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Abstract
Droplet collision on surface is widely existed in nature and industrial production. In our research, two-dimensional rotational 
models and three-dimensional symmetric models based on the phase field method have been developed to simulate the 
collisions of continuous droplets on spherical surfaces. Using parametric dimensionless, the spreading diameter of the 
coalescing droplets, the width of the liquid bridge between the droplets, and the moving velocity of the three-phase contact 
line are obtained. When the two droplets are coaxial, the collision velocity of the droplets increases, and the radial velocity 
of the liquid bridge also increases. Due to the increase of droplet energy, both the first and second maximum spreading are 
increased, but the characteristic spreading ts time is reduced. When using the modified capillary inertia time �′

i
 normalized 

spreading time ts, it is found that it fits well with the Weber number (We) by the curve 1.505  We−0.478. Increasing the ratio of 
curved surface to droplet diameter λ can reduce maximum spreading time and maximum rebound height of droplet. When 
there is a deviation between the centers of the droplets, the spread of the droplets no longer shows symmetry and the center 
of the condensed droplets moves towards the offset side of the tail droplets. These findings will provide insight into the 
dynamics of continuous droplet collisions.

Keywords Double droplet · Phase-field method · Impact · Neutral spherical surface · Spreading factor

Introduction

The coalescence impact of liquid droplets on solid walls, 
liquid films, and droplets is a common phenomenon, such 
as in the industrial field. Spray cooling technology on hot 
metal surfaces, the process of atomized fuel droplets hitting 
the cylinder block in the engine combustion chamber, and 
the high-speed collision between steam droplets and water 
film, steam droplets in the turbine. In nature, the collision 
of falling raindrops with the surface of a lotus leaf and the 

spreading of oil droplets on the surface of a fish scale. The 
impact of liquid droplets on solid walls has also been heavily 
applied and researched in agriculture [1, 2], industry [3–6], 
and forensic medicine [7], such as fuel combustion [8], 
aerospace [5], hydropower [6], and spray cooling [9]. This 
involves the diffusion properties of droplets, energy transfer, 
and satellite droplet generation. In agriculture, understand-
ing the collision of pesticides on the surface of plant stems 
and leaves after spraying can help reduce the number of 
pesticides used per unit area. In industrial food coating, the 
quality of coating relies on the impact of the coating solution 
on the food surface during coating formation, as well as in 
daily life, where droplet collision and diffusion phenomena 
are present in the fall of water droplets and the formation of 
grease stains on clothing.

In nature and industry, the wall conditions for droplet 
impacts are usually not ideal but complex and variable. 
Therefore, more and more researchers have paid attention to 
droplet impacts on complex planes and found that the target 
geometry significantly affects the droplet impact dynamics 
[10–15]. The impact of a droplet on a wall normally has 
two major phases: expansion and contraction, with surface 
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tension, viscous, and inertial forces dominating the process. 
Changing the droplet own characteristics [16, 17], wall prop-
erties [18–20], or environmental conditions [21, 22], such as 
droplet viscosity, surface tension coefficient, contact angle, 
and ambient pressure gravity conditions, can cause a vari-
ety of outcomes, including deposition, partial rebound, full 
rebound, and splash. In recent years, the reduction of drop-
let–liquid contact time in the design of hydrophobic materi-
als and surfaces has gained favor among researchers. With 
the help of experiments and numerical simulations, Bange 
[23] et al. found that a droplet can rebound from a surface if 
the total energy at the maximum recoil of the droplet exceeds 
the initial surface and gravitational energy, and conversely, 
the droplet oscillates on the surface without rebounding. In 
addition, the authors present a state-distribution diagram that 
predicts the rebound and non-rebound of droplets at a con-
tact angle θ = 155°. Shen et al. [24] simulated the collision of 
a droplet on a raised superhydrophobic conical surface and 
found that the droplet could rebound rapidly. The observa-
tion of a 28.5% reduction in contact time when compared to 
a flat surface implies that the contraction phase is responsi-
ble for the reduction in contact time. Wang [25] investigated 
droplet rebound on different micro- and nanotexture. They 
verified that the structure with a high solid percentage must 
provide sufficient capillary pressure to withstand the impact 
pressure of the droplets when the size of the texture of the 
surface is lowered to the nanoscale level. As a result, the 
compact nanotexture effectively reduces the contact time 
and enables fast droplet rebound.

The research of droplet impact on a solid plane has 
been carried out extensively with the help of experiments, 
theoretical analysis, and computer simulations of various 
kinds. In contrast, the research of droplets on curved 
surfaces has received less attention. For experimental 
validation, Liang et al. [26] carried out impact experiments 
of heptane droplets on a wetted spherical surface. Because 
curved surfaces spread differently than flat surfaces, the 
droplet wetting area appears as a spherical cap. The contact 
surface dimensionless diffusion factor (ϕ = As/Adrop) was 
invoked to quantitatively analyze the diffusion of droplets 
in the range of droplet Weber numbers We = 7–87 and 
curvature ratios ω = 0.09–0.448. It is discovered that the 
variation of the curvature ratio ω does not have a significant 
effect on the droplets during the initial diffusion phase, and 
the spreading factors are almost the same. After the initial 
stage, the effects become more noticeable. In addition, the 
authors observe that the diffusion factor varies linearly with 
time for different ω, and propose a linear model between 
dimensionless time and the diffusion factor ϕ. To validate 
the linear model correctness, the authors performed 
additional experiments with ethanol droplets, which revealed 
comparable tendencies to heptane droplets. Banitabaei [27] 
experimentally studied the collision of liquid droplets with 

