
Vol.:(0123456789)

Korean Journal of Chemical Engineering (2024) 41:2423–2432
https://doi.org/10.1007/s11814-024-00146-w

ORIGINAL ARTICLE

Performance Benchmark of Cahn–Hilliard Equation Solver
with Implementation of Semi‑implicit Fourier Spectral Method

Ilhyun Cho1 · Jeonghwan Lee1 · Kunok Chang1 

Received: 15 January 2024 / Revised: 15 January 2024 / Accepted: 1 March 2024 / Published online: 12 March 2024
© The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024

Abstract
The performance scaling issue of phase-field simulation is one that must be overcome to perform realistic large-scale three-
dimensional prediction. The CUDA (Compute Unified Device Architecture) parallel acceleration method developed over a
decade ago showed very good performance in terms of calculation speed, but was limited by the small size of memory on the
GPU. Recently, Apple Inc. has announced a GPU–CPU hybrid architecture, Apple silicon (M1 or later), and we examine the
advantages of this architecture for performing realistic large-scale phase-field simulations and compare it to existing CUDA
architecture. When solving the Cahn–Hilliard equation using the FFT (Fast Fourier Transform) with CUDA architecture
developed by Nvidia and Apple silicon architecture developed by Apple Inc., we compared performance across hardware,
as well as other considerations such as form factor and heat dissipation of the workstation.

Keywords  Parallel computing · Performance scaling · Phase-field modeling

Introduction

Predicting the microstructure of a specific domain is a very
important engineering task, and many important proper-
ties depend on the microstructure [1–3]. For example, the
spacing between dendrite arms on the electrode surface of a
Li-ion battery is a key variable that determines battery per-
formance [3]. The phase-field method has been developed
and popularized by leaps and bounds in the last few decades
due to its ability to predict microstructures by taking into
account the thermodynamic and kinetic properties of materi-
als [4, 5], as well as many other multiphysical interactions,
such as elastic effects [6] and electrostatic effects [7]. Phase-
field methods have dramatically improved computational
performance and tractability by implicitly storing informa-
tion about the interface, whereas many numerical methods
have to explicitly track the boundaries of the domain [8–11].

Many numerical techniques are applied to solve the
Allen–Cahn (Ginzburg–Landau) and Cahn–Hilliard equa-
tions in the phase-field method, such as the Finite Dif-
ference (FD), Finite Element (FE), Finite Volume (FV),

and Semi-Implicit Fourier Spectral (SIFS) method. Espe-
cially, the SIFS method is a popular method for solving the
Cahn–Hilliard equation because it is known to dramati-
cally increase the numerical stability of the fourth-order
Cahn–Hilliard equation [12, 13].

Despite the numerically superior stability of the SIFS
method, the need to repeatedly perform the Discrete Fou-
rier Transform (DFT) and inverse-DFT (iDFT) at each itera-
tion was a significant burden. As the need to improve the
performance of numerical computations has grown, vari-
ous parallelization techniques have evolved, including CPU
parallelism techniques such as MPI [14] and OpenMP [15],
and GPU parallelism techniques such as CUDA [16] have
become very popular since the 2010s. In particular, cuFFT, a
DFT library developed for CUDA [17], and vkFFT, a library
developed for Apple silicon that supports CPU-GPU hybrid
parallelization [18], are expected to be important break-
throughs for SIFS, whose scalability has traditionally been
limited by the time and resources required for DFT.

In the case of GPU parallelization, tens or hundreds of
thousands of cores are used, which is very advantageous in
terms of computational speed, but it has the limitation that
memory is relatively limited [19]. Also, since there are many
cores, the amount of heat generated is very large, so the size
of the machine becomes larger and the intensive cooling
system is needed.

 *	 Kunok Chang
	 kunok.chang@khu.ac.kr

1	 Department of Nuclear Engineering, Kyung Hee University,
Yongin, Korea

http://orcid.org/0000-0002-6176-8748
http://crossmark.crossref.org/dialog/?doi=10.1007/s11814-024-00146-w&domain=pdf

2424	 I. Cho et al.

There were clear limitations to scaling the physical
memory of the GPU, therefore, optimizations were needed
to reduce the latency of CPU-GPU memory communica-
tion. This can be achieved by reducing communication
overhead, such as optimizing load distribution and ensur-
ing parallel scalability [20]. To this end, research on the
optimization of parallelization is being conducted in the
direction of solving memory size limitations or reducing
memory latency. The asynchronous method, which can
interpret larger memory sizes more than the actual GPU
memory has been implemented [19]. Additionally, CUDA
unified memory which allows for accessing both CPU and
GPU memory as a single memory using pointer has been
applied to increase compute density [21], optimizing GPU
memory access pattern to interpret the ultrafast magnetiza-
tion dynamics model [22], and utilizing the low-latency
shared memory within GPU as a user-managed cache to
analyze the dendrite growth of nickel-based superalloys
[19]. These methods alleviate memory size limitations and
memory overhead, but they either result in reduced per-
formance or require complex algorithms to address data
latency.

