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Abstract
The increasing global demand for eco-friendly products is driving innovation in sustainable chemical synthesis, particularly 
the development of biodegradable substances. Herein, a novel method utilizing artificial intelligence (AI) to predict the 
biodegradability of organic compounds is presented, overcoming the limitations of traditional prediction methods that rely 
on laborious and costly density functional theory (DFT) calculations. We propose leveraging readily available molecular 
formulas and structures represented by simplified molecular-input line-entry system (SMILES) notation and molecular 
images to develop an effective AI-based prediction model using state-of-the-art machine learning techniques, including 
deep convolutional neural networks (CNN) and long-short term memory (LSTM) learning algorithms, capable of extracting 
meaningful molecular features and spatiotemporal relationships. The model is further enhanced with reinforcement 
learning (RL) to better predict and discover new biodegradable materials by rewarding the system for identifying unique 
and biodegradable compounds. The combined CNN-LSTM model achieved an 87.2% prediction accuracy, outperforming 
CNN- (75.4%) and LSTM-only (79.3%) models. The RL-assisted generator model produced approximately 60% valid 
SMILES structures, with over 80% being unique to the training dataset, demonstrating the model’s capability to generate 
novel compounds with potential for practical application in sustainable chemistry. The model was extended to develop novel 
electrolytes with desired molecular weight distribution.
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Introduction

Throughout scientific development, humanity has produced 
an abundance of organic compounds, many of which are 
utilized once and then discarded. The yearly production of 
plastic has reached an astonishing 450 million tons, with 340 
million tons being generated as waste [1]. Regrettably, these 
organic compounds exhibit remarkable resistance to natural 
decomposition, leading to their persistence in the environ-
ment and posing significant threats to human well-being and 
ecosystems [2]. Consequently, assessing the biodegradability 

of organic compounds has been increasingly regarded as 
crucial in recent times. Following the European Registration, 
Evaluation, Authorization, and Restriction of Chemicals 
(REACH) regulation, companies engaged in the manufac-
turing or importing of chemicals exceeding 1 ton per year 
are mandated to provide detailed information regarding the 
biodegradability of their compounds [3]. To evaluate bio-
degradability, standardized test methods published by pres-
tigious organizations such as the Organization for Economic 
Co-operation and Development (OECD) [4] and Japan’s 
Ministry of International Trade and Industry (MITI) [5] are 
primarily employed. In addition to assessing the biodegrada-
bility of existing compounds, the significance of discovering 
novel biodegradable organic compounds is also growing. 
However, searching for potential candidates within the entire 
compound space is nearly impossible due to its vast scale, 
estimated to range from  1023 to  1060. Predicting new mol-
ecules through calculations, synthesizing them, and testing 
their physical properties is time-consuming. As a result, only 
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approximately  108 compounds have been synthesized thus 
far [6].

Utilizing generative models for discovering new 
molecules alleviates these challenges. Unlike conventional 
methods, generative models operate through inverse 
modeling. This means that new molecules are generated 
based on desired properties, offering a more efficient 
approach to exploration. Different methods have been 
devised to enable the incorporation of complex molecular 
structures into neural networks. One prevalent approach 
is using a Simplified Molecular Input Line Entry System 
(SMILES) [7], which converts molecules into a one-
dimensional text array following a specific set of rules. 
Due to its effectiveness, SMILES is widely employed in 
many molecular generation models. Recently, the use of 
generative models for chemical substance discovery has 
been actively researched [8]. Early generative models were 
developed by combining recurrent neural networks (RNNs) 
and reinforcement learning [9]. However, to overcome the 
limitations of these models, various types of generative 
models have been developed. Chiu et al. [10] proposed a 
method for predicting the hydrolysis rate by utilizing not 
only the SMILES representation but also the partial charge 
of the molecule as inputs to the autoencoder. Wang et al. [11] 
addressed the challenge of balancing desirable properties 
and novelty in molecular design. They developed a model 
that interprets the ligand-receptor structure by taking the 
molecular 3D structure as an input. Arús-Pous et al. [12] 
divided the existing dataset into subsets with desired 
molecular scaffolds to devise a strategy to create molecules 
with specific characteristics without using reinforcement 
learning. Cao et al. [13] conducted research on avoiding the 
computationally expensive likelihood-matching process. 
They used generative adversarial networks (GANs) with 
graphs as inputs. Tang et al. [14] employed a Support Vector 
Machine (SVM) classifier to enhance the prediction accuracy 
and overcome the limitations of linear regression when 
predicting the biodegradability of large molecules. Dollar 
et al. [15] attempted to introduce the attention mechanism, 
commonly used in translation tasks, into variational 
autoencoders (VAE) for de novo molecular design. While 
several studies have been conducted in this area, there is a 
notable lack of research on generative models for discovering 
biodegradable organic compounds. The main challenge lies 
in training a model due to the severe insufficiency of the 
biodegradability database. In contrast to the readily available 
abundance of information, such as LogP, which can be 
easily accessed through methods like RDkit, the resources 
for biodegradability data remain scarce. As a response to 
this issue, a study was carried out by Lunghini et al. [16] 
to construct a substantial database by integrating various 
biodegradability data. Additionally, given the complex 
mechanisms determining the biodegradation rate, numerous 