stationary spherical particles. Starting from We = 200, 
droplet impacts on hydrophobic surfaces result in the 
formation of a liquid film. The increase in wettability leads 
to a corresponding decrease in the duration of the impact 
process. Bakshi [28] also do research on the influence of 
spherical particles. In their work, the collisions of droplets 
with spherical targets of different diameters were studied. 
The thickness of the film on the sphere surface indicates 
that the dynamics is divided into three distinct stages: initial 
deformation, inertia-dominated, and viscous-dominated. The 
transition to the viscosity-dominated stage happens faster 
at low Reynolds numbers. The thinning process of the film 
slows as the spherical diameter grows and the residual 
thickness increases. Charalampous [29] studied the impact 
of droplets on spherical particles between Weber numbers 
between 92 ≤ We ≤ 1015 and Ohnesorge numbers between 
0.007 ≤ Oh ≤ 0.0089. In the target-droplet diameter ratio R* 
(R* = Rs/R0) in the range of 1.8 < R* < 11.1, in addition to 
the common deposition and splashing, another state was 
observed, in which the droplets formed a stable crown 
structure. The research focuses on medium and high Weber 
numbers and R* is greater than 1.

In terms of simulation with the aid of computers, a variety 
of simulation methods are commonly used such as Lattice 
Boltzmann Method, Phase Field method, Level-Set, Volume 
of fluid method and coupling of the two. Zhang [30] used a 
high-density three-dimensional lattice Boltzmann model to 
simulate the process of liquid droplets impacting planar and 
spherical targets, and studied the effects of Reynolds number 
and target droplet size ratio on droplet flow dynamics. When 
the Reynolds number controlled by the velocity is increased, 
the film thickness profile collapses to a single curve in 
the first and second stages. When the Reynolds number 
is controlled by changing the viscosity, the rate of film 
thickness reduction slows down with increasing viscosity. 
Controlling for other factors by changing only the droplet 
size ratio, the rate of film thickness reduction slows as the 
size ratio increases. Shen et al. [10] used two-dimensional 
pseudopotential LBM to discuss the effects of size ratio, 
Weber number, and contact angle on the impact of a single 
droplet on a spherical target. The initial velocity plays an 
important role in impact dynamics. For hydrophilic surfaces, 
droplets gather at different speeds at the bottom, reducing 
wettability will increase the possibility of droplet splashing. 
However, the effect of viscosity changes on impact dynamics 
was not considered in Shen’s [10] work. The effect of 
viscosity, gas-phase density and diameter on droplet impact 
on a sphere was investigated in the research of Banitabaei 
[31] in conjunction with the CLSVOF (coupled level-set 
and volume-of-fluid) approach. Larger droplet-to-sphere 
diameter ratios increased the impact time. As the viscosity 
μ decreases (1cp < μ < 350cp), the intramembrane flow 
velocity decreases, which also leads to an increase in the 
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thickness of the lamellae on the sphere and the remaining 
film thickness. Malgarinos [32] used VOF and adaptive 
grid technology to report the impact of water droplets on 
spherical particles under constant temperature conditions. 
At lower Weber numbers and DTP numbers, droplets are 
more prone to partial or complete rebound. In addition, the 
research also found that for high Weber numbers (> 40) and 
low TPD (< 0.62), the average velocity of droplets leaving 
the particles after coating is 0.5 ~ 0.8 times the initial impact 
velocity. Yan Peng [33] developed a method that combines 
Level Sets and interface unit immersion boundaries. They 
studied the impact behavior of droplet Weber number 
1 < We < 150 and Ohnesorge number Oh = 0.0831 on 
spheres of different diameters (2 < R* < 10). The results 
indicate that the size of the spherical target has a significant 
impact on the impact dynamics, especially when the size 
is very small, the droplet will fracture in the first backward 
stage. However, this research is limited to neutral surfaces 
with a contact angle of 90°. Zhu et al. [34] developed a 
method for immersing boundaries and numerically studied 
them in the range of medium Reynolds numbers (~ 103) 
and Weber numbers (25 ~ 400). The influence of diameter 
ratio on impact dynamics was evaluated, and the diffusion 
and contraction mechanisms of droplets were determined. 
Hong [35] et al. studied the impact of double droplets on 
a spherical liquid film using a coupled level set and VOF 
method. The results indicate that surface curvature, droplet 
diameter, impact velocity, droplet spacing, and liquid film 
thickness all have important effects on the flow and heat 
transfer performance of droplets. Du [36] studied the impact 
dynamics of five single liquid droplets on solid spheres of 
different diameters using the phase field method. For low 
viscosity droplets, expansion factor β With dimensionless 
time τ satisfy β ∝ τ0.5. In capillary state, expansion factor 
β Scale is  Weα. And the index α compared to diameter λ 
satisfy α = 0.20λ−0.75 + 0.28. In the viscosity region, β Scale 
is  Reb, index b = 0.19λ−1.96 + 0.22.