Recently, a Heterogeneous architecture has emerged, inte-
grating CPU, GPU and memories of each. Both CPU and
GPU access the physically same memory, there is no need
for separate data transfer processes. With these advantages,
the Apple silicon architecture is reported to perform notably
efficiently [23, 24]. While Nvidia GPUs leverage CUDA for
parallelization, Metal framework is used for Apple silicon
GPU parallel implementation. Metal framework offers func-
tionalities with high-performance features. To utilize the full
capability of the Metal framework, an optimization method
is considered.

Herein, we developed a GPU parallel solver for the semi-
implicit scheme of the Cahn–Hilliard equation. Performance
benchmarks were conducted on Nvidia GPU using CUDA
and compared the SoC (System on a Chip) architecture
developed by Apple Inc., utilizing the Metal framework.

We compared the performance of parallelization using
the Metal Framework incorporated into SoC of Apple with
that of Nvidia GPU parallelization. We presented various
benchmarks that can serve as a reference for future develop-
ment of high-performance software for engineering includ-
ing computational materials science.

Methods and Details

Semi‑implicit Fourier Spectral Method

We simulated the spinodal decomposition, an example can
be described by Cahn–Hilliard equation [8] in Eq. (1).

where the free energy of the system is expressed as Eq. (2).

Where c is the concentration of the solute, F(r, t) is the free
energy of the system, and f(c) is the chemical free energy,
� is the gradient energy coefficient, and M is the mobility.

Implementing Fourier spectral scheme [25],

Where k = (kl, k2, k3) denotes the reciprocal vector in Fou-
rier space, c̃(k, t) and { �f (c)

�c
}�
k
 are the Fourier transforms of

c(r, t) and �f (c)
�c

 , respectively. Implementing Semi-implicit
scheme [25],

Benchmark problems were proposed by Jokisaari et al. [26]
for phase-field simulation, and a simple polynomial form of
the free energy is applied. We applied a double-well poten-
tial to f(c), which is a second-order polynomial function,
where c has a concentration range between 0 and 1, and the
coefficients for mobility and boundary energy were set to
M = 1 and � = 1 , respectively.

(1)
�c(r, t)

�t
= ∇ ⋅

[

M(r, t) ⋅ ∇

(

�F(r, t)

�c

)]

(2)F(r, t) = ∫V

{

1

Vm

[

f (c) +
1

2
�(∇c)2

]}

dV

(3)

�c(r, t)

�t
= M∇2

[

�f (c)

�c

− �∇2c(r, t)

]

(4)

𝜕c̃(k, t)

𝜕t

= −Mk2
[{

𝛿f (c)

𝛿c

}�

k

+ 𝜅k2c̃(k, t)

]

(5)

c̃n+1(k, t) − c̃n(k, t)

Δt

= −Mk2
[{

𝛿f (c)n

𝛿c

}�

k

+ 𝜅k2c̃n+1(k, t)

]

(6)c̃n+1(k, t) = c̃n(k, t) −
Mk2Δt

𝛿f (c)n

𝛿c

�

k

1 + 𝜅k4Δt

(7)f (c) = c2(c − 1)2

(8)c̃n+1(k, t) = c̃n(k, t) −
Mk2Δt{2(c − 1)(2c − 1)}�

k

1 + 𝜅k4Δt

2425Performance Benchmark of Cahn–Hilliard Equation Solver with Implementation of Semi‑implicit…

Metal API

GPU architecture in parallel programming is characterized
by its ability to leverage a multitude of cores for simulta-
neous operations. However, it is less efficient in executing
sequential tasks. To overcome this limitation, CPU inter-
venes and invokes parallel operations through kernel func-
tions or shader functions executed on the GPU. Rather than
executing multiple kernels concurrently, CPU schedules
them one at a time in a sequential manner. This ensures
orderly execution while harnessing the power of paral-
lel computing. When utilizing Apple silicon for parallel
computing purposes, developers must employ Metal API
(Application Programming Interface), which allows for
hybrid GPU–CPU parallelism [27]. To write efficient ker-
nel functions with Metal API, programmers are required
to utilize the C++-style Metal Shading Language (MSL)
[28]. It should be noted that Metal API exclusively sup-
ports Objective-C and Swift languages; however, it does
offer support for interfacing with C++ language as well.
In addition to facilitating effective utilization of GPUs via
Metal API, Apple Inc. provides MPS (Metal Performance
Shader) Library-a valuable resource containing preemi-
nent mathematical operations that are highly optimized
for enhanced performance during computation processes.

