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Abstract
The interaction between thermocapillary flow and substrate geometry is analyzed numerically. Taking surface tension into 
account, the momentum equation is derived and solved using a commercial FEM solver, COMSOL Multiphysics where the 
effects of surface tension and surface deflection can be easily incorporated into the momentum equation. In the case that 
the Marangoni number is close to its critical value, i.e., Ma ≈ Ma

c
 , the strong symmetric thermocapillary flow is observed 

when the wavelength of topography, �
T
 , and the wavelength of instability motion, � , are nearly the same. This interesting 

phenomenon has been called flow-structure resonance. Through the numerical simulations, various flow modes, such as 
symmetric two-cell and four-cell modes, asymmetric two-cell mode, and oscillatory asymmetric two-cell mode are identi-
fied by changing the Marangoni number and wavelength of topography. It is clearly shown that for a certain �

T
-system, 

the transition from oscillatory mode to steady one is possible by relaxing the previous non-deformable surface condition 
due to high surface tension, i.e., Ca → 0 , here Ca is the capillary number. The present study reveals that the preferred flow 
mode is the complex function of the various parameters such as the Marangoni number, the Biot number, the wavelength of 
topography, and the capillary number.
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Introduction

Surface tension is ubiquitous in natural systems and indus-
trial processes where immiscible fluids are involved. In heat 
transfer systems with a free surface experiencing surface-
tension variations, the fluid motion driven by the tempera-
ture-induced surface tension gradient, which has been called 
thermocapillary flow, is often encountered. Since thermocap-
illary flow plays important roles in crystal growth [1], surface 
patterning [2], melting [3] and coating [4], much research has 
been conducted theoretically and experimentally.

Sen and Davis [5] studied thermocapillary flows in a rec-
tangular slot bounded by differently heated lateral walls. For 
a small aspect ratio system, Sen and Davis [5] successfully 
obtained approximate solutions for thermal and velocity fields. 
For the similar rectangular slot, many researchers extended 
Sen and Davis’s [5] work by employing asymptotic theory 

and numerical simulation [6]. Apart from the liquid inside the 
laterally heated rectangular slot, a liquid layer over a patterned 
substrate has been considered experimentally and theoreti-
cally. In a three-dimensional (3-D) system, where the topog-
raphy has two-dimensional (2-D) regularity, Ismagilov et al. 
[7] experimentally consider the interaction of intrinsic hydro-
dynamic instability patterns and topographically imposed pat-
terns. They showed that the pattern of Bénard–Marangoni 
flow can be controlled by the thickness of a fluid layer or the 
temperature difference between the substrate and air. Later, for 
the 3-D liquid layer system, Saprykin [8] showed that disjoin-
ing pressure can induce the rupture of a very thin liquid layer, 
where the Marangoni number is small enough.

In addition, in 2-D systems, where the topography has 
one-dimensional (1-D) regularity, Stroock et al. [9] controlled 
the direction of Bénard–Marangoni flow by using symmet-
ric and asymmetric grooves. They also showed that asym-
metric grooves can be used as millimeter-scale micropump. 
Later, Alexeev et al. [10] analyzed thermocapillary flow in a 
silicone oil film induced by a row of identical parallel grooves 
experimentally and numerically. The measured flow veloc-
ity reached 1.2 mm/s for a wall temperature 40 K above the 
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ambient. Their numerical simulations were in good agreement 
with their experimental findings. They also showed that sym-
metric wall topography leads to the appearance of symmetric 
vortices. For the sinusoidal topography system, Kabova et al. 
[11] showed that the analytic approach employing a 2-D long-
wave lubrication approximation is in good agreement with the 
numerical solution of the 2D Navier–Stokes equation. Recently, 
Yoo et al. [12] analyzed thermocapillary flows on heated sinu-
soidal topography using long-wave approximation. They also 
investigated the interaction between thermocapillary flow and 
substrate curvature through numerical simulations.

In the present study, 2-D thermocapillary flows in a thin liq-
uid layer laid on heated sinusoidal topography are studied. To 
understand the interaction between thermocapillary flow and 
substrate curvature, systematic numerical simulations were 
conducted by changing the Marangoni number and the wave-
length of sinusoidal topography. To identify asymmetric flows 
in symmetric topographies, simulations are conducted for a half-
wavelength domain and one wavelength domain. Furthermore, 
for a given Marangoni number system, the onset condition of 
oscillatory motion is determined by changing the curvature of 
the substrate.