models employing the Quantitative Structure–Activity 
Relationship (QSAR) method are being explored to classify 
compounds into biodegradable and non-biodegradable 
substances [17, 18].However, these models are imperfect, 
mainly due to their limited applicability scope.

Furthermore, like the previous examples, much research 
has focused on enhancing prediction performance by altering 
the generative model. However, a limited body of research is 
dedicated to improving the prediction model. Particularly in 
the case of biodegradability, accessing sufficient databases 
for training remains challenging, and a well-defined 
mathematical and quantitative method for determining the 
biodegradability of newly synthesized molecules has yet to 
be established. Given these constraints, a viable approach 
for biodegradability prediction involves enabling the neural 
network to learn molecular features.

Recent progress in deep learning have led to advanced 
approaches that effectively combine long short-term 
memory (LSTM) networks and convolutional neural 
networks (CNNs) networks to enhance the analysis of 
spatiotemporal data. For instance, Barros et al. developed a 
hybrid CNN-LSTM model specifically for the classification 
of lung ultrasound videos in COVID-19 diagnosis, 
leveraging CNNs for extracting spatial features and LSTMs 
for capturing temporal dependencies, demonstrating high 
efficiency in handling the spatiotemporal dynamics akin to 
those found in chemical compound analysis via SMILES 
representations and molecular images [19]. Similarly, Dang 
et  al. [20] explored the potential of a hybrid 1D-CNN-
LSTM architecture in structural health monitoring. Their 
research underscores the model’s capability to integrate 
local and temporal feature extraction, making it particularly 
relevant for applications such as biodegradability prediction 
where both structural integrity and sequential reactions are 
pivotal. Parallel to the discussion on hybrid models, the 
debate between the utility of LSTM and Transformer models 
continues, especially in fields requiring the processing 
of sequential data. In the context of electronic trading, 
Bilokon and Qiu compared these models, finding that while 
Transformers excel in certain types of sequence prediction, 
LSTMs offer superior performance in more complex 
scenarios such as predicting price movements, highlighting 
their robustness and applicability in financial markets [21]. 
Further extending the capabilities of LSTMs, Tatsunami 
and Taki introduced the Sequencer, a novel LSTM-based 
architecture for image classification that competes against 
the typically dominant Vision Transformers. Their results 
illustrate the LSTM’s capability to effectively model long-
range dependencies, thereby affirming its competitiveness 
in tasks traditionally reserved for Transformers [22]. 
Additionally, Zeyer et al. provided a comparative analysis 
of Transformer and LSTM models in automatic speech 
recognition, emphasizing that despite Transformers' faster 
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training and stability, they are prone to overfitting. This 
comparison stresses the necessity to tailor the choice of 
model to specific data characteristics and task requirements 
to optimize performance and ensure generalization [23].

Therefore, in this study, we introduce an integrated 
methodology that significantly advances the field of 
biodegradability prediction and material discovery. 
This innovative approach combines deep learning 
techniques, generative models, and reinforcement 
learning to address the complex task of efficiently 
identifying novel biodegradable organic compounds. 
Our research establishes a robust data preparation 
pipeline, utilizing SMILES notations for versatile 
compound representation and employing data 
augmentation techniques to enhance dataset diversity. 
The proposed prediction model adopts a hybrid 
architecture, leveraging LSTM networks and CNNs, 
effectively handling sequential data and spatial 
patterns to provide highly accurate biodegradability 
predictions. By adopting a stack-augmented RNN for 
molecular trajectory generation within a reinforcement 
learning framework, our generator model empowers 
the exploration of intricate chemical spaces, 
facilitating the discovery of environmentally friendly 
materials. Furthermore, our research incorporates 
a reward mechanism that quantifies the value of 
molecular structures based on biodegradability, 
thus ensuring the alignment of the learning process 
with environmentally conscious objectives. We also 
employ a systematic grid search for hyperparameter 
optimization, guaranteeing that model configurations 
are finely tuned for optimal predictive accuracy. 
Here, the LSTM and CNN models discussed in 
“Methodology” were initially optimized as standalone 
models using the grid search method described in 
“Hyperparameter Optimization” albeit with different 
parameter spaces. These model results were then used 
to validate the hybrid model in Fig. 4.

