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Abstract
Fe-doped g-C3N4 has been proven to have the potential of visible light photocatalysis, but its catalytic activity of peroxy-
monosulfate (PMS) is neglected. Herein, the complex advanced oxidation processes of Fe-g-C3N4 mediated PMS and visible 
light photocatalysis was developed, named as Vis/Fe-g-C3N4/PMS system, whose effects and synergistic mechanism for 
decomposing Rhodamine B (RhB) was evaluated. The coupling of sulfate radicals and photocatalysis for RhB degradation 
showed that the synergistic efficiency (ηSyn) and factor (Sc) were 20.1% and 4.82, respectively, with a degradation efficiency 
of 99.8%. Iron species dispersed on g-C3N4 provided active sites for PMS activation to generate sulfate radicals, simultane-
ously reduced the forbidden band, and separated the photo-generated charges of g-C3N4. h+, SO4

·‾ and 1O2 were the main 
active species, and the increase of 1O2 was the cause of the synergistic effect. The possible degradation path of RhB by this 
coupling system was proposed. Our findings prove that Vis/Fe-g-C3N4/PMS system has a great potential to decompose dye 
wastewater, and also to be an environmental remediation perspective.

Keywords  Fe-g-C3N4 · Photocatalysis · Advanced oxidation processes · Sulfate radical · Rhodamine B · Synergistic 
mechanism

Introduction

In spite of contributing to the progress of human civiliza-
tion, urbanization, and industrialization results in massive 
industrial wastewater discharge. Industrial effluents from 
organic dyestuff use in industries like papermaking, textile 
printing/dyeing, and cosmetic without control posed a threat 
to human health and the ecosystem due to their high toxicity 
(mutagenic, xenobiotic, and carcinogenic) and color [20, 23, 
29, 38]. In which, textile industry as the largest discharge 

resource of dye wastewater had been estimated around 0.2 
million tonnes of dye/year swept into it [29]. Therefore, it is 
an urgent issue for treating dye wastewater, which become 
the research hot-point in the wastewater treatment field [4].

To date, the approaches to disposing of dye wastewa-
ter include physiochemical (adsorption, flocculation, and 
membrane separation) [3, 12, 19, 36, 51], abiotic processes 
[53, 54] and chemical methods (electrochemical oxidation 
and advanced oxidation processes) [1, 2, 12, 16, 18, 37]. 
Compared with traditional methods, advanced oxidation 
processes (AOPs) have the advantage of being environment-
friendly and high-efficiency, in which the photocatalytic 
degradation process attracts more attention for persistent 
organic pollutant decomposition due to completely devastat-
ing pollutants, safe and eco-friendly reactants [6, 29, 41, 42].

Rhodamine B (RhB), as the best-known representative 
of water-soluble dye, had been photocatalytic decomposed 
at 88.2% removal by heterojunction photocatalyst of In2S3/
Bi2MoO6 [9]. Photocatalytic degradation has a high-effi-
ciency degradation for RhB, but metal-based photocatalyst 
needs high cost and pose the risk of leaching toxicity [9, 43]. 
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In contrast, a small band gap and non-metal photocatalyst 
have been found and applied for photocatalytic decomposing 
RhB, which is graphitic phase carbon nitride (g-C3N4) [50]. 
However, the enhanced photocatalytic mechanism of g-C3N4 
was not be further explored, in special for the RhB degrada-
tion mechanism. Note that g-C3N4 is a new photocatalyst 
and has the advantages of energy band, light absorption, and 
physiochemical properties easily adjusted, resulting in enor-
mous attention on the photocatalytic filed [8]. Therefore, the 
low-cost and narrow band gap of g-C3N4 plays a virtual role 
in the field of AOPs treating dye wastewater.

The preparation methods of g-C3N4 include the physi-
cal method (ion implantation, laser beam sputtering, and 
reactive sputtering) and the chemical method (solvothermal 
method, electrochemical deposition, thermal polymeriza-
tion, and solid-state reaction methods) [24]. Among these, 
thermal pyrolysis become the mainstream for preparing 
g-C3N4 due to its simple practice. However, volume phase 
g-C3N4 has some disadvantages such as small surface area, 
low visible light utilization rate, and difficult separation of 
carriers generated from light irradiation. Therefore, g-C3N4 
needs to be modified, including template optimal of struc-
ture [21], elements doping or condensation of energy band 
structure [8], precious metals participating, and semiconduc-
tor compound [30]. The doping method was widely used 
to adjust the visual, manganite, and performances of semi-
conductors. Fe3+ doping in g-C3N4 enhanced its absorption 
capacity of visible light and cut down the compound rate of 
carriers [34].

