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Abstract—Rankine cycle is widely used in industry to convert heat to work using a working fluid. A mixture of o-
and m-isomers of dichlorobenzene can act efficiently as a working fluid in the cycle. An equation of state (EoS) approach
was chosen to model vapor-liquid equilibria and phase properties in the system. The best results were achieved with
Tsai-Chen EoS. Experimental measurements of volumetric properties of mixtures and solid-liquid equilibria were per-
formed. These data were correctly predicted within the ideal assumption. An enthalpy-pressure diagram for the o-
dichlorobenzene - m-dichlorobenzene system was calculated using the resulting EoS.
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INTRODUCTION

Economical usage of energy resources has become a serious prob-
lem, because oil and gas fields are exhausted and their production
becomes more expensive. Waste heat not only reduces energy effi-
ciency of a process, but also contributes to global warming. It is re-
leased in many processes and usually is absorbed by the environ-
ment. To improve energy efficiency; released heat should be taken
away with a heat exchanger. Then, the heat can be used to produce
work and generate electricity (for example, in the Rankine, Brigh-
ton or Stirling cycle) [1,2]. Rankine cycle is one of the most effective,
cheapest and simplest thermodynamic cycles with a real working
fluid [3-6].

Currently, most plants with the Rankine cycle use water as a work-
ing fluid. Organic liquids can be an alternative to water. The cycle
using them is called the organic Rankine cycle (ORC) [3-8]. The rea-
son for the choice of ORC is to make electricity generation more
efficient or economically attractive for organic fluids [3-8]. Of course,
the main trend at present is the development of “natural-like tech-
nologies” and “green reagents” However, sometimes situations arise
where it is advisable to use toxic reagents with the necessary pre-
cautions if it is not possible to dispose of them promptly. The mix-
tures of o- and m-dichlorobenzenes (0-DCB and m-DCB respec-
tively) is this case; if the removal of toxic waste is not possible all
year round, it makes sense to try to use these mixtures as the work-
ing fluid of the Rankine cycle in autonomous power plants for a
limited period of time, followed by disposal.

This system has not been studied enough before. To correctly
design the process, it is necessary to have data on phase equilibria
and phase properties. The working fluid evaporates and condensates
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during the Rankine cydle; therefore. it is convenient to use the equa-
tion of state (EoS) capable of describing properties of both liquid
and vapor phases.

The goal of this work was to obtain parameters of an EoS for o-
dichlorobenzene - m-dichlorobenzene mixtures to describe correctly
thermodynamic properties of the system in a wide range of tem-
perature and pressure. Determination of EoS parameters makes it
possible to calculate an /-P diagram for a mixture. The diagram con-
tains information on properties of the investigated system needed
by engineers to optimize a technological scheme of the process.

EXPERIMENTAL SECTION

1. Reagents

Chemicals o-dichlorobenzene and m-dichlorobenzene were sup-
plied by Sigma Aldrich with a stated purity 299%. The real purity
of the compounds was determined by GC-MS analysis. The purity
of m-dichlorobenzene was quite different from the claimed one.
According to GC-MS, the main fraction of impurities in -dichlo-
robenzene is o-dichlorobenzene, mixtures of two reagents can be
considered as two-component systems, and so additional purifica-
tion of m-dichlorobenzene was not carried out. The information
about used reagents is listed in Table 1.
2. Methods

Densities of 0-DCB - m-DCB solutions were determined with a
VIP-2MP vibrating-tube densimeter. The following expression was
used to obtain densities of the solutions:

p=A"7"+B", 1)
where 7is the oscillation period, A", B - coefficients, determined
from calibration at the temperature measurements (288.15, 298.15,
308.15, 318.15K) by known densities and oscillation periods of
ambient air, ultrapure water and standard materials. Standard mate-
rials (Produced and certified by DI. Mendeleyev Institute for Metrol-
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Table 1. Sources and purity of the chemicals

