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AbstractQuantum computing (QC) has the potential to strongly impact various sectors like finance, healthcare,
communication, and technology by driving innovation across optimization and machine learning. Applications of QC
in chemical, pharmaceutical, and biomolecular industries are also predicted to grow rapidly in the near future. Advance-
ments in quantum hardware and algorithms have helped accelerate the widespread adoption of QC. Yet, despite the
progress, several research gaps and challenges need to be addressed before leveraging QC for chemical engineering
applications. Quantum computers offer higher computational power due to the exploitation of their quantum mechani-
cal properties. However, not all computationally intractable problems can benefit from QC’s computational abilities.
Achieving speedups over classical computing with quantum algorithms implemented on current quantum devices is
possible for a few specific tasks. It is imperative to identify chemical engineering problems of practical relevance that
may benefit from novel quantum techniques either with current quantum computers or of the future. Here, we present
an introduction to basic concepts of QC while identifying the limitations of current quantum computers. A review of
quantum algorithms that may benefit optimization and machine learning in chemical engineering with current quan-
tum computers is also provided. This work also sets expectations for quantum devices of the future by exploring simi-
lar applications that may benefit from quantum algorithms implemented on such devices.
Keywords: Quantum Computing, Machine Learning, Deep Learning, Optimization, Artificial Intelligence

INTRODUCTION

Quantum computing (QC) refers to calculations performed by
harnessing quantum mechanical phenomena, and devices that real-
ize the same are called quantum computers. QC has the potential
to support transformative advances in several fields of science and
engineering due to its potentially enormous computational power
[1]. Owing to the realization of quantum computers through tech-
nological advancements [2] and claims of quantum supremacy for
certain problems [3], QC has acquired significant research inter-
est and capital investment in its physical implementation. The
widespread real-world implications of achieving substantial speed-
ups with quantum algorithms [4] have further contributed to the
progress and development of QC. Many initiatives are underway
to revolutionalize the fields of communication [5], finance [6], and
artificial intelligence [7] with emerging technologies like QC. The
advantages offered by QC’s computational abilities originate from
innovative use of quantum algorithms and devices to handle spe-
cific tasks, and in turn, not limit its applicability to these areas. There
are relevant chemical engineering applications that can also be effi-
ciently tackled through careful deliberation over adopting appro-
priate QC technologies.

Early motivation for developing a quantum computer started
with simulating quantum mechanical phenomena in the 1980s [8,9].
The advent of quantum algorithms that demonstrated better com-
putational efficiency over classical algorithms further accelerated this

cause. For example, the need for efficient execution of Shor’s algo-
rithm for large integer factorization has been a key contributor to
the advancement of QC [10]. Recently, research efforts have been
directed towards identifying problems that can be solved easily with
a quantum computer but remain unsolvable [11] or require prohib-
itively large computational time by the fastest classical computer [3].
Quantum computers are expected to surpass the computational
performance of classical computers for such problems since their
computational power grows exponentially with the number of qubits.
Qubits are the basic unit of information in QC that possess quan-
tum mechanical properties, which sets quantum computers apart
from classical computers. A peek into widespread impact on areas
ranging from finance to defense has further promoted the research
and development of QC devices focusing on increasing their scal-
ability while mitigating associated errors in operation. In addition
to high-end quantum hardware, software that enables their efficient
control for building quantum algorithms to address problems of
practical relevance is equally important. Various quantum software,
including tools and libraries to execute quantum programs, as well
as quantum simulators that allow for validating such programs, can
help exploit QC’s potential for real-world applications [12].

Chemical engineering encompasses a broad range of problems
in science and engineering, including, but not limited to, reaction
engineering, transport phenomena, unit operations, the study of bio-
chemical processes, energy systems optimization, materials design,
and green chemistry [13]. Modeling, design, and optimization of
complex systems is integral to the development of safe and adapt-
able techniques for applications in these areas. Optimization in
chemical engineering is required for efficient resource utilization,
lowering the capital and operating costs, reducing the environmen-
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tal footprint of chemical processes, as well as the design of materi-
als with desired properties [14,15]. Machine learning has also had
a significant impact on chemical engineering applications [16] with
the replacement of traditional approaches with data-driven tech-
niques for improved flexibility and accuracy [17]. Classical optimi-
zation and machine learning techniques may not scale with large-
scale applications either due to the intractability of solution ap-
proaches or inefficient computational operations. QC techniques
could potentially help speed up certain aspects of optimization
and learning tasks in chemical engineering through high-perfor-
mance information processing offered by quantum devices.

