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Abstract
As society becomes more complex, the importance of quick and effective emergency response systems gets more emphasized. 
This paper introduces a way to reduce the time it takes for emergency staff assembly to be handled during radioactive 
accidents, which is one of significant factors to manage early stage situations. Using a type of computer modeling called 
agent-based modeling (ABM) on the NetLogo software, we examine how emergency responses are carried out, focusing on 
how emergency staff assembly workers are sent out and how they work together in a simulated setting. By integrating traffic 
and path-finding models, along with real-world GIS (Geographic Information System) data, our methodology allows for more 
realistic evaluation of response times under various scenarios, including harsh weather conditions (e.g., Heavy snow) and 
infrastructural disruptions (e.g., Earthquake). The findings reveal significant variability in emergency staff assembly times, 
underscored by the impact of environmental factors. This research not only contributes to the understanding of emergency 
response mechanisms but also provides a practical framework for improving the efficacy of disaster management systems, 
thereby enhancing public safety and resilience against future radiological events.
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Introduction

The Fukushima nuclear disaster has underscored the criti-
cal importance of rapid and effective emergency response 
mechanisms [1]. In the aftermath of such incidents, sub-
stantial focus has been placed on evacuation strategies, with 
numerous studies aiming to optimize evacuation processes 
and accurately predict evacuation times [2–4]. However, 
while the evacuation of general public is crucial, equally 
important is the rapid assembly of emergency staff required 
to stabilize the affected nuclear power plant. The NUREG-
CR7002 report includes various factors that affect people's 
interactions following a nuclear power plant accident. In 
the USA, this report is used to estimate evacuation times. 
However, the report relies solely on these factors, making 
real-time estimation somewhat challenging due to the lack 

of visualization and quantification [5]. Recognized within 
South Korea's Accident Management Program [6], the 
guidelines specify that emergency staff assembly must be 
completed swiftly to ensure effective incident management. 
However, it would be reasonable that the variability and/or 
uncertainty of such results (emergency staff assembly time) 
is quantified to control and optimize emergency responses.

Particularly challenging is the scenario of complex disas-
ters, such as the combination of an earthquake with a radio-
logical emergency, which introduces significant variability 
in emergency staff assembly times. These situations could 
escalate from a site-specific area alert (blue alert) to a gen-
eral emergency (red alert), complicating the measurement 
of specific assembly times.

This study aims to address this gap using an agent-based 
model to understand the distribution of emergency staffs’ 
assembly times. Agent-based modeling, chosen for its abil-
ity to simulate complex interactions among multiple agents 
and their environment, allows us to observe emergent pat-
terns in emergency staff assembly under varied and uncer-
tain conditions. This methodology is not only applicable to 
nuclear power plant accidents but can also extend to evacu-
ation plans for chemical accidents, underscoring its utility in 
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broader emergency response planning [7]. Various tools sup-
port agent-based modeling, and the tool selection was based 
on considerations of the simulation's purpose and scale, the 
tool’s performance, and scalability. Ultimately, NetLogo was 
chosen due to its convenience and visualization capabilities.

We have previously developed an evacuation simulation 
platform, Platform for Radiological SiMulation (PRISM) 
[8], using NetLogo. While in this context, we simulated 
large-scale population movements and the possibility of 
radiation exposure, this study has developed a simulation 
capable of measuring the emergency staff assembly times in 
all emergency situations by modifying the previous platform, 
PRISM, and it was named as PRISM-EC (Emergency Call). 
By applying existing traffic models (Chapter 2–2. A) and 
path-finding models (Chapter 2–2. B), and implementation of 
these methodology to GIS data which fundamental method 
to develop agent-based model simulation (Chapter 2–2. C), 
we have developed a more accurate simulation, such that 
the assembly time can be predicted in various hypothetical 
situations. We demonstrated the capability of PRISM-EC 
for several cases and also attempted to verify the suggested 
methods in Chapter 3.