Based on the relevant literature we have reviewed, the 
impact of a single droplet on a flat surface was carried out 
by Worthington [37] as early as 1905. Researchers have 
been exploring droplets for more than 100 years, and have 
conducted deep and extensive studies of single droplet mod-
els. Until the last 20 years, with the rapid development of 
high-frequency camera technology and computer-aided 
technology, the droplet impact process is demonstrated in 
milliseconds or even microseconds. The rapid development 
of multi-droplet dynamics research has expanded the pros-
pects for applications in industry. Research has focused on 
the dynamics of two droplet impact planes, liquid films, and 
tubular surfaces in frontal collisions, and some research has 
modeled the effects of droplet velocity, diameter, center 
distance, and other factors on the collision. Typically, in 
3D printing of bone scaffolds, binder droplets impact the 

surface of spherical hydroxyapatite (HA) [38], and explor-
ing the properties of inter-droplet dynamics will be helpful 
with improving the print quality. This article combines this 
practical application and selects the basic and common model 
in the multi-droplet model—the double droplet model. The 
remaining organizational parts are as follows: Sect. “Mod-
els and Methods” presents simulation and verification; 
Sect. “Results and Discussion” presents results and discus-
sion; and Sect. “Conclusions” presents conclusions.

Models and Methods

One of the keys to simulating multiphase flow is to track and 
capture the two-phase interface. The phase field [39] method 
provides a way to model fluid interfaces as having preferred 
thickness. One of the advantages of the phase field method is 
that it allows the contact line of the droplet to move along the 
wetting surface without any treatment for stress singularity 
[40]. In addition, the phase field method has good numeri-
cal stability for simulating two-phase flow with high density 
ratio, and can truly reflect the influence of surface tension 
[41]. In this article, the finite element simulation software 
COMSOL Multiphysics 5.6 was used to establish two-dimen-
sional rotational and three-dimensional axisymmetric models 
of droplet collisions, and the correctness of the models was 
verified. Use simple computational domains and structured 
grids to ensure high accuracy of the model [42].

Phase Field Theory

The simplest equation for the energy density function in the 
phase field method is given by the following equation:

In the above equation, 1
2
�|∇�|2 is the energy density at 

the two-phase interface, f0(�) is the free energy density, 
and fmix is the two-phase mixed energy density. When there 
are only phase 1 and phase 2 in the cell, the phase vari-
able φ =  ± 1, which is usually expressed by the following 
equation:

λ is the mixing energy density parameter and ε represents 
the capillary width of the interface between the two phases, 
which is usually half the size of the smallest cell.

By integrating the free energy density indeterminately 
into the computational domain, the free energy is expressed 
by the following equation:
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1
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Ω is the spatial region of the simulation. The chemical 
potential G is defined as the variational derivative of the free 
energy with respect to the phase variable ϕ:

Van der Waals assumes that the minimum free energy 
is possessed at the equilibrium interface. Therefore, the 
interface satisfies the equation for the chemical potential 
G = 0. For a one-dimensional (1D) interface, obtain the 
equation:

Since f0(± ∞) = 0 and d�
dx

|||x=±∞ = 0 , integration yields the 
following equation:

From the definition of the volumetric energy density, the 
equilibrium interface φ is defined:

From Eqs. (6) and (7), we can obtain:

Governing Equations

Combined with Fick’s law, the Cahn–Hilliard [43] equation 
is obtained as an evolution equation for the phase variable:

κ is phase-field mobility. The Cahn–Hilliard equation can 
be used to model the formation of flow interfaces as well as 
the evolution and dissolution of diffusion-controlled phase 
fields.

In order to make the fluid at the two-phase interface 
smoother and the interface easier to capture, the viscosity 
and density are given by

(3)F = ∫
Ω

f
mix

dΩ
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where subscripts 1 and 2 denote the dispersed and 
continuous phases, respectively. The incompressible 
flow from the Navier–Stokes equations equation and the 
Cahn–Hilliard advection equation are:

where u, p are the velocity and pressure, respectively.
We define the velocity direction as the direction of the 

droplet vertically downward. The contact angle is the angle 
between the normal phase of the liquid and the surface at 
the three-phase contact line. The unit normal phase n can 
be calculated by the following equation:

where nw and tw are unit vectors in the vertical and tangential 
directions of the surface, respectively.

Validation of Numerical Models

In order to validate the 2D and 3D models, the impact 
of a single droplet on a spherical surface was simulated 
using a triangular mesh and a tetrahedral mesh, respec-
tively. The validation refers to the experimental results of 
Zhu [34] and Bakshi [28], which were modeled with the 
same parameters for validation, respectively. As shown 
in Fig. 1a, the form of the droplet at different moments 
is basically consistent with the experimental form of Zhu 
et al. Droplet diameter D0 = 2.22 mm, sphere diameter 
Ds = 3 mm, Reynolds number Re = 1636, Weber num-
ber We = 17 and static contact angle θ = 95°. Similarly 
in Fig. 1b, the variation of dimensionless thickness h* 
(h* = h/D0) with dimensionless time t* (t* = tv/D0) for the 
present simulation maintains a similar trend with Bakshi’s 
experimental data. Droplet diameter D0 = 2.6 mm, sphere 
diameter Ds = 3.2  mm, Reynolds number Re = 4806, 
Weber number We = 131, static contact angle θ = 160°. 
Figure 1c, compares 16,628, 20,055, 31,625, 41,875 (mini-
mum size 5e−4 mm, 2e−4 mm, 1e−4 mm, 0.8e−4 mm, 
respectively) at four different mesh counts with triangular 
mesh type. The results show that the change in the number 
of meshes did not have a significant effect on the numerical 
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simulation results, and we decided to use meshes with a 
minimum size of 1e−4 mm in the subsequent simulations.