System and Governing Equations

The system considered here is the liquid film coated over the 
substrate having sinusoidal topography. The average thickness 
of the liquid layer and initial temperature are d and Ta , respec-
tively. For time t ≥ 0 , the substrate is isothermally heated 
with TH and, through the liquid–air interface, the liquid layer 
is cooled by the convective heat transfer. The schematic dia-
gram of the basic system of pure diffusion is shown in Fig. 1. 
As shown in this figure, the liquid–air interface temperature is 
higher at the locations of thin film (over the topography crests) 
than at the locations of the thick film (topography troughs). 
This temperature gradient can induce thermocapillary flow 
near the liquid-are interface region.

For the thin liquid film, by neglecting the gravity effect, 
the governing equations for mass, momentum, and thermal 
energy are [5, 12]

(1)∇ ⋅ � = 0,

Here � , t , P , T  are velocity vectors, time, pressure, and tem-
perature, respectively. The liquid has density, ρ , viscosity, 
� , and thermal diffusivity, � . In the present study, we didn’t 
consider the disjoining pressure which plays an important 
role in the rupture of a very thin liquid layer [10]. In addi-
tion, the surface tension of the liquid, σ , has the following 
linear relation with the temperature:

where � = ��∕�T|Ta . The proper initial and boundary condi-
tions are

where F(X) is the sinusoidal function describing the shape 
of substrate topography. At the air–liquid interface, the fol-
lowing conditions have been applied:

where k is the thermal conductivity of liquid and q is 
the heat transfer coefficient at the interface, � is the unit 
normal vector from the liquid side to the air side, �a and 
�
(
= −P� + �

(
∇� + ∇�

T
))

 are the total bulk stress ten-
sor in the air and liquid phases, respectively. In addition, 
∇I = ∇ − �(� ⋅ ∇) is the surface gradient operator, and the 
term −(∇ ⋅ �) represents the curvature � , i.e., � = −(∇ ⋅ �) . 
Furthermore, at the air–liquid interface, Z = H(t,X, Y) , the 
following kinematic condition should be satisfied [13]:

In the present study, the sinusoidal topography is expressed 
as

(2)ρ

(
�

�t
+ � ⋅ ∇

)
� = −∇P + �∇

2
�,

(3)
(
�

�t
+ � ⋅ ∇

)
T = �∇

2T .

(4)σ = �r − �
(
T − Ta

)
,

(5)� = 0 and T = Ta at t = 0,

(6)� = 0 and T = TS at Z = F(X),

(7)−k∇T ⋅ � = q
(
T − Tr

)
at Z = H(t,X, Y),

(8)
(
�a − �

)
⋅ � + ∇I� − ��(∇ ⋅ �) = 0 at Z = H(t,X, Y)

(9)
�H

�t
=

(
−
�H

�X
,−

�H

�Y
, 1
)
⋅ �withH = d at t = 0.

Fig. 1   Schematic diagram of 
system considered here. The 
temperature difference between 
throut and crest can induce 
theromcally flow
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where F0 and �T are the amplitude and the wavelength of the 
topography, respectively. The periodicity of the substrate is 
considered by the symmetricity of domains summarized in 
Fig. 2. As shown in this figure because the domain Ci can 
be obtained by translating the domain Ci−1 by �T in the posi-
tive X-direction and domains C0∕2 and C1∕2 are symmetri-
cal about the line X = �T∕2 , the present half-wavelength 
domain corresponds to the periodic system having a period 
�T . Similarly, the present one-wavelength domain represents 
the periodic system having a period 2�T.

Using d2∕� , d , �∕d , d3∕�� and ΔT
(
= TS − Ta

)
 time, 

length, velocity, pressure, and temperature scales, Eqs. (1)-
(3) can be nondimensionalized as

The proper initial and boundary conditions are

(10)F(X) = F0sin

(
2�

�T

(
X −

�T

4

))
,

(11)∇ ⋅ � = 0,

(12)
1

Pr

(
�

��
+ � ⋅ ∇

)
� = −∇p + ∇

2
�,

(13)
(
�

��
+ � ⋅ ∇

)
� = ∇

2
�.

(14)� = 0 and θ = 0 at t = 0,

(15)� = 0 and θ = 1 at z = f (x) = f0sin(2�(x∕A − 1∕4)),

Then, the kinematic condition (9) can be reduced as

where the unit outward normal vector is

Here the important parameters, the dimensionless amplitude 
of topography f0 , the aspect ratio A , the Prandtl number Pr , 
the Biot number Bi , the Marangoni number Ma , and the 
capillary number Ca are defined as [14, 15] f0 =

F0

d
, A =

�

d
, 

Pr =
�

�
, Bi = qd

k
, Ma =

�ΔTd

��
 and Ca = ��

�0d
,where ν(= �∕�) is 

the kinematic viscosity of the liquid. Material properties of 
water and silicone oil for calculating the above dimension-
less groups are summarized by Alexeev et al. [10].