Methodology

Development Environment

In this study, we utilize Agent-Based Modeling (ABM) to 
analyze the distribution of assembly times for emergency 
technical support teams during a radiological accident. 
ABM is a computational approach that models complex 
phenomena by simulating interactions at the individual 
agent level [9–12]. This method is particularly suited to 
scenarios where phenomena are highly interdependent and 
too complex for traditional equation-based models.

Defining human behavior and decision-making within 
these scenarios challenges conventional approaches. ABM 
offers an alternative by allowing us to simulate and iterate 
through real-world scenarios like fires to identify emergent 
patterns and solve problems. Unlike traditional methods, 
ABM does not provide definitive answers but instead 
explores potential outcomes and situational responses, 
enhancing our understanding of complex emergency 
situations.

There are lots of available software options to practically 
implement ABMs, which brings different pros and cons 
depending on options. In this study, we utilized a program 
called Netlogo [13]. Netlogo is fundamentally composed 
of four types of agents: Turtles, which represent the agents 
being observed; Patches, which signify environmental 
changes; Links, which denote interactions; and Observers, 
who are the observers. These components are aptly 

leveraged to model and observe agents, their environments, 
and their interactions. One function that Netlogo meets the 
purpose of this study is to offer features for integrating GIS 
and supports 3D modeling, so that it can provide to reflect 
various real-world data related to geographic information.

Traffic and Path‑Finding Model

Similar to evacuation simulations, in emergency staff 
assembly simulations, the exploration of destinations by 
agents and the traffic model are the most critical elements. 
Therefore, this chapter provides an explanation of the traffic 
models and path-finding models on the basis of techniques 
that have been applied previously, how to implement them 
into real GIS data.

Traffic Model

The traffic model can be considered as a model for how 
agents (evacuees) move. In this context, a representative 
model is the Cellular Automata model (hereafter referred to 
as the CA model) [14]. The CA model overcomes the limita-
tions of macroscopic traffic simulation models, allowing for 
diverse microscopic traffic simulations. The model is based 
on the basic unit space occupied by vehicles, known as cells. 
The state of a cell can take two values: 0 (no vehicle) and 1 
(vehicle present). In this study, N is defined as the sum of all 
cells representing the number of vehicles on the road. The 
unit of speed is not the traditional distance per unit time, 
but rather cells per unit time. The speed of each vehicle can 
range from 0 to a user-defined value. Figure 1 provides a 
brief explanation of the CA model.

It is assumed that all roads are subdivided into unit 
cells. Each vehicle has a forward distance ( g ) available for 
advancement concerning the leading vehicle and a maxi-
mum speed. The maximum speed is defined as Vmax in this 
study. To change lanes, the driver must consider the gap ( gp ) 
o the adjacent lane and the distance ( gs ) to the vehicles in the 
adjacent lane. Figure 2 shows pseudocode of traffic model 
about NS-CA (Cellular Automata).

Fig. 1   A simple model applying the principles of the Cellular Autom-
ata (CA) model
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Path‑Finding Model

The path-finding model can be considered as a model for 
determining the direction that agents (evacuees) should 
take when moving. Search techniques involve methods 
for finding paths to reach a goal. Search techniques can be 
classified into blind search and heuristic search methods. 
Blind search methods sequentially visit possible states 
without any information, with examples including depth-
first search and breadth-first search. When the state space, 
such as a real-world road network, becomes very large, blind 
search methods are computationally inefficient and may not 
provide the optimal path. To address this, heuristic methods 
introducing state transition costs or search costs can be used. 