Even though quantum circuits are able to simulate any classical
circuit [1], a computational advantage with quantum computers
can be expressed only for certain tasks. Additionally, the techno-
logical limitations of current quantum devices curb the fidelity of
computations performed with the quantum algorithms. Quan-
tum systems that cannot be simulated by brute force using even
the most powerful digital computer can be referred to as noisy
intermediate-scale quantum (NISQ) devices with their computa-
tional power limited by noise or imperfect hardware [18]. Fault-
tolerant QC indicates the quantum system’s ability to detect and
mitigate errors associated with noisy qubits. It is utmost import-
ant to identify problems in chemical engineering that may benefit
from quantum techniques implemented on today’s quantum com-
puters without compromising the quality of results. There have
already been a few attempts to use quantum techniques for sev-
eral chemical engineering-related applications, like quantum chem-
istry simulations [19], process scheduling [20], and supply chain
logistics [21,22]. In this work, we introduce readers, specifically
researchers, and practitioners in chemical engineering, to the ground-
breaking technology of QC while also creating awareness of its
shortcomings. We begin by discussing the primary components of
any quantum computer in Section 2, followed by the specific mod-
els of computation in QC. Section 3 provides an overview of the
current status of quantum computers and challenges faced by today’s
quantum devices, along with their characterization in terms of errors
and fidelities. We further discuss the current and near-future impli-
cations of QC on optimization and machine learning for chemi-
cal engineering applications in Section 4. The impact of realizing
quantum devices that match expectations outlined in Section 3 on
similar applications is briefly provided in Section 5. Conclusions
are drawn in Section 6.

QUANTUM COMPUTERS

In this section, we introduce the underlying building blocks of
quantum computers, their types, and the corresponding operations.
A quantum computer is comprised of three primary components:
the quantum memory, the quantum processing unit (QPU), and
an input/output module that communicates information to and
from the QPU [23]. Quantum memory, which is essential for the
development of quantum devices, stores quantum states for later
retrieval and manipulation as quantum bits. A quantum bit, or
qubit, is the fundamental unit of QC and is analogous to the bit in
classical computing. The quantum state of a qubit can be represented
by a linear combination of its basis states, zero and one, where the

multiplier constants indicate the probability amplitudes. These proba-
bility amplitudes encode not only the probability of measurement
outcomes but also the phase relative to the basis states [1]. This
means that a qubit state is in a superposition of the basis states,
and the probability of that qubit collapsing into either of its basis
states is dictated by the probability amplitudes.

Additionally, two or more qubits can form strong correlations
between their individually random behaviors and is termed as entan-
glement [1]. Quantum entanglement allows us to infer the state of
one qubit by measuring the other. The quantum mechanical prop-
erties of superposition and entanglement are inherent to qubits
and are responsible for the exponential growth in computational
power by adding more qubits, in contrast to the linear growth in
classical computing power obtained by adding more bits. The QPU
is a computational unit that allows for manipulating states of the
qubits by performing operations guided by quantum mechanical
principles to perform a particular task [24]. A quantum system
consisting of multiple qubits is also referred to as a quantum register.
An interconnected network of qubits is placed within the QPU,
where the physical connections dictate the allowable qubit opera-
tions. Upon measurements of the quantum state, the resulting bit
string is also stored in a classical register within the QPU. Input to
the QPU refers to the initialization of qubits in the QPU to the
desired state, while either zero or one obtained after measuring a
qubit state is the obtained output. Computations performed within
the QPU by performing operations on the qubits are defined by
the specific quantum computational model. Details for the realiza-
tion and operation of two widely adopted models of quantum
computation are provided in the following subsections.
1. Quantum Circuit Model