Mass fraction of the

Name CAS number Source . Purification/Analysis method
main components, %
0-DCB 95-50-1 Sigma Aldrich 99.944 GC-MS
m-DCB 541-73-1 Sigma Aldrich 97.595 GC-MS
o-Xylene 95-47-6 Component-Reaktiv 99.8 -
DSC standards
Hg 7439-97-6 NETZSCH 99.999 as stated by the supplier
H,O 7732-18-5
Ga 7440-55-3 Sigma Aldrich 99.999 as stated by the supplier
Mendel h Insti
CH,COOH 65-85-0 endeleev Research Institute 99.995 as stated by the supplier
for Metrology (St.-Petersburg)
In 7440-74-6 NETZSCH 99.999 as stated by the supplier
Sn 7440-31-5 NETZSCH 99.999 as stated by the supplier
Bi 7440-69-9 NETZSCH 99.999 as stated by the supplier
Pb 7439-92-1 NETZSCH 99.999 as stated by the supplier
Zn 7440-66-6 NETZSCH 99.999 as stated by the supplier
CsCl 7647-17-8 NETZSCH 99.999 as stated by the supplier
DSC /(mW/mg)
T exo
1.0 1
0.8 4
0.6
0.4
0.2
0.0 1
-0.2 1
0.4
-0.6 -
-55 -50 -45 -40 -35 -30

Temperature /°C

Fig. 1. DSC curves of the 0-DCB - m-DCB system with m-DCB content (in mass fraction): 20.25 wt% (violet line), 50.02 wt% (green line)

and 90.03 wt% (blue line); HR=2 K/min.

ogy VNIIM, Russia St. Petersburg) were used for 298.15 K, o-xylene
was used for other temperatures. Temperature was maintained by
a built-in thermostat, with a precision of temperature registration
+0.005 K. Standard uncertainty of a registered temperature u(T)
was 0.02K. Standard deviation for measurement of one solution
was 0.0001 g/ml. Atmosphere pressure was recorded during all the
experiments. Standard uncertainty of registered pressure u(P) was
1kPa.

DSC curves were obtained on a Netzsch DSC 204 F1 apparatus.
The measuring system was calibrated according to ISO 11357-1
standard by the temperatures and enthalpies of phase transitions

of standard substances (listed in Table 1). Samples were put in alu-
minum crucibles with pierced lid (V=40 mm?®, d=6 mm) in the flow
(40 ml/min) of dried nitrogen (99.998 vol%). The measurements
were held in the 188.15-298.15 K temperature range at heating rate
2 K/min. Cooling experiments were not held due to formation of
supercooled liquid. The masses of the samples were within the 2-
8 mg range. Standard uncertainty of melting point temperatures
and heats of fusion in DSC curves was +1 K and +5.0%, respec-
tively. A solidus temperature for a sample was assessed as an extrap-
olated onset temperature of the first DSC peak; a liquidus tempera-
ture - as the last peak temperature corrected on a thermal resistance
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[9,10]. The enthalpy of fusion of pure substances was defined as
an area between peak and interpolated baseline. Software package
NETZSCH Proteus Thermal Analysis was employed for experi-
mental data processing. Some of DSC curves are presented in Fig. 1.

THERMODYNAMIC MODELING

1. Literature Data

One of the most popular EoS used to describe the properties of
substances and their mixtures (liquid and vapor) is the cubic equa-
tion of state. Advantages of this type of EoS are relative simplicity,
high speed of calculation and applicability to describe properties in
a wide range of temperature and pressure. Parameters of cubic EoS
can be calculated from the condition for a critical point. Unfortu-
nately; this way of calculation does not lead to correct description
of the P-v-T properties of individual substances away from the criti-
cal point; therefore, parameters were fitted to experimental P-v-T
data. Initial approximation for critical temperatures was found in the
literature [11,12], critical pressures were calculated according Jobacks
group contribution method [13], acentric factors were estimated
by Edmister formula [14]. These data are shown in Table 2.

Literature data on P-v-T properties of 0-DCB - m-DCB system
were gathered and analyzed. Whereas data on pure substances are
sufficient for calculations (see Table 3), data on mixtures contain only
excess volumes (v") measured at one temperature (298 K). Note
that the values of excess volumes are small; thus, behavior of the
investigated system is close to the ideal.