In this study, we analyzed and applied the A* algorithm, a 
representative heuristic algorithm commonly used in traffic 
navigation. The A* algorithm searches for the optimal path 
using an evaluation function, as shown in Eq. 1 [15] [16]

Here, g(M) represents the distance traveled from the ini-
tial node to node M (the current node), and h∗(M) signi-
fies the estimated distance from the node to the target node. 
Heuristic search techniques fundamentally compare the costs 
incurred when transitioning between states or moving to the 
next node to determine the next path. The A* algorithm 
introduces the estimated future cost, denoted as, h∗(M) to 

(1)f(M) = g(M)+h∗(M).

Fig. 2   Pseudocode (NS-CA 
model)

Algorithm NS_CA_Model(road, max_speed, deceleration_probability, 
time_steps)

// Run the simulation for a number of steps
For each time step in time_steps do

// Look at each car on the road
For each car in road do

// If the car can go faster, increase its speed by 1
If car's speed < max_speed then

Increase car's speed by 1

// Check how far away the next car is
distance_to_next_car <- Calculate distance to the next 

car

// If the car is too close to the next one, slow down
If car's speed is more than or equal to 

distance_to_next_car then
Reduce car's speed to be one less than 

distance_to_next_car

// Sometimes, the car randomly slows down a little
If random chance < deceleration_probability then

Decrease car's speed by 1

// Move the car forward based on its current speed
Update car's position by adding its speed

// The simulation shows where all cars are after the time steps

Function Calculate distance to the next car(car)
// Returns the distance from one car to another car ahead
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reduce unnecessary node visits during this process. Figure 3 
illustrates the path-finding flowchart of the A* algorithm 
[17]

Also, Fig. 4 shows the pseudocode of A* algorithm.

Implementation to GIS

To apply the methodology described above and develop 
simulations, GIS data are essential. This is an inevitable 
component for both evacuation and emergency staff 
assembly. The presence of roads is a fundamental premise 
that enables people to evacuate or respond to emergency 
staff assemblies.

The foundational data for modeling were obtained 
from the GIS data provided by the Ministry of Land, 
Infrastructure, and Transport [18]. GIS data are comprised 

of graphic data and attribute data, which are linked to 
represent geographic information. For vector-type GIS 
data, discrete geographical features such as roads and 

Fig. 3   Flowchart (A*algorithm) 
[17]

Algorithm A_Star(start, goal)
OPEN <- {start}
CLOSED <- {}

while OPEN is not empty do
current <- node in OPEN with the lowest f_cost
if current is goal then

return ReconstructPath(current)

move current from OPEN to CLOSED

for each neighbor of current do
if neighbor not in CLOSED and new path is better 

then
record new path to neighbor
add neighbor to OPEN if not already in

return failure

Fig. 4   Pseudocode (A* algorithm)
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buildings are expressed in graphic data as points, lines, 
and polygons, and attribute data consisting of x, y 
coordinates and other characteristic values are assigned 
to each graphic element.

In this study, we acquired and modified GIS Data. 
We aimed to apply the previously described traffic 
model (Cellular Automata) and path-finding model (A* 
algorithm). Specific application examples are as follows. 
First, to apply the traffic model, the lanes of the roads 
were newly defined according to the type of road (roads, 
highways, and alleys). Furthermore, by editing the GIS 
Data, roads were divided into desired unit cells to enable 
the reflection of a more accurate traffic model. Next, to 
apply the path-finding model, a maximum speed was newly 
defined as an attribute data for each type of road. The A* 
algorithm assigns a weight factor to each node, and in 
this study, each unit cell is defined as a node, with the 
maximum speed represented as the weight factor ( g(x) ). 
The heuristic value ( h(x) ) is defined as the straight-line 
distance between the starting point and the destination. 
Table 1 presents the attribute data composed of newly 
defined content combined with existing GIS data.