A popular and well-developed model for quantum computa-
tion is the quantum circuit model that was proposed for universal
QC and is also referred to as the Deutsch model [25]. Computa-
tion in the quantum circuit model is carried out by a sequence of
quantum gates. Quantum gates are the key components of a quan-
tum circuit and are analogous to the classical logic gates in classical
digital circuits. Contrary to most classical logic gates, the quantum
gates are reversible due to the unitary nature of quantum mechan-
ics [1], meaning that the gate’s inputs can be reconstructed from
the gate’s outputs by applying an appropriate unitary transforma-
tion. Theoretically, this means that quantum gates do not lose
information during the transition of the qubit from one quantum
state to another. They are represented by unitary matrices and oper-
ate through matrix multiplication with the vector space of a qubit
system. A quantum circuit includes an ordered sequence of quan-
tum logic gates that operate on multi-qubit registers coherently. A
diagram for one such quantum circuit is shown in Fig. 1.

Each wire in the quantum circuit diagram represents the quan-
tum state of that particular qubit. The quantum state of a qubit refers
to the complex probability amplitudes corresponding to the basis
states zero and one. Quantum gates are applied chronologically from
left to right of the circuit diagram, as shown in Fig. 1, meaning
unitary transformations dictated by the particular gate are sequen-
tially applied to the qubit state. As seen in the quantum circuit, some
quantum gates like Hadamard (H), Pauli-Z (Z), and T-gate (T) oper-
ate on single qubits, while gates like controlled-NOT ( ) transform
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the state of two qubits simultaneously. Apart from gates, a quan-
tum circuit also consists of measurement operators and initializa-
tion steps. The initialization of a quantum state can be performed
by applying single-qubit gates to the qubit basis state. Additionally,
the measurement operator in the circuit measures the qubit regis-
ter and outputs classical information, which is further stored in the
classical register within the QPU. It should also be noted that the
operation of multi-qubit gates is governed by the connectivity be-
tween the associated qubits on the QPU. Quantum algorithms can
generally be represented as quantum circuits. These algorithms
consist of three basic steps mentioned above: encoding data into a
set of qubit states, sequential application of quantum gates to this
set of qubit states, and measurements of one or more qubits that
yield classically interpretable information [26].
2. Adiabatic Quantum Computing

An alternative to the more familiar quantum circuit model of

Fig. 1. Gate model quantum computer with unitary gates as qubit
operators.

Fig. 2. Evolution of state in AQC devices from the ground state of initial Hamiltonian to that of problem Hamiltonian.

computation is adiabatic quantum computing (AQC). Unlike the
quantum circuit model that resembles classical digital computing,
AQC is analog [27]. AQC is built upon the quantum adiabatic the-
orem, which dictates that a quantum system in its ground state
remains in a ground state, provided that the evolution of the state
is slow. In the context of quantum mechanics, adiabatic refers to a
slow process that is almost always at equilibrium [28]. Since com-
putation in AQC is a reversible process that is carried out very
slowly, the term “adiabatic” is used to describe the mode of com-
putation. In AQC, computation proceeds by continuous-time evo-
lution of a quantum state from a known initial state to a final state
under adiabatic conditions [29]. The adiabatic evolution of a quan-
tum system involving four qubits is shown in Fig. 2. AQC was
introduced as an approach for solving optimization problems termed
“adiabatic quantum optimization” [30] but has since evolved into a
universal model of computation that employs the quantum mechani-
cal principles manifested in quantum physical systems. The univer-
sality of AQC has been established by showing that it is com-
putationally equivalent to the circuit model of quantum computa-
tion [31].