Data on isobaric liquid heat capacity and isobaric ideal gas heat
capacity are also necessary for h-P diagram calculations (see Sup-
plementary material). Liquid heat capacities of 0-DCB and m-DCB
were found in the literature, gas heat capacity was estimated by
JobacKs group contribution method [13]. Expression for gas heat
capacity of 0-DCB and m-DCB was found to be

C$¥=3.61+0.449T—3.0756-10 *T*+7.88-10 °*T° [J/(mol-K)]. )]

Solid-liquid equilibria in this system were not investigated before.
Data on points and heats of fusion of pure 0-DCB and m-DCB
are presented in [43,48,56-62] (Table 4). Experimental values were
received by DSC method. Results of different authors coincide well
with each other except [61] that can be explained by existence of
impurities in used reagents.

Vapor-liquid equilibria in this system also were not investigated

Table 2. Literature data on critical parameters and acentric factors
of 0- and m-DCB

Substance T, K P, bar w
0-DCB 698.8 [11] 41.52 [13] 0.273 [14]
m-DCB 685.7 [12] 41.52 [13] 0219 [14]

Table 3. Experimental data on the properties of the o-DCB - m-DCB

system
Data type ~ Chemical T, K N* Ref.
0-DCB 298-338 53 [15-37]
oz m-DCB 251-409 52 [26-42]
0-DCB - m-DCB  288-318 36  This work
p 0-DCB 256-455 89  [26,43-51]
m-DCB 249-448 79 [26,46-52)
v 0-DCB - m-DCB 298 21 [53]
t 0-DCB 263-377 56 [28,54,55]
’ m-DCB 263-378 64  [28,54,55]

“N - number of experimental points.

before. Data on normal boiling point of pure 0-DCB and m-DCB
were found in [20,24,63-66] (Table 5). Most of the sources are hand-
books, where experimental methods and purity of used reagents
are not mentioned. However, all data coincide with each other well
Detailed description of method and information about reagents is
presented only for 0-DCB in [66], also including data on boiling
points at 300, 500 and 700 mmHg.
2. Equation of State

The most famous and successful cubic equations of state used
in thermodynamic calculations are the Soave-Redlich-Kwong [67]
and Peng-Robinson EoS [68]. These equations show good results
even for mixtures of polar substances when they are used to describe
vapor pressure. However, they predict unsatisfactory volumetric
properties (density of liquids) [69]. This behavior was also observed
in calculations for the investigated system. One of the approaches
to improve description of liquid densities is to introduce correction
to the molar volume: molar volume calculated from the Soave or
Peng-Robinson EoS vg,s is corrected by subtracting a parameter ¢;
this idea was proposed by Péneloux in 1982 [70]. Equations of state

Table 4. Literature data on temperatures and heats of fusion of 0o-DCB and m-DCB

Substance T,, K

AH,,, kJ/mol

0-DCB

256,15 [43], 256,12 [48], 256,45 [56], 255,85+0,2 [57], 256,0 [58],
255,65 [59], 256,15+0,1 [60], 253,91 [61], 256,14+0,1 [62]

12,93 [56], 13,09+0,4 [57], 12,92 [58]

m-DCB

248,39 [48], 248,35 [56], 248,25+0,2 [57], 249,0 [58], 248,75 [59]

12,64 [56], 12,51+0,4 [57], 12,59 [59]

Table 5. Literature data on normal boiling points of 0o-DCB and m-DCB

Substance T, K
0-DCB 453,65 [20], 453,35 [24], 453,6 [63], 453,55 [64], 453,55 [65], 453,4 [66]
m-DCB 446,25 [20], 445,55 [24], 446,1 [63], 446,15 [64], 445,95 [65]

December, 2022
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including such correction are called volume-translated equations
of state, VT-EoS.

