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Abstract
The performance scaling issue of phase-field simulation is one that must be overcome to perform realistic large-scale three-
dimensional prediction. The CUDA (Compute Unified Device Architecture) parallel acceleration method developed over a 
decade ago showed very good performance in terms of calculation speed, but was limited by the small size of memory on the 
GPU. Recently, Apple Inc. has announced a GPU–CPU hybrid architecture, Apple silicon (M1 or later), and we examine the 
advantages of this architecture for performing realistic large-scale phase-field simulations and compare it to existing CUDA 
architecture. When solving the Cahn–Hilliard equation using the FFT (Fast Fourier Transform) with CUDA architecture 
developed by Nvidia and Apple silicon architecture developed by Apple Inc., we compared performance across hardware, 
as well as other considerations such as form factor and heat dissipation of the workstation.
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Introduction

Predicting the microstructure of a specific domain is a very 
important engineering task, and many important proper-
ties depend on the microstructure [1–3]. For example, the 
spacing between dendrite arms on the electrode surface of a 
Li-ion battery is a key variable that determines battery per-
formance [3]. The phase-field method has been developed 
and popularized by leaps and bounds in the last few decades 
due to its ability to predict microstructures by taking into 
account the thermodynamic and kinetic properties of materi-
als [4, 5], as well as many other multiphysical interactions, 
such as elastic effects [6] and electrostatic effects [7]. Phase-
field methods have dramatically improved computational 
performance and tractability by implicitly storing informa-
tion about the interface, whereas many numerical methods 
have to explicitly track the boundaries of the domain [8–11].

Many numerical techniques are applied to solve the 
Allen–Cahn (Ginzburg–Landau) and Cahn–Hilliard equa-
tions in the phase-field method, such as the Finite Dif-
ference (FD), Finite Element (FE), Finite Volume (FV), 

and Semi-Implicit Fourier Spectral (SIFS) method. Espe-
cially, the SIFS method is a popular method for solving the 
Cahn–Hilliard equation because it is known to dramati-
cally increase the numerical stability of the fourth-order 
Cahn–Hilliard equation [12, 13].

Despite the numerically superior stability of the SIFS 
method, the need to repeatedly perform the Discrete Fou-
rier Transform (DFT) and inverse-DFT (iDFT) at each itera-
tion was a significant burden. As the need to improve the 
performance of numerical computations has grown, vari-
ous parallelization techniques have evolved, including CPU 
parallelism techniques such as MPI [14] and OpenMP [15], 
and GPU parallelism techniques such as CUDA [16] have 
become very popular since the 2010s. In particular, cuFFT, a 
DFT library developed for CUDA [17], and vkFFT, a library 
developed for Apple silicon that supports CPU-GPU hybrid 
parallelization [18], are expected to be important break-
throughs for SIFS, whose scalability has traditionally been 
limited by the time and resources required for DFT.

In the case of GPU parallelization, tens or hundreds of 
thousands of cores are used, which is very advantageous in 
terms of computational speed, but it has the limitation that 
memory is relatively limited [19]. Also, since there are many 
cores, the amount of heat generated is very large, so the size 
of the machine becomes larger and the intensive cooling 
system is needed.

 *	 Kunok Chang 
	 kunok.chang@khu.ac.kr

1	 Department of Nuclear Engineering, Kyung Hee University, 
Yongin, Korea

http://orcid.org/0000-0002-6176-8748
http://crossmark.crossref.org/dialog/?doi=10.1007/s11814-024-00146-w&domain=pdf