Figure 1 shows the schematic execution model of Metal
API.

Parallel operations are executed with a unit work called
Grid, which divided into subsets called threadgroups.
Threadgroup consists of threads. The threads in a thread-
group are also composing SIMD (single-instruction, multi-
ple data) groups. Metal API concurrently executes kernels
through SIMD threads, which resembles warp of CUDA. For
all Apple devices, each SIMD consists of 32 threads. The
number of threadgroups affects the efficiency and perfor-
mance of the code. However, the optimal threadgroup sizes
depends on many factors, such as the size of system and the
complexity of the code. In this study, we implemented opti-
mization techniques to efficiently solve the problem using
the SIFS scheme. Specifically, we employed a thread group
size adjustment strategy, which involves adjusting the num-
ber of threads and thread groups.

Threadgroup Size Adjustment Strategy

To fully utilize potential of modern GPU, maintaining work-
load balance is considered important between heterogeneous
cores [29]. Fang et al. [30] suggested changing sizes of GPU
kernel threadblock improves computational performance.
They achieved at least 20% reduced execution time at their
benchmarks.

Fig. 1   Metal API execution
model for CPU–GPU hybrid
architecture

2426	 I. Cho et al.

Similar with CUDA, Metal kernels are executed through
designated threadgroup numbers during kernel’s execution.
Therefore, we adjust threadgroup sizes. For Metal API, the
number of threadgroup size is up to 1024. Given that

increasing the number of threads will enhance performance
because there will be more concurrent operations. However,
since grid is constrained, the number of threadgroups will
decrease. Since threadgroups are distributed to GPU cores
to process tasks, It is important that threadgroups are evenly
distributed across cores. A small number of threadgroups
can somewhat decrease performance due to imbalance of
cores.

In this study, the system dimension was divided into 12 ,
22 , 42 , 82 , 162 , and 322 to explore the optimal threadgroup
size for the system dimensions of 10242 , 20482 , and 40962 ,
and the performance depending on the threadgroup size is
shown in Fig. 2.

We also investigated optimal threadgroup size and per-
formance improvement percentage(%) for each system
dimension shown Table. 1. The parallel performance was
observed to degrade for thread group sizes of 12 and 22 due
to their small sizes. Therefore, we focused on performance
improvement over 42 threadgroup sizes. The result shows
that the strategy greatly affects runtime performance over
20482 system dimension. The underlying reason lies in the
fact that the Cahn–Hilliard equation, implemented with the
SIFS method, involves both FFT (Fast Fourier Transform,
an optimized Discrete Fourier Transform) operations and
non-FFT operations. In terms of performance improve-
ment, the efficiency of the FFT function call is determined
by the external library. However, The efficiency of non-FFT
operations can be optimized by adjusting the thread group
size. The vkFFT library utilized in this study exhibits peak

grid = threadgroup × thread

efficiency at a system dimension of 20482 , and performance
decreases thereafter. Therefore, the performance improve-
ment in non-FFT operations becomes more important for
system dimensions larger than 20482 , leading to a 36.5%
performance improvement at 40962 system dimension.

Results & Discussion

We developed code to solve three versions of three-dimen-
sional Cahn-Hillard equations with SIFS using cuFFT for the
CUDA-accelerated version (hereafter CUDA-version code)
and vkFFT for the Metals-accelerated version (hereafter
METAL-version code). We also developed additional set of
code of serial version (hereafter SERIAL-version code). For
METAL-version code, a set of simulations were carried out
on Apple silicon, and for CUDA-version code, we ran the
calculations on a custom workstation utilizing an Intel CPU
and NVIDIA GPU built by a professional builder, and com-
pared computational performance and power consumption.
For the performance benchmark, we measured the physical
time it took to perform the calculations on each worksta-
tion. Also, execution time including data transfer between
CPU and GPU is recorded and compared for CUDA-version
code and METAL-version code. We have verified that the
METAL-version code and CUDA-version code produce

(a) 10242 system dimension (b) 20482 system dimension (c) 40962 system dimension

Fig. 2   The required computation time for simulating the given system dimensions, namely a 10242 system dimension, b 20482 system dimen-
sion, and c 40962 system dimension, is examined as a function of the threadgroup size in the Metal kernel

Table 1   Optimal threadgroup size and execution time reduction per-
centage(%) compared with 12 threadsize

System dimension 10242 20482 40962 81922

Optimal threadgroup size 162 162 322 322

Performance improvement (%) 7.1 2.7 36.5 30.0

2427Performance Benchmark of Cahn–Hilliard Equation Solver with Implementation of Semi‑implicit…

the same results based on the time-tested accuracy of the
SERIAL-version code.

