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AbstractWe suggest symmetric variational physics-informed neural networks (symmetric VPINN) to learn the
symmetric fluid flow and physical properties of fluids from a limited set of data. Symmetric VPINN is based on the
VPINN framework and guarantees the symmetry of the solutions by modifying the network architecture. The effec-
tiveness of the symmetric VPINN is demonstrated by predicting the velocity profiles and power-law fluid properties in
the Poiseuille flow of a parallel channel. Symmetric VPINN models robustly and accurately learn power-law fluid flow
in both forward and inverse problems. We demonstrate that the symmetric VPINN can be particularly useful when the
power-law index is small and the data are extremely limited. The modified network architecture in the symmetric
VPINN guides the neural network towards an exact solution by reinforcing symmetry. We show that symmetric
VPINN is effective in obtaining unknown physical properties in practical experiments where data are scarce, suggest-
ing the possibility of introducing known conditions of the system directly into the network structure to improve the
accuracy of the network.
Keywords: Physics-informed Machine Learning, Network Architecture, Power-law Fluid, Pressure-driven Flow, Inverse

Problem

INTRODUCTION

Machine learning based on neural networks has become a pop-
ular method that has been applied to various problems, such as
solving differential equations [1-3], identifying and predicting dy-
namic systems [4-6], and predicting material properties [7-9]. Be-
cause neural networks are trained solely from the given data, they
may violate the underlying physics. In this regard, many solvers have
been suggested to involve the known physics in neural networks.

In particular, physics-informed machine learning using physics-
informed neural networks (PINNs) has emerged as a popular
method in scientific computing, which uses the physics of systems
by including governing differential equations in the loss function
of the neural network and using collocation methods. The meth-
ods using PINN have been used to solve a wide range of problems,
such as the Navier-Stokes equation [10], Buckley-Leverett equation
[11], and heat-transfer problems [12]. Several networks were devel-
oped based on the PINN framework. For example, parareal PINN
(PPINN) [13], conservative PINN (cPINN) [14], and extended PINN
(XPINN) [15] improve flexibility in handling problems by domain
decomposition in time, space, and time-space, respectively. To en-
hance the predictivity of the model, variational physics-informed
neural network (VPINN) based on the sub-domain Petrov-Galer-
kin method was suggested [16]. The VPINN introduces a varia-
tional residual derived from the weak form of differential equations.
In the past, VPINN was used to solve the advection-diffusion equa-

tion [16] and the two-phase transport problem [17]. Additionally,
several methods that force known conditions of the system to
neural networks were proposed. For example, Mattheakis et al.
[18] used a specialized network architecture to guarantee the sym-
metry of the neural network outputs.

Predicting unknown physical properties from experiments is an
important issue in engineering because certain properties are diffi-
cult to obtain directly and require the solution of inverse problems.
In the past, a series of studies had to be conducted to learn prop-
erties from given data using neural networks [8,9]. For example,
Reyes et al. [7] applied the PINN algorithm to predict the viscos-
ity profiles from computationally generated velocity data. However,
according to Kim et al. [19], a sufficient amount of well-distrib-
uted velocity data is difficult to obtain in real-world experiments.
In many experiments, data are scarce, limiting the applicability of
data-driven discoveries in scientific studies.

Along this path, we propose an effective method for data-driven
discovery by testing a combination of existing physics-embedded
methodologies. In particular, we explore the efficacy of combining
the VPINN with a specialized network architecture to solve a fluid
flow problem with geometric symmetry. We apply them to the Poi-
seuille flow of a power-law fluid, which is a nonlinear system but
can be analytically solved to evaluate the performance of various
combinations.

In this study, we first formulated a given flow problem within the
framework of the VPINN. We also demonstrated how the special-
ized network design suggested in a previous study is combined with
VPINN to guarantee symmetry in the fluid flow. The proposed
framework was applied to both forward and inverse flow prob-
lems to solve unknown velocity profiles or fluid properties. We also
tested various combinations of PINN/VPINN and network archi-
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tectures to perform a comparative analysis on their performance.
The reason for the superior performance of the proposed combi-
nation of VPINN and the specialized network architecture is also
briefly discussed.

