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Abstract

Thermochemical conversions of nonedible biomass into energy are promising alternatives for ensuring a sustainable energy
society. However, determining the optimum design and operating conditions of the processes remains a major challenge due
to the laborious and costly experimental methods. Machine learning techniques are cost-effective and non-time consuming
and have been widely utilized in thermochemical conversion process modelling with robust and accurate results and solu-
tions. Nonetheless, no standard method has been proposed for applying ML models to biomass thermochemical processes.
Consequently, the general development procedure for ML models with high accuracy and robustness remains unclear. This
review provides a comprehensive review of machine learning techniques for predicting biofuel yield and composition. It is
recommended that quality datasets be ensured to enable the development of more robust machine learning-aided models for
practical engineering applications. Finally, solutions to the identified challenges and prospective future research directions
on machine learning-based biomass thermochemical conversion processes are recommended to accelerate the optimization
and large-scale deployment of these processes.
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Introduction

Currently, the modern world faces a series of worldwide
energy security issues, starting with a growing popula-
tion and an accompanying rise in energy consumption that
results in environmental pollution and climate change [1,
2]. Among them, the ‘shortage of energy’ is a foremost
issue because it is closely linked to the serious pollution
induced by excessive use of conventional fossil fuels. Fos-
sil fuel sources such as coal, natural gas, and petroleum are
continuously being utilized to fulfill a substantial portion
of the global energy demands [2, 3]. The escalating use of
fossil fuels has resulted in a persistent rise in the levels of
greenhouse gases (GHGs) including carbon dioxide (CO,)
and methane (CH,), and atmospheric pollutants like sulfur
oxides (SOx), nitrogen oxides (NOx) and so on. This has
consequently given rise to significant environmental chal-
lenges [4, 5]. Climate change arises from global warm-
ing due to the extensive dependence on fossil fuels. This
dependency contributes to elevated surface temperatures,
sea level rise because of melting glaciers, and various other
environmental concerns [6, 7]. The increasing awareness
of environmental damage and GHG emissions, in conjunc-
tion with fluctuations in the price of petroleum products and
gasoline, has opened opportunities to explore alternative and
renewable energy sources [8]. Therefore, it is imperative to
develop suitable, sustainable, and renewable alternatives to
fossil fuels to mitigate GHG emissions and adverse environ-
mental consequences that come with them.

In contrast to fossil fuels, biomass energy conversion pro-
cesses are sustainable and renewable. Solid biomass, such
as lignocellulosic and municipal waste, has been receiving
growing interest as a reliable alternative to fossil fuels for the
past several decades. Biomass energy conversion methods,
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including biochemical and thermochemical processes, have
been recently growing owing to their carbon neutrality and
eco-friendly advantages [9]. Biomass consists of around
38-50% of cellulose, 23-32% of hemicellulose, 15-25% of
lignin, and 5-13% of other elements, including inorganic
substances and extractives like sodium, potassium, and cal-
cium [10-12]. These components can be converted into heat,
electricity, fuels, and other value-added products through
either biochemical or thermo-chemical processes.

Biochemical conversion processes such as anaerobic and
syngas fermentation utilize bacteria, enzymes, and micro-
organisms to decompose biomass into fuels and other prod-
ucts such as biogas, biodiesel, bioethanol, and other spe-
cific constituents [13, 14]. However, the main drawback of
these biochemical processes is their low reaction rate, which
requires hours, days, or even weeks to complete the neces-
sary reactions [7]. Thermo-chemical conversion of biomass
is more commonly used than biochemical processes due
to its several advantages and higher conversion efficiency.
Unlike biochemical processes, thermochemical conver-
sion does not rely on microorganisms. Instead, they utilize
thermal energy and chemical reactions to decompose the
biomass into various products [15—17]. They are relatively
faster than biochemical processes, with reactions taking only
a few minutes or seconds. Additionally, these processes can
generate high yields and are adaptable to different types of
feedstocks [18].

Thermochemical conversion processes are categorized
into four classes: pyrolysis or torrefaction, gasification,
hydrothermal treatment, and combustion or incineration [2,
15, 17]. Pyrolysis is a crucial technology used for transform-
ing various types of biomasses, including lignocellulosic
and waste biomass, into useful fuel or materials such as bio-
oil, biochar, and gases such as H,, CH,, and so on. Pyrolysis
is commonly classified into slow, fast, and flash depending
on heating rate and solid residence time in pyrolizers [19,
20]. The efficiency and characteristics of pyrolysis products
are significantly influenced by operation factors including
reaction temperatures, solid residence time, heating rate,
and water content of biomass [21]. Gasification is the pro-
cess of transforming solid biomass into syngas. This can be
classified into conventional and hydrothermal types based
on factors such as reaction conditions, gasifying agents, and
the syngas quality. [2, 15, 22]. Compared to other technolo-
gies that use dry biomass, hydrothermal treatment (HTT)
technology transforms wet biomass into end products such
as gaseous and solid fuels that are entirely different from
those produced by dry conversion processes by utilizing hot
pressurized water as a reactant, catalyst, and solvent [7].
HTT can be categorized as either hydrothermal carbonation
or hydrothermal liquefaction, depending on factors such as
temperature, pressure, and proportion of the intermediate
products [23]. Combustion converts solid biomass into heat
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and electricity for industrial and household uses [17, 24].
The combustion process can be classified as single combus-
tion or co-combustion, depending on the fuel type. Figure 1
shows the various types of thermochemical conversion pro-
cesses. However, the modeling of these products, technolo-
gies, and systems presents various technical bottlenecks,
most of which are due to their multiparametric and complex
characteristics.

The optimization of typical thermochemical conversion
processes at diverse research levels often requires numer-
ous rigorous experiments to identify the operating condi-
tions and the optimal design. To enhance the efficiency
of optimization and lower operational costs, innovative
modeling approaches like computational fluid dynamics
(CFD), kinetic and thermodynamic models have been
employed [25-27]. However, implementing these types
of modeling using conventional techniques can be dif-
ficult and sometimes unrealistic owing to their assump-
tions, complexities, and limitations [28]. In addition, these
models are difficult to incorporate with different variations
in thermochemical conversion process yields and kinetics
under operating conditions [27, 29]. For instance, CFD
modeling is time-consuming and computationally costly
due to its significant amount of calculation and predefined
parameters, whereas the kinetic model requires complex
reaction rate estimations since the reaction mechanism is
either unidentified or not completely comprehended. Ther-
modynamic modeling frequently assumes the equilibrium
state, despite the fact that the majority of experimental
reactions rarely reach equilibrium [2]. Therefore, it is
essential to devise a precise, time-efficient, economical,

and resilient modeling method to establish correlations for
the intricacies of thermochemical conversion processes.