Physical Size and Power Consumption
of the Workstation

We utilized workstations of various form factors for this
study. Workstations with Nvidia GPUs are typically very
large and heavy, and the size of the GPU is getting bigger
and bigger for cooling efficiency. For convenience, we’ll
refer a to workstation with Nvidia GPU as a NVIDIA-work-
station. However, with an integrated and optimized design,
Apple silicon achieves not only small in size but also pow-
erful performance. In Fig. 3, we can see the difference in
size between a high-performance computer with an Apple
M2-Ultra and a workstation with an RTX-3090Ti. Mac Stu-
dio (installed M2-Ultra chipset), is much smaller in size
compared with NVIDIA-workstation. Moreover, compared
with about 20 kg weighted workstations, Mac studio only
weighs 3.6 kg. Details of the hardware used in each imple-
mentation can be found in the Table 2. Comparing TDP,
which is power consumption at maximum theoretical load,
the Mac studio (M2 Ultra, 60W) requires about 1/8 power of
the Workstation (RTX3090Ti, 450W). Less power consump-
tion means a smaller cooling system and less heat genera-
tion, which has many advantages for workstation operation.

Affordable System Size

Performing large three-dimensional simulations requires
a lot of computational resources, and GPU memory is
usually not enough for this task. Of course, multi-GPUs
can be utilized to expand the available memory size, but
there is a problem of scaling due to transmission between
GPUs, and there are limitations that make it difficult to
implement technically. For example, based on previous
methods such as Multi-GPU or asynchronous method,
are not satisfactory for high bandwidth compared with
VRAM of single GPU. Also, technical implementation
of multi-GPU strategy is relatively challenging because it
costs a lot and asynchronous method follows an additional
algorithm which could deteriorates runtime performance.
Apple silicon applied unified memory which either CPU
and GPU can occupy physically same memory. Therefore,
there is no discrete VRAM for Apple silicon and GPU
memory could be very large.

Instead, Apple silicon GPU have maximum allocat-
able memory, without affecting its runtime performance.
Each GPU allocatable memory (VRAM) for Apple silicon
and Nvidia GPU is investigated in Tables 3 and 4. Result
shows that VRAM of M2 Ultra (96 GB) is 4 times bigger
than VRAM of single RTX-3090Ti (24 GB), about 6 times
bigger than VRAM of Tesla V100 (16 GB). Therefore,

Fig. 3   Comparison of worksta-
tion dimension with a Mac
studio (M2 Ultra) and b Nvidia
GPU workstation (RTX3090)

(a) Mac Studio(M2 Ultra) (b) Nvidia GPU Workstation(RTX3090)

Table 2   Hardware features of
the workstation utilized in this
study

M1 Pro M2 ultra RTX2070 RTX3090Ti RTX4090 Tesla V100

Memory [GB] 16 (unified) 128 (unified) 8 24 24 16
Memory band-

width [GB/s]
200 800 448 1008 1008 900

TDP [W] 30 60 175 450 450 300

2428	 I. Cho et al.

Apple silicon have an advantage for larger systems, with-
out those GPU memory running out problems.

Solving the Cahn–Hilliard equation requires the initial
value of conserved order parameter. We investigate sys-
tems that sized power of two at each axis. Therefore, initial
data file sizes could be substantial. For example, the 40962
system size has about 64 MB size, and the 327682 system
size has about 4 GB size at a single precision accuracy in
two-dimensional system. These sizes vary depending on the
extension of the file or the accuracy required for correspond-
ing research.

However, GPU parallelism requires much more memory
than the initial data file size. The data for parallel computa-
tion is stored in a component called a buffer, which GPU is
able to access. However, it is recommended to use separate
buffers for different operations. This is because in parallel
operations, different operations modify the same data at the
same time, creating a race condition. Therefore, multiple
buffers are required for parallel computing in terms of data
integrity. The amount of memory required can vary depend-
ing on the environment, such as operating system and pro-
gramming language. Memory in GPU required for solving
the Cahn–Hilliard equation is investigated respectively: two-
dimensional system for Table 5, three-dimensional system
for Table 6.