(16)∇� ⋅ � = −Bi� at z = h(�, x, y),

(17)

(
�a − �

)
⋅ � +Ma∇I� −

1

Ca
�(∇ ⋅ �) = 0 at z = h(�, x, y).

(18)
�h

��
= N� ⋅ �with h = 1 at � = 0,

(19)

� =
1

N

(
−
�h

�x
,−

�h

�y
, 1

)
and

N =

{
(�h∕�x)2 + (�h∕�y)2 + 1

}1∕2

=

(
1 − n2

x
− n2

y

)
−1∕2

,

Fig. 2   Schematic diagram 
of a ½-wavelengh domain, 
and b 1-wavelength domain. 
In ½-wavelengh domain, 
C
0∕2

 , symmetric conditions 
are imposed at X = 0 and 
X = �

T
∕2 , and in 1-wavelength 

domain, C
0
 , symmetric condi-

tions are imposed at X = 0 and 
X = �

T
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Numerical Simulations

In the two-dimensional (x, z)-domain, the above 
Eqs. (11–19) were solved by using Finite Element Method 
(FEM) package COMSOL Multiphysics® [16] which has 
been used in similar problems [17–19]. The “Laminar 
Flow” module of the COMSOL was used to solve the 
continuity Eq. (11) and the Navier–Stokes Eq. (12). The 
heat transfer Eq. (13) was implemented by using the “Heat 
Transfer in Fluids” module, where the flow fields were 
adopted from the Navier–Stokes equation. To implement 
the condition at the air–liquid interface, the “Deformed 
Geometry” module was employed and the interface was 
allowed to move according to the kinematic conditions 
(18, 19).

To incorporate the boundary condition (17), first, we 
applied the following open surface boundary condition at 
the liquid–air interface:

then, we added the surface tension effect by the following 
weak form:

where �̃ is the test function for the velocity vector and Γ is 
the air–liquid interface. Using the surface divergence theo-
rem, the second integral can be [20]

where �Γ is the contour bounding the free surface, 
�(= � × �) is the outward binormal vector, which is tan-
gential to the fluid surface and normal to the edge of the 
surface [21]. As discussed by Walkley et al. [22] the last 
contour integral of Eq. (22) can be neglected if the Dirichlet 
and periodic conditions are imposed on �Γ [12]. However, 
based on Alexeev et al.’s [9] experimental finding that sym-
metric wall topography leads to the appearance of symmetric 
vortices, we used the following symmetry conditions:

where �sym is an outward pointing normal to the symmetry 
plane, and � is a tangent vector in the symmetry line. In case 
the contour integral line �Γ lies on the symmetry plane, �sym 
corresponds to the binormal vector � , then �̃ ⋅� = 0 should 

(20)�a ⋅ � =

[
−p� +

{
�∇� + �(∇�)

T
}]

a
⋅ � = 0�,

(21)

∫
Γ

�̃ ⋅ � ⋅ �dΓ = Ma ∫
Γ

�̃ ⋅ ∇I𝜃dΓ −
1

Ca
∫
Γ

(∇ ⋅ �)�̃ ⋅ �dΓ,

(22)∫
Γ

(∇ ⋅ �)�̃ ⋅ �dΓ = ∫
Γ

(∇⟨�̃)dΓ − ∫
𝜕Γ

�̃ ⋅�dl,

(23)�sym ⋅ � = 0 and � ⋅ � ⋅ �sym = 0,

Fig. 3   Effect of aspect ratio on the temporal evolution of a Δ�
max

 and 
b |�|

max
 , for the cae of of f

0
= 0.05 , Pr = 100 , Bi = 0.1 , Ma = 10

3 
and Cr = 10

−6

Fig. 4   Effect of the Maragoni number on the maximum velocity mag-
nitude for the case of f

0
= 0.05 , Pr = 100 , Bi = 0.1 , Cr = 10

−6 and 
A = 3 . Calculations were conducted 1-wavelength geometry
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be satisfied on the symmetry condition (23). For these typi-
cal cases, i.e., the Dirichlet and the symmetric conditions on 
�Γ , the following terms should be added to the open bound-
ary condition imposed on the air-solution interface as a weak 
contribution:

(24)Ma
(
�̃ ⋅ ∇I𝜃

)
−

1

Ca
(∇ ⋅ �̃).