Modeling and Boundary Conditions

The validation of the validity of the model has been 
completed in the previous sections, and we continue to 
discuss the kinetic process of the impact of a continuous 
droplet on a wall by discussing the effects of different 
factors on the impact process. The boundary conditions 
and initial conditions are shown in Fig. 2. The two droplets 
are located directly above the spherical surface and the 
point of impact is the highest point of the spherical 
surface. The droplets have the same radius R0 = 1 mm 
and velocities v1, v2. The radius of the wetted spherical 
wall is Rws = 3 mm and the offset distance is L* (= L/D0). 

Open boundaries are set at the side and upper boundaries. 
The simulation space is a cylinder with a base radius of 
5 mm and a height of 10 mm, with the center of the base 
as the origin of the coordinate system. In the meshing 
schematic Fig. 2c, the coarse mesh is a rectangular area 
of 2.5 mm*5 mm in the upper right corner, and the rest 
of the area is the fine mesh. In the research of Tang [44], 
the empirical correlation equation for droplet impact wall 
velocity was compared to Range [45] when air resistance 
was considered:

in the equation:

(16)Vim =

√(g
h

)(
1 − e−2A(H−D0)

)

Fig. 1  a Comparison between simulation and experimental results for 
droplet morphology at a contact angle of 95°. b Comparison between 
simulation and experimental results on droplet thickness variation at 

a contact angle of 160°. c Results of grid independence validation 
under different grid sizes
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when air resistance is not considered:

Equations (16) and (18) where H is the initial height 
of the droplet, ρair is the air density, and Cf is the air 
resistance coefficient. When the droplet diameter is mil-
limeter and H < 0.3 m, the air resistance has a negligi-
ble effect on the velocity of the droplet when it impacts 
the plane. While ensuring the accuracy of numerical 
simulation calculations, we reduce computational time 
and improve computational efficiency [46]. We adopt a 
differential partitioning method for the grid size of the 
computational domain. The collision region and non-
collision region boundaries are virtualized as shown in 
Fig. 2 grid division. The droplet collision region uses an 
extremely refined mesh (number of meshes 91,343, mini-
mum mesh size 1e-4 mm) and the non-collision region 

(17)A =

3�airCf

4�D0

(18)Vim =

√
2g

(
H − D0

)

uses a generally refined mesh (number of meshes 32,442, 
minimum mesh size 7.5e−4 mm). We refer to the fluid 
properties used by Wang et al. [38] in the experiment 
for the gas–liquid two-phase properties, and the specific 
properties are shown in Table 1.

Results and Discussion

Effect of the Weber Number on Impact

In order to understand the effect of the impact velocity of 
the droplets on the impact dynamics, we change the veloci-
ties of the leading and trailing droplets by varying the 
droplet drop height, while their relative velocities are also 
changed. Figure 3 illustrates the sequence diagrams of the 
droplets during the impact on the sphere at three different 
Weber numbers We = 3.52/10/15 (v1 = 0.35/0.59/0.72 m/s, 
v2 = 0.29/ 0.56/0.7 m/s). When the leading droplet contacts 
the spherical surface, it spreads out rapidly, and the ini-
tial kinetic energy of the droplet is converted into surface 
energy, part of which is dissipated due to viscous forces. At 
around τ = 0.525, the leading droplet reaches its maximum 
spreading. Now, the droplet takes on a columnar shape, and 
its height becomes shorter as the relative velocity decreases. 
Subsequently, the edge liquid film keeps gathering to the 
center and the leading droplet undergoes a brief contrac-
tion. The trailing droplet merges with the leading droplet and 
keeps impacting downward inside the leading droplet. Under 
the impact of the trailing droplet, the center of the merged 
droplet sinks and spreads out again. When the coalesced 
droplet reaches maximum spreading, it presents a disc shape. 

Fig. 2  a Numerical simulation area and boundary conditions; b schematic diagram of droplet spreading diameter and height on the spherical sur-
face; c schematic diagram of local refinement of the mesh

Table 1  Physical properties of the liquid phase and gas phase

Material � (kg/m3) � ( Pa ⋅ s) � (N ⋅ m)

Liquid 990 9e−4 0.069
Gas 1.204 1.814e−5
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Under the influence of surface energy, the coalesced droplet 
enters the contraction stage, and the liquid flows radially 
inward toward the center symmetry line. Because of the 
different initial kinetic energies of the droplet system, the 
three final outcomes are no rebound, partial rebound, and 
full rebound. The above spreading diameter D(t) and time t 
are dimensionlessized as follows:

Dimensionless spreading diameter:

Dimensionless time:

where D(t) (unit: mm) for the moment t the actual spreading 
diameter of the droplet, D0 for the initial diameter of the 
droplet, v (unit: m/s) for the initial velocity of the droplet.

Figure 4a illustrates the course of the spreading coef-
ficient with time for different Weber numbers. The initial 
spreading process of the leading droplets does not seem to 
be affected by the Weber number, and there is no significant 
difference in the time to reach the maximum spreading βmax-1 
around τ = 0.5. However, the Weber number increased, the 

(19)� =
D(t)

D0

(20)� =
tv

D0

value of βmax-1 increased from 1.37 to 1.88 and the maximum 
spread βmax-2 increased from 2.02 to 2.86. The time interval 
Δτ between them has been shortened, which is related to the 
speed of the contact line movement of the droplets during 
spreading. βmax-1 and βmax-2 denote the maximum spreading 
factor that can be achieved by a droplet in the first spreading 
stage and the second spreading stage, respectively.