PINN AND VPINN FOR POISEUILLE FLOW OF 
POWER-LAW FLUID

To examine the performance of PINN and VPINN, we consid-
ered the Poiseuille flow of power-law fluid between two infinite par-
allel planes, as shown in Fig. 1. We assumed a one-dimensional
steady flow of an incompressible fluid where x is the flow direc-
tion and z is the traverse direction normal to the flow. Under these
assumptions, the fluid velocity u is only dependent on z and the
system is governed by

(1)

where  is the shear stress, p is the pressure independent of z, and
the pressure gradient dp/dx is a constant.

The constitutive equation for power-law fluid that follows the
Ostwald-de Waele power-law model is as follows:

(2)

where apparent viscosity  is given by

(3)

where m is the power-law consistency coefficient and n is the power-
law index.

The governing differential equation is derived from Eqs. (1), (2),
and (3) as follows:

(4)

with non-slip boundary conditions:

(5)

We obtain the analytical solution of Eq. (4) as

(6)

Despite its nonlinearity, the Poiseuille flow of a power-law fluid
in a parallel channel has an analytical velocity solution, as mentioned
above. We used this problem to observe the performance of PINN-
based methods in solving complicated or nonlinear systems.

Below, we extend the PINN and VPINN frameworks to obtain
the velocity profile (forward problem) or power-law consistency
coefficient (m) and the power-law index (n) from the velocity data
(inverse problem). We used a deep feedforward network as the
network architecture of both PINN and VPINN, and derived their
loss functions from the governing differential equation. We con-
structed a deep neural network with z as the input and velocity pro-
file u as the output. Thus the proposed neural network is a mapping
uNN: R, where =[h/2, h/2].

Based on the PINN and VPINN frameworks, we obtained the
loss functions from residual r(z):

(7)

which is derived from Eq. (4). The loss function of PINN consists
of boundary loss (Lb) and residual loss (Lf):

(8)

(9)

(10)

We calculated Lf as the mean squared error of Nf collocation points.
b is the weight that adjusts the contributions of Lf and Lb and we
used b=1 in this study following the previous study [16].

However, variational loss (Lv) derived from the weak form of
differential equations is used in the loss function of VPINN instead
of Lf. The variational loss Lv may have several forms owing to
integration by parts. In this system, we obtained two forms of vari-
ational residuals, resulting in two types of VPINN loss functions:

(11)

(12)

(13)

(14)

(15)
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Fig. 1. Configuration of poiseuille flow in parallel channel consid-
ered in this study.



PINNs for symmetric fluid flow 2121

Korean J. Chem. Eng.(Vol. 40, No. 9)

where

(16)

Lb has the same form as that in Eq. (10). Nel is the number of
elements (subdomains); we applied Nel=1. vk(z) are the test func-
tions that form the test function space onto which the residuals
are projected, and K(e) is the number of test functions employed in
element e. We took K(e)=60 and set the test functions using Legen-
dre polynomials: vk(z)=Pk+1(z)Pk1(z), where Pk(z) is the Legen-
dre polynomial of degree k, following the choice of the previous
study [16]. This reduced the boundary terms initially obtained
from integration by parts to zero, as shown in Eqs. (14) and (15),
because vk(z)=0 at boundaries according to Kharazmi et al. [16].
To calculate the integral terms, we used the Gauss quadrature rules
with Q=80 quadrature points, which are the same as the number
of collocation points in PINN.