Maximum affordable system sizes for each devices are
decided by VRAM and Memory requirements. For example,
163842 system requires 8.77 GB VRAM for CUDA. Conse-
quently, RTX2070 cannot run CUDA code at 163842 sys-
tem because VRAM (8 GB) is not sufficient. The maximum

affordable system sizes of each hardware are shown in
Table 7. Comparing affordable maximum system sizes, M2
Ultra (96 GB VRAM) can afford 327682 and 10243 system
sizes, while RTX4090 (24 GB VRAM) only afford 163842
and 2563 system size. Also, M1 Pro (10.9 GB VRAM) can
afford same comparable sizes with RTX4090, RTX3090Ti.
However, despite having sufficient memory (24 GB VRAM)
on both RTX4090 and RTX3090Ti, the CUDA code fails
to run at a system size of 5123 . This discrepancy is nota-
ble since the code operates successfully on a system size
of 163842 , which has smaller dataset, suggesting that the
issue may not be related to memory size or VRAM. Two dis-
crete error message are emerge—one indicating a memory
access issue and the other signaling with insufficient mem-
ory. Specifically, at a system size of 5123 , the error message
is as follows: 0: DEV_MKDESC: allocate FAILED:700(an
illegal memory access was encountered). Conversely, at a
system size of 10243 , the error message is as follows: 0:
ALLOCATE: 4303355904 bytes requested; status = 2 (out
of memory) While dividing the data for computation might
offer a solution, this may require additional algorithms and
result in communication overhead. The operating system and
its version are Ubuntu 20.04.6 LTS.

Performance Benchmark

The performance benchmark of CPU and GPU codes imple-
mented to each device is evaluated.

In Fig. 4, we compared the binary execution time
between two devices (METAL-workstation with M1 Pro
and NVIDIA-workstation with RTX2070). For the M1 Pro,
we saw an overall lower performance gain compared to the
RTX2070. This is likely due to lower bandwidth (200 GB/s)
compared to that of RTX2070 (448 GB/s). It is shown that
performance gain of CUDA steadily increases along the sys-
tem size, while Metal’s performance gains are somewhat
stagnated after 20482 system size. However at particular
20482 system, Metal’s simulation time were faster than that
of CUDA’s.

In Fig. 5, we displayed the binary execution time between
on workstation with M2-Ultra and workstations with
RTX4090 and RTX 3090Ti, respectively. At 2562, 5122
system dimensions, two CUDA-workstations result in faster
simulation time. However, at 10242, 20482, 40962 system

Table 3   Maximum affordable GPU memory for Apple GPUs

Apple Inc M1 pro M2 Ultra

RAM [GB] 16 128
VRAM [GB] 10.9 96
Percentage [%] 68 75

Table 4   Maximum affordable GPU memory for Nvidia GPUs

Nvidia RTX 2070 RTX 3090Ti Tesla V100

VRAM [GB] 8 24 16

Table 5   Memory required for two-dimensional systems operating
Cahn–Hilliard equation solver

Two-dimensional 40962 81922 163842 327682

Buffer size 64 MB 256 MB 1.02 GB 4.09 GB
Metal 466 MB 1.77 GB 7.01 GB 28.10 GB
CUDA 828 MB 2.40 GB 8.77 GB –

Table 6   Memory required for three-dimensional systems operating
Cahn–Hilliard equation solver

Three-dimensional 1283 2563 5123 10243

Buffer size 8 MB 64 MB 512 MB 4.09 GB
Metal 81 MB 418 MB 3.04 GB 28.10 GB
CUDA 89 MB 826 MB – –

2429Performance Benchmark of Cahn–Hilliard Equation Solver with Implementation of Semi‑implicit…

dimensions, the METAL-workstation shows superior com-
putational efficiency. However, 81922, 163842 system dimen-
sion result in CUDA-workstation is again superior. Overall,
the performance of the phase-field simulation solver with
SIFS on the M2-Ultra and RTX-3090Ti is similar. However,
the trend of which architecture is more dominant changes
slightly depending on the size of the system dimension.

In Fig. 6, the speedup of every device is plotted.
Speedup on the y axis represents the ratio of GPU paral-
lel code execution time to CPU code execution time. This
means the larger the speedup, the greater the performance
of each GPU. Theoretically, GPU parallelization achieves
scalability with increasing data size compared to CPU.