Machine learning (ML) techniques, in response, have
been increasingly utilized as a reliable alternative to con-
ventional modeling techniques for comprehending complex
biomass thermochemical conversion processes. Unlike
conventional models, ML models can effectively describe
intricate relationships between input and output variables,
offering a more accurate and dependable approach to mod-
eling complex problems. Several studies have employed ML
in various aspects of biomass thermochemical conversion,
including bioenergy and biofuel conversion processes, emis-
sions prediction of coal-fired boilers, biomass pyrolysis in
fluidized bed reactors, and steam methane reforming (SMR)
[30-35]. Most pioneering review studies on thermochemi-
cal conversion processes have focused on the application
of conventional modeling techniques to product yields and
kinetics [36-38]. However, recent studies have demonstrated
the potential of ML models for thermochemical conversion
processes, particularly pyrolysis and gasification. Neverthe-
less, there is a shortage of comprehensive reviews on the
application of ML models in HTT and combustion processes
[2, 31].

In a recent review of the application of ML in thermo-
chemical conversion processes, Ascher et al. [31] high-
lighted the recent advances in pyrolysis and gasification
product yields, distributions, and kinetics optimization and
prediction. However, other thermochemical conversion pro-
cesses, including HTT and combustion, were not considered.
Umenweke et al. [2] investigated and summarized biomass
gasification and its recent advances in the application of ML

Pyrolysis Bio-char 4{ Absorbents, catalysts, electrodes etc. ‘
Upgraded to fuels/fuel blends
Gasification Bio-oil ~
Upgraded to produce chemicals ‘
- Steam Hydrogen
Solid biomass reforming
(lignocellulosic + .
municipal waste) ‘ FT to liquid fuels
HTT Syngas !
7| Upgraded for chemicals/fuels
IGCC
Combustion Heat/Electricity —{ Centralized heating

Fig. 1 Classification of thermochemical conversion processes utilizing biomass [7]
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to product yields and distribution during conventional and
hydro-thermal gasification. However, this review also did
not consider other thermochemical conversion processes,
such as pyrolysis, HTT, and combustion. Recently, Jeon
et al. [39] reviewed the detailed procedures of ML develop-
ment for specific biomass conversion processes, including
pyrolysis, gasification, and hydrothermal treatment. They
compared the relative importance of input variables in pre-
dicting output variables and discussed the application of ML
in techno-economic analysis. However, their focus primar-
ily centered on the detailed ML development procedure to
enhance model performance, overlooking crucial insights
into improving the efficiency of biomass conversion pro-
cesses, such as variations in product yields under different
operation conditions.

Information gathering through a comprehensive review of
all thermochemical conversion processes could help deter-
mine the most important parameters and optimal operating
conditions that affect product yields and kinetics, which can
aid in the optimization and large-scale deployment of the
processes. Therefore, this study aims to comprehensively
cover all areas in which ML has been employed in this field,
highlight the challenges encountered in existing ML tech-
niques, and suggest potential solutions and future research
directions. The application of ML in biomass thermo-
chemical conversion processes, encompassing the combus-
tion process, is reviewed to determine optimal operational
conditions for a given biomass. Given that the successful
commercialization of biomass thermochemical conversion
relies on reactor and process designs [40], this review also
investigates the types of reactors employed in the literature.
Ultimately, this study elicits recent advances in the appli-
cation of ML to solid biomass thermochemical conversion
processes and proposes strategies to enhance the efficiency
of biomass thermochemical conversion process under spe-
cific conditions.

General Machine Learning Approaches

Machine learning (ML) methods have extensively been
applied in addressing societal challenges across diverse
fields, including biomass thermochemical conversion pro-
cesses. These approaches offer the benefit of being efficient
and yielding accurate results that closely align with experi-
mental findings. ML algorithms can be categorized as super-
vised, unsupervised, and semi-supervised.

Supervised ML involves feeding labelled input and corre-
sponding output data to the model, which then learns to map
input data to its targeted output [41]. This type of learning
can be divided into regression and classification techniques.
Both approaches employ similarly labelled datasets for pre-
dictions distinctively. While regression methods aim to find
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the best match between dependent and independent variables
in continuous data, classification methods aim to find that in
discrete data or identify behavioral patterns across datasets
[42]. Unsupervised ML, also known as self-organization,
differs from supervised learning in that it works well with
unlabeled data and excels at identifying hidden patterns in
the data. When input data is fed into an unsupervised ML
model, the model searches and sorts the similarities and dif-
ferences among the data. Unsupervised ML methods encom-
pass principal component analysis (PCA), dimensionality
reduction, and clustering.

In contrast, semi-supervised ML integrates the benefits
of both supervised and unsupervised learning. It can handle
systems with both labeled and unlabeled input and helps
address challenges in supervised learning [41]. Labeling
data for supervised learning can be difficult and time-con-
suming, but semi-supervised learning can overcome this
limitation by integrating a portion of the unlabeled input
data into the supervised learning process [41, 43]. An over-
view of the classes of ML techniques applicable in the fields
of science and engineering, including biomass applications
is illustrated in Fig. 2. A wide variety of ML models have
been employed for various aspects of biomass thermochemi-
cal conversion processes, with the artificial neural network
(ANN) being mostly explored model in this research area. A
brief discussion of the ANN and other models that have been
applied in diverse aspects of this field are discussed below.

Artificial Neural Network

Artificial neural network (ANN) is an ML algorithm that
imitates the human brain's ability to extract, process, and
interpret information. It follows a mathematical model based
on the functioning of biological neurons in solving com-
plex problems [44]. It offers the benefit of straightforward
implementation and does not necessitate a predetermined
or recognized connection between the inputs (features) and
outputs (labels). The ANN is comprised of interconnected
nodes, and its capacity to process information is encoded in
the weights that connect these nodes. The arrangements of
connections among the nodes in the ANN are referred to as
the ANN network architecture. Figure 3 illustrates a standard
depiction of the ANN network architecture.