Finally, based on a study by Mattheakis et al. [18], we applied
the so-called hub layer to PINN and VPINN to force symmetry to
the results of neural networks (uNN). Initially, without the hub layer,
the output of the neural network (uNN) was calculated from the
nodes of the last hidden layer in the neural network:

(17)

where i, N, and wi are the the index of the neuron, number of
neurons, and weights of the last hidden layer, respectively; b is the
bias of the output node, and hi(z) denotes the activation function
of a neuron in the last hidden layer. However, when the hub layer
is introduced after the output layer of the deep neural network, uNN

is obtained as follows to guarantee symmetry:

(18)

The hub layer can also be employed in an axisymmetric environ-
ment in cylindrical or spherical coordinates by substituting z for the
axis of symmetry.

In this study, we discuss four types of PINN-based frameworks:
PINN and VPINN models with or without the hub layer.

FORWARD PROBLEM-SOLVING VELOCITY PROFILE 
OF POWER-LAW FLUID IN POISEUILLE FLOW

First, we extended PINN and VPINN to calculate the velocity

profile of Poiseuille flow of a power-law fluid. We built deep neu-
ral networks with four layers and 32, 16, 16, 32 neurons in each
layer, with a swish activation function. Next, we used the Xavier
initialization scheme to initialize the weights and biases of the neural
networks. Finally, we ran the Adam optimizer with 100,000 itera-
tions and a learning rate of 0.001. We used the loss function value
at the end of learning to evaluate the optimization performance of
the methods and expressed the deviation of the obtained solutions
from the exact solution as L1 norm of the error: |uNN(zi)
uexact(zi)|, where Ntest represents the number of test points. We also
adopted the even metric, S+=(1/Ntest) (uNN(zi)uNN(zi))2, from
[18] to quantify the degree of symmetry in the solution. The test
points were uniformly collocated throughout the domain with a
step size of 0.001. We modified the code proposed in [16], which
is built upon the TensorFlow library, to introduce the hub layer
and impose symmetry in VPINN models.

We solved the velocity profile with ten different initializations to
generalize the accuracy of PINN-based methods. We considered
the system of dp/dx=1, h=2 and m=1. For n=0.5, 0.8, 1.2 aver-
aged solutions of the four methods, that is, PINN and VPINN
with or without the hub layer, are compared with the analytical
solutions in Table 1, and their L1 norm and the solutions of n=0.5
are visualized in Fig. 2 and Fig. 3, respectively. In short, we refer to
frameworks with the hub layer as symmetric PINN or symmetric
VPINN, and original frameworks without the hub layer as vanilla
PINN or vanilla VPINN.

In general, the VPINN solutions that use variational loss form 2
agree well with the analytic velocity profile compared with the PINN
models. For example, for n=0.5, VPINN with loss form 2 yields
the L1 norm of O(102), which outperforms the L1 norm of O(102)
when PINN is used. While PINN uses the pointwise error of the
governing equations at collocation points, VPINN is based on the
projection to the test function space and calculates the integral by
quadrature rules. In this regard, VPINN can capture the dynam-
ics of the solution over the entire domain more efficiently with
fewer points than PINN can.

In the PINN and VPINN models with loss form 1, better sym-
metry generally makes the NN models more accurate. When loss
form 2 is used, the symmetric VPINN solutions still show compa-
rable performance to the vanilla VPINN models. Specifically, rein-
forcing symmetry in the network structure results in lower variation
with comparable performance. Fig. 3 shows that the hub layer gener-
ally reduces the deviation of the solutions learned by the PINN
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Fig. 2. L1 norm of forward PINN and VPINN solutions for poiseuille flow of power-law fluid with (a) n=0.5, (b) n=0.8, and (c) 1.2. Alpha-
bets (A)-(F) in x axis indicate the types of models: (A) vanilla PINN, (B) symmetric PINN, and (C) vanilla VPINN with form 1 loss,
(D) vanilla VPINN with form 2 loss, (E) symmetric VPINN with form 1 loss, and (F) symmetric VPINN with form 2 loss.
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and VPINN. For n=0.5 and 0.8, the hub layer decreases the stan-
dard deviation of L1 norm by more than 50%. In particular, in the
PINN framework, the hub layer additionally improves the accu-
racy of the solutions.