However, GPU performance is decided by number of
factors. There are two limiting factors for performance
depending on the conditions: bandwidth and number of
cores. Bandwidth decides how much data is transferred
every second. Number of cores implies the amount of data
a device can work at once. At Fig. 6, M1 Pro(200 GB/s),
RTX2070(448 GB/s) shows lower performance increase
over 10242 dimension, compared with larger bandwidth
devices(i.e., M2 Ultra(800 GB/s), RTX3090Ti(1008
GB/s), RTX4090(1008 GB/s))

Nevertheless, higher bandwidth does not always trans-
late to performance gains. This is because, when a suf-
ficient amount of data is transferred, the GPU’s ability to
process it all at once becomes crucial. In addition, even
though the RTX 4090 and the RTX 3090Ti have the same
bandwidth, significant performance gains are observed on
the RTX 4090 (16,384 CUDA cores) compared to the RTX
3090Ti (10752 CUDA cores).

Moreover, Metal code shows decreasing speedup after
20482 dimension for M1 Pro and M2 Ultra. It is thought
to be the inefficiency of Fourier transform, which takes
a large part of Cahn–Hilliard solver. Therefore, a larger
speedup is expected for larger system sizes if an optimized
FFT (Fast Fourier Transformation) function is provided
in Metal. Despite those drawbacks, it is remarkable that
speedup of M2 Ultra is comparable to or better than latest
GPUs of Nvidia.

Table 7   Affordable maximum
system size for Cahn–Hilliard
equation solver for each devices

M2 Ultra M1 Pro RTX 4090 RTX 3090Ti RTX 2070

VRAM [GB] 96 10.9 24 24 8
Three-dimensional system 10243 5123 2563 2563 2563

Two-dimensional system 327682 163842 163842 163842 81922

Si
m

ul
at

io
n

Ti
m

e(
se

co
nd

)

Fig. 4   Simulation time elapsed at each system dimension for Cahn–
Hilliard equation solver in M1 Pro, RTX 2070

Si
m

ul
at

io
n

Ti
m

e(
se

co
nd

)

Fig. 5   Simulation time elapsed at each system dimension for Cahn–
Hilliard equation solver in M2 Ultra, RTX 4090, RTX 3090Ti

Sp
ee

du
p(
X)

Fig. 6   Computational performance for two-dimensional simulations
at each system dimension with different hardware configurations

2430	 I. Cho et al.

Data Transfer

Data transfer between the CPU and GPU is essential for
GPU computation. At the beginning of parallel operation,
CPU data is sent to the GPU and copied. To check the result,
it must be sent back to the CPU and copied. Therefore, there
are problems with memory management due to copying and
performance degradation due to low bandwidth between
CPU and GPU. Research has been done to solve these prob-
lems software-wise, but in the end, CPU-GPU data transfer
is unavoidable. However, using unified memory architecture
eliminates the need for memory copying and also reduces
data latency.

We investigated the execution time of Cahn–Hilliard
equation SIFS solver, including data transfer between CPU
and GPU with CUDA-version code and METAL-version
code. Simulations were performed on 20482 system dimen-
sion until 10,000 time step(iterations). Every 10 time step,
we wrote the result file as the text file.

Table 8 compares the time spent transferring data at each
stage of the computation. We are looking at performance
degradation due to CPU-to-GPU data transfer. Therefore,
we separately measured data output time, which is deter-
mined by CPU performance. Since write time is dependent
on CPU performance, the AMD Ryzen9 3900X (3.8 GHz)
with a higher base clock took less time than the M1 Pro
(2.0 GHz). We expected the CPU-GPU data transfer time in
CUDA (RTX2070 + AMD Ryzen9 3900X) to be high, but
it only took 1.24 s for 1000 times data outputs. Metal (M1
Pro) did not require any data transfer time. However, to out-
put the data during the continuous parallelization process,
we used the method of synchronization at the end of each
iteration to read the result directly. This resulted in a time
delay of about 7 s compared to the original execution time of
M1 Pro (20 s). These results are puzzling, as Apple silicon
has a hardware advantage. Presumably, despite using slower
PCIe, we believe that many optimized memory management
methods of CUDA has some advantage.

Morphological Assessment

All set of codes used the same initial concentration. Since we
applied Eq. 7 as a double-well potential, as shown in Fig. 7,
the second-order derivative is negative in the concentration

range from about 0.23 to 0.78. Figure 8 illustrates spinodal
decomposition with an initial concentration of 0.23, while
Fig. 9 depicts the coarsening phenomenon when the initial
concentration is set to 0.5.

Also, three-dimensional systems are simulated and results
are visualized in Fig. 10. As expected, spinodal decomposi-
tion is shown above 0.23 concentration. Results confirm that
CPU, GPU-CUDA, and GPU-Metal based codes exhibit the
same morphology.