2424	 I. Cho et al.

There were clear limitations to scaling the physical 
memory of the GPU, therefore, optimizations were needed 
to reduce the latency of CPU-GPU memory communica-
tion. This can be achieved by reducing communication 
overhead, such as optimizing load distribution and ensur-
ing parallel scalability [20]. To this end, research on the 
optimization of parallelization is being conducted in the 
direction of solving memory size limitations or reducing 
memory latency. The asynchronous method, which can 
interpret larger memory sizes more than the actual GPU 
memory has been implemented [19]. Additionally, CUDA 
unified memory which allows for accessing both CPU and 
GPU memory as a single memory using pointer has been 
applied to increase compute density [21], optimizing GPU 
memory access pattern to interpret the ultrafast magnetiza-
tion dynamics model [22], and utilizing the low-latency 
shared memory within GPU as a user-managed cache to 
analyze the dendrite growth of nickel-based superalloys 
[19]. These methods alleviate memory size limitations and 
memory overhead, but they either result in reduced per-
formance or require complex algorithms to address data 
latency.

Recently, a Heterogeneous architecture has emerged, inte-
grating CPU, GPU and memories of each. Both CPU and 
GPU access the physically same memory, there is no need 
for separate data transfer processes. With these advantages, 
the Apple silicon architecture is reported to perform notably 
efficiently [23, 24]. While Nvidia GPUs leverage CUDA for 
parallelization, Metal framework is used for Apple silicon 
GPU parallel implementation. Metal framework offers func-
tionalities with high-performance features. To utilize the full 
capability of the Metal framework, an optimization method 
is considered.

Herein, we developed a GPU parallel solver for the semi-
implicit scheme of the Cahn–Hilliard equation. Performance 
benchmarks were conducted on Nvidia GPU using CUDA 
and compared the SoC (System on a Chip) architecture 
developed by Apple Inc., utilizing the Metal framework.

We compared the performance of parallelization using 
the Metal Framework incorporated into SoC of Apple with 
that of Nvidia GPU parallelization. We presented various 
benchmarks that can serve as a reference for future develop-
ment of high-performance software for engineering includ-
ing computational materials science.

Methods and Details

Semi‑implicit Fourier Spectral Method

We simulated the spinodal decomposition, an example can 
be described by Cahn–Hilliard equation [8] in Eq. (1).

where the free energy of the system is expressed as Eq. (2).

Where c is the concentration of the solute, F(r, t) is the free 
energy of the system, and f(c) is the chemical free energy, 
� is the gradient energy coefficient, and M is the mobility.

Implementing Fourier spectral scheme [25],

Where k = (kl, k2, k3) denotes the reciprocal vector in Fou-
rier space, c̃(k, t) and { �f (c)

�c
}�
k
 are the Fourier transforms of 

c(r, t) and �f (c)
�c

 , respectively. Implementing Semi-implicit 
scheme [25],

Benchmark problems were proposed by Jokisaari et al. [26] 
for phase-field simulation, and a simple polynomial form of 
the free energy is applied. We applied a double-well poten-
tial to f(c), which is a second-order polynomial function, 
where c has a concentration range between 0 and 1, and the 
coefficients for mobility and boundary energy were set to 
M = 1 and � = 1 , respectively.
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Metal API

GPU architecture in parallel programming is characterized 
by its ability to leverage a multitude of cores for simulta-
neous operations. However, it is less efficient in executing 
sequential tasks. To overcome this limitation, CPU inter-
venes and invokes parallel operations through kernel func-
tions or shader functions executed on the GPU. Rather than 
executing multiple kernels concurrently, CPU schedules 
them one at a time in a sequential manner. This ensures 
orderly execution while harnessing the power of paral-
lel computing. When utilizing Apple silicon for parallel 
computing purposes, developers must employ Metal API 
(Application Programming Interface), which allows for 
hybrid GPU–CPU parallelism [27]. To write efficient ker-
nel functions with Metal API, programmers are required 
to utilize the C++-style Metal Shading Language (MSL) 
[28]. It should be noted that Metal API exclusively sup-
ports Objective-C and Swift languages; however, it does 
offer support for interfacing with C++ language as well. 
In addition to facilitating effective utilization of GPUs via 
Metal API, Apple Inc. provides MPS (Metal Performance 
Shader) Library-a valuable resource containing preemi-
nent mathematical operations that are highly optimized 
for enhanced performance during computation processes.