The rest of the study is structured as follows. 
“Methodology” describes the algorithms and procedures 
implemented in this work. “Results and Discussion” presents 
the simulation results, comparative analysis, and discussion 
of findings. The study is concluded in “Conclusion”, 
wherein an overview of the contributions of this study and 
its applications are presented.

Methodology

This section comprehensively describes the solution 
strategies and algorithms adopted in executing the study. The 
data processing methods, prediction models, optimization 
steps, and generator models are discussed.

Data Preparation and Processing

The rapid advancement of computing has opened new ave-
nues for predicting and exploring the biodegradability of 
organic compounds. Existing methods often require labori-
ous and computationally expensive DFT calculations, hin-
dering their scalability and efficiency. This research aims 
to develop an AI-driven model that leverages molecular 
formulas and structures for efficient biodegradability pre-
diction. To represent a large number of compounds, we 
employ simple and independent nomenclatures (SMILES) 
that are easy for computers to understand. These nomencla-
tures allow us to effectively encode and process the chemical 
structures of compounds in the AI models. The SMILES 
notation allows flexibility in representing molecules by spec-
ifying the connectivity of atoms through their bonds. Dif-
ferent starting atoms or bond connectivity result in distinct 
SMILES strings, enabling multiple valid representations 
for the same compound. The SMILES compounds are also 
converted into structural images for subsequent training. An 
example of compounds, their respective SMILES notations, 
and structural images is depicted in Fig. 1. A diverse dataset 
of 1055 organic compounds with known readily biodegrad-
able (RB) materials (355 species) and non-readily biode-
gradable materials (700 species) are obtained from Kamel 
et al. [24]. A detailed description of the data is therefore 
available as referenced. The dataset was shuffled to ensure a 
random distribution, and subsequently divided into specific 
segments for training and validation. The SMILES strings 
were converted into canonical forms, ensuring a standard-
ized representation of each chemical compound. Addition-
ally, random permutations of atomic indices were generated 
to augment the dataset, providing diverse representations 
of the same chemical structures. A tokenization procedure 
was applied to the SMILES strings to separate them into 
individual atomic symbols and other special characters. The 
set of unique tokens obtained was mapped to corresponding 
indices, creating a consistent format for subsequent training. 
The length of the tokenized SMILES strings in the dataset 
was evaluated, and the maximum length was determined, 
allowing for the consistent handling of SMILES strings of 
varying lengths. The dataset was further processed to gener-
ate input–output pairs suitable for training LSTM networks, 
involving randomizing the SMILES strings and convert-
ing them into a tensor format. A conversion process was 
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implemented to transform characters or strings into corre-
sponding tensor formats. This facilitated the handling of data 
within the deep learning framework.

Training the model with different SMILES 
representations and images of the same compound at 
each iteration can enhance the model’s generalizability 
as the dataset increases. This approach allows the model 
to learn diverse representations of the same compound, 
capturing various aspects of its chemical structure and 
visual characteristics. The training process benefits from 
the increased variability in the data, enabling the model 
to better generalize and make accurate predictions on 
unseen compounds. This technique promotes robustness 
and adaptability in the model's learning process, ultimately 
improving its performance in biodegradability prediction 
and material discovery.

Prediction Model Building

In this study, a hybrid approach leveraging two distinct deep 
learning architectures, namely LSTM networks and CNN, 
was developed to tackle the predictive task encompassing the 
analysis of chemical structures. LSTM networks are efficient 
at processing time series and textual data, which are essential 
in extracting features in organic compounds. They excel in 
recognizing long-term dependencies and patterns within 
sequential data, such as chemical structures and physical 
properties, which are crucial for predicting biodegradability. 
LSTM’s ability to retain and utilize historical information 
allows for accurate biodegradability predictions by learning 
from molecular descriptors and their effects over time. CNNs 
are effective in biodegradability prediction by extracting 
features from image data of chemical structures. Training 

on these structures and their biodegradability labels, CNNs 
identify local patterns and spatial relationships key to 
assessing biodegradation potential. Convolutional layers 
use filters to capture significant features at different scales, 
enabling CNNs to forecast the biodegradability of previously 
unseen compounds with enhanced precision.