Conclusions

Using Apple silicon architecture and CUDA architecture, we
simulated the spinodal decomposition phenomenon based
on a semi-implicit Fourier spectral method that intensively
utilizes the Fast Fourier Transform. All set of codes imple-
mented with CUDA and Metal parallelization technique
produced the same result in terms of physical outcomes;
however the time taken to obtain results varied. In terms
of computational efficiency, the M2 Ultra architecture was
comparable to the RTX 3090Ti, but the maximum affordable
memory of the GPU was approximately four times larger
than the RTX 3090Ti. In terms of the manageability of the
workstation, the Mac Studio from Apple Inc. has a signifi-
cant advantage over a typical workstation with the RTX
3090Ti, as it is very small in its form factor and consumes
only 1/8 of the power.

Table 8   Comparing execution time including data transfer between
CPU-GPU at RTX2070 and M1 Pro

Run time
[sec]

Write time
[sec]

Data
transfer time
[sec]

Total time
[sec]

RTX 2070 15.4 387.9 1.24 403.4
M1 Pro 27.0 609.9 0 637.0

C
he

m
ic

al
 fr

ee
 e

ne
rg

y

Fig. 7   Plot of the chemical free energy function and it’s second deriv-
ative where spinodal decomposition appears

2431Performance Benchmark of Cahn–Hilliard Equation Solver with Implementation of Semi‑implicit…

Acknowledgements  This work was supported by Korea Institute of
Energy Technology Evaluation and Planning(KETEP) grant funded
by the Korea government (MOTIE) (NO. 20224000000550, Train-
ing simulation experts for the development of structural materials for
molten salt reactors). This work was also supported by the “Human
Resources Program in Energy Technology” of the Korea Institute of

Energy Technology Evaluation and Planning (KETEP), granted finan-
cial resources from the Ministry of Trade, Industry Energy, Republic
of Korea (No. 20214000000070).

Fig. 8   Result of Cahn–Hilliard equation of 1282 system dimension at initial concentration of c
0
= 0.23 , after 10,000 time step

Fig. 9   Morphological result of Cahn–Hilliard equation of 1282 system dimension at initial concentration of c
0
= 0.5 , after 10,000 time step

Fig. 10   Result of the Cahn–
Hilliard equation solver of 1283
system dimension at initial
concentration of c

0
= 0.23 , after

10,000 time step from each
three-dimensional simulation
code: a Serial-version code,
b CUDA-version code and c
Metal-version code

(a) Serial (b) CUDA (c) Metal

2432	 I. Cho et al.

Funding  This article is funded by Korea Institute of Energy Technol-
ogy Evaluation and Planning (20224000000550, 20214000000070)
Kunok Chang.

Data Availability  The processed data required to reproduce these find-
ings would be available upon the request.

References

	 1.	 C. Luo, Y. Zheng, Y. Xu, H. Ding, C. Zheng, C. Qin, B. Feng,
Cyclic co 2 capture characteristics of a pellet derived from sol-
gel cao powder with ca 12 al 14 o 33 support. Korean J. Chem.
Eng. 32, 934–938 (2015)

	 2.	 Y.T. Lim, O.O. Park, Microstructure and rheological behavior of
block copolymer/clay nanocomposites. Korean J. Chem. Eng. 18,
21–25 (2001)

	 3.	 D. Son, W.-G. Lim, J. Lee, A short review of the recent develop-
ments in functional separators for lithium-sulfur batteries. Korean
J. Chem. Eng. 40(3), 473–487 (2023)

	 4.	 J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. i.
interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

	 5.	 S.M. Allen, J.W. Cahn, A microscopic theory for antiphase bound-
ary motion and its application to antiphase domain coarsening.
Acta Metall. 27(6), 1085–1095 (1979)

	 6.	 S. Hu, L. Chen, A phase-field model for evolving microstructures
with strong elastic inhomogeneity. Acta Mater. 49(11), 1879–1890
(2001)

	 7.	 Q. Sherman, P. Voorhees, Phase-field model of oxidation: equi-
librium. Phys. Rev. E 95(3), 032801 (2017)

	 8.	 J.W. Cahn, On spinodal decomposition. Acta Metall. 9(9), 795–
801 (1961)

	 9.	 L.-Q. Chen, Phase-field models for microstructure evolution.
Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

	10.	 N. Moelans, B. Blanpain, P. Wollants, An introduction to phase-
field modeling of microstructure evolution. Calphad 32(2), 268–
294 (2008)

	11.	 I. Steinbach, Phase-field models in materials science. Modell.
Simul. Mater. Sci. Eng. 17(7), 073001 (2009)

	12.	 J. Zhu, L.-Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a
variable-mobility Cahn–Hilliard equation: application of a semi-
implicit fourier spectral method. Phys. Rev. E 60(4), 3564 (1999)