Figure 1 shows the schematic execution model of Metal 
API.

Parallel operations are executed with a unit work called 
Grid, which divided into subsets called threadgroups. 
Threadgroup consists of threads. The threads in a thread-
group are also composing SIMD (single-instruction, multi-
ple data) groups. Metal API concurrently executes kernels 
through SIMD threads, which resembles warp of CUDA. For 
all Apple devices, each SIMD consists of 32 threads. The 
number of threadgroups affects the efficiency and perfor-
mance of the code. However, the optimal threadgroup sizes 
depends on many factors, such as the size of system and the 
complexity of the code. In this study, we implemented opti-
mization techniques to efficiently solve the problem using 
the SIFS scheme. Specifically, we employed a thread group 
size adjustment strategy, which involves adjusting the num-
ber of threads and thread groups.

Threadgroup Size Adjustment Strategy

To fully utilize potential of modern GPU, maintaining work-
load balance is considered important between heterogeneous 
cores [29]. Fang et al. [30] suggested changing sizes of GPU 
kernel threadblock improves computational performance. 
They achieved at least 20% reduced execution time at their 
benchmarks.

Fig. 1   Metal API execution 
model for CPU–GPU hybrid 
architecture
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Similar with CUDA, Metal kernels are executed through 
designated threadgroup numbers during kernel’s execution. 
Therefore, we adjust threadgroup sizes. For Metal API, the 
number of threadgroup size is up to 1024. Given that

increasing the number of threads will enhance performance 
because there will be more concurrent operations. However, 
since grid is constrained, the number of threadgroups will 
decrease. Since threadgroups are distributed to GPU cores 
to process tasks, It is important that threadgroups are evenly 
distributed across cores. A small number of threadgroups 
can somewhat decrease performance due to imbalance of 
cores.

In this study, the system dimension was divided into 12 , 
22 , 42 , 82 , 162 , and 322 to explore the optimal threadgroup 
size for the system dimensions of 10242 , 20482 , and 40962 , 
and the performance depending on the threadgroup size is 
shown in Fig. 2.

We also investigated optimal threadgroup size and per-
formance improvement percentage(%) for each system 
dimension shown Table. 1. The parallel performance was 
observed to degrade for thread group sizes of 12 and 22 due 
to their small sizes. Therefore, we focused on performance 
improvement over 42 threadgroup sizes. The result shows 
that the strategy greatly affects runtime performance over 
20482 system dimension. The underlying reason lies in the 
fact that the Cahn–Hilliard equation, implemented with the 
SIFS method, involves both FFT (Fast Fourier Transform, 
an optimized Discrete Fourier Transform) operations and 
non-FFT operations. In terms of performance improve-
ment, the efficiency of the FFT function call is determined 
by the external library. However, The efficiency of non-FFT 
operations can be optimized by adjusting the thread group 
size. The vkFFT library utilized in this study exhibits peak 

grid = threadgroup × thread

efficiency at a system dimension of 20482 , and performance 
decreases thereafter. Therefore, the performance improve-
ment in non-FFT operations becomes more important for 
system dimensions larger than 20482 , leading to a 36.5% 
performance improvement at 40962 system dimension.

Results & Discussion

We developed code to solve three versions of three-dimen-
sional Cahn-Hillard equations with SIFS using cuFFT for the 
CUDA-accelerated version (hereafter CUDA-version code) 
and vkFFT for the Metals-accelerated version (hereafter 
METAL-version code). We also developed additional set of 
code of serial version (hereafter SERIAL-version code). For 
METAL-version code, a set of simulations were carried out 
on Apple silicon, and for CUDA-version code, we ran the 
calculations on a custom workstation utilizing an Intel CPU 
and NVIDIA GPU built by a professional builder, and com-
pared computational performance and power consumption. 
For the performance benchmark, we measured the physical 
time it took to perform the calculations on each worksta-
tion. Also, execution time including data transfer between 
CPU and GPU is recorded and compared for CUDA-version 
code and METAL-version code. We have verified that the 
METAL-version code and CUDA-version code produce 