Even though for the simplicity of the analysis, the above 
second term has been neglected under the assumption of 
the perfect flat interface [12], here, we kept the effect of 
the capillary number on the thermocapillary flows.

The COMSOL Multiphysics has a wide variety of options 
in choosing the time-dependent solver. In the present study, 
1st or 2nd order, variable step size, and Backward Dif-
ferentiation Formulae (BDF) were used. The order of the 
BDF solver is determined by the degree of the interpolating 

Fig. 5   Effect of aspect ratio on 
the stream line (red) and veloc-
ity veotor (blue) for the case of 
f
0
= 0.05 , Pr = 100 , Bi = 0.1 , 

Ma = 10
3 , Cr = 10

−6 and 
τ = 10 . Calculations were con-
ducted 1-wavelength geometry
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polynomial. At each time step, the system of nonlinear alge-
braic equations is linearized employing the Newton method, 
and the resulting linearized system is solved by PARDISO 
direct solver which is fast, robust, and multi-core capable. 
The scaled absolute tolerance factors of 0.05 and 1 were 
set for the concentration and the pressure, respectively. The 
relative tolerance was 1 × 10−4 . Any critical differences were 
not found by changing these tolerances. In the present study, 
the intensity of instability motion is characterized by the 

maximum difference in interfacial temperature, Δ�max , and 
the maximum of the velocity magnitude |�|max defined as

(25)Δ�max =

{
�I,max − �I,min

}
,

(26)���max = max
�√

� ⋅ �

�
.

Fig. 6   Effect of aspect ratio on 
the stream line (red) and veloc-
ity veotor (blue) for the case of 
f
0
= 0.05 , Pr = 100 , Bi = 0.1 , 

Ma = 2 × 10
3 , Cr = 10

−6 and 
τ = 20 . Calculations were con-
ducted 1-wavelength geometry
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Results and Discussions

As discussed previously, the gravity effect was not 
considered in the present study. However, if the 

buoyancy force dominates the surface-tension gradient, i.e., 
Bo(= Ra∕Ma) > 1 , we should consider it, here the Bond 
number, Bo means the ratio of the effects of the gravity and 
the surface tension, and Ra 

(
= gΔ�d3∕��

)
 is the Rayleigh 

Fig. 7   Temporal evolution of a 
maximum velocity magnitude, 
and b stream line (red) and 
velocity veotor (blue) fields for 
the case of f

0
= 0.05 , Pr = 100 , 

Bi = 0.1 , Ma = 2 × 10
3 , 

Cr = 10
−6 and A = 3.5 . Calcula-

tions were conducted 1-wave-
length geometry
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Fig. 8   Temporal evolution of a 
miximum velocity magnitude, 
and b stream line (red), veloc-
ity veotor (blue) fields fields 
obtained from 1-wavelength 
calculation, and c veloc-
ity veotor (blue) fields fields 
obtained from 1/2-wavelength 
calculation for the case of 
f
0
= 0.05 , Pr = 100 , Bi = 0.1 , 

Ma = 2 × 10
3 , Cr = 10

−6 and 
A = 4
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number. In the thin liquid layer systems [5, 12], to focus on 
the interaction between thermocapillary flow and substrate 
geometry the buoyancy effects have been neglected under 
the assumption of Bo

(
∝ d2

)
→ 0.

For the limiting case of f0 → 0 , i.e., flat substrate, Nield 
[15] suggested the critical Marangoni number, Mac , and cor-
responding critical wavenumber, ac , as

where a is the wavenumber and � is the wavelength of insta-
bility motion. In the case of f0 = 0.05 , Pr = 100 , Bi = 0.1 , 
Ma = 103 and Cr = 10−6 , we tested the interaction between 
the wavelength of instability motion, � , and that of topogra-
phy, �T , which have been called intrinsic and topographies 
periodicities, respectively [7, 9]. As shown in Figs. 3 and 
4, for the cases of small f0 and Ma ≈ Mac , we can expect 
the strong instability motion around �T ≈ �(= 2�d∕2.028) , 
i.e., A = �∕1.014 . This typical wavelength of topography 
has been called the resonance wavelength [8, 23]. Kelly and 
Pal [23] reported similar results for the buoyancy-driven 
Rayleigh–Benard system. They showed that at the resonant 
frequency, i.e., �T = �

(
= 2�d∕ac

)
 , the heat transfer rate 

enhancement is possible even for Ra < Rac . For the rigid-
rigid boundaries system, the critical Rayleigh number, Rac , 
and corresponding critical wave number, ac , are [24]

In their Nu − 1 vs. 
(
Ra∕Rac

)
 plot for the small f0 sys-

tem, they showed that convective motion can exist even 
for 

(
Ra∕Rac

)
< 1 , which was called a quasi-conduction 

region. They also showed the transition from a convex 
quai-conduction region to a concave critical region, 
where 

(
Ra∕Rac

)
> 1 and the vertical temperature gradient 

plays a certain role. As shown in Fig. 4, where |�|max vs. (
Ma∕Mac

)
 plot is given, a similar convex-concave transi-

tion is occurred near 
(
Ma∕Mac

)
≈ 1 . This means that in 

the case of 
(
Ma∕Mac

)
< 1 , the thermocapillary flows are 

driven by the horizontal temperature gradient due to the 
inhomogeneous topography of the substrate.

In addition, the effect of the calculation domain on the 
flow fields is compared in Fig. 5. It should be noted that 
regardless of aspect ratio, flow fields are symmetric about 

(27)

Mac = 917.697 and ac

(
=

2�d

�c

)
= 2.028 for Bi = 0.1 andCa → 0,

(28)Rac = 1708 and ac = 3.117.

Fig. 9   Effect of the Maraagoni number on thermocapillary flow field 
for the case of of f

0
= 0.05 , Pr = 100 , Bi = 0.1 , Cr = 10

−6 and A = 4 . 
a Temporal evolution of maxium velocity magnitude, and b stream 
line (red) and velocity veotor (blue) fields at τ = 20,

▸
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the line x = A∕2 , even if we imposed symmetry conditions 
at x = 0 and x = A . This means that the periodic unit is 
the domain 

(
C0∕2 + C1∕2

)
 which corresponds to the domain 

C0 . For this small Ma-system, any asymmetric motion is 
not observed, and the transition from two-cell mode insta-
bility motion proceeded around A ∼ 4 (see Fig. 4). For a 
symmetric grooves system, Stroock et al. [8] observed the 
transition from period-matched two-cell mode convection 
to period doubled one-cell mode one by increasing fluid 
thickness d = �∕2 to d = � . Because the Maragoni number 
is doubled and the dimensionless amplitude of topography 
is halved from f0 = 0.5 to f0 = 0.25 in Stroock et al.’s [8] 
experiment, direct comparison between their experiment 

and the present simulation for the fixed Ma
(
= 103

)
 and 

f0(= 0.05) , is not possible. However, as shown in Fig. 5, 
their mode transitioning phenomenon can be seen in the 
present analysis.

If we increase the Marangoni number to Ma = 2 × 103 , 
the flow field is slightly different from that for Ma = 103 . 
Figure 6 shows that the transition from two-cell symmet-
ric mode to two-cell asymmetric mode flow proceeded 
A ∼ 3.5 . For this transition point A = 3.5 , the temporal 
evolution of the flow field is summarized in Fig. 7. The 
transition from the symmetric two-cell mode to symmetric 
four-cell mode flow has proceeded through the creation of 
new vortex centers near the centerline x = A∕2 . Through 
the merging of three vortexes into one, the transition from 

Fig. 10   Temporal evolution of 
a maxium velocity magnitude 
(a), b stream line (red) and 
velocity veotor (blue) fields for 
stream line (red) and veloc-
ity veotor (blue) fields for the 
cases of A = 4.5 , A = 5.0 and 
A = 5.5 , and c stream line (red) 
and velocity veotor (blue) fields 
at the poins given in (a) for the 
case of f

0
= 0.05 , Pr = 100 , 

Bi = 0.1 , Ma = 5 × 10
3 , 

Cr = 10
−6 and A = 4 . Calcula-

tions were conducted 1-wave-
length geometry
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symmetric four-cell mode to asymmetric two-cell mode 
flow can be observed. For the case of A = 4.0 , similar phe-
nomena can be seen in Fig. 8. This transition phenomenon 
cannot be seen for the half-wavelength simulation (see 
Fig. 8b). Furthermore, any oscillatory mode thermocapil-
lary motions are not observed for the present calculations 
of both Ma = 103 and Ma = 2 × 103 . However, as shown 
in Fig. 9, where the effects of the Marangoni number on 
the thermocapillary flow field are summarized, we can 
oscillatory mode thermocapillary motion for the range of 
Ma = 1.5 × 103 . It seems that for the case of A = 4.0 , as 
increasing the Marangoni number, we can observe the flow 
mode transition from steady symmetric four-cell mode 
flow to steady asymmetric two-cell mode one through 
transient asymmetric two-cell mode flow.