The Fe doping g-C3N4 was synthesized for photocatalytic 
degradation of RhB, while the catalytic enhanced mecha-
nism and other catalytic performance of Fe doping g-C3N4 
were neglected [50]. For instance, Fe2+ can activate per-
sulfate to generate SO4

·‾, and g-C3N4 has the same effect 
[25, 49]. Besides, sulfate radical (SR, SO4·‾) has higher 
oxidation–reduction potential and wider pH adaptability 
compared with the hydroxyl radical (·OH) on tackling RhB 
[26, 31]. Therefore, Fe doping g-C3N4 collaborated with per-
oxymonosulfate (PMS) and photocatalysis (Vis/Fe-g-C3N4/
PMS) was used to decompose RhB for sufficiently explor-
ing the potential of Fe doping g-C3N4. The decomposition 
and synergistic mechanism were revealed and provided by 
Ultraviolet–Visible diffuse reflectance spectrometry, Fou-
rier transform infrared spectroscopy, X-ray photoelectron 
spectrometry, radical quenching experiment, and liquid 
chromatography-mass spectrometry. The synergistic and 
innovative method of combining Fe-g-C3N4, PMS, and pho-
tocatalysis can become a potential approach to decomposing 
dye wastewater.

Materials and Methods

Experimental Chemicals

Rhodamine B (C28H31ClN2O3), ferric sulfate (Fe2(SO4)3), 
cyanuramide (C3H6N6), potassium mono-persulfate tri-
ple salt (KHSO5·0.5KHSO4·0.5K2SO4), and free radical 
scavengers like ethylenediaminetetraacetic acid disodium 
(EDTA-2Na), tert-butanol ((CH3)3COH), ethanol (C2H5OH, 
EtOH), sodium azide (NaN3) and 1,4-benzoquinone (BQ) 
were purchased from Sinopharm Chemical Reagent Co., 
Ltd. (Peking, China) of analytical pure. All solutions were 
prepared with distilled water (18.25 MΩ cm−1).

Preparation and Characterization of Catalyst

The preparation method of g-C3N4 was briefly described 
as follows [17]: 20 g cyanuramide was weighted and put 
in an alumina pot, which was sintered at 530 °C for 2 h in 
the semi-closed system, and then the resulting products 
were cooled to ambient temperature (30 °C) and labeled 
for g-C3N4 (slight yellow). The Fe-g-C3N4 preparation was 
based on the above method. The sintered precursor was 
attained by dissolving cyanuramide (30 g) in distilled water 
(150 ml), adding Fe2(SO4)3 (0.12, 0.3, 0.6, and 0.9 g), evapo-
rating at 100 °C and drying at 80 °C. In the end, the sintered 
products were labelled XFe-g-C3N4, in which X was the 
quality proportion of Fe2(SO4)3 to cyanuramide.

The mineral phase of catalysts was determined by X-ray 
diffraction (XRD; Bruker D8, Germany) with CuKα radia-
tion in the 2θ range from 10° to 80° at a scanning rate of 
0.2°/s. Microstructure of catalysts was assessed by trans-
mission electron microscope (TEM; JEOL JEM-2100, 
Japan) with copper web. Molecule vibration spectroscopy 
of catalysts was measured between wave numbers 4000 and 
400 cm−1 by use of Fourier transform infrared spectros-
copy (FTIR; Bruker Vector 22, Germany) with KBr pellets. 
UV–Visible diffuse reflectance spectrometry (DRS; Shi-
madzu UV-2450, Japan) was used to determine photo-prop-
erties of samples with scanning wavelength between 200 and 
800 nm referring to BaSO4, and the absorption spectra were 
attained by Kubelka–Munk function transformation. X-ray 
photoelectron spectrometry (XPS; Thermofisher VG Multi-
lab2000, America) analysis was conducted with a spectrom-
eter using monochromatic Al K-alpha radiation (1486.6 eV). 
A specific surface area analyzer (Quantachrome NOVA 
3000e, America) was used to determine the surface area of 
catalysts by N2 adsorption/desorption curves with the cal-
culation of Brunauer–Emmett–Teller.
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Catalyst and AOPs Experiment