Note that the learned velocity profile becomes less accurate as

the power-law index (n) decreases. We postulate that the loss func-
tion landscape may become less favorable in the optimization pro-
cess at a low power-law index.
1. PINN and VPINN on the Symmetric Half of Domain

The conventional method to obtain a symmetric solution is to

Table 1. L1 norm, S+, loss function value of forward PINN and VPINN solutions for Poiseuille flow of power-law fluid with n=0.5, 0.8, 1.2

Methods
L1 norm S+ Loss

Loss form Mean Stdev Mean Stdev Mean Stdev
n=0.5
PINN Vanilla . 1.19×102 7.62×101 1.38×102 1.61×102 7.05×102 8.00×102

Symmetric . 1.90×101 4.02×101 7.15×1031 3.78×1032 1.71×105 1.52×105

VPINN Vanilla form1 1.73×102 1.77×102 7.02×104 7.61×104 8.50×103 9.12×103

Vanilla form2 1.93×102 5.82×103 3.05×1010 2.77×1010 1.94×107 8.94×108

Symmetric form1 2.10×101 8.75×101 7.04×1031 2.12×1032 1.08×106 7.34×107

Symmetric form2 5.87×102 3.07×102 6.45×1031 7.81×1033 2.91×106 2.32×106

n=0.8
PINN Vanilla . 1.04×101 9.25×100 2.50×104 3.17×104 1.18×103 7.21×104

Symmetric . 3.93×100 2.37×102 9.57×1031 7.98×1032 2.57×106 2.53×106

VPINN Vanilla form1 4.14×100 1.61×101 5.70×1010 1.44×109 1.07×106 2.50×106

Vanilla form2 1.82×102 8.15×103 2.31×1010 1.88×1010 2.40×107 1.93×107

Symmetric form1 4.09×100 5.74×102 9.27×1031 1.36×1032 2.04×107 1.26×107

Symmetric form2 1.37×102 5.79×103 9.18×1031 1.29×1032 3.02×107 2.73×107

n=1.2
PINN Vanilla . 2.01×100 4.03×102 8.72×108 1.79×107 9.31×107 8.95×107

Symmetric . 1.98×100 1.68×102 1.21×1030 3.18×1032 2.18×106 2.54×106

VPINN Vanilla form1 1.92×100 3.34×102 4.37×1010 8.60×1010 1.87×107 1.73×107

Vanilla form2 1.36×102 3.22×103 1.06×1010 5.78×1011 1.47×107 1.58×107

Symmetric form1 1.89×100 4.15×102 1.19×1030 9.96×1033 3.70×107 2.71×107

Symmetric form2 1.66×102 1.19×102 1.20×1030 6.39×1033 3.39×107 3.38×107

Fig. 3. Velocity profile obtained from forward PINN and VPINN solutions when n=0.5 with 100,000 iterations: (a) vanilla PINN, (b) sym-
metric PINN, (c) vanilla VPINN, and (d) symmetric VPINN. Red solid lines represent exact solutions, dots represent predicted solu-
tions, and the shaded parts represent standard deviation (yet invisibly small in (b) and (d)).
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solve differential equations in half of the domain and expand the
solution. Using the symmetric half of the domain is advantageous
in terms of lower computational cost.

In this regard, we employed PINN and VPINN on the symmet-
ric half of the domain =[0, h/2] with different boundary condi-
tions: du/dz=0 at z=0 and u(z)=0 at z=h/2. We solved the same
forward problem with the symmetric half of the domain to com-
pare with the hub layer frameworks by applying different bound-
ary losses (Lb):

(19)

where d and (1d) are weights that adjust the contributions of
the boundary conditions, and we used d=0.5 in this study.