The ANN network architecture comprises three essen-
tial layers: an input layer containing input features, a hidden
layer comprising hidden neurons, and an output layer that
provides the predicted target. Also, ANN can be divided into
two main network architectures: feed-forward and feedback
or recurrent network [45]. The feed-forward networks lack
loops, as seen in a multilayer perceptron where input and
output neurons are layered with one-way direction between
them. In general, the feed-forward networks generate a set of
outputs rather than a sequence in response to a given input.
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Fig.3 A typical network architecture of ANN [47]

In contrast, feedback or recurrent networks have variability
[46]. Regardless of the mentioned network architectures, the
crucial aspect is the learning process.

Decision Tree and Random Forest

The decision tree (DT) model possesses a distinctive ability
to address both linear and nonlinear problems, rendering it
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Hidden Markov Low variance filter

well-suited for intricate non-linear models. The tree models
are more pertinent than other black box ML models due
to their straightforward comprehension and interpretability
[48, 49]. The primary drawback linked to DT models is the
risk of overfitting with the increased number of datasets as
the model tends to develop complex tree structures [50].
Another constraint of conventional DT models is their inca-
pacity to account for noise in the dataset and the absence of
smoothness in their corresponding functions [31]. The DT
models, however, have benefits in terms of simplicity and
ease of interpretation coupled with the low computational
cost [51]. Therefore, other models such as random forest
(RF) have been concurrently employed to improve the verac-
ity of each DT models.

RF is a collection of DT designed to address the over-
fitting limitation. To mitigate overfitting, RF employs an
averaging approach across smaller decision trees rather
than relying on a single massive DT [52, 53]. RF stands out
as a user-friendly ML model suitable for both supervised
and unsupervised learning techniques because it has fewer
hyper-parameters. Even with sub-optimal hyperparameters,
it exhibits commendable performance and accuracy. The two
most commonly used parameters among the various options
in RF are the total number of individual tree parameters
(Nvar) and decision trees (n). The performance of model
is significantly influenced by the number of decision trees
running in parallel, depending on the desired output [54].
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Figure 4 illustrated a standard graphical representation of
both DT and RF techniques.

Support Vector Machine

Support vector machine (SVM) employs a kernel approach,
integrating both classifications, known as support vector
classifier (SVC), and regression, known as support vector
regression (SVR). This is applicable to linear, non-linear,
and multi-dimensional problems, guided by the Vap-
nik—Chervonenkis (VC) theory [56, 57]. A kernel method
is an analysis technique merely based on the dot-products of
available datasets. The SVM encompasses the combination
of four fundamental concepts: the hyperplane of separation,
the hyperplane with maximum margin, flexible margin, and
kernel function. The operation of the SVMs depends on
identifying the hyperplane which minimizes the distance
between examples [58]. A typical structure of the SVM is
depicted in Fig. 5.

Deep Learning

Deep learning (DL) is characterized as the distinct type of
neural network architecture featuring multiple layers. A
graphical representation of the distinction between shallow
learning and deep learning is shown in Fig. 6. Different
from shallow learning that only has one hidden layer, DL
is characterized by multiple hidden layers and activation
functions. DL employs a linear regression framework built
upon numerous neural nodes or networks. The capacity
of DL models to formulate intricate hypotheses renders
them potent for comprehending complex, nonlinear, and

Fig.4 A schematic diagram of
decision tree and random forest
pathway (modified from [55])
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Fig.5 A typical structure of support vector machine in two-dimen-
sion (modified from [59])

multi-dimensional relationships. Therefore, the DL can
solve problems that shallow learning models could hardly
solve [60]. Examples of DL algorithms include recurrent
neural network (RNN), long short-term memory (LSTM),
convolutional neural network (CNN) and deep neural net-
work (DNN). RNN is a kind of network combinations in a
loop through which information persistence occurs [61].
The LSTM are a form of RNN that is explicitly designed
to avoid the problem of RNN networks’ long-term depend-
ency. The standard LSTM module has four neural net-
work layers known as the repeated module interacting. The
DNN is one of feed-forward neural networks containing
multiple layers of hidden units situated between its input
and output layers.

Decision Tree-2 Decision Tree-N

Result-2

l
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Fig. 6 Distinction between simple and deep neural network architecture (modified from [2])

Machine Learning Applications in Biomass
Thermochemical Conversion

The implementation of ML techniques has been expanded
in the thermo-chemical conversion processes. Such imple-
mentation allows prediction of yield and kinetics of pyroly-
sis process, syngas or producer gas yield prediction for a
gasification process, process modeling, and quantifying char
and tar formation among others. The following section and
sub-sections are aimed at summarizing existing literature in
this field and highlighting the application of ML techniques
for operation optimization and research advancement.

Machine Learning Applications in Pyrolysis
Processes

Pyrolysis is usually implemented in an oxygen-free condi-
tion at elevated temperatures of about 300-700 “C [62]. ML
techniques have been applied to biomass pyrolysis thermo-
chemical conversion processes including the prediction
of pyrolysis yield and kinetics. Some of the commonly
employed input variables include particle characteristics and
operating conditions. The particle scale parameters comprise
the particle size and chemical compositions. The operating
conditions comprise temperature, gas velocity, heating rate,
production capability, and sample weight [63]. The appli-
cation of ML techniques in biomass pyrolysis prediction is
discussed in the sub-sections that follow.

Yield Prediction of Biomass Pyrolysis

The prediction of biomass pyrolysis yields has been previ-
ously reported in the literature using the ANN and some
other ML algorithms, in terms of biochar, bio-oil, and biogas
and their constituents inclusive of fixed carbon, volatile

matter, ash, and water content. The quality of end products
of pyrolysis has been known to depend strongly on vari-
ous operation conditions and particle characteristics [21].
These variables are the features usually used to develop the
pyrolysis yield prediction ML models.

Earlier studies employed the ANN model to estimate the
quality and quantity of liquid and gaseous pyrolysis products
generated from three biomasses waste [64]. Catalyst type,
amount, temperature, and biomass diversity were input vari-
ables for the pyrolysis process while the output of the model
is the hydrogen-rich gas (H-rG) ratio. A total of 168 datasets
consisting of 102 training, 33 testing, and 33 validation data-
sets were used to progress the ANN model. The forecasting
performance and accuracy of the ANN model were supe-
rior with the regression coefficient (R) of 0.975, 0.955, and
0.902 and mean square error (MSE) of 3.25, 6.97, and 9.20
for training, testing, and validation datasets, respectively.
The developed model can be applied to similar experimental
programs provided the range of model parameters are within
the range used in this model.