The catalytic experiment was performed in a photocatalytic 
apparatus which is shown in Fig. S1. The visible light was 
from a xenon lamp which was filtrated by a UV filter, with a 
power of 500 W (80 V and 4 A). The photocatalytic experi-
ment was conducted and described briefly as follows: 0.04 g 
(Fe-g-C3N4) catalyst and 100.0 mL RhB (10 mg/L) were 
settled in sandwich beaker and the mixture was pre-stirred 
in homogenous with no-light irradiation; then the photocata-
lytic experiment was running with visible light irradiation, 
and sampling was carried out each time with the interval of 
15 min; each sampler was 10 mL and centrifuged at 4000 r/
min for 10 min; in the end, RhB of supernatant was deter-
mined by UV–Vis spectrophotometry at 553 nm. SR-AOPs 
experiment was conducted in the same setup. Constant Fe-
g-C3N4 was added and stirred for 60 min, then PMS was 
introduced for reacting 75 min under dark conditions. Dur-
ing the SR-AOPs experiment, each 10 ml sampler was taken 
with the constant interval time, and 5 mL methanol quencher 
was added simultaneously. The synergistic experiment of 
AOPs-photocatalysis (SR-AOPs/Photocatalyst) was carried 
out in the above procedure but with visible light irradiation. 
The degradation efficiency of RhB and TOC were calculated 
by Eqs. (1) and (2):

where ηD is the degradation efficiency of RhB, C0, and Ct 
(mg/L) are the initial concentration and current concentra-
tion at reacting time (t) of RhB; ηT is the removal efficiency 
of TOC, TOC0, and TOCt (mg/L) are the initial concentra-
tion and current concentration at sampling time (t) of TOC.

The stability experiment of Fe-g-C3N4 was briefly 
described as follows: used catalyst was recovered by centri-
fuging, filtering, washing, and drying, and then it was used 
in SR-AOPs/Photocatalysis system. This cycle was repli-
cated for 5 times, and the performances of the catalyst for 
using 5 times were characterized by XRD, FTIR, XPS, and 
UV–Vis.

RhB Degradation Mechanism

The degradation path of RhB in the Vis/Fe-g-C3N4/PMS 
system was determined by UV–Vis spectra and combined 
with high-performance liquid chromatography-mass spec-
trometry (HPLC–MS; Agilent, America). The free radical 
identification was determined by free radical quenching 

(1)�D =
C0 − C

t

C0

× 100%,

(2)�T =
TOC0 − TOC

t

TOC0

× 100%,

experiments. The running conditions of HPLC–MS were 
described as follows: type of chromatographic column was 
Agilent® TC-C18 (4.6 mm × 150 mm); sample volume was 
10 μL with the rate of 0.8 mL/min; carrier was in the mix-
ture of methanol to water at 60/40 in volume; electron spray 
ionization (ESI) resource was positive mode for MS.

Results and Discussion

Catalyst

Characterization of Catalyst with Various Fe Contents

The physical and chemical properties are shown in Fig. 1. 
From XRD graphics of g-C3N4 and XFe-g-C3N4 (Fig. 1a), 
the characteristic peak at 27.5° was ascribed for inter-
layer stacking of conjugated aromatics, corresponding to 
the (002) crystal plane of g-C3N4 [13]. The weak diffrac-
tion peak of 13.5° was ascribed to in-plane stacking of a 
graphite-like layer (accumulation of N pores in a polymer 
with tri-s-triazine units), indicating melon-like materials 
(JCPMS87-1526) formation [7, 10]. The XRD peaks of 
g-C3N4 and XFe-g-C3N4 had no obvious difference. How-
ever, the increase of Fe content caused the characteristic 
peak at 27.5° shift to the large angle, which can be explained 
by that Fe introduction enhanced the Van der Waals forces of 
g-C3N4 [11]. The decrease of (002) peak density caused by 
Fe addition indicates that Fe and g-C3N4 happened interac-
tion and Fe inhibited the polymerization and condensation 
of g-C3N4. However, the XRD of XFe-g-C3N4 does not the 
diffraction peak of Fe-bearing compounds like iron oxides, 
iron nitrides, and iron carbides, which reveals that Fe was 
in the form of Fe–N coordination bond in XFe-g-C3N4 [47].

The FTIR pictures of g-C3N4 and XFe-g-C3N4 are 
shown in Fig. 1b. The vibration peaks of XFe-g-C3N4 were 
810 cm−1, 1240–1640 cm−1 and 3000–3200 cm−1, which 
were ascribed to bending vibration of triazine cyclic com-
pound, vibration of C–N heterocyclic compound and stretch-
ing vibration of N–H, respectively [47]. The existence of 
N–H indicates that the product obtained by thermal polycon-
densation of melamine was incomplete polycondensation, 
and there were uncondensed amino groups at the edge of 
its layered structure. The differences among XFe-g-C3N4 
catalysts were not obvious, which means that the bonding 
structure of g-C3N4 was not changed by Fe addition [14].