A multi-qubit quantum dynamical system that evolves over time
according to forces acting on it is shown in Fig. 2. Such forces can
be characterized by a time-dependent Hamiltonian H. At time
t=0, an initial well-defined Hamiltonian is chosen such that the
ground state can be prepared easily. The system then slowly evolves
towards problem Hamiltonian by introducing qubit biases h and
couplings J between the qubits achieved with the application of
external magnetic flux. The intensity of such magnetic fields is pro-
grammatically controlled through analog signals within the QPU.
The adiabatic evolution from a known initial state to the final ground
state of the problem Hamiltonian after total evolution time t=, as
shown in Fig. 2, represents the AQC model of quantum computa-
tion. The realization of AQC using quantum systems poses a major
challenge concerning their control stemming from the non-ideali-
ties present in the system. Due to the technological limitations in
maintaining adiabatic conditions, a relaxation of the adiabatic con-
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ditions can be realized by quantum annealing [32]. This relaxation
voids the guarantee that the observed final state corresponds to
the ground state of the problem Hamiltonian, although it may be
sufficiently close in practice. Devices that implement quantum an-
nealing to return minimum energy solutions can be referred to as
quantum annealers.

QUANTUM COMPUTING ACROSS SCALES

Over the last few years, there has been an increased momentum
to develop QC devices by many technology companies and start-
ups using different models of quantum computation [33]. Several
QC devices have also been made commercially available. However,
these quantum computers are not fully practically viable due to
their small scale. There has been a large influx of capital into the
development of large-scale quantum computers to overcome the
limitations faced by current quantum devices. A quantum system
is required to be perfectly isolated from the outside world in order
to use it for storing and processing information. However, the frag-
ile nature of qubits and the absence of ideal surrounding conditions
may result in the loss of information from the quantum system
into the environment. This phenomenon is referred to as qubit de-
coherence [34]. Computations in quantum devices are performed
by manipulating the quantum states within the QPU through exter-
nal influence achieved by sophisticated control systems. This means
that the model of quantum computation governing the QPU oper-
ation may also induce error or noise into the quantum system. A
compromise in gate fidelity is a major hurdle in scaling up quan-
tum circuit model devices and contributes additional quantum
noise to the system. High-quality two-qubit gate operations are of
utmost importance to achieve scalable quantum information pro-
cessing [35]. Although quantum annealers impose less stringent
requirements on qubit control than gate-based quantum comput-
ers, analog control errors may inhibit the scaling up of quantum
annealers to a large number of qubits. In quantum annealers, errors
associated with analog controls may widely vary the probability of
obtaining the ground state of the problem Hamiltonian [36].

Protecting quantum systems against noise and scaling up QC
devices is still a distant goal. The current quantum computers and
the ones that may be available in the near future with more than
50 noisy qubits up to a few hundred can be collectively called noisy
intermediate-scale quantum (NISQ) devices [18]. The current NISQ
devices have an average two-qubit gate error rate of above 0.1%.
Simply put, this means that more than 1,000 two-qubit gate opera-
tions cannot be performed in a quantum circuit without the noise
overpowering the information present in the quantum system.

Many industries in the technology sector have been at the fore-
front of developing NISQ devices with the long-term goal of build-
ing scalable quantum systems that are less prone to quantum noise.
As of the year 2021, quantum computers designed by IBM with
65 qubits, Honeywell with ten qubits, and Google with 54 qubits
demonstrate similar gate errors, and all fall within the realm of
NISQ, as shown in Fig. 3.

NISQ devices can be considered a stepping stone towards devel-
oping quantum computers with sufficiently low error rates capa-
ble of processing quantum information efficiently, termed fault-

tolerant QC. Scalable fault-tolerant devices can be realized using
quantum error correction principles [37]. Quantum error correc-
tion is essential, especially for efficient implementation of quan-
tum algorithms at large scales to help mitigate errors associated
with noisy qubits, faulty gates, and imprecise measurements. Error
correction for quantum annealers has also been demonstrated to
improve their performance substantially [38]. The number of qubits,
along with their error rates, influences the capabilities of a quan-
tum computer and can be quantified with the quantum volume
metric [39]. As shown in Fig. 3, the quantum volume of fault-tol-
erant quantum computers increases with the better error-corrected
qubits. Quantum error correction schemes pave the way towards
achieving scaling speedups using large-scale noise-resilient quan-
tum hardware for useful applications of practical relevance.