The combined architecture synthesizes the inherent 
strengths of both LSTM and CNN models, facilitating the 
interpretation of complex patterns within data represented 
through both sequences and images. The LSTM component, 
constructed as a two-layer model accepting inputs of 
dimension 165 (representing the maximum length of token 
sequences that reflect the SMILES strings in the dataset), 
was employed for its ability to handle sequential data, 
reflecting the sequential nature of chemical information in 
SMILES strings. An embedding layer was incorporated with 
an optimized output dimension of 12, effectively reducing 
dimensionality and capturing semantic relationships, 
represented by:

where x represents the input, We represents the embedding 
matrix, and be represents the bias.

The LSTM layer, consisting of 256 units, provides 
the network's memory function, capturing long-term 
dependencies and patterns over time, making it highly 
relevant for analyzing the chemical structure of organic 
compounds and their biodegradability. The layer can be 
mathematically represented as [25–27]:

(1)e(x) = We ⋅ x + be,

Fig. 1  a Representation of SMILES Tokenization, b different SMILES representations of 3-Ethylpheonl, c samples of compounds used during 
the model training, and d distribution of materials in the dataset
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where ft, it, and ot are the forget, input, and output gates, 
ct is the cell state, ht is the hidden state, σ is the sigmoid 
activation function, and ⊙ represents elementwise 
multiplication.

Subsequent layers included a dropout layer with a rate of 
0.3, to prevent overfitting, and a dense layer with 35 units 
employing a hyperbolic tangent activation function and He 
normal initialization, enhancing the network's ability to 
capture non-linear relationships, all of which were obtained 
by grid search optimization as described in the subsequent 
section. The output layer is defined as:

where y is the output vector or tensor, Wd is the weight 
matrix connecting the previous layer’s outputs h to the 
current layer's inputs, h is the input vector or tensor from 
the previous layer, and bd is the bias vector added to the 
weighted sum before applying the activation function.

Conversely, the CNN model was adopted for its 
effectiveness in analyzing spatial patterns within images, 
pertinent to the 300 × 300 images with three channels used 
in this study. The model initiated with a Conv2D layer 
composed of 6 filters of size 3 × 3 and strides of 4 × 4, 
represented as:

where Yij is the output feature map at position (i,j), Xi+m,j+n 
are input values at relative positions, Kmn are convolutional 
filter weights, and b is the bias term.

Followed by batch normalization and ReLU activation to 
accelerate training and introduce non-linearity:

Subsequent max-pooling layers reduced dimensionality 
and emphasized salient features, while the sequence 
concluded with a flattening step, a dropout layer with a rate 
of 0.3, and a dense layer of 50 neurons with ReLU activation 
[28, 29] and He normal initialization, further contributing to 
robust feature extraction. These hyperparameters were also 
obtained via the grid search optimization.

(2)

ft = �(Wf ⋅
[

ht−1, xt
]

+ bf )
it = �(Wi ⋅

[

ht−1, xt
]

+ bi)
ot = �(Wo ⋅

[

ht−1, xt
]

+ bo)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wc ⋅

[

ht−1, xt
]

+ bc)
ht = ot ⊙ tanh

(

ct
)

,

(3)y = tanh(Wd ⋅ h + bd),

(4)Yij =
∑

m,n

Xi+m,j+n ⋅ Kmn + b,

(5)
Ynormalized =

Y − �
√

�2 + �

YReLU = max(0, Ynormalized).

The outputs from the LSTM and CNN models were 
concatenated, capitalizing on their synergistic strengths, 
followed by two dense layers with 40 and 2 units, 
respectively. The latter employed a SoftMax activation 
function [30], enabling probabilistic interpretation of the 
model's predictions:

The combined model was compiled with the Adam 
optimizer [31–33] at a learning rate of 0.0001 and 
categorical cross-entropy loss function [34, 35], optimizing 
for multi-class classification performance:

where yi denotes the true label, ŷi denotes the predicted label 
for each sample in the batch of size N.

Model parameters were saved and loaded from the 
disk, enhancing reproducibility, and allowing for further 
utility. For training, an iterative tokenization procedure 
was applied to the training and validation datasets across 
a sequence of times, aligning with the sequential nature 
of the data. The combined model was fit for 2000 epochs 
with a batch size of 10, balancing the trade-off between 
computational efficiency and convergence stability. 
Following training, the model underwent evaluation on 
a test dataset, and various functionalities were deployed, 
including saving, loading best models, and executing 
predictions with the optimally performing model. 
Additionally, a series of utility functions were employed 
to perform crucial tasks such as validation of SMILES 
strings, generation, and canonical conversion of specific 
SMILES strings, pairwise similarity computation, 
prediction using generated SMILES strings, simple moving 
average calculation, reward calculation, and similarity and 
canonical checks on generated strings. These functions 
not only enriched the model’s interpretive capability 
but also facilitated a more nuanced assessment and 
interpretation of predictions concerning biodegradable and 
non-biodegradable chemical structures. Collectively, the 
integrated methodology provided a robust framework for 
predictive analysis, merging sequence understanding with 
spatial pattern recognition and supporting comprehensive 
validation and interpretive analysis.