To reveal the thermal stability of synthetic XFe-g-C3N4s, 
the TG–DTA test of catalysts was performed and shown in 
Fig. 1c, d. The weight loss at 160 °C was due to the evapo-
ration of water. Note that the weight loss of XFe-g-C3N4 
between 200 and 500 °C was not obvious, demonstrating 
good thermal stability. When the catalysts were heated 
to 600 °C, the weight loss was below 10%. However, the 
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largest weight loss and exothermic peak (Fig. 1d) happened 
at 700–750 °C, which was attributed to the decomposition 
of C3N4 and the decomposers were combusted rapidly to 
produce N2, cyanide, and CO2 [30]. The weight loss between 
700 and 750 °C was positive proportional to Fe content 
(Fig. 1c), indicating Fe addition reduced the thermal stabil-
ity of catalysts. The Fe content of synthetic Fe-g-C3N4 was 
calculated by ultima weight at DTG and were 0%, 0.16%, 
0.45%, 0.79%, and 1.20% (theoretical values were 0%, 
0.16%, 0.4%, 0.8%, and 1.2%).

Figure 1e, f shows the response absorption of visible 
light of XFe-g-C3N4s and their calculation for band gap. 
The diffuse reflection spectrum of g-C3N4 was the repre-
sentative semiconductor absorption (Fig. 1e) due to car-
rier shifting from the valence band (N 2p orbit) to the 
conduction band (C 2p orbit) [55]. The absorption edge of 
g-C3N4 happened around 460 nm, but Fe addition made the 
absorption edge red-shift and increased their absorption 

density. According to the semiconductor bandgap deriva-
tion formula, a plot of (Ahv)1/2 versus hv was shown in 
Fig. 1f. Forbidden bandwidth (Eg) can be obtained from 
point tangent and X axis intersection point in Fig. 1f. The 
forbidden bandwidth of g-C3N4 was 2.77 eV, and the Fe 
addition reduced the bandgap energy. That means nega-
tive correction of conduction band energy and positive 
correction of valence band energy happened, in favor of 
the catalyst absorbing more lights. Therefore, Fe introduc-
tion enhanced the absorption capacity of light compared 
with pure g-C3N4, indicating a stronger capacity for photo-
catalyst activity. But, when the Fe addition was above 1%, 
the decreased proportion of forbidden bandwidth was not 
obvious. Therefore, comprehensive consideration of ther-
mal stability (Fig. 1c) and light absorption, 1% Fe addition 
was selected to be further focused on the microstructure 
and XPS.

Fig. 1   Characterization of 
catalysts: a XRD; b FT-IR; c 
TG curves, d DTA curves, e 
UV–Vis diffuse reflection and f 
energy bandgap spectra
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XPS and Microstructure of g‑C3N4 and 1%Fe‑g‑C3N4

The XPS and VB XPS spectra of g-C3N4 and 1% Fe-g-C3N4 
were determined, as shown in Fig. S2 and Fig. 2. The C 
1 s XPS spectra in g-C3N4 at 286.0 eV (Fig. 2a) was con-
sidered as sp3 hybridized carbon atom in C–(N)3, and the 
peak at 287.9 eV was ascribed to carbon atom sp2 hybrid 
in N–C=N backbone [56]. The N 1 s spectra of g-C3N4 in 
Fig. 2b was deconvoluted into four peaks, at 398.5, 399.0 
and 404.7  eV, corresponding to sp2 hybrid of C–N=C 
(pyridinic), N linking ring structure in N–(C)3 or N layer 
structure in (C)2–N–H (pyrrolic), and graphitic N specie, 
respectively [13, 56]. However, the C 1 s and N 1 s spectra 
of 1%Fe-g-C3N4 showed a higher binding energy about peak 
position compared with g-C3N4. This can be explained by 
that the Fe–N coordinate bond was formed, which means 
that electron cloud density around N and C decreased and 
the atomic nucleus had a strong capture capacity for extra-
nuclear electronics. The obvious enhancement of N 1 s at 
398.5 eV reveals that Fe promoted the formation of C–N=C 
(pyridine). Note that N in pyridine was attributed to the 
interaction of the N–C matrix, and it was considered to be 
a bridge connecting carbon nitrogen polymers and carbon 
fragments [46]. From Fig. 2c, the Fe xp3/2 spectrum was 
deconvoluted into three peaks at 710.1, 711.5, and 714.5 eV, 
corresponding to Fe2+ (35.1%), Fe3+ (31.1%), and satellite 
peaks of Fe2+ and Fe3+ (33.8%), respectively [48]. This gen-
eration of Fe2+ might be contributed to the reaction of Fe3+ 
with cyanuramide during sintering. In addition, the binding 
energy of Fe 2p1/2 was concentrated on 724.3 eV, belonging 