Figure 4b depicts the velocity change of the contact line 
during droplet spreading, and the inset shows a zoomed-in 
plot with time τ in the range of 0 ~ 2. At the instant when 
the leading droplet contacts the wall, the contact line has a 
large moving velocity, which decreases rapidly along with 
the spreading of the droplet. Near τ = 0.5 and τ = 0.7, the 
zero contact line velocity symbolizes that the droplet reaches 
the first and second maximum spreading. For droplets with 
lower Weber numbers We = 3.5 and We = 6, the contact 
linear velocity is significantly smaller than that of droplets 
possessing larger Weber numbers. A larger Weber number 
means that there is more energy within the droplet system, 
and more energy is available to overcome the viscous 
dissipation, thus more easily inducing the droplet to bounce 
off the wall.

When the leading droplet contacts the spherical surface, 
there is a relative difference in velocity between the two 
droplets, and liquid bridging occurs between the droplets due 

Fig. 3  Key frame sequence diagram of the droplet impact process at We = 3.52/10/15 (v1 = 0.35/0.59/ 0.72 m/s, v2 = 0.29/0.56/0.7 m/s)
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to inertia and capillary forces. Figure 5a shows the variation 
of the dimensionless width γ (γ = Db/D0) with time τ during 
the formation of the liquid bridge, which shows an over-
all increasing trend. Since the leading and trailing droplets 
possess a relative velocity difference at the contact instant, 
however, the increase of Weber number narrows the differ-
ence. It is maximum at We = 3.52 (0.061 m/s) and minimum 
at We = 15 (0.028 m/s). Therefore, when We = 3.52, the trail-
ing droplet possesses greater relative inertia, and the liquid 
bridge expands outward more rapidly without changing 
the viscosity, also shortens the bridge formation time. Fig-
ure 5b, c compares the radial velocities of the liquid bridge 
as well as the surrounding capillary pressure for different 
Weber numbers in the numerical calculations. The results 
show that the radial velocity is larger at the beginning of the 
bridge construction and gradually decreases with time until 
the evolution of the liquid bridge is completed. Compared 
with other situations, the radial velocity of the liquid bridge 
decreases more significantly when We = 3.52, and the time 
to complete the evolution is also shorter. At the same time, 
we also found that in the early stage of coalescence, the 
capillary pressure is higher and gradually decreases over 
time. This is due to the very small width of the liquid bridge 
at the beginning of its evolution, which can cause higher 
external capillary forces (Pc =  103*σ/Rb) decreases as the 
liquid bridge widens. The increase in the Weber number of 
droplets causes greater pressure on the external capillary.

Appendix Fig. 14 illustrates the 3D snapshots, velocity 
vectors and surface tension distributions of the liquid bridge 
formation at the same moment in time for three different 

Weber numbers. In the early stage of liquid bridge forma-
tion, the curvature at the bridge is large, forming a large 
surface tension and generating capillary waves on the liquid 
surface. As the width increases, the curvature of the liquid 
surface center soothes, and the region of high surface ten-
sion accompanied by capillary waves moves to the upper 
and lower sides. Velocity vector plots show that the edge 
droplets outside the leading droplets possess large relative 
flow velocities, and the fluid in the center of the coalescing 
droplets continues to flow downward. The merged droplet 
appears as a “dumbbell” with two large ends and a small 
center, which thickens as the droplet continues to collapse. 
At We = 3.52, time t = 2.8 ms, due to the small spreading 
speed of the leading droplet, the velocity difference between 
the two droplets is large, and the phenomenon of “bulging” 
occurs. This phenomenon still exists at We = 10, but with the 
increase of Weber number, the liquid bridge moves down-
ward faster and the above phenomenon disappears. Compare 
the shapes of droplets reaching maximum spreading in dif-
ferent cases. In the low Weber number case, the inertial force 
of the droplet spreading outward is not enough to overcome 
the surface tension and it spreads out on the spherical surface 
in the form of a cake. In the high Weber number case, the 
droplets have a larger inertial force, and the droplets spread 
out on the spherical surface in a ring shape with a small 
number of droplets remaining in the center. After reaching 
the maximum spreading, the surface energy is converted 
into droplet kinetic energy and a small amount of viscous 
dissipation, and the droplets begin to recede. At low Weber 
number We = 3.52, rebound cannot occur because the energy 

Fig. 4  a Variation of wetting diameter of droplets with time at different Weber numbers. b Variation of the moving speed of the three-phase con-
tact line, the inset shows a localized magnification of the time in the range 0 ≤ τ ≤ 2
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of rebound is not enough to support the sum of the work 
done by surface tension and viscous forces, and eventually 
the droplet deposits on the spherical surface. At We = 10, the 
droplet is elongated, showing a large head and a small tail. 
At the liquid neck, it breaks into two parts under the shear 
effect of surface tension, with the smaller part staying on the 
spherical surface and the larger part rebounding. At We = 15, 
the droplet inertial force increases further and is sufficient to 
overcome the drag force and rebound completely from the 
spherical surface. The above shows that the increase in the 
Weber number of the droplet promotes the rebound of the 
droplet from the spherical surface, and there is a transition 
from deposition to partial rebound and eventually complete 
rebound.