(a) 10242 system dimension (b) 20482 system dimension (c) 40962 system dimension

Fig. 2   The required computation time for simulating the given system dimensions, namely a 10242 system dimension, b 20482 system dimen-
sion, and c 40962 system dimension, is examined as a function of the threadgroup size in the Metal kernel

Table 1   Optimal threadgroup size and execution time reduction per-
centage(%) compared with 12 threadsize

System dimension 10242 20482 40962 81922

Optimal threadgroup size 162 162 322 322

Performance improvement (%) 7.1 2.7 36.5 30.0
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the same results based on the time-tested accuracy of the 
SERIAL-version code.

Physical Size and Power Consumption 
of the Workstation

We utilized workstations of various form factors for this 
study. Workstations with Nvidia GPUs are typically very 
large and heavy, and the size of the GPU is getting bigger 
and bigger for cooling efficiency. For convenience, we’ll 
refer a to workstation with Nvidia GPU as a NVIDIA-work-
station. However, with an integrated and optimized design, 
Apple silicon achieves not only small in size but also pow-
erful performance. In Fig. 3, we can see the difference in 
size between a high-performance computer with an Apple 
M2-Ultra and a workstation with an RTX-3090Ti. Mac Stu-
dio (installed M2-Ultra chipset), is much smaller in size 
compared with NVIDIA-workstation. Moreover, compared 
with about 20 kg weighted workstations, Mac studio only 
weighs 3.6 kg. Details of the hardware used in each imple-
mentation can be found in the Table 2. Comparing TDP, 
which is power consumption at maximum theoretical load, 
the Mac studio (M2 Ultra, 60W) requires about 1/8 power of 
the Workstation (RTX3090Ti, 450W). Less power consump-
tion means a smaller cooling system and less heat genera-
tion, which has many advantages for workstation operation.

Affordable System Size

Performing large three-dimensional simulations requires 
a lot of computational resources, and GPU memory is 
usually not enough for this task. Of course, multi-GPUs 
can be utilized to expand the available memory size, but 
there is a problem of scaling due to transmission between 
GPUs, and there are limitations that make it difficult to 
implement technically. For example, based on previous 
methods such as Multi-GPU or asynchronous method, 
are not satisfactory for high bandwidth compared with 
VRAM of single GPU. Also, technical implementation 
of multi-GPU strategy is relatively challenging because it 
costs a lot and asynchronous method follows an additional 
algorithm which could deteriorates runtime performance. 
Apple silicon applied unified memory which either CPU 
and GPU can occupy physically same memory. Therefore, 
there is no discrete VRAM for Apple silicon and GPU 
memory could be very large.

Instead, Apple silicon GPU have maximum allocat-
able memory, without affecting its runtime performance. 
Each GPU allocatable memory (VRAM) for Apple silicon 
and Nvidia GPU is investigated in Tables 3 and 4. Result 
shows that VRAM of M2 Ultra (96 GB) is 4 times bigger 
than VRAM of single RTX-3090Ti (24 GB), about 6 times 
bigger than VRAM of Tesla V100 (16 GB). Therefore, 

Fig. 3   Comparison of worksta-
tion dimension with a Mac 
studio (M2 Ultra) and b Nvidia 
GPU workstation (RTX3090)

(a) Mac Studio(M2 Ultra) (b) Nvidia GPU Workstation(RTX3090)

Table 2   Hardware features of 
the workstation utilized in this 
study

M1 Pro M2 ultra RTX2070 RTX3090Ti RTX4090 Tesla V100

Memory [GB] 16 (unified) 128 (unified) 8 24 24 16
Memory band-

width [GB/s]
200 800 448 1008 1008 900

TDP [W] 30 60 175 450 450 300
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Apple silicon have an advantage for larger systems, with-
out those GPU memory running out problems.