VT Eos=VEos— € 3

Review [71] contains various expressions for the correction ¢ to
the Peng-Robinson equation of state, generally having advantages
over the Soave EoS. For example, the equation of state proposed
by Tsai and Chen [72] showed excellent results for more than 100
polar and non-polar compounds. Authors offer to use temperature-
dependent o-function:

AD)=[1+M (1-T)+N (1-T)(0.7-T)P, O]

where M and N - individual parameters of pure fluid. Parameter
M is correlated as a function of acentric factor:

M'=0.20473+0.83548w — 0.184700°+0.16675°— 0.09881 »* 5)

Volume correction c is evaluated by the following formula:

RT
e= 5[k (1T, ) +ky(1- T, ©)

It was found that k, can be expressed as a function of acentric fac-
tor, k, can be regressed as a function of ks:

k,=0.00185+0.00438 +0.36322°— 0.908310°+0.558850" )
k,=—0.00542—0.51112k,+0.04533k’+0.07447k}— 003831k’ (8)

Thus, Tsai-Chen EoS contains two pure fluid parameters N* and
k;, in addition to the critical properties and acentric factor. This
equation of state was implemented for calculations in this work.

3. Calculation Procedure

The critical parameters, acentric factors and additional parame-
ters N and k; allowed us to evaluate the values of parameters a, b
and ¢ for experimental temperatures. Then, Tsai-Chen EoS was con-
sidered as a cubic equation of the compressibility factor:

7~ (1-BC)Z*+(A—3B—2B+3C*+2BC-2C)Z
—(AB-B-B*-C’-BC*+3B*C+C*+2BC—~AC)=0, ©)

where A=aP/(RT)’, B=bP/(RT), C=cP/(RT).

A cubic equation has one or three real solutions. One real root
means that system is a single-phase, and the root corresponds to
the compressibility factor of this phase. If the equation has three
real roots, solutions should be checked. It is necessary to calculate
Gibbs energies of phases relative to a reference state - ideal gas at
1 bar:

f
g(T, P)—g(T, P%)= RTlnE, (10)

where f - fugacity, P’=f’=1 bar. If Gibbs energies of phases are equal,
the system is two-phase at this temperature and pressure, the small-
est value of compressibility factor corresponds to liquid, the largest -
to vapor, the middle one does not have a physical meaning. If
Gibbs energy of one phase is larger than of another, system is one-
phase, Z-factor of phase is equal to Z-factor of phase with the least
value of Gibbs energy.

It is possible to calculate liquid density and fugacity coefficients
from the compressibility factor values:

(11)

A . (Z+C+(1+.2)B
Inp=2+C-1-In(Z+C-B)- In (12)
? ¢ ) 2./2B (Z+C+(1—ﬁ)B)
The fugacity coefficients were used to calculate the saturated
vapor pressure from the equilibrium condition between liquid and
vapor phases:

(T, P*)=f"(T,,, P™) 13)

The parameters was calculated by minimizing the objective func-
tion using the trust-region-reflective algorithm. The objective func-
tion was the sum of squared relative deviations of calculated liquid
densities and saturated vapor pressures from experimental ones:

n pL _pL 2 Psur _ Psur 2
F:ZeiZZZ( cuch expj +z( calc — expj , (14)
i=1 pexp Pexp

Xi cuc_Xi exp - . P . .
where e;= =242 js relative deviation of i-th experimental

i, exp

point of property X; summation was held for all experimental val-
ues of density of liquid and saturated vapor pressure of pure sub-
stances (see Table 3); subscripts «calc» and «exp» refer to calculated
and experimental values respectively.

Determination of EoS parameters of pure substances (T,, P, &
N', k;) allowed calculating EoS parameters of mixtures. Excess vol-
umes [53] and liquid densities measured in this work (volumetric
properties) were used as input data to calculate of EoS parameters
for mixtures. Densities of liquid were calculated from literature data
on excess volumes by following formula:

R S— (15)

M- (ﬁ + 2) +v
L1 P

where z; and z, - molar fractions of 0-DCB and m-DCB in mix-

tures, p, and p, - densities of pure liquid 0-DCB and m-DCB, M -

molar mass of dichlorobenzenes.