When comparing the L1 norm and loss function values presented
in Table 1 and 2, the symmetry-forced VPINN solution agreed bet-
ter with the analytical solution than the VPINN solution learned
in the symmetric half of the domain. Owing to the hub layer, a
symmetry constraint is imposed on the neural network, narrow-
ing down the computed solutions of the neural network. On the
other hand, the symmetric half-domain method technically guar-
antees symmetry by decomposing the domain and does not directly
affect the optimization process.

We note that the symmetric PINN model shows an accuracy
similar to that of the symmetric half-domain PINN model. Refer-
ring to Section 4, PINN tends to fall into local minima regardless
of the existence of the hub layer and fails to achieve a well-agree-
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Table 2. L1 norm and loss function values of forward PINN and
VPINN solutions in the symmetric half of domain with
n=0.8

Methods
L1 norm Loss

Mean Stdev Mean Stdev
PINN 1.96×100 5.44×101 7.50×108 4.25×108

VPINN 2.40×100 4.73×101 1.12×107 4.66×108

Table 3. Predicted values of power-law consistency coefficient (m) and power-law index (n) by PINN and VPINN for m=1 and n=0.6, 0.8.
Only the form 2 variational residual loss function (Eq. (15)) was used in VPINN

Methods
m n

Mean Stdev Mean Stdev
n=0.6
PINN Vanilla 8.59×101 6.16×100

4.40×102 6.16×100

Symmetric 5.47×100 8.62×100
9.72×101 8.62×100

VPINN Vanilla 1.07×100 2.25×101
6.37×101 2.25×101

Symmetric 1.01×100 1.54×102
6.00×101 1.54×102

n=0.8
PINN Vanilla 4.31×100 3.01×100

6.12×102 3.01×100

Symmetric 1.27×100 4.68×100
8.13×101 4.68×100

VPINN Vanilla 1.03×100 8.30×102
8.19×101 8.30×102

Symmetric 1.01×100 4.37×102
8.12×101 4.37×102

ing solution as evidenced by the deviation of trained results from
the exact solution despite an optimized loss function value.

INVERSE PROBLEM-LEARNING VISCOSITY OF 
POWER-LAW FLUID

We applied PINN and VPINN to learn the power-law consis-
tency coefficient (m) and power-law index (n) from the velocity
profile data. Only variational residual form 2 was tested in VPINN
owing to its better performance in Section 3.

Kim et al. [19] used fluorescent beads to obtain the velocity data
in microchannels where particle migration is observed as in the
power-law fluid [20,21]. The study reported that fewer fluorescent
particles were located near the walls. To this end, we first randomly
collocated data points from z domain (h/2, h/2) to follow a nor-
mal distribution of N(0, h/4) and generate velocity data at each
point based on Eq. (6) with a 5% Gaussian noise. In the same study,
20 points were sampled to train the neural network. We used the
same neural network structure, hyperparameters, and Adam opti-
mizer as described in Section 3 to learn the power-law fluid param-
eters and train models with 100,000 iterations to compare the
performance of each model. The loss functions for PINN and
VPINN still take the forms presented in Eqs. (8) and (11). How-
ever, data loss terms in mean squared error sense, i.e., 1/N
|uNN(xi)ui|, have to be added such that the velocity fields pre-
dicted by the network, uNN, follow N experimental data points, ui.
The results of the prediction of the unknown parameters are sum-
marized in Table 3. The accuracy of the simultaneously learned
velocity solutions is described in Table 4, and the predicted veloc-
ity profiles when n=0.6 are visualized in Fig. 4.

Among the models considered in this study, the symmetric
VPINN exhibits the best performance in solving the inverse prob-
lem. We observe that the VPINN with a hub layer accurately pre-
dicts m and n, values and the prediction remains robust even in
several random initializations. The hub layer generally improves
the accuracy of the models, and the PINN solutions do not calcu-
late the power-law fluid properties well, even though their loss func-
tion values are small. We presume that PINNs are prone to falling

i
N
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into local minima when used with the Adam optimizer and trained
for a limited number of iterations. In contrast, VPINNs are advan-
tageous for capturing the global minima of solutions and exhibit
robust performance.