Solving the Cahn–Hilliard equation requires the initial 
value of conserved order parameter. We investigate sys-
tems that sized power of two at each axis. Therefore, initial 
data file sizes could be substantial. For example, the 40962 
system size has about 64 MB size, and the 327682 system 
size has about 4 GB size at a single precision accuracy in 
two-dimensional system. These sizes vary depending on the 
extension of the file or the accuracy required for correspond-
ing research.

However, GPU parallelism requires much more memory 
than the initial data file size. The data for parallel computa-
tion is stored in a component called a buffer, which GPU is 
able to access. However, it is recommended to use separate 
buffers for different operations. This is because in parallel 
operations, different operations modify the same data at the 
same time, creating a race condition. Therefore, multiple 
buffers are required for parallel computing in terms of data 
integrity. The amount of memory required can vary depend-
ing on the environment, such as operating system and pro-
gramming language. Memory in GPU required for solving 
the Cahn–Hilliard equation is investigated respectively: two-
dimensional system for Table 5, three-dimensional system 
for Table 6.

Maximum affordable system sizes for each devices are 
decided by VRAM and Memory requirements. For example, 
163842 system requires 8.77 GB VRAM for CUDA. Conse-
quently, RTX2070 cannot run CUDA code at 163842 sys-
tem because VRAM (8 GB) is not sufficient. The maximum 

affordable system sizes of each hardware are shown in 
Table 7. Comparing affordable maximum system sizes, M2 
Ultra (96 GB VRAM) can afford 327682 and 10243 system 
sizes, while RTX4090 (24 GB VRAM) only afford 163842 
and 2563 system size. Also, M1 Pro (10.9 GB VRAM) can 
afford same comparable sizes with RTX4090, RTX3090Ti. 
However, despite having sufficient memory (24 GB VRAM) 
on both RTX4090 and RTX3090Ti, the CUDA code fails 
to run at a system size of 5123 . This discrepancy is nota-
ble since the code operates successfully on a system size 
of 163842 , which has smaller dataset, suggesting that the 
issue may not be related to memory size or VRAM. Two dis-
crete error message are emerge—one indicating a memory 
access issue and the other signaling with insufficient mem-
ory. Specifically, at a system size of 5123 , the error message 
is as follows: 0: DEV_MKDESC: allocate FAILED:700(an 
illegal memory access was encountered). Conversely, at a 
system size of 10243 , the error message is as follows: 0: 
ALLOCATE: 4303355904 bytes requested; status = 2 (out 
of memory) While dividing the data for computation might 
offer a solution, this may require additional algorithms and 
result in communication overhead. The operating system and 
its version are Ubuntu 20.04.6 LTS.

Performance Benchmark

The performance benchmark of CPU and GPU codes imple-
mented to each device is evaluated.

In Fig.  4, we compared the binary execution time 
between two devices (METAL-workstation with M1 Pro 
and NVIDIA-workstation with RTX2070). For the M1 Pro, 
we saw an overall lower performance gain compared to the 
RTX2070. This is likely due to lower bandwidth (200 GB/s) 
compared to that of RTX2070 (448 GB/s). It is shown that 
performance gain of CUDA steadily increases along the sys-
tem size, while Metal’s performance gains are somewhat 
stagnated after 20482 system size. However at particular 
20482 system, Metal’s simulation time were faster than that 
of CUDA’s.

In Fig. 5, we displayed the binary execution time between 
on workstation with M2-Ultra and workstations with 
RTX4090 and RTX 3090Ti, respectively. At 2562, 5122 
system dimensions, two CUDA-workstations result in faster 
simulation time. However, at 10242, 20482, 40962 system 

Table 3   Maximum affordable GPU memory for Apple GPUs

Apple Inc M1 pro M2 Ultra

RAM [GB] 16 128
VRAM [GB] 10.9 96
Percentage [%] 68 75

Table 4   Maximum affordable GPU memory for Nvidia GPUs

Nvidia RTX 2070 RTX 3090Ti Tesla V100

VRAM [GB] 8 24 16

Table 5   Memory required for two-dimensional systems operating 
Cahn–Hilliard equation solver