In a recent study [65], ANN network architecture was
used to calculate the basic yields of liquid, gas, and solid
product from a pyrolizer. Eighteen datasets with eight input
parameters consisting of particle scale parameters and oper-
ating conditions, particularly temperature for four biomasses
waste, were used to develop the ANN model. The model
developed showed high predictive accuracy with an R value
of 0.9999 and 0.9941 and MSE of 0.0176 and 5.1714 for
both the training and testing dataset, respectively. The major
yields or products of pyrolysis (char, gas, and tar) using
seven different ML algorithms including Linear regression
(LR), ANN, K-nearest neighbor (KNN), SVR, DT, RF, and
DNN were predicted in a spouted bed [66]. The labeled data-
set for the training of the ML models was generated by the
computational particle fluid dynamics (CPFD) simulation.
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The input parameters used for the simulation include tem-  CPFD than those of the lumped process models (Fig. 7).
perature and gas residence time. The developed ML models  Finally, the results of the ML applications were evaluated
showed a better agreement with the product yields of the  with those of the CPFD, and process analysis (PA) lumped
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models for all products. The comparison study indicates that
the developed ML models produce highly accurate predic-
tions compared to lumped process models. A summary of
other recently developed ML models for pyrolysis yield pre-
diction is highlighted in Table 1.

The review of constructed models on pyrolysis product
yields showed that the biomass pyrolysis condition is the
most sensitive feature for pyrolysis yield prediction. Tang
et al. [77] found that the pyrolysis conditions predominantly
have a larger effect on the process outputs than the biomass
composition. However, in the other two studies by Cheng
et al. [80] and Zhu et al. [72], pyrolysis temperatures were
observed to have a powerful effect on the production of bio-
char from a range of biomass feedstocks.

Machine Learning Applications in Biomass Pyrolysis Kinetic
Parameters Prediction

The ANN has been widely applied to predict the kinetic
parameters or constituent distributions of a biomass pyrol-
ysis process. Zhong et al. [81] developed an ANN model
to build CFD-based reduced order models (ROMs) using
pyrolysis temperature and coordinates in the reactor as input
variables to predict the distributions or kinetics of gas, liq-
uid, and solid fractions in a bubbling fluidized bed pyro-
lyzer. The developed ANNSs have high predictive accuracy
with an average R? of 0.9940 and were able to show good
results for tar, gas, and biomass distributions and kinetics
simultaneously.

Sasithorn et al. [82] employed a total of 150 datasets
from the thermogravimetric experiments of various biomass
resources to develop an ANN model to correlate biomass
constituents with the kinetic parameters of the pyrolysis
process, in terms of pre-exponential constant (k;), activa-
tion energy (Ea), and reaction order (n). Although non-linear
relationships were depicted between the biomass compo-
nents and the output variables, the developed ANN model
shows a predictive accuracy, R? of more than 0.9. The results
obtained from the developed ANN models showed minor
deviation compared to the experimental results from ther-
mogravimetric analyses (TGA).

In another study, the RF method was successfully applied
to develop a prediction model for the pyrolysis activation
energy of 5 different biomass resources [83]. For this study,
281 datasets comprising 10 features (types, ultimate analysis
results (C, H, O, N, S), H/C ratio, O/C ratio, ash, and model-
free method) were used to develop the model. The developed
model showed a high predictive performance with the coef-
ficient of determination reaching a value as high as 0.9964.
Based on the findings, the reliability of the RF model for the
estimation of pyrolysis kinetic has been verified. A summary
of other recently developed ML models for biomass pyroly-
sis kinetic parameters prediction is highlighted in Table 2.

Machine Learning Applications in Gasification
Processes

Gasification is an important thermo-chemical conversion
process that has been vastly researched to produce hydrogen-
rich syngas or producer gas from biomass. The gasification
process usually involves four distinct processes including
drying, pyrolysis, partial combustion and tar cracking,
and reduction. The application of novel ML techniques in
gasification studies has been tailored towards the prediction
of syngas yield and solid residue (char and tar) yield, and
catalysis screening and selection. The application of ML
techniques in the gasification process has helped in design-
ing a cost-effective process with higher carbon conversion
efficiency, as well as reducing the processing time and
expenses of complex and time-consuming practices [84].
The various applications of ML techniques in the predic-
tion of biomass gasification processes are elaborated in the
subsequent "Machine learning applications in conventional
gasification process" and "Machine learning applications in
hydrothermal gasification process".

Machine Learning Applications in Conventional Gasification
Process

Conventional gasification has a lot of merits, such as low
capital cost, low operating cost and less risk of explosion
with decreased operating pressure. However, the process
requires drying of waste biomass with moisture content
above 35wt% which is different from the hydrothermal gas-
ification. Pioneer studies with the implementation of ML
algorithms in the conventional gasification process have
demonstrated some promising results. Two separate ANN
network architectures were employed to predict the syngas
yields including CO, H,, CO, and CH,, during the gasifica-
tion of biomass in fluidized bed gasifiers [93]. The datasets
used for the ANN model development were obtained from
18 and 36 experimental runs. Biomass composition and
equivalent ratios were used as input conditions. The devel-
oped ANN models displayed robust and accurate predictive
performance with R? of >0.97. However, the model is con-
strained to only one type of feedstock and the specific range
of the experimental conditions used in model development.
The sensitivity analysis was also carried out to figure out the
relation between inputs and predicted outputs and showed
that two inputs have greater effects on the syngas yields [93].
The results and limitations depicted in the previous study
[93] coincided with the results obtained by Mikulandrié
et al. [94]. They used gasification temperature, gas flow,
and residence time to estimate the yield and compositions
of syngas in a fixed-bed gasifier.