Generator Model Building

Developing novel biodegradable materials is crucial in 
modern materials science, contributing to sustainable 
development and environmental protection. In this research, 
a methodology is constructed leveraging reinforcement 

(6)y = SoftMax(W ⋅ [hLSTM , hCNN] + b).

(7)L = −
1

N

N
∑

i=1

yilog
(

ŷi
)

,
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learning (RL), uniquely suited to this task due to its ability 
to explore and optimize complex, high-dimensional spaces. 
The RL model consists of three primary components: 
the generator, predictor, and reward function, each with 
distinct implications. (1) Generator: utilized for generating 
molecular trajectories, the generator, adopted from Popova 
et al. [36, 37] is the core of the explorative aspect of the 
RL framework. It symbolizes the ability to propose new 
molecular structures in the search space, allowing the 
discovery of potentially novel biodegradable materials. The 
generator model is a stack-augmented RNN developed using 
PyTorch. It consists of an Embedding layer to translate the 
input x into continuous space, e(x), facilitating the nuanced 
processing of molecular structures and understanding 
complex relations within the molecules. The gated recurrent 
unit (GRU) is employed, whose update and reset gates are 
governed by:

and its hidden state by:

where σ is the sigmoid function, to enhance the handling 
of sequential data and SMILES representations, vital for 
capturing temporal dependencies in molecular design. rt 
and zt denote the reset and update gates at time t, ht−1 is the 
previous hidden state, xt is the current input, Wr, Wz, br, and 
bz are the weight matrices and bias terms.

An innovative feature of this model is the stack 
augmentation mechanism, which is central to generating 
diverse and complex molecular trajectories. The stack 
operation equations, governed by push, pop, and no-op 
controls, enable flexible and intelligent manipulation of 
the stack structure. The decoder, coupled with LogSoftmax 
activation, translates the GRU's output and ensures 
normalization, fundamental for accurate prediction and 
selection of the next molecular character.

where Wo and bo are the weight matrix and bias term of the 
output layer, and yt is the predicted output at time t.

The training and evaluation functions encapsulate the 
learning process, which is essential for adapting the model to 
generate desired molecular structures. The loss is computed 
using the Cross-Entropy Loss function. Additionally, 
various utilities, including changing the learning rate and 
handling stack operations, enhance the flexibility and 
efficiency of the model. (2) Predictor: previously described 
in “Prediction Model Building”, this component evaluates 
the generated trajectories, functioning as the evaluative 

(8)
rt = �(Wr ⋅ [ht − 1, xt] + br)

zt = �(Wz ⋅ [ht − 1, xt] + bz),

(9)ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t,

(10)yt = LogSoftmax(Wo ⋅ ht + bo),

mechanism within the RL environment. It serves as the 
scientific bridge between the mathematical formulations 
of RL and the physical properties of molecules, providing 
tangible feedback based on generated molecular structures. 
(3) Reward Function: computing the reward based on the 
generated sequence of molecular structures, the reward 
function plays a critical role in guiding the learning process. 
By quantifying the value of each structure in terms of 
biodegradability, ensures that the learning process aligns 
with the ultimate scientific goal of the research. Herein, a 
high reward is assigned if the generated material is not in the 
training data and is biodegradable. This allows the weights 
for the newly generated model to be updated. The reward is 
expressed as R(s, a), where s denotes the state, and a denotes 
the action taken.

The policy gradient method is applied, vital for 
continuous, high-dimensional action spaces common in 
molecular design. This method maximizes the expected 
cumulative reward [9, 36, 38], emphasizing the trajectories 
that lead to the most promising materials, according to the 
following equation:

where θ is the policy parameter, π represents the policy, and 
Qπ is the action-value function.