The procedure of EoS parameters evaluation for mixtures was
almost the same as for pure substances. The only difference was a
mixing rule needed to calculate the EoS parameters of mixtures.
In this work, the van der Waals mixing rule was used: quadratic
rule for parameter a, linear rule for parameter b:

a=ZZZiZjaq» a;=,/aa(1-ky) (16)
ij
b=Yzb, 17)
For volume correction c it is recommended to use linear mixing
rule [72]:
c=>1z¢; (18)
After the EoS parameters evaluation, it became possible to calculate
properties of the considered system: enthalpy, entropy and density.
These properties are conveniently represented as a diagram in the

enthalpy-pressure coordinates.
Initially, the vapor-liquid equilibria (VLE) problem was solved by
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a two-phase flash calculation. Calculation procedure used in the
work was the same as reported in [73,74]. Input data were tem-
peratures, pressures and overall compositions of the system. Cal-
culation procedure included Michelsen stability test for liquid and
vapor phases and solving of Rachford-Rice equation by substitu-
tion-type method. Result of the calculation is compositions of equi-
librium phases.

Enthalpy, entropy and density of the system were calculated to
construct an h-P diagram. Possible routes for enthalpy calculations
are presented in [69]. In this work, the route with liquid as an ini-
tial phase was chosen. The calculations were held for the T=280+
680 K with step 40K and for the P=¢’+e'° Pa with step (e'—¢’)/
1,000 Pa. This range of temperatures and pressures includes the
conditions most commonly used in power plants working on Ran-
kine cycle. The enthalpy calculation was carried out using standard
enthalpies of the formation of liquid 0-DCB and m-DCB at T’=
298.15K and P’=1bar as the reference level taken equal to zero.
Detailed route of calculations is presented in Appendix A.

RESULTS AND DISCUSSION

1. Pure Substances

All the data on properties of pure 0-DCB and m-DCB that were
used for modeling are summarized in Table 6.

Data on saturated vapor pressure of 0-DCB and m-DCB are
presented in [26,43-52]. In article [51], the authors collected all the
available data on saturated vapor pressure of 0-DCB and m-DCB

K. Samukov et al.

and analyzed them. The data [44,45] obtained by the gas satura-
tion-GC method, data [46] obtained by pressure gauge method
and the data presented in the review [47] diverge greatly from the
experimental values recommended by the authors from articles
[49,50]. This fact was explained by the inconsistency of the data
[44-47] with the available thermochemical data. Therefore, in this
work, only data from sources [26,43,48-52] were used for calcula-
tions.

Experimental data on saturated vapor pressure and results of
their estimation by Tsai-Chen EoS are presented in Fig. 2 and Table
4. Due to o-function, Tsai-Chen EoS is able to describe saturated
vapor pressure of pure substances within experimental uncertainty.

Results of the density description by the model are shown in
Fig. 3 and Table 6. It can be seen that existing experimental data
are consistent, obtained model parameters describe well all of the
data on the density of pure substances. Tsai-Chen EoS contains five
parameters, which are enough to describe liquid density with high
accuracy. Deviations of calculated liquid densities from the experi-
ment values do not exceed 0.5%.

Obtained parameters of Tsai-Chen EoS with their confidence
intervals are listed in Table 7. All parameters are statistically signifi-
cant. Moreover, the equation of state has physically correct behav-
ior. It evaluates correctly thermodynamic properties of pure 0-DCB
and m-DCB from melting point to boiling point.

2. Mixtures

Results of the density measurements of 0-DCB - m-DCB solu-

tions at 288.15, 298.15, 308.15 and 318.15 K are listed in Table 8.

Table 6. Experimental data used for modeling the pure substances in the 0-DCB - m-DCB system and results of their description

Substance Data type Ref. N T, K MRD", %

o-DCB p:t [15-37] 53 298-338 0.36
P’ [26,43,48-51] 63 256-455 3.0

- DCB me [26-42] 52 251-409 032
P* [26,48-52] 65 249-448 2.8

X

X calc — “Mex;
“Maximum relative deviation MRD (X), %= max(]”—"3
exp

12

107

-]
T

In(P%2!, Pa)
(-2}

4..
2.
" : : : :
250 300 350 400 450
T,K
(a)

) x 100, where X, and X,,, are the calculated and experimental values.