In their attempt to solve the lack of model generalization
in the pioneer studies, Baruah et al. [95] developed an ANN

@ Springer
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model by utilizing experimental datasets from different types
of woody biomass to predict syngas yield and composition.
The inputs included the zone temperature, ultimate, and
proximate analysis of different woody biomass utilized for
the ANN model. The model performance was high, and the
predicted output showed adequate agreement with experi-
mental results with an R? value between 0.98 and 0.99 [95].
A similar study by George et al. [96], that utilized datasets
from five different waste biomass for ANN model training,
also showed a high predictive accuracy with an R? value of
0.9. These studies suggested that expanding the used data-
set is desirable to improve the generalization of the model.
Similar studies that utilized ANN for model development
and prediction were reported by Ascher et al. [31].

Recent research efforts have aimed to explore alternative
ML algorithms for predicting syngas or producer gas yields
and composition, driven by the desire to overcome the black-
box nature of ANN and to assess the predictive capabilities
of different ML approaches. Elmaz et al. [97] conducted a
comparative study involving four ML algorithms: decision
trees (DT), support vector regression (SVR), polynomial
regression (PR), and multilayer perceptron ANN (MLP-
ANN). These models were utilized to estimate the yield and
compositions of syngas in a downdraft gasifier. The devel-
oped models exhibited high predictive performance, with
both MLP-ANN and DT models outperforming the other
two in predicting the levels of CO, CO,, CH,, H,, and HHV.
Similarly, Ozbas et al. [98] also predicted the syngas compo-
sition and its HHV using four different ML models, includ-
ing the KNN, Linear Regression (LR), SVR, and DT. Their
predictive performances are also compared. The developed
models demonstrated high accuracy, with R-squared (R,)
values exceeding 0.99. Similar studies were also conducted
by Fang et al. [99] and Li et al. [100].

An attempt has been made recently by Serrano and Cas-
tell6 [101] to include the reactor’s bed material as one of the
input variables for the prediction of syngas compositions
and gas yield in a bubbling fluidized bed gasifier. Nine input
variables were chosen for the model training in this study.
Apart from the bed materials, the remaining input variables
include C, H, O, N, S, MC, ash, equivalence ratio (ER),
temperature, and steam/biomass ratio. It was noted that the
developed models successfully forecasted the compositions
and yield of syngas with good accuracy (R? of >0.94 and
MSE of < 1.7 x 1073) [101].

Prediction of outputs other than syngas yield and compo-
sition such as solid residues (char, tar, and ash) yield during
gasification are believed to be equally important. Solid resi-
due generation can be one of the limiting factors hindering
commercial scale utilization. Therefore, the accurate predic-
tion of these solid residue yields could help in establishing
an effective solid residue reduction strategy. To this end,
Serrano and Castell6 [101] developed an ANN model to

@ Springer

predict char deposition in a bubbling fluidized bed gasifier.
Datasets used for the model training were obtained from
experimental tar sampling, collection, analysis methods,
and literature. The developed model showed good predic-
tive ability with R? of >0.97 for both testing and validation
datasets. In addition, the calculated relative errors were less
than 20% for most of the tested samples. Parametric stud-
ies conducted with the developed ANN model reveal that
the tar yield profile with both temperature and equivalent
ratio (ER), exhibits an excellent fit to experimental values
reported in the literature, outperforming previous models.
A similar study employed various inputs including C, H,
N, S, O, moisture, ash content, temperature, and ER to pre-
dict LHV of syngas and tars [102]. In the investigation, two
ANN models were employed: one with multiple-input and
single-output (MISO) and another with multiple-input and
multiple-output (MIMO). These were trained using the Lev-
enberg—Marquardt backpropagation algorithm. They showed
a high estimation performance with R? of > 0.99 for tar and
syngas LHV value prediction [102]. A summary of other
recently developed ML models for syngas yield and com-
position, and residue yield during conventional gasification
are highlighted in Table 3 (Fig. 8).

Machine Learning Applications in Hydrothermal
Gasification Process

Hydro-thermal or supercritical water gasification is prefer-
able to conventional gasification because of its capability to
handle feedstock of high moisture content without requiring
drying [108]. In addition, the produced syngas from this
method are often free from nitrogen and sulfur-containing
compounds [109]. Different ML algorithms have been
applied to hydrothermal gasification processes, particularly
for H, yield prediction and optimization, and catalyst selec-
tion and screening. ANN, GPR, SVM, and RF models were
developed to estimate H, yield for supercritical water gasi-
fication (SCWG) of agricultural waste and municipal solid
waste biomass.

The developed models utilized eight input variables that
includes both biomass characteristics: C, H, O, ash; and the
SCWG conditions: biomass concentration (BC), gasifica-
tion temperature (T), pressure (P) and residence time (RT).
All the developed ML models showed promising predictive
capability with R? of > 0.98. They also assessed the effect of
biomass properties (C, H, O contents) on H, yield and the
exergy efficiency. The proposed ML models showed good
prospects to be used for future design and optimization of
hydro-thermal gasification process [113].

In another study, Shenbagaraj et al. [114] developed a
multi-layered feed-forward back-propagation algorithm-
aided artificial neural network (FFBPNN) model to evaluate
the effect of different factors affecting syngas composition
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Fig.8 Comparisons of experimental results with simulation results
in the literature [(times symbol) Stark et al. [103]; (white square),
(diamond suit) Sridhar [104]; (black down pointing small triangle)
Wojnicka et al. [105]; (black right-pointing pointer) Hejazi et al.
[106]; (white circle) Rameshkumar and Mayilsamy [107])

during the SCWG of food waste. The model displayed a high
prediction accuracy greater than 98% and an MSE value
less than 0.3. The effect of feed concentration, reaction tem-
perature and time on syngas composition was also studied
[114]. A similar study was reported by Zhang et al. [115]
on SCWG of waste biomass using linear regression with
the single- and two-hidden layer neural networks. Predictive
performance of the single-hidden layer neural network has
shown superior performance compared to a two-hidden layer
neural network. Li et al. [116] proposed the use of Gradi-
ent Boosting Regression (GBR) and hybrid GBR-Particle
Swarm Optimization (PSO) algorithms to predict the hydro-
gen (H,) yield in a hydro-thermal gasification process. The
aim was to address the black-box nature of ML algorithms
and ensure the interpretability of the developed models. The
GBR model was constructed based on the composition of the
feedstock (C, H, O, N, ash) and operation parameters (tem-
perature, pressure, and time), achieving an R? value exceed-
ing 0.90. Subsequently, the model was enhanced by integrat-
ing Particle Swarm Optimization (PSO). In order to validate
the ML models, a comparison was made with mechanistic
modeling using Aspen Plus simulation. This comparative
analysis between ML algorithms and mechanistic models
enhances user confidence in the GBR-PSO models.