IMPACT OF QC IN THE NEAR-TERM

Although NISQ devices impose certain limitations on the com-
putational power and fail to meet the requirements for fault-toler-
ant QC [40], they open up new frontiers for engineering applications
through the testing of QC devices under experimental conditions.
NISQ devices offer a unique platform to characterize quantum physi-
cal systems through control of quantum mechanical phenomena
of qubit superposition and entanglement. This is a rather signifi-
cant milestone since the existing powerful digital supercomputers
cannot simulate quantum systems beyond the qubit threshold in
NISQ devices [41]. Additionally, NISQ devices also allow for vali-
dation and evaluation of the performance of quantum algorithms
that may constitute various QC applications. Noisy QC devices have
already been shown to outperform classical computers for certain
tasks, like the demonstration of Google’s NISQ computer to achieve
quantum supremacy [3]. Such advancements with NISQ devices
illustrate the potential of quantum technologies for improving the
state-of-the-art of several chemical engineering applications.
1. Optimization in the NISQ Era

Optimization problems in chemical engineering span across var-
ious scales and complexities, ranging from linear to nonlinear
structures with both continuous and discrete variables. Optimiza-
tion strategies to tackle such problems can be broadly categorized
into mathematical programming techniques, random heuristics,
and dynamic optimization [42]. Linear programming (LP) prob-

Fig. 3. Quantum computing across scales ranging from NISQ devices
to fault-tolerant QC.
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lems are linearly constrained optimization problems with continu-
ous variables that can be generally solved in polynomial time [43].
However, many problems in the design and operations of chemi-
cal process systems involve discrete decisions, and they belong to
the NP-hard complexity class [44,45]. Deterministic solution tech-
niques based on mixed-integer programming (MIP) have been
proposed to solve such complex problems [46], but often their
computational complexity increases exponentially with problem
size in the worst case. It should be noted that the complexity of an
optimization strategy is measured in terms of the size of variables
and input parameters of the problem, while the complexity of the
problem is characterized by the best available solution algorithm’s
complexity. Quantum computers can solve optimization problems
belonging to the bounded error quantum polynomial time (BQP)
complexity class. BQP is the class of decision problems that can be
solved by polynomial-time quantum computations with at most
one-third probability of error [47]. Every classical circuit can be sim-
ulated by a quantum circuit [1], with AQC being computationally
equivalent to the quantum circuit model [31]. LP problems in
production planning [48], in principle, can be solved in polyno-
mial time with either model of quantum computation. NP-hard
problems are at least as difficult as NP-complete problems. The
relationship between problem complexity classes is shown in Fig.
4. Despite the inflated publicity and hype revolving around the
ability of QC to solve NP-hard problems, there is no evidence that
quantum computers can even solve NP-complete problems effi-
ciently [49]. These factors cast doubt on the ability of NISQ devices
to outperform classical computers for even small-scale optimiza-
tion problems. However, it should be noted that classical LP and
MIP solvers like Gurobi and CPLEX are highly optimized for per-
formance and make use of parallel computation in classical com-

puters. Therefore, before applying quantum techniques for complex
optimization problems in chemical engineering, it is crucial to
determine whether or not such techniques can provide any advan-
tage over classical algorithms or solvers either in terms of compu-
tational performance or quality of obtained solutions.

Chemical engineering deals with chemical processes and unit
operations that transform raw materials into useful products. As
an alternative to experimentation, the design of complex materials
like catalysts and other products that serve a certain functional
purpose can be guided through advanced computational approaches
like density functional theory [50], and other techniques in quan-
tum chemistry applied using classical computers [51]. These ap-
proaches are designed to avoid maintaining an explicit wavefunc-
tion describing multi-particle characteristics because of the intrac-
tability stemming from its exponential growth on classical com-
puters. Quantum computers can efficiently represent such wave-
functions as superposition of qubits’ basis states [52]. Variational
quantum eigensolver (VQE) is a quantum optimization algorithm
that can be further applied to obtain the electronic configuration
corresponding to the ground state energy of a given molecule [53].
VQE is a type of variational quantum algorithm using a low-depth
quantum circuit that depends on the parameters of the quantum
gates or a parameterized quantum circuit (PQC) to estimate the
appropriate cost function. The inputs to the VQE algorithm are a
molecular Hamiltonian describing the wavefunction and a PQC
with randomly initialized parameters. Within VQE, the objective
is to minimize the expectation value of the Hamiltonian by itera-
tively updating the PQC’s parameters. Each iteration of VQE includes
the steps of computing the expectation value with the quantum
circuit using the current set of parameters and using a classical
optimizer to update the parameter values. The classical optimizer
performs a gradient descent step by computing gradients of the
expectation value with respect to the parameters. This iterative proce-
dure is repeated until the ground state of the target Hamiltonian or
the minimum expectation value of the Hamiltonian is obtained.
Key advantages offered by VQE include better compatibility with
NISQ devices due to the absence of long coherent quantum cir-
cuits and resilience towards certain types of errors [54]. Such opti-
mization approaches that allow for obtaining low-energy configura-
tions in quantum chemistry applications demonstrate the high-
computational power offered by NISQ devices despite the pres-
ence of quantum noise [55].