12

101

In(P%, Pa)

250 300 350 400 450

(b)

Fig. 2. Saturated vapor pressure of the (a) pure 0-DCB, (b) pure m-DCB. Red line - calculations by the obtained model; blue circles - litera-

ture data [26,43,48-52].
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Fig. 3. Liquid density of the (a) pure 0-DCB, (b) pure m-DCB. Blue line - calculations by the obtained model; red circles - literature data [15-42].

Table 7. Tsai-Chen EoS parameters with 95% confidence intervals for the o-DCB - m-DCB system

T,K P, bar w N ks
0-DCB 726.2+8.1 44.33+1.55 0.138+0.028 0.407+0.023 0.056+0.030
m-DCB 72491169 45.01+2.74 0.096+0.058 0.441+0.050 0.056+0.031

Table 8. Densities of the binary solutions in the o-dichlorobenzene - m-dichlorobenzene system at various temperatures and pressure

100 kPa
w(m-DCB) Pass.15x g/em ’ P15k glem ’ w(m-DCB) Puosisk glcm ’ Prisisx g/em ’
9.97 1.3096 1.2985 10.01 1.2878 1.2764
20.11 1.3086 1.2974 20.02 1.2861 1.2748
30.74 1.3068 1.2955 30.04 1.2843 1.2729
39.88 1.3050 1.2936 40.00 1.2826 1.2713
50.27 1.3033 1.2919 50.07 1.2808 1.2694
60.00 1.3015 1.2899 60.04 1.2790 1.2676
70.26 1.2999 1.2882 69.97 1.2772 1.2658
80.66 1.2980 1.2863 80.03 1.2754 1.2640
86.81 1.2961 1.2845 89.79 1.2734 1.2621

Standard uncertainties: u(P)=1kPa, u(T)=0.02 K, u,(w)=0.002, u,(0)=0.002; u, - relative standard uncertainty, w - mass fraction in %.

13
1.31
1.295
?
£
L
>
< 1.29
1285
0 20 40 60 80 100
w(o-DCB), wt. % w(o-DCB), wt. %
(a) (b)

Fig. 4. Liquid density of 0-DCB - m-DCB mixtures: (a) measured in this work at 288.15, 298.15, 308.15 and 318.15 K; (b) calculated from
excess volumes measured at 298.15 K in [53]. Purple, red, green and black lines - calculations by the obtained model at 288.15, 298.15,
308.15 and 318.15 K, respectively; blue circles - experimental data [this work, 53].
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Table 9. Experimental data used for modeling the mixtures in the
0-DCB - m-DCB system and results of their description

Data type Ref. N T, K MRD, %
v [53] 21 298 0.026
Vo [This work] 36 288-318 0.063

Table 10. Coordinates of solidus (T;) and liquidus (T)) of the o-DCB -
m-DCB system at the pressure P=100 kPa and areas (S,,)
for the determination of eutectic composition in 0-DCB -
m-DCB system by «enthalpic» method [75]

w*(m-DCB), wt% T, K T/, K St /g
0 - 256.1 0
10.14 225.1 251.7 8.96
19.73 2253 2453 18.13
20.25 2255 2458 18.06
30.02 2255 240.9 22.95
40.02 2255 233.0 40.15
50.02 2244 - 51.28
59.04 2245 - 49.05
69.92 2255 2338 28.79
79.56 2256 2394 22.14
90.03 2254 2447 10.2
100 - 2484 0

Standard uncertainties: u(P)=1kPa, “u,(w)=0.01, “u(T)=02K, “u(T)=
1K, “u(S,,,)=0.005.

Based on experimental data on volumetric properties of mix-
tures, the parameters of the EoS for mixtures were determined
under the assumption of equality to zero of the binary interaction
coefficient k; (16). Results of the density description of 0-DCB -
m-DCB solutions by the model are shown in Fig. 4, maximum
relative deviations of calculated liquid densities from experimental
values are shown in Table 9. Relative deviations do not exceed
0.1%. Therefore, the simplest mixing rule allowed predicting den-
sities of the mixtures precisely.