to Fe3+ [33]. The VB XPS of g-C3N4 and 1% Fe/g-C3N4 
(Fig.  2d) shows that Fe addition changed the binding 
energy and shifted 0.1 eV, which was consistent with the 
result of UV–Vis. Therefore, the structure of g-C3N4 and 
1% Fe-g-C3N4 is further shown in Fig. 3, as determined by 
TEM. Edge rolled sheet structure with light color existed in 
g-C3N4, which means that g-C3N4 had an obvious overlap-
ping layered structure and several micrometers size, consist-
ent with oter reports [47]. Massive deposits were not found 
in 1%Fe-g-C3N4, indicating that Fe existed in the form of 
ions (Fe–N coordination bond) rather than iron or its oxides 
[14, 22]. Therefore, the molecule of 1%Fe-g-C3N4 can be 
expressed in Fig. S3.

Degradation of RhB

The adsorption equilibrium of the catalyst for RhB reached 
60 min under dark conditions, then they were applied for 
the next experiment, as well as for PMS, which is shown 
in . Furthermore, the degradation kinetic curve of RhB 
under various reacted conditions is shown in Fig. 4. PMS 
addition increased the catalytic degradation efficiency 
of RhB (Fig. 4a), which is consistent with other report 
[44]. The increase of Fe content in Fe-g-C3N4 boosted 
the degradation efficiency of RhB combined with PMS, 
but when iron doping further increased, the degradation 
efficiency decreased in return. The optimal content of Fe 
was 1%, which can be reflected by its microstructure, band 
energy structure, absorption capacity of visible light, and 
photogenerated carrier separation efficiency (consistent 

Fig. 2   XPS spectra of g-C3N4 
and 1%Fe-g-C3N4 samples in 
the region of C 1 s (a), N 1 s 
(b), Fe 2p (c), and valence band 
(VB) XPS spectra of photocata-
lysts (d)
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with "Catalyst"). The reaction kinetics of RhB degrada-
tion by g-C3N4 and Fe-g-C3N4 belonged to pseudo-first-
order model (Fig. 4b, R2 ˃ 0.9), and the rate constants were 
attained from − ln(C/C0) versus t. The rate constant of 
g-C3N4, 0.4%Fe-g-C3N4, 1%Fe-g-C3N4, 2%Fe-g-C3N4 and 
3%Fe-g-C3N4 was 0.022 min−1, 0.042 min−1, 0.086 min−1, 
0.077 min−1 and 0.066 min−1, respectively. The rate con-
stant of 1%Fe-g-C3N4 was the highest, 3.91 times that 
of pure g-C3N4. The degradation and first-order kinetic 
curves of RhB by different reaction systems were shown 
in Fig. 4c, d. The degradation ratio in Vis/Fe-g-C3N4/PMS 
was higher than in Vis/Fe-g-C3N4 and Dark/Fe-g-C3N4/
PMS. To find the effect of AOPs and photocatalysis, the 
synergistic efficiency (ηSyn, %) and factor (Sc) were cal-
culated by Eqs. (3) and (4), which are shown in Table S1.

where DSR-AOPs is the degradation efficiency of RhB in SR-
AOPs system (%); DPhotocatalysis is the degradation efficiency 
of RhB in photocatalytic system (%); DSR-AOPs/Photocatalysis is 
the degradation efficiency of RhB in Vis/Fe-g-C3N4/PMS 
system (%); kSR-AOPs is the apparent rate constant of RhB 
degradation in SR-AOPs system (min−1); kPhotocatalysis is the 
apparent rate constant of RhB degradation in photocata-
lytic system (min−1); kSR-AOPs/Photocatalysis is the apparent rate 

(3)

�Syn =
DSR - AOPs/Photocatalysis −

(

DSR - AOPs + DPhotocatalysis

)

DSR - AOPs + DPhotocatalysis

× 100%,

(4)Sc =
kSR - AOPs/Photocatalysis

kSR - AOPs + kPhotocatalysis

,

constant of RhB degradation in Vis/Fe-g- C3N4/PMS system 
(min−1).