Using gradient clipping ensures stable and robust 
convergence by avoiding the exploding gradient problem. 
The clipped gradient [38] can be represented as:

The iterative process, involving policy replay and updates, 
illustrates RL’s dynamism. The update rule can be expressed 
using the Bellman equation [39–41]:

where α is the learning rate, and γ is the discount factor.
Furthermore, evaluating the generated SMILES strings’ 

validity and canonicity ensures that the generated molecular 
structures are not only novel but also chemically accurate 
and practically feasible. Lastly, converting valid canonical 
SMILES into canonical form, and the subsequent visualiza-
tion, encapsulates the synthesis of theoretical findings with 
practical applications, bridging computational discover-
ies with real-world chemical representations. The overall 
schematic representation of the proposed solution strategy 
is presented in Fig. 2. It is worth noting that the LSTM and 
CNN models described herein were initially optimized as 
standalone models using the grid search method described 
in “Hyperparameter Optimization” albeit with different 

(11)∇�J(�) = E��

[

∇� log��(a∣s)Q
�(s, a)

]

,

(12)∇clipped = min

(

∇,
∇

∥ ∇ ∥
× threshold

)

.

(13)Q(s, a) ← (1 − �)Q(s, a) + �
(

r + �maxa�Q
(

s�, a�
))

,
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parameter spaces as specified in the descriptions. These 
model results were then used to validate the hybrid model 
in Fig. 4.

Hyperparameter Optimization

In this study, we employed grid search to optimize the 
hyperparameters for our CNN, LSTM, and hybrid 
CNN–LSTM models, prioritizing its well-reported effi-
ciency in scenarios with well-defined and constrained 
parameter spaces. Grid search is widely recognized for 
its simplicity and effectiveness, making it a robust choice 
[42], thereby eliminating the possibility of obtaining sub-
optimal models generally obtained via the conventional 
trial-and-error approach to model finetuning [28, 29]. 
Numerous algorithms, such as GA [28] and Bayesian [43] 
as well as derivative-free optimization algorithms, such as 
NOMAD and DIRECT [44] highlight a spectrum of robust 

methods available for hyperparameter tuning. Although 
these algorithms are noted for their performance in several 
scenarios, our selection of grid search was driven by its 
adequacy for our specific application needs and computa-
tional limitations. Recent empirical evaluations, such as 
those by Alibrahim and Ludwig [45], have demonstrated 
that grid search remains competitive with more complex 
methods like Bayesian optimization and GAs, particularly 
when computational resources are a consideration. These 
authors found that the performance of grid search effec-
tively bridged the gap between these advanced techniques, 
affirming its suitability for our research needs. Addition-
ally, the study by Ogunsanya et al. [46] has revealed the 
application of grid search in additive manufacturing pro-
cesses, further proving its versatility and relevance across 
different fields. This underscores the method’s practical 
applicability and relevance in diverse research scenarios. 
Thus, the grid search methodology represents a fundamen-
tal algorithmic approach for hyperparameter tuning [47]. 
Herein, we partition the domain of the hyperparameters 

Fig. 2  Graphical representation of the proposed novel AI model for material discovery and prediction

Table 1  Parameters used in the 
hyperparameter optimization

†  [50, 51], ‡[28, 52, 53]

Type Range or candidates

Number of  epochs† 1–10,000
Number of neurons in the first  layer† 1–500
Number of neurons in the second  layer† 1–100
Activation  functions† Sigmoid, Hyperbolic tangent function, ReLU, leaky ReLU, 

ELU, and SELU
Learning  rates† 0.1, 0.05, 0.04, 0.03, 0.02, 0.01, 0.007, 0.005, 0.003, and 0.001
Loss  functions† MSE and MAE
Optimizer† AdaGrad, Adam, AdaMax, and Nadam
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Fig. 4  Generated novel biodegradable materials from the GRU 
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into a discretized grid. Next, we systematically explore 
all possible permutations of values within this grid while 
concurrently evaluating various performance metrics 
through cross-validation. The grid point that yields the 
highest average value during cross-validation represents 
the optimal configuration of hyperparameters. Grid search 
is an algorithm that comprehensively explores all pos-
sible combinations, thereby enabling the identification 
of the optimal point within the given domain [48]. The 
significant limitation lies in its notably sluggish learn-
ing rate. Performing a comprehensive exploration of all 
spatial configurations necessitates a substantial amount 
of time. Acknowledging that each point within the grid 
necessitates k-fold cross-validation, a process that entails 
k-training iterations [49]. Thus, optimizing the hyperpa-
rameters of a model using this methodology can present 
significant intricacies and costs. However, exploring the 
synergistic effects of hyperparameters in pursuing optimal 
performance is practical, where a grid search is a superior 
approach in this endeavor. The range of hyperparameters 
explored is presented in Table 1.

Results and Discussion

This section presents and discusses the findings from our 
proposed model and its comparison with previous models. 
Testing of the model on the electrolyte dataset to establish 
its generalizability and novel material discovery potential is 
also presented.