However, to check if it is possible to improve accuracy of the
model, the binary interaction coefficient was set as variable in mini-
mization. Its value was very close to zero, but more than that, the
parameter was statistically insignificant. Therefore, the assumption
was correct and in the next calculations the parameter k; was taken
equal to zero.

Data on solid-liquid phase equilibria (SLE) make possible to deter-
mine the lower bound of the temperature range in which the lig-
uid can be stored and used. If the assumption of ideal mixing is
correct, predicted solid-liquid equilibria will be in a good agreement
with an experiment. SLE was studied by differential scanning calo-
rimetry (DSC). Results of DSC measurements are presented in
Table 10.

The melting parameters obtained in this work are well consis-
tent with the data presented in the literature (Table 11).

DSC peaks for compositions next to the eutectic point are over-
lapped so their separation and quantitative estimation of transition
temperatures are difficult. Therefore, the eutectic composition was

December, 2022

Table 11. Melting parameters of 0-DCB and m-DCB

Substance T,, K Ah,,, kJ/mol
256.45 [56] 12.93 [56]
0-DCB 255.85+0.2 [57] 13.09+0.4 [57]

256.1+0.1 [this work]

248.35 [56]
248.25+0.2 [57]
248.4+0.1 [this work]

13.2+0.5 [this work]

12.64 [56]
12.51+0.4 [57]
13.3+0.5 [this work]

m-DCB

OCI 1 1 1 1
0 20 40 60 80 100

w(m-DCB), wt. %

Fig. 5. An illustration of «enthalpic method» to determine an eutec-
tic point for the 0-DCB - m-DCB system.

260
250 1

X 240 | 4
]

2301 4. DCB(er) + L m-DCB(cr) + L T

v ¢
220 | 0-DCB(cr) + m-DCB(cr) ;
0 20 40 60 80 100

w(m-DCB), wt. %

Fig. 6. Isobaric phase diagram (P=100 kPa) of the o-DCB - m-DCB
system at 215-260 K: red circles - experimental values, blue
diamond - estimation of eutectic composition by «enthalpic»
method, lines - calculation under the assumption of an ideal
solution, L - liquid phase.

evaluated by so-called «enthalpic» method [75]. This composition
was found as the coordinate of the intersection of two lines, describ-
ing the dependence of the enthalpic fraction of solidus melting from
the mixture composition (Fig. 5).

The resulting equations for lines are:

S,,=1.02w—19 (19)

S,,=—L15w+1134 (20)
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Fig. 7. h-P diagram calculated for the mixture of o-dichlorobenzene - m-dichlorobenzene: w(o-DCB)=55 wt%, w(m-DCB)=45 wt%. Black
lines - isotherms (values on lines in K), green lines - isentropic (values on lines in kJ/kg/K), red lines - lines of equal density (values on

lines in kg/m’), dashed blue line restricts vapor-liquid region.

where w is m-DCB mass fraction percent (wt%) and Sy, is the result-
ing partial area of the solidus peak (from onset to maximum tem-
perature) divided by sample mass (J/g). The predicted eutectic com-
position is (53.3£1.5) wt% m-DCB.

Melting points and heats of fusion of individual substances were
used as stability parameters to calculate the phase diagram (Fig. 6).
The liquid phase was supposed to be an ideal solution. The result-
ing diagram relates to a simple eutectic type. Results of DSC mea-
surements for mixtures were compared with the calculated phase
diagram. On average, the calculated liquidus and solidus deviate
from experimental ones less than for 1 K. Maximum deviations do
not exceed 1.5K for solidus, 2.5 K for liquidus. The eutectic com-
position found by the «enthalpic» method is also in a good agree-
ment with the results of calculations (difference is less than 1 wt%).