Figure 6a plots the characteristic diffusion time on a 
spherical surface as a function of the Weber number for 
leading droplet velocities We = 1.15–15.71. The maximum 
spreading time is usually between a few milliseconds to a 
few tens of milliseconds. Within this interval, the maximum 
time ts of the feature and the capillary inertia time τi 

( =
√

�R3

0
∕� ) in the same order of magnitude. This means 

that the change in the velocity of the leading droplet is 
always dominant during the spreading and coalescence 
process. As shown in Fig.  6a, expand to βmax-1 The 
characteristic time ts−1 (black symbol) seems to be very 
stable under the change of Weber number, and there is no 
significant change. But expand to βmax-2 The characteristic 
time ts−2 (red symbol) is significantly influenced by the 
Weber number. The nonlinear changes indicate that droplets 
are influenced by various factors during the second stage of 
spreading and coalescence. In the range of We = 1.15 ~ 2.94, 
the characteristic time ts−2 variation decreases sharply. The 
opposite occurs between We = 3.51 ~ 7.17, where the ts−2 
fluctuation rises, which again indicates that the aggregation 
between droplets is a very complex process. After We = 8.06, 
the characteristic time ts−2 gradually decreases with a slow 
decreasing trend, and after We = 12.12, it is in an overall 
smooth state. In the capillary inertia time normalized 
characteristic time ts/τi in Fig. 6b, the variation trend is 

Fig. 5  Variation of dimensionless width of liquid bridge between two consecutive droplets  Db/D0, radial velocity and external capillary pressure 
with time τ at different Weber numbers
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consistent with the characteristic time ts because τi is a 
constant.

In Fig. 6a and b, it was observed that the characteristic 
time ts is significantly affected by the Weber number, as 
the inf luence of velocity on the inertia time of the 
characteristic capillary is not taken into account. 
Therefore, we use the first and second maximum 
spreading factors determined by the Weber number β/2 
replace capillary inertia time separately τi The initial 
radius R0 of the droplet in is used to obtain the corrected 
capillary inertia time �

i−1,2
�
=

√
��

3

max−1,2
∕8�  . As in 

Fig.  6c, both the first and the second spreads, after 
correction for the capillary inertia time τ’ i normalized 
diffusion time t

s
∕�

i

�
= �W

�

e
 were successfully fitted to a 

master curve. As shown in Fig. 6d, after replacing the 
horizontal and vertical coordinates with logarithms, the 
data is fitted into a straight line, indicating that the 
normalized spreading time of droplets on a spherical 
surface follows a power law. The convergence fitting 
curves in Fig.  6c are: t

s
∕�

i−1
�
= 15.131We

−0.235 and 
t
s
∕�

i−2
�
= 1.505We

−0.478 , the majority of the residuals in 
the fitted curve are well distributed within the range 
of ± 8%, indicating good fitting performance. The above 
subscripts 1, 2 denote the first spreading stage and the 
second spreading stage, respectively.

Effect of Diameter Ratio on Impact

We investigated the effect of different diameter ratios λ 
(λ = 2Rws/D0) of continuous droplets on the impact process 

Fig. 6  a Feature spreading time ts; b normalized feature spreading time ts⁄τi; c modified normalized spreading time t
s
∕�

i

� as a function of the 
Weber number; d t

s
∕�

i

� conforms to the scaling law after modifying the transverse Weber number in c to a logarithmic scale
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when the droplet We = 8, λ = ∞ Indicates that the wall is 
flat. Figure 7a shows the variation of the dimensionless 
diameter of the droplet with time. The spreading process of 
the droplet is divided into five stages: a kinematic stage, a 
spreading stage, a receding stage, a re-spreading stage and 
a re-contraction stage. This is because of the characteris-
tic secondary spreading and receding of the droplet under 
the subsequent action of the trailing droplet, a phenomenon 
that also appeared in the previous section. When the droplet 
reaches βmax-2, it recedes under the action of surface tension. 
The change in curvature (diameter ratio λ) changes the domi-
nant and strong effects of inertial, surface tension and vis-
cous forces in the kinematics, resulting in different rebound 
outcomes. When λ = 1.5, the inertial force of the droplets 
plays a dominant role, overcoming the viscous force and 
surface tension, and sliding down from the top to the bottom 
of the spherical surface, with a continuous fluctuating rise in 
the spreading factor β. When λ = 4.0 ~ 12.0, the viscous force 
and surface tension effects are enhanced enough to overcome 
the inertial force and make the aggregated droplets work on 
the spherical surface.

The kinematic stage (0 < τ < 0.1) of the leading droplet 
contacting the wall shows consistency in droplet spreading 
for different diameter ratios λ. For droplet collisions on a flat 
surface, the law β ∝ τk (0.45 < k < 0.57) exists at kinematic 
stages [47, 48] which is also satisfied for single droplet col-
lisions on a curved surface [36]. Figure 7b depicts the vari-
ation of the wetting diameter of a continuous droplet during 
the kinematic stage. The spreading factor β versus time τ sat-
isfies β = 1.916τ0.488 when λ = 1.5, and β = 2.422τ0.493 when 
λ =  + ∞. The fitted curves can well describe the spreading 
during the kinematics stage and the period of time afterward, 
and β is distributed in the middle of the two fitted curves for 

different λ. With time, near τ = 0.24, the droplet spreading 
tendency gradually deviates from the kinematic stage. It is 
observed in Fig. 8 that the contact linear velocity decreases 
continuously, after the first drop to zero, and again after a 
short recede. Throughout the impact process, the contact 
linear velocity of the droplet is relatively flat on the surface 
with diameter ratio λ = 12, λ = ∞, and it continues to oscil-
late and change on the surface with diameter ratio λ = 1.5, 
λ = 4.