Model Validation

In Fig. 3, we demonstrated the prediction capability of our 
integrated model in terms of training and validation datasets 
and compared them with the CNN- and LSTM-only models. 
It is worth noting that these models were optimized using the 
grid search method presented in “Hyperparameter Optimiza-
tion”. The proposed model exhibited a very high accuracy 
of 87.2% compared to 75.4% and 79.3% for the CNN and 
LSTM-only models, ascribed to the proposed model’s abil-
ity to learn both spatial and temporal dependencies in the 
SMILES data, enhancing its capability to efficiently predict 
the biodegradability of the organic materials. The CNN-
only model significantly overfits the model, as revealed in 
its higher training accuracy (AUC) of 0.981, albeit with a 
much lower test accuracy of 0.834 AUC. The LSTM-only 
model, on the other hand, outperformed the CNN-only 
model in terms of generalizability, achieving a test score 
of 0.892 AUC, but underperformed the integrated model. 
The accuracy of the proposed integrated model can be fur-
ther improved by increasing the number of molecules in the 

dataset, which is only 1055 in this case. It is worth noting 
that the hyperparameters employed in these models were 
optimized using the grid method elaborated in “Hyperpa-
rameter Optimization”.

Novel Material Discovery

Gated recurrent unit (GRU), which has a similar structure 
to LSTM, enables faster SMILES generation [54]. The 
GRU predicts the next character based on the current input 
character and hidden state. This allows for the generation 
of new compounds or materials. To train the GRU model, 
‘ < ’ is added at the beginning and ‘ > ’ at the end of each 
SMILES sequence. This modification ensures that the model 
learns to recognize the start and end points of the SMILES 
sequences during training. This is demonstrated in this 
example: < [O-][N +](c1c(Cl)ccc([N +]([O-]) = O)c1) = O > .

From our results, approximately 60% of the generated 
SMILES are valid, indicating that most of them adhere to 
the structural rules governing the SMILES notation. In addi-
tion, more than 80% of these generated SMILES are distinct 
from the compounds in the training dataset, highlighting 
their novel characteristics and exploratory potential. Exam-
ples of the generated materials are presented in Fig. 4. Nev-
ertheless, only about 40% of the generated SMILES were 
biodegradable (Fig. 5a). Hence, the biodegradable material 
generation ability of the model must be enhanced.

Further, the biodegradability of compounds generated in 
this step is analyzed based on their structural attributes, as 
demonstrated through various studies. Chlorinated aromatic 
compounds like Compound 1–2 (where 1 represents the 
row and 2 represents the column) typically exhibit low 
biodegradability due to the stability of C–Cl bonds, requiring 
anaerobic conditions for reductive dechlorination [55]. 
Conversely, aliphatic compounds such as Compound 2–1 
are more biodegradable, as microbial enzymes effectively 
cleave carbon–carbon bonds [56]. Ester-containing 
compounds, including Compound 2–4, generally facilitate 
hydrolytic cleavage, enhancing microbial degradation 
[57]. However, fused aromatic rings, as seen in Compound 
1–3, pose significant biodegradation challenges, requiring 
specific microbial pathways for effective degradation, 
indicative of their persistence in the environment [58]. 
These findings reveal that the generated compounds exhibit 
varying biodegradability potentials with some not likely 
degradable, necessitating algorithmic augmentation to 
enhance the generation capability of the model towards 
readily biodegradable compounds.

Therefore, by leveraging the developed biodegradability 
prediction model and the GRU-based SMILES generator, we 
can harness the power of RL to explore and discover novel 
organic compounds with inherent biodegradable properties. 
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Here, a high reward is assigned if the generated material is 
not in the training data and is biodegradable. This allows 
the weights of the newly generated model to be updated. 
Therefore, we next present the results of the final generator 
model integrated with RL. The generative model has been 
successfully trained through the RL to discover more 
biodegradable compounds. Compared to the GRU-based 
generative model without RL, the final model could discover 
about 95% of biodegradable materials (Fig. 5a and b), of 
which 42% is not present in the original training dataset, 
demonstrating the novel material discovery capability of 
our model. By incorporating constraints on the similarity 
between specific functional groups/atoms and the generated 
compounds, we could generate diverse materials while 
preserving specific functional group/atom characteristics 
(Fig. 5c). Thus, by integrating the generator model with RL, 
the biodegradability potential of the discovered compounds 
improved, revealing several key characteristics. Aliphatic 
compounds with hydroxyl groups, such as Compound 1–1, 
typically exhibit increased biodegradability due to their 