An attempt was made by Li et al. [128] for screening and
selection of catalysts during the hydro-thermal gasification
of waste biomass using ML method of principal component
analysis (PCA). Applied datasets were divided into three

subcategories of non-catalyst, alkali-metal catalyst, and tran-
sition-metal catalyst with the aid of the PCA. The developed
model displayed high prediction accuracy in identifying and
screening materials for increasing H, and decreasing CO,
during SCWG of waste biomass. Similar studies on catalyst
screening and selection for H, yield during SCWG of bio-
mass using ML algorithms are reported by Gopirajan et al.
[117], Guan et al. [41], and Fozer et al. [118]. A summary
of other recently developed ML models for syngas yield and
composition, and residue yield during hydro-thermal gasifi-
cation are highlighted in Table 4.

Machine Learning Applications in Hydrothermal
Processes

In HTT, wet biomass is converted into gaseous or solid
fuels and other constituents under elevated pressure and
temperature [7]. As mentioned above, HTT is classified as
hydrothermal carbonation (HTC) and hydrothermal lique-
faction (HTL) depending on temperature, pressure, and the
proportions of the converted intermediate products [23]. The
HTC is usually conducted at relatively low temperatures of
between 150 and 260 °C and pressure of 1.5-5 MPa to obtain
a solid product (hydro-char), while HTL is mostly under-
taken at moderate temperature of between 250 and 350 C
and pressure 5 ~20 MPa in subcritical water to yield liquid
fuel (bio-oil) [120]. ML techniques have been applied to var-
ious aspects of wet biomass hydro-thermal treatment predic-
tion, particularly for the prediction of biofuel and bio-char.

Machine Learning Applications in Hydrothermal
Carbonation

ML algorithms have demonstrated their effectiveness in
the field of hydrothermal carbonization (HTC) and the pre-
treatment of biomass that can transform wet biomass into
uniform, carbon-rich hydro-char with a higher heating value
(HHV). The ML algorithms have been successfully utilized
to predict diverse aspects of the HTC process, including the
composition and properties of the final product (hydro-char),
process kinetics, nitrogen, and phosphorus content in hydro-
char, process optimization, and synergistic catalysis.
Vardiambasis et al. [121] employed four ANN models,
developed using 144 datasets, to predict hydro-char yield
and HHV during hydro-thermal carbonization of sewage
sludge and food waste biomass. The developed models uti-
lized elemental content (C, H, O), HTC temperature, and
time as the input variables. The developed ANN models
showed promising predictive capability with R? of >0.917.
The sensitivity analysis results confirmed that carbon con-
tent (C) had the greatest influence on hydro-char yield and
HHV. The proposed ML models confirmed good perspec-
tives to be used for future design and optimization of the
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Table 4 (continued)

References

Model performance Major findings

Model outputs

Reactor type Method Model inputs

Biomass

[116]

The optimal conditions

R?:0.99

C, H, N, O, AC, SD (solid Syngas yield

content), T, P

GBR, GBR-PSO

STOICH reactor and
batch setup

Wet waste

recommended by the

ML-based optimization
for H,-rich syngas pro-

duction were validated

by Aspen simulation

and the error was found
to be around 10% and

20% for H, and CO,

yields

[119]

The sensitivity analysis

R?>0.99

LR, ANN, SVM, GPR T, S/B, O, AC, F, mass of HZ%rich syngas

Fluidize and fixed beds

Horti-cultural waste

showed that all factors
influenced gasifica-

biomass, adsorbent to

biomass, PS, C

and sewage sludge

tion results. However,

gasification temperature
is the most dominant

parameters for gasifica-

tion results

hydro-thermal gasification process [121]. Zhu et al. [72]
developed an RF model to predict the yield, HHV, and car-
bon in char of municipal waste during HTC operation. The
predictive results showed a high accuracy with R? of 0.80,
0.91, and 0.95 for hydro-char yield, HHV, and C_ char,
respectively. Similar studies that utilized ML models for
HTC process prediction can be found in Li et al. [71] , Ismail
et al. [122], Kapetanakis et al. [123], and Mu et al. [124].

The prediction of process kinetics during HTC of cel-
lulose, poplar, and wheat straw biomass was reported by
Aghaaminiha et al. [125]. Four different ML models of
KNN, ANN, SVR, and DF employed 132 datasets with input
variables of experimental type (isothermal, dynamic), tem-
perature, time, nitrogen content, sulfur content, and hydro-
gen content. The developed models showed high predictive
accuracy in all the scenarios investigated. In addition, the
performance of the developed ML methods in interpolating
kinetics results was evaluated, considering situations where
experimental data is limited to only a few time-points. An
‘extrapolation model’ was additionally developed using
kinetics data from the first three time-points as input. The
kinetic data for subsequent time steps was predicted to
evaluate its capability in extrapolating kinetics when data
is available from only a small number of initial time-points.
Djandja et al. [126] developed an RF model for HTC pro-
cesses to access the phosphorous concentration of char based
on 109 data points. Particle properties such as FC, VM, ash,
moisture, C, H, O, N, S, and phosphorous concentration,
and operation conditions including temperature, residence
time, pH of feedwater, and dry matter content (DM), were
considered as features for designing the model. The model
predictive performance was high with R of >0.92-0.95. In
addition, operation conditions exhibit a positive effect on the
phosphorous concentration in char [126]. A similar study by
Djandja et al. [127] was developed to predict the nitrogen
content in hydro-char. A summary of recently developed ML
models for HTC is highlighted in Table 5 (Fig. 9).

Machine Learning Applications in Hydro-thermal
Liquefaction

Hydro-thermal liquefaction (HTL) is considered as a viable
option for producing bio-crude oil from wet biomass with
varying moisture content, which can be upgraded to be
used as a transportation fuel and for chemicals. HTL also
produces solid biochar and a gaseous fraction. It has some
advantages over the classical process, as it has a lower pro-
cessing time and a higher yield [130]. The process is mainly
dependent on feed quality, reaction time, temperature, cata-
lyst, and mixing ratio. The application of ML in HTL is
mainly for estimating the yield and composition of bio-oil.