Finally, the h-P diagram was calculated (Fig. 7). As an example,
overall composition of the system is the following: w(o-DCB)=55
wt%, w(m-DCB)=45wt%. The diagram can be used to estimate
energy efficiency of plants operating on the Rankine cycle with an
o-dichlorobenzene - m-dichlorobenzene working body of given
composition.

CONCLUSIONS

Literature data on thermodynamic properties and phase equilib-
ria in the o-dichlorobenzene - m-dichlorobenzene system were gath-
ered and analyzed. Based on critical properties and thermodynamic
properties of pure substances, a cubic equation of state of was pro-
posed. As was revealed, Soave-Redlich-Kwong and Peng-Robin-
son EoS could not describe correctly volumetric properties of the
pure substances. The best results were achieved with Tsai-Chen EoS.

Experimental measurements of volumetric properties of solutions
at 288.15, 298.15, 308.15 and 318.15 K by vibrating-tube densime-

ter were performed to obtain EoS parameters of mixtures. Liquid
densities of mixtures were correctly predicted within the ideal as-
sumption. Solid-liquid equilibria of o-dichlorobenzene - m-dichlo-
robenzene at P=1bar (100 kPa) were studied by DSC, composi-
tion of eutectic point was evaluated by «enthalpic» method. Phase
diagram of the system in SLE range was calculated assuming liquid
as ideal solution. The resulting diagram is in a good agreement with
experimental data on SLE.

A h-P diagram for an o-dichlorobenzene - m-dichlorobenzene
mixture with composition w(o-DCB)=55wt%, w(m-DCB)=45 wt%
was calculated using the resulting EoS. The diagram can be used
to estimate energy efficiency of plants operating on the Rankine cycle
with an o-dichlorobenzene - m-dichlorobenzene working body.
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NOMENCLATURE

: parameter of equation of state [Pa-m*/mol’]

: parameter of equation of state for pure component [Pa-m®/
mol’]

: interaction parameters for mixture [Pa-m®/mol’]

: dimensionless parameter [-]

: calibration coefficient

: parameter of equation of state [m’/mol]

: parameter of equation of state for pure component [m’/mol]

: dimensionless parameter [-]

: calibration coefficient

: parameter of equation of state [m’/mol]

EOES

*

o>

*

O ™ W
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¢;  :parameter of equation of state for pure component [m’/mol]
cr crystal

C  :dimensionless parameter [-]
:isobaric heat capacity [J/(mol-K)]

f  :fugacity [Pa]

g :Gibbs energy of phase [J/mol]
h  :enthalpy [kJ/kg]

k,  :parameter in Eq. (15)

k,  :parameter in Eq. (15)

k;  :parameter in Eq. (15)

k;  :binary interaction parameter [-]
: multiplier in expression for alpha-function [-]
:molecular weight [g/mol]
:individual parameter of fluid [-]
RD : maximum relative deviation [%)
:number of data points [-]
:individual parameter of fluid [-]
: pressure [Pa]

: pressure of saturated vapor [Pa]
: gas constant [J/(K*mol)]
:half-area of solidus peak [J/g]

: absolute temperature [K]

: liquidus temperature [K]
:melting point [K]

:reduced temperature [-]

: solidus temperature [K]

: standard uncertainty

- molar volume [m’*/mol]

: excess volume of a mixture [m*/mol]
:mass fraction [%]

:mole fraction [%]

: compressibility factor [-]
:alpha-function [-]

: density of liquid [g/ml]

: oscillation period [ms]

: fugacity coefficient [-]

:acentric factor [-]

: enthalpy of fusion [kJ/mol]

-
S

!

3

g%‘% NN QNN =2 < < 94

N

Subscripts

1 :component 1

2 : component 2

c : critical property
calc :calculated

exp :experimental

i :component i
j : component j
r : relative

EoS :equation of state
VT-EoS : volume-translated equation of state

Superscripts
L :liquid
V  :vapor
0 : reference state

December, 2022

»
DSC :signal in differential scanning calorimetry [mW/mg]
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SUPPORTING INFORMATION

Additional information as noted in the text. This information is
available via the Internet at http://www.springer.com/chemistry/

journal/11814.
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