of the absolute errors of values decoded from a single 
value into R4–R1 values.

(2) SE block
We compared the errors with and without the SE mod-

ule, and the results are shown in Table 9. Regarding the 
control rod insertion depth, we discovered that utilizing the 
SE module resulted in higher average and maximum errors 

than not using it. In addition, employing the SE module 
increased computation time due to the additional parameters 
for assigning weights to the model’s layers, as well as the 
adjustment process. Due to the downsides of increased error 
and training speed, it was not used in our model. Figures 17 
and 18 show the error plot based on the presence or absence 
of the SE block.

(3) Error caused by negative values
During our research, we found a considerable rise in 

errors when processing two core parameters (ASI and Rod 
insertion depth) with negative values. When encoding the 
control rod values for four banks (R4–R1) into a single 
value, the range of converted values is from − 150 to 100. In 
addition, the range of ASI values lies between − 0.3 and 0.3. 
Training the model directly with these data resulted in many 
occurrences with maximum relative error values exceeding 
100%. To investigate this issue, we trained the model under 
identical settings but with different data. Table 10 provides 
a comprehensive comparison of relative errors caused by 

Fig. 19   Relative error of control rod insertion depth. Training the model using dataset a with negative values and b without negative values

Fig. 20   Relative error of ASI. Training the model using dataset a with negative values and b without negative values
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negative values for both the Control Rod (R4–R1) and ASI 
parameters, clearly demonstrating the significant reduction 
in errors achieved by shifting the value into non-negative 
ranges. The error plot for the control rod is shown in Fig. 19, 
and the error plot for ASI is presented in Fig. 20.

Conclusion

This study confirmed the prediction of core characteristic 
parameters for a given loading pattern arrangement at BOC. 
While the average computation time of the ASTRA design 
code for one case, including control rod search, was about 
3 s for each L/P, the CNN model performed predictions for 
9884 cases within 1 s. If we integrated the model with the 
SA algorithm that contains a screening technique, the opti-
mization process would benefit from a remarkable increase 
in computational speed while ensuring accuracy.

The study also predicted variables related to axial direc-
tion and flexible operation, such as control rod positions and 
ASI. Unlike previous studies that used enrichment values 
for prediction, this research demonstrated the possibility 
of using cross-section data as input. In addition, the study 
identified error-inducing factors within the CNN-based pre-
diction methodology. Overall, this study demonstrated that 
the surrogate model, with its benefit of fast computation 
time, may be used as part of our SA algorithm’s screening 
technique to speed up the optimization process.
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