QC-based optimization techniques have also been proposed for
certain classes of combinatorial optimization problems, namely,
quadratic unconstrained binary optimization (QUBO) problems.
QUBO problems appear in the fields of process systems schedul-
ing [56], computer-aided design and planning [57], and many oth-
ers [58]. QUBOs are NP-hard optimization problems, as shown in
Fig. 4, that can generally be formulated by discretization and refor-
mulation [59] or by mapping optimization problems as classic prob-
lems from theoretical computer science [60]. Quantum approximate
optimization algorithm (QAOA) is another variational quantum
algorithm that produces approximate solutions for the QUBO
problems [61]. However, achieving a quantum speedup with QAOA
over classical algorithms may require hundreds of qubits [62], ren-
dering the QAOA algorithm implemented with NISQ devices

Fig. 4. Categorization of optimization problems like semidefinite
programs (SDP) and quadratic unconstrained binary opti-
mization problem (QUBO) problems solvable with quan-
tum algorithms with both NISQ and fault-tolerant quantum
devices along with the relationship between the polynomial
time (P), nondeterministic polynomial time (NP), bounded
error quantum polynomial time (BQP), NP-complete and
NP-hard complexity classes.
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unsuitable for mid-size QUBO problems. In addition to algorithms
for the quantum circuit model, quantum annealing implemented
on an AQC platform inherently allows for finding low-energy
solutions to the problem Hamiltonian describing the given QUBO
problem. Before solving the optimization problem with a NISQ era
quantum annealer, QUBOs are embedded onto the QPU accord-
ing to the available architecture of qubits [63]. In comparison to
meta-heuristics like simulated annealing, a larger probability of
obtaining an optimal solution or ground state is exhibited by quan-
tum annealing [32]. Apart from deterministic optimization meth-
ods, random heuristic approaches have also been applied to several
chemical engineering applications [64]. Swapping quantum anneal-
ing-based approaches for other random search techniques in prob-
lems relevant to scheduling, manufacturing, and supply chain
optimization could potentially be beneficial [22]. However, careful
consideration regarding physical limits of NISQ devices is crucial
to achieve speedups over classical optimization strategies.
2. Machine Learning in the NISQ Era

Machine learning refers to statistical models that can learn from
experience by discovering patterns in data without rule-based pro-
gramming. Many years of simulations and experiments in chemi-
cal engineering have led to a massive amount of data that can be
used to train machine learning models, thus allowing for added
flexibility, accuracy, and execution speed over traditional models
and methods. Advances in areas of machine learning like deep learn-
ing and reinforcement learning have already revolutionized signifi-
cant applications in bioinformatics, molecular modeling, process
control, and many more [65]. Although the future of machine learn-
ing in chemical engineering applications holds promise, many classi-
cal machine learning techniques do not scale well with the amount
of data and its dimensions. Optimization lies at the heart of machine
learning that deals with minimizing the generalization error defined
as a measure of erroneous predictions on previously unseen data.
With the realization of quantum devices and the proposal of quan-
tum algorithms to achieve speedups over their classical counter-
parts, research interest in quantum machine learning (QML) has
grown to adopt quantum technologies to overcome issues faced by
classical machine learning models. Several QML techniques have
already been proposed in the literature with claims of quantum
advantages [66] and are shown in Fig. 5. In addition to categor-
izing QML techniques into supervised, unsupervised, reinforce-
ment learning tasks in Fig. 5, we also arrange them according to
their compatibility with NISQ and fault-tolerant devices. The
radius of the arc indicates the extent of the need for error correc-
tion to adopt the QML techniques within the arc for practical pur-
poses. However, weighing the theoretical speedups against non-
idealities of quantum systems is necessary before their practical
implementation in chemical engineering applications at varying
scales.