The synergistic efficiency (ηSyn) and factor (Sc) of Vis/
Fe-g-C3N4/PMS were 20.1% and 4.82, which means that 
the compound effect of SR-AOPs and photocatalysis had 
increased by 20.1% compared with their linear stretching, 
and the synergistic action was larger. To infer the cause 
of the synergistic effect, the adsorption capacity and zeta 
potential of g-C3N4 and XFe-g-C3N4 were determined 
under the dark condition for 1 h, and shown in Fig. S4. Fe 
addition had a negative effect on adsorption of RhB, which 
can be explained by the surface charge. The zeta poten-
tial of Fe-g-C3N4 was obviously higher than g-C3N4, thus 
the adsorption capacity of Fe-g-C3N4 to positive RhB was 
lower than g-C3N4. That means the synergistic effect can 
exclude the absorption capacity and focus on the electron 
transformation.

The Degradation Mechanism of RhB in Vis/
Fe‑g‑C3N4/PMS System

RhB Degradation Process Identification

Intermediates and degradation of RhB in Vis/Fe-g-C3N4/
PMS system are shown in Fig. 5. The conditions of 0.4 g/L 
1% Fe-g-C3N4, 0.4 g/L PMS and 10 mg/L RhB were selected 
for SR-AOPs /Photocatalysis and samplers attained with 
constant interval times were scanned by UV–Vis full-spec-
trum, which is shown in Fig. 5a. The most density of absorb 
peak for RhB was focused on 553 nm, and four weak peaks 

Fig. 3   TEM images of g-C3N4 
(a, b) and Fe/g-C3N4 photocata-
lysts (c, d)
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existed in the UV wave range. These four peaks of RhB 
weakened after it was adsorbed for 60 min under dark condi-
tions, which indicates fewer catalysis happening. The maxi-
mum absorption peak at 553 nm and other peaks weakened 
gradually with photocatalysis running, which means that 
phenylamino and carbonyl groups in chromogenic groups of 
RhB were devastated by sulfate radical oxidation. The den-
sity of the characteristic peak decreased while the position 
blue-shifted slightly due to the intermediates of N-position 
deethylation. Therefore, N-position deethylation and con-
jugate structure destruction of RhB happened simultane-
ously in the Vis/Fe-g-C3N4/PMS system, which was also 
found in heterogeneous AOPs catalytic degradation of RhB 
by Fe2(MoO4)3 [28]. Sampling the degradation products of 
reacting 0, 15, 30, 45, 60, and 75 min was further determined 
by high-performance liquid chromatography-ion trap-time of 
flight mass spectrometer (UPLC-MS), and shown in Fig. 5b. 
In the absence of light irradiation, chromatography peak A 

existed in RhB, while peak A decreased and was decom-
posed about 91% for 75 min with vis-light irradiation. Five 
kinds of deethylation intermediate in liquid samplers were 
determined in the positive ion mode. Ion peaks of these 
intermediates decreased orderly with 28 quality units (from 
A to F), consistent with deethylaton of RhB and shift of 
absorption peak in UV–Vis Spectra (Fig. 5a). The peaks 
range from A to F were ascribed to RhB, N, N-diethyl-N′-
ethyl rhodamine (DER), N-ethyl-N′-ethyl rhodamine (EER), 
N, N-diethyl rhodamine (DR), N-ethyl rhodamine (ER) and 
rhodamine (R), respectively. In negative ion mode, benzoic 
acid, phthalate, and p-hydroxybenzoic acid were determined, 
consistent with relative researches [12, 27, 31]. The inter-
mediates of RhB degradation were further decomposed into 
various small molecule acids, including benzoic acid, glu-
taric acid, succinic acid, malonic acid, ethylenediamine acid, 
acetic acid, and formic acid. Total organic carbon (TOC) can 
characterize the mineralized degree of organics. The TOC 

Fig. 4   Degradation curves of RhB under various reacted conditions: a degradation kinetic curves of RhB; b first-order kinetic fitting under vis-
ible light irradiation; c different reaction systems and its first-order kinetic fitting (d)
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of the RhB degradation process was determined and shown 
in Fig. 5c. TOC removal increased and reached 67.67% at 
75 min, which means that the mineralized decomposition of 
RhB happened. The pH of the solution increased first and 
then decreased. The former was due to the decomposition 
of RhB, and the latter was due to the generation of acid 
intermediates such as benzoic acid, adipic acid, and glutaric 
acid, consistent with the result of HPLC–MS. Therefore, the 
path of catalytic degradation for RhB in Vis/Fe-g-C3N4/PMS 
was inferred and shown in Fig. 5d. The decomposition path 
of RhB mainly included four stages, including deethylation, 
color group cracking, open-ring small molecule generation, 
and mineralized to CO2 and H2O.