According to Shin et al. [22], the total errors of the neural net-
work solutions consist of three components: approximation, opti-
mization, and estimation errors. The approximation error is the
error between the exact solution u* and output uNN of the ideally
optimized neural network that has been trained with an infinite
amount of data. In particular, the approximation error is defined
as the minimum error between u* and Hm where Hm is the space
that can be expressed by a neural network. The hub layer can reduce
the approximation error of neural networks by imposing an addi-
tional constraint, that is, symmetry in optimizing process and guid-
ing Hm to be closer to u*. PINN-based methods can also be im-
proved by adjusting the weights of the loss function; however, opti-
mizing another hyperparameter requires further experiments. In
contrast, introducing a hub layer can be a straightforward method
for improving the PINN-based models.

Next, we varied the number of training points to solve the inverse
problem. We tested PINN with 20,80, and 150 data points and
VPINN with 5, 10, and 20 data points. The results are presented
in Table 5.

Table 5 shows that VPINN efficiently learns power-law fluid
properties, even with a far smaller data size than PINN. However,
using larger datasets did not improve the performance of the PINN.

In summary, the hub layer works efficiently in reducing the
approximation errors of neural networks, as shown in Section 3,
and the VPINN models are well trained even with a limited amount
of data.

FINAL REMARKS

We propose a symmetric VPINN to model symmetric fluid flows.
In particular, we used symmetric VPINN and other PINN-based
models in the learning velocity profile and power-law fluid prop-
erties in the Poiseuille flow of a power-law fluid, and evaluated the
performance. Unlike PINN-based methods, symmetric VPINN

Table 4. L1 norm, L+, and loss function values of velocity profiles obtained from PINN and VPINN in inverse problem with n=0.6, 0.8

Methods
L1 norm S+ Loss

Mean Stdev Mean Stdev Mean Stdev
n=0.6
PINN Vanilla 1.37×102 4.55×101 8.21×103 9.64×103 4.33×103 1.82×103

Symmetric 9.00×101 7.81×101 2.88×1031 2.38×1031 2.96×103 3.78×103

VPINN Vanilla 8.39×100 1.01×101 4.40×105 8.21×105 1.36×105 6.69×106

Symmetric 2.80×100 1.26×100 7.33×1031 2.29×1032 1.28×105 7.29×106

n=0.8
PINN Vanilla 1.76×102 6.46×101 1.97×102 2.23×102 6.18×103 4.07×103

Symmetric 6.64×101 8.67×101 9.41×1031 7.61×1031 2.00×103 3.51×103

VPINN Vanilla 7.10×100 5.21×100 3.14×105 4.64×105 1.89×105 9.77×106

Symmetric 3.81×100 2.23×100 9.18×1031 5.67×1032 2.23×105 8.20×106

Fig. 4. Velocity profile obtained from inverse PINN and VPINN solutions when n=0.6 with 100,000 iterations: (a) vanilla PINN, (b) symmet-
ric PINN, (c) vanilla VPINN, and (d) symmetric VPINN. Red solid lines indicate exact solutions, dots indicate predicted solutions,
and shaded parts denote standard deviation (yet invisibly small in (d)).
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models accurately and robustly approximate analytical velocity
solutions. Overall, VPINN shows better accuracy than PINN, and
the hub layer can improve the performance of neural networks com-
pared with using the symmetry boundary condition explicitly. As
in solving the forward problem, the symmetric VPINN shows high
accuracy in predicting power-law fluid properties. We noticed that
a symmetric VPINN could learn reasonable values even from a
limited dataset. The symmetric VPINN model especially shows
good performance when the power-law index n is low, in contrast
to the difficulties in the prediction of other PINN-based models. In
particular, the hub layer improves the performance of the VPINN
by limiting the space expressed by the neural networks. Therefore,
the symmetric VPINN shows higher accuracy and less deviation

in the forward problem and is trained effectively with scarce data
in the inverse problem than any other tested models.