Tuning Using Real‑World Information (Reference 
Model)

In this chapter, we aim to explain a technique to 
the modified model, PRISM-EC. To emphasize the 
distinctions from the platform PRISM, developed for basic 
evacuation simulations, it has been named PRISM-EC. In 
this paper, we named it "Reference model," which is tuned 
using real-world information. As the name suggests, the 
goal is to create a model that can serve as a reference 
when conducting evacuations or making emergency staff 
assemblies, thereby enhancing accuracy in terms of the 
duration of time (i.e., emergency staff assembly time). The 
method to increase accuracy involves verifying the actual 
traffic volume using commercial GPS and then applying 
these data to the modified model. The explanation will 
proceed in the order of describing how commercial 
GPS data are applied first, followed by how this was 
implemented in the developed modified model.

Traffic Tuning

The reference model can be defined as a condition 
reflecting the usual road situations. This study considers 
the emergency staff assembly during a white alert. During 
a white alert, residents continue their daily activities as 
usual. Therefore, to develop a traffic model in PRISM-EC, 
it is necessary to calibrate for traffic volume and speed that 
mimic normal, everyday conditions. First, using the traffic 
model (CA model) and path-finding model (A* algorithm) 
described earlier, the modified model calculates the time 
between an arbitrary starting point and destination. Let 
us assume that this value is denoted as tsim . Next, the time 
between the same starting and destination points is derived 
using commercial GPS (e.g., Kakao maps [19] Google 
maps [20]). This value is assumed to be tref .

Consequently, there will be a difference between values 
tsim and tref  . This discrepancy arises mainly for two reasons: 
first, because simulations and reality differ, and second, 
because it is challenging to reflect traffic volume and jam 
in simulations. To address this, adjustments were made by 
arbitrarily modifying the number of vehicles on the road 
and the maximum speed of the road in the simulation. The 
content explained so far can be represented by Eqs. 2, 3

In the equation, N  represents the number of vehicles 
on a typical road within the Netlogo program, and Vmax 
signifies the maximum speed of vehicles within the 
program. Therefore, the equation can be interpreted 
as finding the values of N  and Vmax that minimize the 
difference between tsim and tref .

However, we encountered difficulties in finding the 
appropriate value for tref  . To obtain this value, we utilized 
web crawling techniques [21]. In this paper, we developed 
a Python program. When executed, the program activates 
commercial GPS at designated times and retrieves the 
vehicle travel time between arbitrarily chosen starting 
and destination points as the output. This output can be 
directly obtained in a csv file. In this study, we extract 
time values daily at 08:00, 14:00, 18:00, and 03:00, which 
are important points in the daily schedule. As explained 
later in Chapter 2–3. B, we will combine them with yearly 
weather information. This combination involves the 
calibration of road data, which is crucial for estimating 
assembly time. Using these data, we calibrated the models 
between tref  and tsim by minimizing the difference between 
the two values, as explained in Eq. 2.

(2)N
∗
,V

∗

max
= argmin

N,V_max

|
|tsim − tref

|
|

(3)tsim = Traffic model
(

A∗, N,Vmax

)

.

Table 1   Modified GIS Data

Road type Distance [m] Number of 
lanes

Maximum 
speed

Road 10 2 60
Highway 50 6 100
Alley 3 1 40
⋮ ⋮ ⋮ ⋮
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Figure 5 displays the data for origin–destination points 
obtained through web crawling, along with the compiled 
times. Figure 6 illustrates algorithm which was developed 
by python programming. The initial step involves interfac-
ing with a commercial GPS system to set the destination 
and determine the arrival position. Once the connection is 
established, the program concurrently extracts two pivotal 
datasets: optimal travel time data, reflecting real-time traf-
fic conditions, and the current time as registered within the 
Python code environment. A critical user-defined parameter, 
the target time, is then set, which represents the temporal 
boundary for the program's operation. With the parameters 
in place, the program commences outputting optimal time 
data at consistent hourly intervals.

Weather Tuning

As other factors to improve accuracy of PRISM-EC, we 
tuned algorithms using real-world weather conditions, 
observing how results can vary even on the same day, 
depending on the weather. For example, on a snowy day 
in January, the travel time obtained from commercial GPS 
is expected to increase compared to other days. This is a 
well-known fact. By applying this understanding, we can 
derive more accurate simulation results under a variety of 
conditions.