hydrophilicity, which aids microbial uptake [56]. Ether 
linkages in compounds like Compound 1–2 can introduce 
biodegradation pathways, though the rate depends on 
microbial communities and environmental conditions [59]. 
Phosphate ester functionalities in Compound 1–3 and ester 
groups in Compounds 2–1 and 2–2 offer susceptibility 
to hydrolytic cleavage, enhancing biodegradability [57, 
60]. Additionally, compounds with dicarboxylic acid 
groups, such as Compound 1–4, generally show high 
biodegradability due to the susceptibility of carboxylic 
acids to microbial metabolism [59]. Also, compounds with 
aldehyde and ester functional groups, as in Compound 7, 
also have the potential for microbial degradation through 
various enzymatic pathways [56]. These findings highlight 
the potential of the proposed model in generating novel 
biodegradable materials across these compounds, reflecting 
its applicability in material science and other similar areas 
with limited data.

Next, we compared our model with the state-of-the-art 
model proposed by Popova et al. [36] for De novo drug 

Fig. 5  Comparison between a GRU-only generative model results and b GRU-RL generative model results. c Newly discovered materials with 
diverse functional groups
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design and obtained superior prediction results in terms of 
ROC, RMSE, and MAPE. Notably, our model significantly 
outperformed the state-of-the-art model with a training AUC 
of 0.974 and a testing AUC of 0.916 compared to 0.913 and 
0.891, respectively. This result is ascribed to the proposed 
model’s ability to learn both spatial and temporal dependen-
cies in the trained data set using the CNN-LSTM integrated 
model. It is worth mentioning that the CNN component of 
the proposed model leads to overfitting (wider gap between 
the train and test results) and thus was carefully optimized 
to yield the expected synergistic effect. In terms of compu-
tational time, both models achieve nearly the same training 
time of 2 h and 20 min, indicating that no computing burden 
is incurred by the proposed model albeit with better accu-
racy (Fig. 6).

In summary, our methodology employed a hybrid 
architecture combining CNN and LSTM networks to process 
both spatial and sequential data from molecular structures. 
This approach contrasts with the simpler LSTM model 
employed by [36] which focuses exclusively on SMILES 
strings. Our model enhances robustness and generalizability 
through advanced data processing and augmentation 
techniques that efficiently manage diverse SMILES strings 
and structural images. Notably, despite using a significantly 
smaller dataset of only 1055 entries compared to the 1.5 
million used in previous studies, our model demonstrates 
superior performance. This is achieved through our novel 
use of data augmentation and the synergistic capabilities 
of the CNN-LSTM architecture, demonstrating our model’s 
effectiveness in chemical applications where large datasets 
are typically unavailable.

Conclusion

This study presents a comprehensive analysis of our proposed 
integrated model for biodegradability prediction and novel 
material discovery. The model’s predictive capabilities were 
validated, demonstrating superior performance compared to 
CNN- and LSTM-only models. The integrated model achieved 
an impressive 87.2% AUC, showcasing its ability to learn 
spatial and temporal dependencies in SMILES data. Our novel 
material discovery approach, utilizing a GRU-based SMILES 
generator within a reinforcement learning framework, showed 
significant potential. Around 60% of the generated SMILES 
were valid, and over 80% were distinct from the training 
dataset, indicating their novelty. Moreover, through RL, 
we enhanced the model's ability to generate biodegradable 
materials, with approximately 95% being biodegradable, 
including 42% not present in the original training dataset. 
Furthermore, we compared our model to a state-of-the-
art model proposed for De novo drug design and achieved 
superior results in terms of ROC, highlighting the model’s 
potential in diverse applications. Expanding the scope of our 
research to the design of novel electrolytes by employing 
large-scale molecular data, we developed a novel electrolyte 
with specific properties like low viscosity, high conductivity, 
and cost-effectiveness, contributing to the advancement 
of organic materials and their applications. Our integrated 
model has shown exceptional promise in biodegradability 
prediction, material discovery, and electrolyte design. The 
complexities of synthesizing new chemical compounds 
generated by our hybrid model, alongside significant costs, 
and stringent regulatory requirements, pose substantial 
challenges to the experimental testing of our theoretical 
predictions. In response, our future work will implement DFT 
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as an intermediate step to computationally validate and refine 
our predictions of compound biodegradability. This method 
will enable us to explore the feasibility of synthesis and 
assess molecular behavior without the immediate resource-
intensive requirements of laboratory experiments. Through 
this approach, we aim to bridge the gap between theoretical 
research and practical application, advancing towards reliable 
biodegradability assessments while mitigating the challenges 
of direct empirical testing. Future work could also further 
enhance the model’s capabilities and explore its applications 
in various material discovery fields. This research represents 
a significant step towards leveraging artificial intelligence for 
material discovery and design in today's dynamic scientific 
landscape.
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