PINN can be improved by strictly imposing boundary condi-
tions; however, additional hyperparameters remain to be tuned.
For example, in this study, b in Eq. (8) and d in Eq. (19) can be
optimized; however, there is no clear consensus on the selection of
hyperparameters in the absence of a final optimized solution. Instead,
introducing a hub layer requires more computational load in the
backpropagation step of neural networks but is advantageous as it
avoids additional hyperparameter tuning.

The PINN and VPINN frameworks may not be appropriate for
imposing natural boundary conditions. In the symmetric half-
domain method tested in Section 3.1, we used the first derivative

Table 5. Predicted values of power-law consistency coefficient (m) and power-law index (n) from m=1 and n=0.6, 0.8 by (a) VPINN with
form 2 variational residual loss function and (b) PINN with different number of training points

(a) Inverse problem solved with VPINN

Methods Training
points

m n
Mean Stdev Mean Stdev

n=0.6
VPINN Vanilla 05 1.59×100 5.57×101

9.13×101 5.57×101

Symmetric 8.28×101 1.98×101
4.88×101 1.98×101

Vanilla 10 1.15×100 6.03×101
6.66×101 6.03×101

Symmetric 9.79×101 1.10×101
5.84×101 1.10×101

Vanilla 20 1.07×100 2.25×101
6.37×101 2.25×101

Symmetric 1.01×100 1.54×102
6.00×101 1.54×102

n=0.8
VPINN Vanilla 05 3.45×100 9.21×100

8.54×101 9.21×100

Symmetric 8.49×101 2.24×101
6.71×101 2.24×101

Vanilla 10 1.05×100 9.60×102
8.62×101 9.60×102

Symmetric 9.95×101 6.90×102
8.02×101 6.90×102

Vanilla 20 1.03×100 8.30×102
8.19×101 8.30×102

Symmetric 1.01×100 4.37×102
8.12×101 4.37×102

(b) Inverse problem solved with PINN

Methods Training
points

m n
Mean Stdev Mean Stdev

n=0.6
PINN Vanilla 020 8.59×101 6.16×100

4.40×102 6.16×100

Symmetric 5.47×100 8.62×100
9.72×101 8.62×100

Vanilla 080 3.29×100 2.25×100
7.48×102 2.25×100

Symmetric 4.18×101 3.01×100
9.17×101 3.01×100

Vanilla 150 3.16×100 4.90×100
1.11×101 4.90×100

Symmetric 4.07×100 8.51×100
9.81×101 8.51×100

n=0.8
PINN Vanilla 020 4.31×100 3.01×100

6.12×102 3.01×100

Symmetric 1.27×100 4.68×100
8.13×101 4.68×100

Vanilla 080 2.13×100 4.18×100
7.06×105 4.18×100

Symmetric 1.83×100 5.88×100
8.35×101 5.88×100

Vanilla 150 3.78×100 2.06×100
4.17×102 2.06×100

Symmetric 2.01×100 5.99×100
6.95×101 5.99×100
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APPENDIX A. CHOICE OF ACTIVATION FUNCTION

We note that the second derivative of the velocity profile com-
puted by VPINN shows a deviation near the boundaries, possibly
owing to the diminishing second derivative of the swish activation
function. To compare the activation functions, we solved the for-
ward problem with the symmetric VPINN using variational resid-
ual form 2 and applying several activation functions: swish, sigmoid,
and sin. The network structure was constructed as described in