Synergic Mechanism

R-hydroxyethanol (EtOH) and tert-butanol without 
R-Hydroxy (TBA) as a quencher of free radicals were used 
to determine the existence forms of sulfate and hydroxyl 
radical in solution [35]. EtOH simultaneously quenched 
SO4·‾ and ·OH, and TBA for ·OH. 1,4-benzoquinone (BQ) 

was as ·O2‾ quencher, EDTA-2Na as h+ quencher, NaN3 as 
1O2, ·OH and SO4

·‾ quencher [52]. Therefore, EDTA-2Na, 
NaN3, EtOH, BQ, and TBA were used to attain the con-
tributed capacity of h+, ·O2‾, 1O2, ·OH and SO4

·‾. To guar-
antee the free radicals quenching completely, all quenchers 
were 50 times PMS in moral concentration. The effects 
of different quenchers addition on RhB degradation were 
shown in Fig. 6a. By calculating the contributed degree 
(Table S3), the order of active groups was 1O2 ˃ SO4

·‾ ˃ 
h+ ˃ ·OH ˃ ·O2‾. Note that the degradation efficiency of 
RhB in the system of Vis/Fe-g-C3N4/PMS with EDTA-2Na 
was 47.3%, which was attributed to h+. However, the con-
tributor degree of h+ calculated by other quenching experi-
ments was 12.5%, which means the remained h+ was the 
intermediate active product for generating 1O2 and ·OH 
(Eqs. (8) and (9)). Therefore, h+, SO4

·‾, and 1O2 were the 
main active species in Vis/Fe-g-C3N4/PMS system, differ-
ent from the co-doping g-C3N4 with PMS decomposing 
RhB [45], which shows that more 1O2 participated in the 
degradation process. Involved possible reaction equations 
were shown in Eqs. (5–17) [32], and the decomposition 

Fig. 5   Degradation process of RhB in Vis/Fe-g-C3N4/PMS system: a UV–Vis spectra of products; b HPLC chromatogram; c changes of TOC 
and pH and d proposed degradation path



279Photocatalytic Degradation of Rhodamine B via Fe‑g‑C3N4 Activated Sulfate Radical‑Based…

mechanism of RhB in Vis/Fe-g-C3N4/PMS system was 
provided in Fig. 6b. Exposure to visible light, electrons 
of Fe-g-C3N4 was activated to conductive band, and elec-
tron–hole was kept in its valence band (Eq. (5)). Electron 
activated by visible light reacted with PMS to generate 
sulfate radical (E(HSO5

−/SO4
·‾) = 1.75 V) [39], and O 

adsorbed on the surface of catalyst was reduced to O2
·‾ 

(E(O2/ O2
·‾) =  − 0.16 V). O2

·‾ further reacted with H2O 
to generate 1O2. The electron–hole can decompose organic 
molecules due to its strong oxidation [15], meanwhile h+ 
can generate strong oxidation activators like 1O2 and ·OH 
by Eqs. (8 and 9). Coordinated Fe3+ accepted electron to be 
reduced to Fe2+ (Eq. (10)), while HSO5

− oxidized Fe2+ on 
the surface of Fe-g-C3N4 into Fe3+, and Fe3+ was reduced 
Fe2+ by photocatalysis, then which becomes a cycle and 
avoids the generation of iron sludge (Eqs. (10–12)) [5]. 
The free electron and hole generated from g-C3N4 under 
visible light irradiation can be separated efficiently due 
to HSO5

− and Fe3+ consuming electrons. The more 1O2 
generation maybe by Eq. (6), which indicates that the het-
erojunction structure of Fe-g-C3N4 decreased the recombi-
nation of electrons [29] and holes so that photo-generated 
electron has more chance to react with adsorbed O2 and 
generated more 1O2. Besides, resulted in massive h+ can 
generate strong oxidation activators like 1O2 by Eqs. (8, 15 
and 16). The more 1O2 generation proved this compared 
with the co-doping g-C3N4 with PMS decomposing RhB 
[45]. Therefore, photocatalysis (Eq. (5)) and PMS activity 
process (Eqs. (6 and 7)) demonstrated a synergistic effect, 
which promotes the generation of 1O2, h+ and SO4·‾. 
Besides, sulfate radicals may react with adsorbed water 
molecules to form hydroxyl radicals (Eq. (14)). Therefore, 
h+, ·O2‾, 1O2, ·OH and SO4

·‾ were the activated species 
of decomposing RhB, and RhB was ultimately devastated 
into small molecules and even mineralized into CO2 and 
H2O (Eq. (17)).