Cheng et al. [131] developed ML models by utilizing
570 experimental datasets for HTL of different biomass
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Fig.9 Comparison of the predictive performance of the machine
learning models [125]

feedstocks in literature (algae, lignocellulosic biomass, food
waste, manure, sludge, bioethanol residue, municipal solid
waste, and seed plants) to predict bio-crude yield. Eight
ML models including MLR, Ridge regression (RR), Lasso
regression (LR), SVR, DT, MLP-ANN, RF, and XG Boost
were developed for this purpose, and their performance was
compared. The performance of the above models was rela-
tively high, and results showed good agreement with experi-
ments. This RF model was adjudged the optimal model with
an RMSE of 8.07. The accuracy of the optimal RF model
and a probabilistic economic analysis are found to be enough
to arrange the order of resources delayed on the basis of the
estimated minimum fuel price [131]. Katongtung et al. [132]
predicted bio-crude yields and HHV of biomass resources in
HTL processes by using 17 inputs in 325 datasets. Novel ML,
algorithms, including SVR, Kernel ridge regression (KRR),
RF, and extreme GB (XGB) based on tenfold cross-valida-
tion were adopted for the prediction purpose. The developed
models showed a high predictive accuracy with an R? value
of >0.9. Similar studies that utilized ML algorithms for bio-
crude and composition prediction from HTL of wet biomass
can be found in the literature [133, 134].

In another study, two ML models of DT and RF with 257
datasets were developed to predict pH, TOC, TP, and TN in
the aqueous phase (AP) produced in HTL processes by using
algae, food waste, sludge, and manure [135]. Both devel-
oped models presented high predictive performance, with
the DT showing better performance than RF for both sin-
gle and multi-target predictions. In addition, the ML-based
feature importance and partial dependence analysis showed
that temperature, solid, and nitrogen content were mostly
important factors for pH, TN, and TP. A similar study used
both GBR and RF to predict bio-oil yield, content of oxygen
(O_ oil), and nitrogen (N_ oil) from HTL of wet biomass
[115]. The results indicated that the GBR, with an averaged
R? of > 0.90 for the test set, displayed better predictive capa-
bility than the RF model for both single and multi-target

task prediction. A summary of other recently developed ML
models for bio-crude and its composition prediction from
HTL of biomass are highlighted in Table 6.

Machine Learning Application in Combustion
Processes

In the combustion process, organic matters are thermally
converted into CO, and H,O with the help of an oxidant,
generally oxygen. The combustion process generates heat
and electricity for home and industrial use. The process can
be classified into single combustion or co-combustion of two
fuels depending on the fuel type [7]. In the combustion pro-
cess, ML can be employed for modeling boiler wall at differ-
ent operating conditions, fault diagnosis, automation in the
generation process, and the prediction of gaseous pollutants,
thermal properties of biomass, and output energy [136]. The
thermal combustion characteristics, which include combus-
tion reactivity [137], heat capacity [138, 139], oxidation
kinetic parameters [140—144], and co-combustion of bio-
mass are also included [145-147].

The presence of moisture content in biomass significantly
affects its properties and combustion characteristics. Taking
this into account, Rico-Contreras et al. [148] devised a pre-
diction model based on FL. and ANN to estimate the thermal
properties of poultry litter. They utilized various input vari-
ables including density, temperature, duration of storage, and
feedstock handling, which affect the moisture content of the
feedstock. A total of 108 samples were tested with this arti-
ficial framework and an average moisture content of 30.16%
was reported. In addition, the developed FL-ANN system
showed an accuracy of 92.88% when modelled with 20 dif-
ferent farm study results. Importantly, this proposed model
holds applicability across a wide range of bioenergy genera-
tion systems, encompassing not only the poultry sector but
also other combustion or alternative processes. Krzywanski
et al. [33] developed an FL model to predict emission con-
tents from both wood chips biomass and bituminous coal in
a lab-scale 5 KW dual fluidized chemical looping combustor.
This model estimated various emissions including CO,, CO,
NOx, and SOx. These pollutants were made across conven-
tional and novel combustion processes including air-firing,
oxy-fuel combustion, chemical looping combustion, and so
on. The developed FL model displayed a high predictive
capability with a maximum relative error between target and
prediction lower than 8%. Prediction by the FL. models for
gaseous pollutant emissions was in good agreement with
experimental results. A comparable study was conducted by
Lietal. [149] and Li et al. [150] to investigate NOx emitted
from biomass combustors using the DNN. In both studies,
the predicted NOx emissions exhibit good agreement with
the measurement results. Further studies on GHG emissions
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prediction from biomass-fired combustion process can be
found in [151-153].

To become a sustainable society, carbon-neutral fuels
like biomass, hydrogen, and ammonia should be utilized for
heat and electricity and their usage consequentially increases
in most countries. Therefore, HHV is an important factor
in assessing the economic feasibility of biomass utiliza-
tion. Noushabadi et al. [154] developed and proposed an
ML methods framework to evaluate the HHV of biomass
by using C, H, N, O, and S weight fractions. A total of 535
datasets were utilized to construct five ML models. Differ-
ent types of biomasses, such as fruits, agricultural wastes,
grasses/leaves/fibrous materials, wood chips/tree spe-
cies, and various organic wastes including municipal solid
wastes, were utilized in combustion processes. The devel-
oped models demonstrated excellent predictive performance,
as evidenced by the low average absolute relative deviation
(AARD) values.

Specifically, the MNR and GA-RBF algorithms achieved
an AARD of 3.5% and 3.4%, respectively, indicating their
suitability for estimating the HHV of biomass. You et al.
[155] estimated the low heating value of biomass (municipal
solid waste, MSW) using MLP-ANN, ANFIS, SVM, and
RF models. The result indicated that a high-accuracy ML
model could improve the CFB operation and contribute sta-
ble energy supply [155]. Further studies on the prediction
of HHV from biomass-fired combustion processes can be
found in [47, 86, 156—159]. A summary of other recently
developed ML models for thermo-chemical combustion of
biomass is highlighted in Table 7.