Over approximately 8 months, the travel times between 
arbitrary starting points and destinations were obtained 
using the values outputted to a spread sheet. Furthermore, 
by entering the most representative place names near the 
arbitrary starting points and destinations into the Korea 
Meteorological Administration [22], the hourly weather for 
the day can be acquired. Then, the corresponding weather 
is recorded in the spread sheet, matched to the times we 
have designated. Figure 7 shows a Korean weather site from 
which one can obtain hourly weather information provided 
by the Korea Meteorological Administration.

Thus, this study compares travel times at different times 
of the same day to approximate the actual values of N and 
Vmax . Table 2 shows an example of a complete reference 
model using the data we have.

Fig. 5   Start-finish point (right) 
and results (left)

Fig. 6   Web crawling program algorithm (Python)
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By utilizing these data to adjust N and Vmax according to 
the seasons and times of day, and using Eq. 2 defined in the 
previous chapter, we could minimize the difference between 
the tref  and tsim values (Eq. 3). This model implements two 
tuning strategies that incorporate real-world information on 
weather and traffic. This method may increase accuracy to 
levels more closely resembling actual situations.

Results and Discussion

Finally, PRISM-EC with an implemented reference model 
was developed. The completed PRISM-EC can be repre-
sented as shown in Fig. 8. A simulation video concerning 
the reference case has been published at “https://​youtu.​be/​
VlszS​EQW9Sg”.

Fig. 7   Korea Meteorological 
Administration website

Table 2   Example of complete 
reference model

Seasons ( i)/time ( j ) and weather ( k) Spring (i = 1) Summer 
(i = 2)

Autumn (i = 3) Winter (i = 4)

 < Type > 
Clear (k = 1)
Snow (k = 2)
Rain (k = 3)

Morning (08:00)
(j = 1)

N∗
111

,V111
∗

max

N∗
112

,V112
∗

max

N∗
113

,V113
∗

max

⋯ ⋯ N∗
411

,V411
∗

max

N∗
412

,V412
∗

max

N∗
413

,V413
∗

max

Daytime (14:00)
(j = 2)

⋮ ⋱ ⋯ ⋯

Evening
(18:00)
(j = 3)

⋮ ⋯ N∗
ijk
,Vijk

∗

max
⋯

Night (20:00)
(j = 4)

N∗
141

,V141
∗

max

N∗
142

,V142
∗

max

N∗
143

,V143
∗

max

⋯ ⋯ N∗
441

,V441
∗

max

N∗
442

,V442
∗

max

N∗
443

,V443
∗

max

https://youtu.be/VlszSEQW9Sg
https://youtu.be/VlszSEQW9Sg
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Simulation Environment

The interface has been enhanced with the following fea-
tures: a real-time measuring timer, the number of general 
population ( N  ), the number of emergency staff assembly 
agents, and the number of repetitions as input values. Addi-
tionally, the right graph and the On/Off function are output 
values, representing the average speed of the emergency staff 
assembly agent and the extent to which the influence factor 
is reflected. This study aimed to apply all the variables con-
sidered in the previous chapter. Two scenarios are presented 
as examples to investigate the distribution of emergency staff 
assembly time.

First, the distribution of emergency staff assembly time 
under the most basic reference case (spring, clear, daytime) 
currently applied in PRISM-EC is simulated. Second, the 
distribution of emergency staff assembly time during natu-
ral disaster involving both an earthquake and heavy snow 
is examined. The number of simulations was set to 50 for 
each scenario.

Reference Case

The first result is as follows: The distribution of emergency 
staff assembly time under the reference case (Clear, Day-
time, and Spring in the Reference model) can be repre-
sented in Fig. 9. In this paper, the reference case is defined 
in relation to specific weather conditions (Clear, Daytime, 
and Spring). We collected raw data using a Python script 

to perform web crawling, capturing the required time every 
day during about 1 year.