In terms of the maximum spread diameter βmax (i.e., 
βmax-2) and the time to reach it. As shown in Fig. 9, when 
λ = 2.5, the agglomerated droplet has the maximum 

Fig. 7  a Variation of the spreading factor β for different diameter ratios λ, with λ =  + ∞ denoting the plane; b In the kinematic phase 
(0 < τ < 0.1), the spreading factor β can be fitted to a β = aτb curve

Fig. 8  Effect of diameter ratio on contact line travel speed, where the 
inset is a localized magnification in the range of time 0 ≤ τ ≤ 2.5
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spreading diameter βmax = 2.4, and the time to reach βmax 
τ = 2.56. When the diameter ratio λ is increased, the cur-
vature of the wall surface decreases, and the viscous force 
between the droplet and the wall surface dominates the 
spreading process, and the energy used for the viscous dis-
sipation of the droplet increases. Both the maximum βmax 
and the time to reach it decrease rapidly, and the droplet can 
reach the maximum spread more quickly. When the diameter 
ratio λ is increased to a certain point, the effect of the influ-
ence on the spreading phase is no longer significant and the 
maximum spreading βmax no longer changes significantly.

After reaching βmax, the droplet starts to recede under the 
effect of surface tension. Figure 10a shows the variation of the 
maximum rebound height h* and the time to reach it for drop-
lets with different diameter ratios λ. The increase in diameter 
ratio decreases the energy used by the droplet for rebound. 
The maximum rebound height h* is 3.51 for the diameter 

ratio λ = 2.5, and it decreases as the diameter ratio increases. 
In the range 2.5 ≤ λ ≤ 7,  h* decreases more significantly than 
in the range λ > 7. Regarding the contact time, for 2.5 ≤ λ ≤ 7, 
the contact time decreases from τ = 7.29 at λ = 2.5 to τ = 6.89 
at λ = 7. Subsequently, for λ ≥ 7, the contact time does not 
decrease further with the increase in diameter and seems to 
remain relatively constant.

Effect of Lateral Offset on Impact

In order to characterize the effect of offset distance on the 
spread of a continuous droplet on a spherical surface, dimen-
sionless spreading diameter of the droplet in the transverse and 
longitudinal directions, described as follows:

where Sx and Sy are the actual spread of the droplets on the 
spherical surface in the yz and xz sections, respectively, as 
depicted in Fig. 11:

In order to better describe the collision process, a three-
dimensional symmetric model is used that is distinct from 
the previous section. Appendix Fig. 15 depicts the evolution 
of continuous droplets on a spherical surface at four differ-
ent offset distances, namely L* = 0.05, 0.15, 0.3, and 0.4. 
We can see that in all non-zero offset cases, the merging of 
droplets becomes asymmetric on the wall. The increase in 
offset distance means that the distance between the center 
of gravity of the droplet and the impact point increases, and 
the tail droplet exacerbates the asymmetry of the impact. 
At τ = 1, at this point, the trailing droplet has partially fused 
with the leading droplet. The tilting of the trailing droplet 
becomes more pronounced under surface tension at L* = 0.3, 
0.4. In all cases, the final spread of the coalescence droplets 

(21)�
∗

x
=

Sx

D0

, �∗
y
=

Sy

D0

Fig. 9  Maximum spreading factor βmax and time to reach it for drop-
lets at different diameter ratios λ

Fig. 10  Maximum rebound height h* and contact time of droplets for different diameter ratios λ
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on the spherical surface showed an annular shape. Due to 
the variation of the offset distance, the thickness of the liquid 
film on the left side of the liquid ring gradually becomes 
thicker under the impact of the trailing droplets. The τ = 3 ~ 7 
droplet is in the rebound stage, and in the case of low L*, the 
droplet resembles a tilted cylinder. Because of the increase 
of L*, the relative moving speed difference between the left 
and right contact lines increases, and the right contact line 
moves slower. In the case of high L*, there is a bulge on the 
left side of the droplet and the whole is more of a triangular 
shape. Note that in the three cases of L* = 0.15, 0.3 and 0.4, 
the left contact line briefly crosses the highest point of the 
spherical surface to reach the right side, and the droplet as a 
whole is on the right side of the sphere, a difference that we 
can obtain from the movement of the contact line in Fig. 13.

We show the trajectory of the droplet’s center of gravity 
during rebound in the top region of Appendix Fig. 15. The 
coordinate origin is the impact contact point. We intuitively 
observe that the motion trajectory of the center of gravity 
changes most sharply at L* = 0.05, and at the same time, the 
span in the y-axis direction is the narrowest. As the offset 
distance increases, the rise of the center of gravity becomes 
smooth and the span in the y-axis direction becomes wider. 
The maximum rise height of the center of gravity under 
the droplet inertial force and the curvature of the spherical 
surface also decreases. We can predict that the droplet may 
eventually slip out of the spherical surface as the offset 
distance increases further.