(5)Fe - g - C3N4 + hv → e− + h
+,

(6)h
+
+ HSO−

5
→ SO⋅−

5
+ H+,

(7)e− + HSO−

5
→ SO⋅−

4
+ OH−,

(8)h
+
+ 2SO⋅−

5
→ SO2−

4
+
1 O2,

(9)h
+
+ H2O → ⋅OH + H+,

(10)e− + Fe3+ → Fe2+,

(11)HSO−

5
+ Fe2+ → SO⋅−

4
+ Fe3+ + OH−,

(12)HSO−

5
+ Fe3+ → SO⋅−

5
+ Fe2+ + H+,

(13)HSO−

5
+ H2O → SO2−

4
+ ⋅O−

2
+ 5H+,

(14)SO⋅−

4
+ H2O → ⋅OH + SO2−

4
+ H+,

(15)e− + O2 → ⋅O−

2
→

1 O2,

(16)⋅O−

2
+ ⋅OH →

1O2 + OH−,

(17)
RhB +

(

h
+, SO4⋅−, 1O2, ⋅OH, ⋅O

−

2

)

→ ⋯ → small molecules.

Fig. 6   Proposed mechanism for photodegradation of RhB on Vis/Fe-g-C3N4/PMS: a free radicals quenching and b mechanism scheme
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The Stabilization of Catalyst

The recyclable capacity of catalysts is an important param-
eter, which is shown in Fig. 7a. After five cycle reac-
tion, the decomposition efficiency of RhB by Fe-g-C3N4 
decreased gradually, which may be explained by the partial 
loss of iron on the its surface. To further verify this result, 
original Fe-g-C3N4, used for 5 times, was determined by 
XPS, and shown in Fig. 7c, d. Fe content on the surface of 
used Fe-g-C3N4 decreased from 0.36 to 0.25% (Fig. 7c). 
Besides, two peaks of 710.2 eV and 712.2 eV for Fe 2p3/2 
were ascribed to Fe2+ and Fe3+ respectively [22]. Fe2+ 
increased from 53.0 to 55.1%, while Fe3+ decreased from 
47.0 to 44.9%. Therefore, iron loss was the main cause 
of catalyst reduction and iron was dissolved in the form 
of iron oxides. Fe-g-C3N4 needs to be modified by this 
path. XRD, FT-IR, and UV–Vis were further performed 
to determine the stability of Fe-g-C3N4 catalytic activ-
ity, and shown in Fig. S5–6 and Fig. 7b. The structures 
of Fe-g-C3N4 before and after use had no obvious differ-
ence. However, the peak density of Fe-g-C3N4 at 27.5° 
decreased after use, which can be explained by the iron 
loss destroying the interlayer stacking structure of Fe-
g-C3N4. The semiconductor performances of Fe-g-C3N4 
before and after using were the same, indicating a good 
stability of photocatalysis activity.

Conclusion

This work aims to explore the synergistic efficiency of 
Fe-g-C3N4, PMS and photocatalysis for decomposing 
RhB. The obtained Fe-g-C3N4 was characterized by XRD, 
UV–Vis, DRS, FTIR, BET and XPS, which indicates that 
Fe of Fe-g-C3N4 existed in the form of Fe–N coordination 
bond, and had more stronger absorption capacity of vis-
ible light due to the decrease of gap between valence and 
conductive band. A sulfate radical-based advanced oxida-
tion processes combined with Fe-g-C3N4 photocatalysis 
by visible light irradiation was established for decompos-
ing Rhodamine B. The degradation efficiency of RhB in 
the system of Vis/Fe-g-C3N4/PMS reached 99.8%, and the 
degradation process of Fe-g-C3N4 accorded with a pseudo-
first-order kinetic model, which shows a synergistic effect 
of SR-AOPs and photocatalysis. The radical quenching 
experiment has fully proved that h+, SO4

·‾ and 1O2 were 
the main active species during RhB degradation, and the 
order of radical contributed degree was 1O2 ˃ SO4

·‾ ˃ h+ ˃ 
·OH ˃ ·O2‾. The more 1O2 generation maybe due to the het-
erojunction structure of Fe-g-C3N4 for less recombination 
of electron–hole pairs. The semiconductor performances 
of Fe-g-C3N4 had good stability of photocatalysis activity. 
The degradation mechanism of RhB in the system of Vis/
Fe-g-C3N4/PMS was proposed.

Fig. 7   Degradation of RhB 
using the recycled Fe-g-C3N4 
(a), and UV–vis spectra (b), 
XPS wide scanning spectra (c) 
and XPS spectra of Fe 2p (d) of 
1% Fe-g-C3N4 before and after 
using
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