The number of simulation iterations is 50. The 
simulation data were fitted to a log-normal distribution 
to refine the data. The data were fitted to a log-normal 
distribution with parameters � = 2.257, � = 0.044 , which 
provided the average and standard deviation of the 
distribution. The probability density function of the fitted 
log-normal distribution is given by Eq. 4

The average emergency staff assembly time is 9.281 
min, with a standard deviation of 0.359 min. The standard 
deviation arises due to slight variations in path-finding 
with each trial. To verify this result, we used raw data 
obtained from web crawling. The data were fitted to a log-
normal distribution with parameters � = 2.071, � = 0.100 , 
which provided the average and standard deviation of the 
distribution. The probability density function of the fitted 
log-normal distribution is given by Eq. 5

The average time was 8.114 min, with a standard 
deviation of 0.790 min. As illustrated in Fig.  9, the 
simulation data are left-skewed. This skewness may result 

(4)f (x;2.257, 0.044) =
1

0.0044
√

2𝜋x
e
−

(lnx−2.257)2

0.003872 for x > 0.

(5)f (x;2.071, 0.100) =
1

0.1
√

2𝜋x
e
−

(lnx−2.071)2

0.02 for x > 0.

Fig. 8   Example of PRISM-EC 
(Simulation start)
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from insufficient simulation data or minor errors during 
the tuning of PRISM-EC. Despite this, the shape of the 
log-normal distribution remains similar, which supports 
the verification of PRISM-EC. Consequently, although 
there are differences between the current reference case 
and the raw data, they exhibit a similar shape when plotted 
as a log-normal distribution. This similarity indicates that 
the reference case values are comparable to the raw data.

Case Study 1: Earthquake

The second result is as follows: The distribution of emer-
gency staff assembly time during a complex disaster, namely 
an earthquake and a radiation emergency, is represented in 
Fig. 10. Initially, to simulate the impact of the earthquake, two 
roads were removed before starting the simulation.

The reasons for selecting two roads are as follows. 
First, these roads are most frequently used by emergency 
staff assembly agents when searching for routes using a 

Fig. 9   Emergency staff assem-
bly time distribution (basic 
reference model)

Fig. 10   Remove 2 roads (Blue, 
Green line: detour route)
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path-finding model. Removing these would mean losing 
the shortest possible routes, clearly leading to detours. Sec-
ond, since detours consist of general roads and alleyways, 
it is anticipated that vehicles will experience deceleration 
or stopping due to the traffic model. For these reasons, the 
decision was made to remove two roads.

Moreover, when more than five roads were removed, 
there were instances where the path-finding model did not 
apply correctly, resulting in the inability to find a path. 
The average emergency staff assembly time required was 
27.74 min, with a standard deviation of 1.902 min through 
50 simulation iterations. This increase can be attributed to 
the rerouting of many vehicles due to the roads that were cut 
during the simulation.

The simulation data (Fig. 11) was fitted to a log-normal 
distribution to refine the data. The data were fitted to a log-
normal distribution with parameters � = 3.445, � = 0.059 , 
which provided the average and standard deviation of the 
distribution. The probability density function of the fitted 
log-normal distribution is given by Eq. 6

To verify this result, we additionally collected data 
using the detour function in commercial GPS, where cars 
used alternative routes to reach the nuclear power plant if 
roads were closed. Figures 12 and 13 show the assembly 
times obtained from a commercial GPS. On the left, the 
times are shown for the normal case where the roads are 
not closed, while on the right, the times for the case where 

(6)f (x;3.445, 0.059) =
1

0.059x
e
−

(lnx−3.445)2

0.00696 for x > 0.