	13.	 D. Li, Z. Qiao, On second order semi-implicit Fourier spectral
methods for 2d Cahn–Hilliard equations. J. Sci. Comput. 70,
301–341 (2017)

	14.	 W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance,
portable implementation of the mpi message passing interface
standard. Parallel Comput. 22(6), 789–828 (1996)

	15.	 L. Dagum, R. Menon, Openmp: an industry standard api for
shared-memory programming. IEEE Comput. Sci. Eng. 5(1),
46–55 (1998)

	16.	 J. Sanders, E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming, Addison-Wesley Profes-
sional, (2010)

	17.	 Nvidia, CUFFT Library. https://​devel​oper.​nvidia.​com/​cufft.
	18.	 D. Tolmachev, Vkfft-a performant, cross-platform and open-

source gpu fft library. IEEE Access 11, 12039–12058 (2023)
	19.	 C. Yang, Q. Xu, B. Liu, Gpu-accelerated three-dimensional phase-

field simulation of dendrite growth in a nickel-based superalloy.
Comput. Mater. Sci. 136, 133–143 (2017)

	20.	 A. Zhang, Z. Guo, B. Jiang, S. Xiong, F. Pan, Numerical solution
to phase-field model of solidification: a review. Comput. Mater.
Sci. 228, 112366 (2023)

	21.	 J. Glaser, P.S. Schwendeman, J.A. Anderson, S.C. Glotzer, Uni-
fied memory in hoomd-blue improves node-level strong scaling.
Comput. Mater. Sci. 173, 109359 (2020)

	22.	 J. Lu, S. Gao, W. Xiong, C. Xu, Optimization of gpu parallel
scheme for simulating ultrafast magnetization dynamics model.
Comput. Mater. Sci. 184, 109924 (2020). https://​doi.​org/​10.​
1016/j.​comma​tsci.​2020.​109924

	23.	 C. Kenyon, C. Capano, Apple silicon performance in scientific
computing, in, IEEE High Performance Extreme Computing Con-
ference (HPEC). IEEE 2022, 1–10 (2022)

	24.	 L. Gebraad, A. Fichtner, Seamless gpu acceleration for c++-based
physics with the metal shading language on apple’s m series uni-
fied chips. Seismol. Soc. Am. 94(3), 1670–1675 (2023)

	25.	 L.Q. Chen, J. Shen, Applications of semi-implicit Fourier-spectral
method to phase field equations. Comput. Phys. Commun. 108(2–
3), 147–158 (1998)

	26.	 A.M. Jokisaari, P. Voorhees, J.E. Guyer, J. Warren, O. Heinonen,
Benchmark problems for numerical implementations of phase
field models. Comput. Mater. Sci. 126, 139–151 (2017)

	27.	 Apple Inc., Apple Metal API version 3.1. https://​devel​oper.​apple.​
com/​docum​entat​ion/​metal/.

	28.	 Apple Inc., Metal Shading Language Specification Version 3.1.
https://​devel​oper.​apple.​com/​metal/​Metal-​Shadi​ng-​Langu​age-​
Speci​ficat​ion.​pdf.

	29.	 L. Chen, O. Villa, S. Krishnamoorthy, G.R. Gao, Dynamic load
balancing on single-and multi-gpu systems, in, IEEE International
Symposium on Parallel & Distributed Processing (IPDPS). IEEE
2010, 1–12 (2010)

	30.	 J. Fang, K. Zhou, C. Tan, H. Zhao, Dynamic block size adjustment
and workload balancing strategy based on cpu-gpu heterogeneous
platform, in, IEEE International Conference on Parallel & Distrib-
uted Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing
& Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE
2019, 999–1006 (2019)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://developer.nvidia.com/cufft
https://doi.org/10.1016/j.commatsci.2020.109924
https://doi.org/10.1016/j.commatsci.2020.109924
https://developer.apple.com/documentation/metal/
https://developer.apple.com/documentation/metal/
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf

	Performance Benchmark of Cahn–Hilliard Equation Solver with Implementation of Semi-implicit Fourier Spectral Method
	Abstract
	Introduction
	Methods and Details
	Semi-implicit Fourier Spectral Method
	Metal API
	Threadgroup Size Adjustment Strategy

	Results & Discussion
	Physical Size and Power Consumption of the Workstation
	Affordable System Size
	Performance Benchmark
	Data Transfer
	Morphological Assessment

	Conclusions
	Acknowledgements
	References