Figure 12 shows the evolution of the three-phase contact 
lines in the anterior–posterior (x) and left–right (y) direc-
tions of the coalescence droplet for the four cases, with the 
case of no offset (L* = 0) added as a comparison. As can be 
seen in Fig. 12a, the fringe motion in the anterior–posterior 
direction does not break the symmetry of the motion due to 
the presence of offsets. The first maximum expansion of the 
contact line is reached at τ = 0.8, and after a short period of 
recede it continues to spread until the maximum. In com-
parison to the no offset, the maximum spread in the non-zero 
offset case decreases with increasing  L*. The droplet reaches 
its maximum spread near τ = 2.64 and then starts to recede. 
The droplets cross the impact point at τ = 5.94, 6.02, and 6.73 

for offsets L* = 0.15, 0.3, and 0.4, respectively. Correspond-
ingly, we observe at the end of the motion in Fig. 12c that the 
curves intersect the straight line y/D0 = 0, implying that at this 
point the contact lines all move to the right side. In Fig. 12b, 
the longitudinal expansion factor �∗

x
 in the anterior–posterior 

direction has a similar trend at different offsets L, with the 
maximum value generally decreasing with increasing L*.

The evolution of the contact line on the left and right sides 
is compared in Fig. 12c, while the moving speed of the con-
tact line is depicted in Fig. 13a, b. From Fig. 12c, it can be 
observed that in the early stage of the motion (τ = 0 ~ 0.6), the 
wetting diameters and contact line moving velocities are the 
same for different L*, indicating that the trailing droplet does 
not intervene in the motion of the leading droplet at this time. 
As time passes, the two droplets continue to merge and the dif-
ference in spreading diameter begins to appear. The increasing 
of L*, the trailing droplet keeps moving away from the impact 
point, which makes the wetting diameter of the right side keep 
getting larger and the opposite left side keep getting smaller. 
The maximum �∗

y
  in Fig. 12d shows an increasing trend with 

increasing L*. In the moving velocity diagram of the contact 
line in Fig. 13a, b. After reaching the first maximum spread, 
the left contact line has a larger recede than the right, and the 
larger the offset L* the larger the recede in this stage. In the 
subsequent second spreading stage, the velocity of the contact 
line on the right side is larger than that on the left side, and 
the larger L* is the larger the spreading velocity in this stage.

Conclusions

In this work, the effects of different Weber numbers, liquid-
spherical diameter ratios and offset distances on the impact 
of continuous droplets are investigated based on a neutral 
spherical surface with a fixed contact angle (θ = 90°). The 
phase field method (PF) is used to establish two-dimensional 
rotating and three-dimensional symmetric models, simulate 
the evolution of droplet impact process, and verify the cor-
rectness of the simulation model and the mesh independ-
ence. The research will provide theoretical analysis in the 

Fig. 11  Schematic diagram of dimensionless spreading distances of a continuous droplet in the x and y directions under non-zero offset condi-
tions
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Fig. 12  Evolution with time τ of a front and back boundaries, b longitudinal expansion coefficients �∗
x
 , c left and right boundaries, and d trans-

verse expansion coefficients �∗
y

Fig. 13  In the transverse (y) direction. a Evolution of the moving speed of the right contact line; b evolution of the moving speed of the left con-
tact line
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field of 3D bone scaffold printing. The important findings 
of the research are as follows:

1. The collision process of two neighboring droplets was 
simulated for different Weber numbers (3.5 ≤ We ≤ 15). 
The knotted droplet undergoes two successive spreading 
and contraction. As the Weber number increases, the 
maximum spreading βmax-1 of the first stage of the droplet 
increases from 1.37 to 1.88, and the maximum spreading 
βmax-2 of the second stage increases from 2.02 to 2.86. 
The time interval Δτ between the two is shortened from 
1.41 to 0.97. After correcting the capillary inertia time �′

i
 

using the first and second maximum spreading diameters 
βmax-1,2/2 and normalizing the characteristic diffusion 
time ts, ts∕��i−1 can be fitted by the curve 15.131  We−0.235 
and ts∕��i−2 can be fitted by the curve 1.505  We−0.478. The 
data were fitted to a straight line after the horizontal 
coordinate was transformed to logarithmic.

2. When varying the diameter ratio λ of the droplet to the 
sphere, the spreading factor β satisfies the aτb law in the 
early stage of kinematics (0 < τ < 0.1) and is distributed 
in the middle region sandwiched between curves 
β = 1.916τ0.488 and β = 2.422τ0.493. The increase in the 
diameter ratio λ decreases the maximum spreading 
factor β from 2.41 to 2.29, and the maximum rebound 
height from 3.51 to 3.22, indicating that the increase in 
the diameter ratio increases the energy dissipation.

3. After the two droplets are no longer coaxial but have an 
offset distance, the spreading process in the y-axis direc-
tion no longer exhibits symmetry. As the offset distance 
L* increases, the maximum contact line spreading fac-
tor in the y-axis direction decreases from 1.075 to 0.82 
on the left side and increases from 1.075 to 1.496 on 
the right side. The total spreading factor on the y-axis 
increases from 2.15 to a large 2.31. The spreading factor 
decreases in the x-axis direction, but more noticeably 
than that, the increase in the diameter ratio accelerates 
the time it takes for the contact line to cross the vertex 
of the sphere.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11814- 024- 00159-5.
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