the roads are closed and detours are taken are displayed. 
For Fig. 12, it took approximately 27 min in case of the 
road blocked. While for Fig. 13, it took around 15 min. 
Since our developed PRISM-EC predicts the time when all 
emergency personnel have arrived, the assembly time due 
to detours can be defined as 27 min, which serves as the 
raw data. Unlike the raw data used in the reference case, 
the data collected here are less extensive. To compare the 
actual data with the simulation results, we calculated the 
relative error, which was found to be 2.741%. Assuming 
that this difference is negligible, this value suggests that 
the simulation data from PRISM-EC are similar to the 
actual raw data. Furthermore, it was observed that the val-
ues increased by approximately 2.5 times when compared 
to the simulation results from the reference case (Chap-
ter 3–2). This is similar to the time increment shown in 
Figs. 12 and 13

In Case Study 1, assuming the occurrence of an 
earthquake, we simulated this scenario by arbitrarily 
blocking two roads within PRISM-EC. This represents a 
limitation of the current implementation, as it does not 
fully capture the complexity of a real earthquake event. 
In reality, an actual earthquake would likely involve 
numerous additional factors and challenges. Therefore, 
further modeling and enhancements would be required 
to more accurately reflect the multifaceted nature of 
earthquake impacts and emergency response scenarios.

(7)Relative error =
|(Simulation data) − (Raw data)|

(Raw data)
.

Fig. 11   Emergency staff assem-
bly time distribution (earth-
quake + radiological accident)
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Case Study 2: Heavy Snow

The emergency staff assembly response time data in the 
histogram (Fig. 14), which deals with a scenario of heavy 
snowfall combined with a radiological accident, provides 
critical insights into the response efficiency under these 
extreme conditions. During this event, heavy snow refers to a 
situation where snow causes significant difficulties in vehicle 
movement, resulting in severe speed reductions and traffic 
congestion. A deeper analysis of the dataset reveals that the 
average emergency staff assembly time was approximately 

1.289 h, with a significant standard deviation of 1.260 h. 
This substantial spread in the data underscores the unpre-
dictability and severity of the conditions affecting response 
times. The contributing factors to the increased emergency 
staff assembly times and standard deviation can be ascribed 
to several interlinked issues. Predominantly, the heavy snow 
led to impassable roads in many areas, creating prolonged 
situations where vehicular movement was not just impeded 
but completely halted. This standstill is depicted in the fre-
quency of emergency staff assemblies except in the 0.3–0.7 h 
range.

Fig. 12   Detour route 1 (13 min 
→ 27 min)

Fig. 13   Detour route 2 (7 min 
→ 15 min)
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In this case, the number of simulation’s iteration was 25. 
The simulation data were fitted to a log-normal distribution 
to refine the data. The data were fitted to a log-normal 
distribution with parameters � = −0.129, � = 0.815 , 
which provided the average and standard deviation of the 
distribution. The probability density function of the fitted 
log-normal distribution is given by Eq. 8

In case of heavy snow, observational data corroborated a 
drastic reduction in average vehicle speed, which plummeted 
to 20–30% of the speeds noted in standard conditions 
reflected in the reference model. This deceleration was not 
a linear decrease across all areas but varied significantly, 
as the traffic model indicates a bottleneck effect. In several 
instances, the traffic flow was disrupted, leading to a cascade 
of delays that amplified the time required for emergency 
responders to reach their maximum permissible speeds. The 
slowdown in vehicle movement was further exacerbated by 
the accumulated snow on the roadways. The histogram also 
reveals several outliers, where emergency staff assembly 
times extended beyond 3 h. Overall, the analysis of these 
data not only illustrates the direct effects of compounded 
emergency scenarios on response times but also highlights 
the complex interplay between environmental conditions and 
infrastructure limitations.