Further increase of the aspect ratio to A = 5 enables us 
to observe oscillatory thermocapillary flow more clearly at 
Ma = 5 × 103 . As shown in Fig. 10, for the given Maran-
goni number, we can control the flow mode by changing 
the wavelength of topography, �T . This controllability of 
the flow mode has never been studied. For some character-
istic time marked in Fig. 10a, flow fields are summarized 
in Fig. 10c which shows an oscillatory two-cell mode is 
the preferred one for the present oscillatory system. How-
ever, this oscillatory mode motion cannot be survived in the 
slightly larger or smaller aspect ratio system. This means 
that the preferred flow mode is a complex function of the 
Marangoni number and the aspect ratio.

Until now, the interaction between the Marangoni num-
ber and the wavelength of topography is focused by fixing 

Fig. 10   (continued)
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Ca = 10−6 . However, the capillary number effect cannot be 
ignored for the thin liquid layer because Ca ∼ d−1 . Here, we 
studied the effect of the capillary number on the flow mode 
of the previous oscillatory system, i.e., f0 = 0.05 , Pr = 100 , 
Bi = 0.1 and Ma = 5 × 103 . As shown in Fig. 11, for the 
case of Ca ≤ 10−4 the oscillatory motion is a dominant ther-
mocapillary mode and the flow mode transition explained 
in Fig. 10 is proceeded. This kind of oscillatory motion 
can induce the temporal variation of the liquid thickness 
(see Fig. 11b). It is interesting that for the oscillatory flow 
regime, i.e., Ca ≤ 10−4 , the capillary number enhances the 
variation of liquid layer thickness, however, a deformable 
surface reduces the maximum variation of liquid layer thick-
ness for the steady flow regime. Furthermore, as shown in 
Fig. 11c deformable surfaces reduce the maximum surface 
temperature difference, which corresponds to the driving 
force of the thermocapillary convection. Figure 11d explains 
the effect of the capillary number on the flow field. For the 
case of Ca = 5 × 10−4 , we can expect steady four-cell mode 
thermocapillary flow which cannot be observed for the sys-
tems of Ca ≤ 10−4 . For the steady four-cell mode system, 
i.e., Ca = 5 × 10−4 , flow fields for the transition from two-
cell mode to four-cell mode are summarized in Fig. 11e. 
The above findings mean that non-deformable surface due to 
high surface tension, Ca → 0 prevents flow mode transition 
from steady two-cell symmetric mode to more stable steady 
four-cell symmetric mode. This kind of interaction among 
the capillary number, the Marangoni number, and the geom-
etry of topography have never been considered.

Conclusions

The interaction between thermocapillary flow and sub-
strate curvature was analyzed systematically. For a weak 
flow condition, i.e., the case of Ma ≈ Mac , the strong 
thermocapillary motion is observed when the wavelength 
of topography, �T  , and the wavelength of instability 
motion, � , are nearly the same. Furthermore, the calcu-
lation in the half-wavelength domain is quite enough to 
explain the weak thermocapillary motion. However, the 
thermocapillary flow structure deviates from the sym-
metry of the half-wavelength domain as Ma increases. 
For the system of Ma = 2 × 103 , Bi = 0.1 and Ca → 0 , 
this asymmetric effect is remarkable for a certain range 
of �T  . To understand the resonance between the surface 
tension-driven motion and the wavelength of topography 
more fully, more refined work to consider the effects of 
the amplitude of topography, f0 , the Biot number, Bi , and 
the capillary number, Ca , are strongly needed.

Fig. 11   Effect of the capillary number on the temporal evolution of tem-
peraure and velocity field for the case of f

0
= 0.05 , Pr = 100 , Bi = 0.1 , 

Ma = 5 × 10
3 and A = 5 . a Temporal evolution of maximum velocity 

magnitude, b temporal evolution of maximum liquid layer height, c tem-
poral evolution of maximum surface temperature difference, d stream line 
(red) and velocity field (blue) at τ = 20 and e stream line (red) and veloc-
ity field (blue) at the points given in (a). Calculations were conducted 
1-wavelength geometry



423Numerical Simulations on Thermocapillary Flow on Heated Sinusoidal Topography﻿	

Fig. 11   (continued)
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