Futuristic Prospects

As discussed, ML is widely applied to biomass thermo-
chemical conversion processes. However, there needs to be
a more detailed description of the procedure of ML devel-
opment to improve further. For example, in many instances,
the ‘number of epochs’ is used as the termination criterion
when the desired correlation (R?) and minimum RMSE are
not achieved [160]. In this chapter, some challenges, and
prospects in the application of ML to biomass thermochemi-
cal conversion are introduced with respect to the datasets
and training and testing of the ML model. Furthermore,
relying on a single statistical index is inadequate as it only
provides a limited perspective on model errors, focusing on
specific aspects of the error characteristics. To comprehen-
sively assess model performance, a combination of statisti-
cal indices, including variance accounted for (VAF), mean
absolute percentage error (MAPE), and mean squared devia-
tion (MSD), should be employed. By considering multiple
indices, a more thorough evaluation of the model's accuracy
and performance can be achieved.

Previous research has revealed a scarcity of data col-
lected directly from biomass thermochemical experiments
because of the costly and time-consuming nature of the
data acquisition process. To overcome this challenge,
researchers often depend on importing experimental data
from various sources. Therefore, employing these sets of
experimental data often results in models with good pre-
dictive accuracy but low extrapolability since these models
are only compatible with a specific dataset. The developed
models are only applicable to experimental data within
the range of the data they were trained on. Integrating
ML models with theoretical modeling approaches, such as
kinetics, thermodynamics, and CFD studies, to simulate
the experimental conditions should provide a high-qual-
ity dataset. These datasets provide extensive information
regarding fundamental reaction mechanisms and pathways,
facilitating the development of optimal models during the
training process and improving the predictive capabilities
of the models.

Most ML algorithms are called "black box" because the
relationships between the input and output variables are,
most of the time, complex and are not always depicted in
the form of tractable mathematical equations that can be
easily understood. On the other hand, the advantages of
developing a reactor model with detailed reaction kinetics
and hydrodynamics for biomass thermochemical conversion
processes lie in its better extrapolability and interpretability
compared to ML models. This becomes particularly impor-
tant when dealing with the inherent variability in biomass
feedstock. While a physically and chemically consistent
feedstock is required for the robust operation of the process,
the inconsistency within a single resource due to varying
growth and harvesting conditions [161], especially during
climate crises, can present challenges in black-box mod-
eling. Thus, elucidating the reaction pathways of biomass
decomposition under various conditions is necessary for the
robust operation of biomass thermochemical conversion pro-
cesses. To enhance the extrapolability of ML models, it has
been suggested to develop ML models guided by theoreti-
cal models. The methodology for such a combination was
described elsewhere [39]. Future work should be directed
towards unboxing the black-box nature to ease the imple-
mentation and increase the reproducibility and interpretabil-
ity of these ML models. These models should be converted
into tractable mathematical equations, allowing quantita-
tive interpretation and accurate prediction. Additionally,
researchers have proposed the use of feature permutations
to examine the behavior and relevance of various input vari-
ables. This approach enabled a comprehensive evaluation of
the significance of each input variable in the ML model [31],
increasing the interpretability of the model. Moreover, it
is advisable to incorporate sensitivity and techno-economic
analyses to assess the influence of each predictor or feature
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on the predicted thermochemical conversion process and the
economic importance, respectively.

Several ML algorithms employed to study biomass ther-
mochemical conversion processes have shown good rele-
vance. Nevertheless, even though ML algorithms offer sev-
eral advantages over conventional modeling techniques, such
as CFD, it is crucial to remark that no single ML algorithm
can effectively address all engineering problems related to
conversion processes, as stated by the No-Free-Lunch (NFL)
theorem [162]. Advancements in conversion technologies,
such as carbon capture and sequestration processes and lig-
uid fuel transportation, which require additional inputs and
increase the complexity of the models. At present, accurate
predictive models for these conversion technologies have
been extensively developed. Future studies should focus on
applying other existing ML algorithms that are yet to be used
to biomass thermochemical conversion processes while also
developing new algorithms for these advanced technologies.
Thus, researchers will be able to develop ML models with
higher predictive accuracy and interpretability.

Assessing the predictive performance of ML models is
as crucial as training them. During the performance evalu-
ation, the predicted outputs of the models were compared
with relevant observations or experimental data using vari-
ous statistical measures or error metrics, commonly known
as statistical indices. These statistical metrics illustrate the
disparities between the anticipated and observed values of
the outputs, specifically indicating the extent of the residu-
als' dispersion. The statistical indices used to appraise the
performance of ML models have several limitations. The
two primary error metrics, namely the mean square error
(MSE) and root mean square error (RMSE) are regarded as
less reliable owing to their sensitivity to different data frac-
tions and their susceptibility to outliers [163]. In particular,
the RMSE is affected by extreme scores, which can hinder
the convergence of errors within specified tolerance limits.

Conclusions

This study provides a comprehensive review of published
articles that focus on the application of ML techniques in
biomass thermochemical conversion processes. Compared
to conventional modeling techniques such as computational
fluid dynamics (CFD), thermodynamic and kinetic models,
process models, and ML techniques offer several advantages,
including accuracy, efficiency, simplicity, and robustness in
modeling the complex nature of these processes. Various
ML algorithms have been successfully used to predict yields
and kinetics and optimize pyrolysis, gasification, HTT, and
combustion processes, demonstrating high predictive perfor-
mance and accuracy. Among these techniques, ANNs have
been widely utilized by researchers owing to their capacity

@ Springer

to manage intricate associations between input and output
variables without prior knowledge of their interconnections.
However, a limitation of ANN and other ML models is their
lack of interpretability because the relationships between
inputs and outputs can be intricate. To improve the under-
standing and interpretability of these processes, it is crucial
to develop models that are easy to interpret. Ensuring the
interpretability of the developed ML models and improv-
ing their predictive accuracy is imperative for large-scale
and industrial deployment of these processes. Fine-tuning
the hyperparameters of the developed process models using
metaheuristic algorithms could help ensure higher predictive
accuracy of the processes. Establishing broad input and out-
put variable datasets could aid in improving the model per-
formance because it has been established that the model per-
formance increases with the increasing number of datasets.
Consequently, there is a notable need for the development
of additional ML algorithms and the inclusion of a wider
range of operating conditions and parameters in the data-
sets used for model development. This approach can help
to create universal models with high predictive accuracy.
By using novel algorithms and incorporating comprehen-
sive data, researchers can enhance the capabilities of ML
models and ensure their applicability to different biomass
thermochemical conversion processes. This will ultimately
contribute to the advancement of the field and facilitate more
accurate predictions in various operational scenarios.
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