In the reference case (Chapter 3–2) and Case Study 1 
(Chapter 3–3), verification was conducted by collecting 
raw data through commercial GPS and comparing these 
data. However, Case Study 2 will employ a different 
verification approach for two primary reasons. First, 
the raw data collected, as used in Chapter  3–2, were 

(8)f (x; − 0.129, 0.815) =
1

0.815
√

2𝜋x
e
−

(lnx+0.129)2

1.328225 for x > 0.

insufficient to accurately represent the conditions of a 
heavy snowfall scenario. Second, experiencing actual 
heavy snowfall events is inherently challenging, making 
it difficult to gather relevant data. Therefore, we aim to 
proceed with verification using a new method to better 
address these limitations and accurately model the impact 
of heavy snowfall.

To verify this result, we compared the assembly time 
for case study 2 with NUREG/CR-7002 [5]. This report 
includes a table that describes how road conditions change 
according to weather conditions. Table 3 shows roadway 
capacity and speed under these conditions.

In this table, the weather condition corresponds to 
heavy snow. We assumed an increasing rate by multiplying 
roadway capacity by speed, because the reference model 
does not have independent measurements for these factors. 
That is why, we define a new value called the increasing 
rate. Equation 9 defines and calculates the increasing rate 
based on Table 3

Also, the increasing rate can be directly calculated using 
the reference model, since PRISM-EC is able to provide 

(9)Increasing rate =
theavy snow

treference
=

0.75 ∗ 0.85

1.0 ∗ 1.0
= 0.63.

Fig. 14   Emergency staff assem-
bly time distribution (heavy 
snow + radiological accident)

Table 3   Road state change due to weather condition

Weather condition Roadway capacity Speed

Normal 100% 100%
Rain/light snow 90% 90%
Heavy snow 75% 85%
Fog 90% 85%
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the assembly time through simulations. Equation 10 shows 
the increasing rate based on the simulation results

The simulation results demonstrate an increasing rate of 
0.7. Furthermore, the relative error between the reported 
data and the simulation results is approximately within 10%. 
This value indicates that our simulation results are closely 
aligned with the reported values. This finding signifies 
an acceptable range, validating the effectiveness of the 
simulation process.

Conclusions

In this study, we aimed to obtain the distribution of 
emergency staff assembly times for agents during a white 
emergency, a type of radiation emergency. We investigated 
the types of emergency organizations involved in a radiation 
emergency and the factors that could affect their emergency 
staff assembly times. Additionally, we sought to randomly 
generate these factors.

Utilizing an agent-based model, we modified the 
PRISM, to develop an emergency staff assembly 
simulation (PRISM-EC). To modify the program, we 
laid the groundwork through a basic preparation process 
while applying traffic and path-finding models. We also 
developed a reference model. Using commercial GPS data 
and Korea Meteorological Administration data, we aimed to 
significantly improve the objectivity and reliability, which 
are considered the biggest weaknesses of the current agent-
based model. We ran two simple example models using the 
developed simulation to derive distributions. The results 
indicated that it was possible to assemble emergency staff 
within a 3 h timeframe, although no dramatic results were 
obtained.

Looking ahead, we wish to introduce future topics of 
interest. By incorporating these results into the reference 
case, we believe that the program can be effectively used to 
verify the distribution of emergency staff assembly times in 
extreme situations where actual drills are difficult. Addition-
ally, we plan to include more diverse factors affecting the 
emergency staff assembly times of agents to create a more 
realistic model. Moreover, we aim to further develop this 
simulation to explore ways to enhance safety in response to 
multi-unit nuclear power plant accidents. Finally, completing 
the currently incomplete reference case is the ultimate goal 
of this research.

Currently, the verification process for our software 
(PRISM-EC) has only been conducted on a single aspect. 
However, we aim to demonstrate that it is capable of 

(10)
theavy snow

treference
=

28min

40min
= 0.70.

continuous updates by incorporating real data. In future 
work, we plan to compare the figures presented in 
NUREG-CR7002 with actual data to develop an extensible 
software capable of producing reliable results under all 
conditions.
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