Section 3.
Fig. A1 shows positive deviation near boundaries in the second

derivative of VPINN solutions using swish or sigmoid activation
functions, whose second derivatives diminish to zero. Conversely,
the boundary error of the second derivative exhibits randomness
when the sine activation function is used. However, this deviation
near boundaries is difficult to avoid unless the swish activation
function provides better accuracy in learning velocity profile than
other activation functions, as shown in Table A1.

of uNN at z=0 as the boundary condition to impose a penalty in
the loss function. However, as shown in Eq. (10), the boundary
conditions of PINN and VPINN are the calculated values of the
velocity profile, not the derivatives. This may result in larger errors
for methods that use the symmetric half of the domain than for
symmetric VPINN frameworks. While PINN essentially uses data
collocation in training, VPINN is trained via projection to the test
function space, leaving the possibility of improvement by appro-
priately applying natural boundary conditions.

Finally, including the known condition of systems directly into
the network, rather than penalizing the network with the loss func-
tion can improve the predictability of the models. We further sug-
gest that translating prior knowledge of the system under consi-
deration, other than symmetry, into the network architecture may
further enhance the accuracy of neural networks.
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Table A1. Loss function value, L1 norm, and SSE of forward symmetric VPINN solutions for the Poiseuille flow of power-law fluid with acti-
vation function of swish, sigmoid, and sin

Activation L1 norm Loss
Function Mean Stdev Mean Stdev
Swish 5.97×102 2.92×102 2.99×106 1.81×106

Sigmoid 1.33×102 9.34×103 2.85×107 2.73×107

Sin 6.03×102 2.27×102 4.38×106 1.80×106
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APPENDIX B. CHOICE OF HYPERPARAMETERS
OF VPINN

We selected the hyperparameters used in PINN and VPINN

through the case study as shown in Table B1 and B2, respectively.
We used lid-driven cavity flow and one-dimensional Poisson’s
equation as test cases to solve with PINN and VPINN, respec-
tively [23,16].

Table B1. Sum of squared error and Linf norm of PINN solutions for lid-driven cavity flow with different hyperparameter values

Initializer Activation
function

Layer of neural
network

Sum of
squared error Linf norm

He swish 32.16.16.32 7.62×100 9.49×101

Xavier swish 32.16.16.32 7.30×100 9.25×101

zeros swish 32.16.16.32 2.68×101 1.00×100

He tanh 32.16.16.32 8.06×100 9.96×101

He swish 20.20.20 9.77×100 9.73×101

He swish 20.20.20.20 6.11×100 8.85×101

He swish 40.40.40 7.04×100 9.2×101

He swish 40.40.40.40 6.08×100 9.1×101

He swish 32.16.16.16.32 6.67×100 8.98×101

Table B2. Loss function value and L1 norm of VPINN solutions for one-dimensional Poisson’s equation with different hyperparameter values
Hyperparameter Loss  Norm
Initializer He 1.67×100 3.67×105

Xavier 3.51×100 1.34×104

zeros 1.98×103 1.05×102

Layer of neural 20.20.20 6.94×101 9.74×104

network 20.20.20.20 1.67×100 3.67×105

32.16.16.32 4.78×102 8.76×105

32.16.16.16.32 3.90×102 1.79×105

40.40.40 1.20×101 1.25×104

40.40.40.40 2.22×101 1.39×105

Number of 30 3.13×100 7.37×106

test functions 60 1.67×100 3.67×105

100 8.09×101 3.68×105

150 1.93×102 1.92×101

200 1.94×103 3.44×101

Number of 40 1.78×101 3.75×100

quadrature points 80 1.67×100 3.67×105

150 1.62×100 3.77×105

200 1.64×100 3.81×105

250 1.28×100 3.79×105

300 1.66×100 3.88×105

Fig. A1. Second derivative of velocity profile solved with symmetric VPINN and 100,000 iterations when n=0.6 and different activation func-
tions are used: (a) swish, (b) sigmoid, and (c) sin. Red solid lines indicate exact solutions, dots indicate predicted solutions, and
shaded parts indicate standard deviation.