Two-dimensional 40962 81922 163842 327682

Buffer size 64 MB 256 MB 1.02 GB 4.09 GB
Metal 466 MB 1.77 GB 7.01 GB 28.10 GB
CUDA 828 MB 2.40 GB 8.77 GB –

Table 6   Memory required for three-dimensional systems operating 
Cahn–Hilliard equation solver

Three-dimensional 1283 2563 5123 10243

Buffer size 8 MB 64 MB 512 MB 4.09 GB
Metal 81 MB 418 MB 3.04 GB 28.10 GB
CUDA 89 MB 826 MB – –
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dimensions, the METAL-workstation shows superior com-
putational efficiency. However, 81922, 163842 system dimen-
sion result in CUDA-workstation is again superior. Overall, 
the performance of the phase-field simulation solver with 
SIFS on the M2-Ultra and RTX-3090Ti is similar. However, 
the trend of which architecture is more dominant changes 
slightly depending on the size of the system dimension.

In Fig.  6, the speedup of every device is plotted. 
Speedup on the y axis represents the ratio of GPU paral-
lel code execution time to CPU code execution time. This 
means the larger the speedup, the greater the performance 
of each GPU. Theoretically, GPU parallelization achieves 
scalability with increasing data size compared to CPU.

However, GPU performance is decided by number of 
factors. There are two limiting factors for performance 
depending on the conditions: bandwidth and number of 
cores. Bandwidth decides how much data is transferred 
every second. Number of cores implies the amount of data 
a device can work at once. At Fig. 6, M1 Pro(200 GB/s), 
RTX2070(448 GB/s) shows lower performance increase 
over 10242 dimension, compared with larger bandwidth 
devices(i.e., M2 Ultra(800 GB/s), RTX3090Ti(1008 
GB/s), RTX4090(1008 GB/s))

Nevertheless, higher bandwidth does not always trans-
late to performance gains. This is because, when a suf-
ficient amount of data is transferred, the GPU’s ability to 
process it all at once becomes crucial. In addition, even 
though the RTX 4090 and the RTX 3090Ti have the same 
bandwidth, significant performance gains are observed on 
the RTX 4090 (16,384 CUDA cores) compared to the RTX 
3090Ti (10752 CUDA cores).

Moreover, Metal code shows decreasing speedup after 
20482 dimension for M1 Pro and M2 Ultra. It is thought 
to be the inefficiency of Fourier transform, which takes 
a large part of Cahn–Hilliard solver. Therefore, a larger 
speedup is expected for larger system sizes if an optimized 
FFT (Fast Fourier Transformation) function is provided 
in Metal. Despite those drawbacks, it is remarkable that 
speedup of M2 Ultra is comparable to or better than latest 
GPUs of Nvidia.

Table 7   Affordable maximum 
system size for Cahn–Hilliard 
equation solver for each devices

M2 Ultra M1 Pro RTX 4090 RTX 3090Ti RTX 2070

VRAM [GB] 96 10.9 24 24 8
Three-dimensional system 10243 5123 2563 2563 2563

Two-dimensional system 327682 163842 163842 163842 81922
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Fig. 4   Simulation time elapsed at each system dimension for Cahn–
Hilliard equation solver in M1 Pro, RTX 2070
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Fig. 5   Simulation time elapsed at each system dimension for Cahn–
Hilliard equation solver in M2 Ultra, RTX 4090, RTX 3090Ti
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Fig. 6   Computational performance for two-dimensional simulations 
at each system dimension with different hardware configurations
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Data Transfer

Data transfer between the CPU and GPU is essential for 
GPU computation. At the beginning of parallel operation, 
CPU data is sent to the GPU and copied. To check the result, 
it must be sent back to the CPU and copied. Therefore, there 
are problems with memory management due to copying and 
performance degradation due to low bandwidth between 
CPU and GPU. Research has been done to solve these prob-
lems software-wise, but in the end, CPU-GPU data transfer 
is unavoidable. However, using unified memory architecture 
eliminates the need for memory copying and also reduces 
data latency.

We investigated the execution time of Cahn–Hilliard 
equation SIFS solver, including data transfer between CPU 
and GPU with CUDA-version code and METAL-version 
code. Simulations were performed on 20482 system dimen-
sion until 10,000 time step(iterations). Every 10 time step, 
we wrote the result file as the text file.

Table 8 compares the time spent transferring data at each 
stage of the computation. We are looking at performance 
degradation due to CPU-to-GPU data transfer. Therefore, 
we separately measured data output time, which is deter-
mined by CPU performance. Since write time is dependent 
on CPU performance, the AMD Ryzen9 3900X (3.8 GHz) 
with a higher base clock took less time than the M1 Pro 
(2.0 GHz). We expected the CPU-GPU data transfer time in 
CUDA (RTX2070 + AMD Ryzen9 3900X) to be high, but 
it only took 1.24 s for 1000 times data outputs. Metal (M1 
Pro) did not require any data transfer time. However, to out-
put the data during the continuous parallelization process, 
we used the method of synchronization at the end of each 
iteration to read the result directly. This resulted in a time 
delay of about 7 s compared to the original execution time of 
M1 Pro (20 s). These results are puzzling, as Apple silicon 
has a hardware advantage. Presumably, despite using slower 
PCIe, we believe that many optimized memory management 
methods of CUDA has some advantage.

Morphological Assessment

All set of codes used the same initial concentration. Since we 
applied Eq. 7 as a double-well potential, as shown in Fig. 7, 
the second-order derivative is negative in the concentration 

range from about 0.23 to 0.78. Figure 8 illustrates spinodal 
decomposition with an initial concentration of 0.23, while 
Fig. 9 depicts the coarsening phenomenon when the initial 
concentration is set to 0.5.

Also, three-dimensional systems are simulated and results 
are visualized in Fig. 10. As expected, spinodal decomposi-
tion is shown above 0.23 concentration. Results confirm that 
CPU, GPU-CUDA, and GPU-Metal based codes exhibit the 
same morphology.

Conclusions

Using Apple silicon architecture and CUDA architecture, we 
simulated the spinodal decomposition phenomenon based 
on a semi-implicit Fourier spectral method that intensively 
utilizes the Fast Fourier Transform. All set of codes imple-
mented with CUDA and Metal parallelization technique 
produced the same result in terms of physical outcomes; 
however the time taken to obtain results varied. In terms 
of computational efficiency, the M2 Ultra architecture was 
comparable to the RTX 3090Ti, but the maximum affordable 
memory of the GPU was approximately four times larger 
than the RTX 3090Ti. In terms of the manageability of the 
workstation, the Mac Studio from Apple Inc. has a signifi-
cant advantage over a typical workstation with the RTX 
3090Ti, as it is very small in its form factor and consumes 
only 1/8 of the power.

Table 8   Comparing execution time including data transfer between 
CPU-GPU at RTX2070 and M1 Pro

Run time 
[sec]

Write time 
[sec]

Data 
transfer time 
[sec]

Total time 
[sec]

RTX 2070 15.4 387.9 1.24 403.4
M1 Pro 27.0 609.9 0 637.0
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Fig. 7   Plot of the chemical free energy function and it’s second deriv-
ative where spinodal decomposition appears
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0
= 0.23 , after 10,000 time step

Fig. 9   Morphological result of Cahn–Hilliard equation of 1282 system dimension at initial concentration of c
0
= 0.5 , after 10,000 time step

Fig. 10   Result of the Cahn–
Hilliard equation solver of 1283 
system dimension at initial 
concentration of c

0
= 0.23 , after 

10,000 time step from each 
three-dimensional simulation 
code: a Serial-version code, 
b CUDA-version code and c 
Metal-version code

(a) Serial (b) CUDA (c) Metal
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