Training of machine learning models requires the use of high-
quality data for their efficient operation. Quantum computers hold
the possibility of accelerating the processing of high volumes of data
as well as the training process by inducing a quantum speedup
over classical algorithms. Quantum learning machines can repre-
sent and generalize data with both classical and quantum mechan-
ical origins [67]. This can be achieved by encoding data in qubit

states that results in a compact representation using a limited num-
ber of qubits and quantum gates with NISQ devices. An example
of such data encoding can be seen for embedding a molecule’s
wavefunction as a quantum state to locate its low energy configu-
rations in Section 4.1. Several QML techniques used for classifica-
tion, like variational quantum classifier [68] and quantum-enhanced
SVM [69], use quantum feature embedding or data encoding as
an important subroutine. In general, data-driven QML techniques
may use quantum feature embedding to encode available data for
the rich, expressive power of developed quantum circuits [70]. Big
data collected from many sectors of the chemical engineering com-
munity is high-dimensional [71], and processing it with such quan-
tum data encoding schemes may prove beneficial even on NISQ
devices by reducing the number of required operations. However,
although the advantage of some QML methods stems from quan-
tum data encoding, they may include other quantum computa-
tions that may not be suitable to perform on NISQ devices.

The three branches of machine learning are supervised, unsu-
pervised, and reinforcement learning, as shown in Fig. 5. Super-
vised learning deals with generalizing from labeled data and involves
tasks like classification for discrete value predictions and regression
for continuous value predictions. As mentioned, variational quan-
tum classifier [68] and quantum-enhanced SVM [69] are QML
models for binary classification. In addition to using quantum fea-
ture embedding, these models use low-depth PQCs, thus enabling
their use on NISQ devices. The variational quantum classifier is
also referred to as quantum neural network (QNN) by drawing
on the similarities between neural networks as a parameterized
network and PQC. The underlying idea behind QNN is the use of
PQC as a function approximator that estimates the cost or objec-
tive function of a specific machine learning task for the given

Fig. 5. Quantum machine learning techniques are categorized into
machine learning tasks and arranged according to compati-
bility with NISQ and fault-tolerant devices.
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input data. Gradients of the estimated cost with respect to PQC’s
parameters can be easily obtained due to the application of uni-
tary transformations defined by the quantum gates in the PQC.
Classical optimizers like stochastic gradient descent can then be
used to update the parameters of PQC with appropriate learning
rates. Similar to the training of neural networks, this iterative pro-
cedure is repeated until the cost function converges to a local min-
imum. Variants of QNN like quantum convolutional neural networks
(QCNN) utilize efficient parameterization with fewer parameters
than their classical counterpart and allow for efficient training and
implementation on realistic, near-term quantum devices [72]. These
quantum classifiers could be used for applications ranging from
object detection to fault diagnosis in chemical industrial processes
[73]. Least-squares regression models and their variants are still
highly relevant in chemical engineering and are a first step in de-
scribing the relationship between response variables like quality of
a product or duration of a production process and may benefit exten-
sively by the quantum speedup offered by quantum linear regres-
sion. Performing linear regression involves solving a system of linear
equations. The Harrow-Hassidim-Lloyd (HHL) quantum algorithm
provides an exponential speedup over classical algorithms for solv-
ing a system of linear equations [74]. Quantum algorithms for vari-
ants of least-squares regression (LSR) like quantum LSR also utilize
HHL as an important subroutine [75,76]. However, any quantum
advantage offered by HHL is application-specific and may be lost
during the retrieval of solutions [77]. Since HHL is not suited for
NISQ devices, the system of linear equations could be solved with
the variational quantum linear solver (VQLS) [78]. Similar to
VQE, VQLS is a variational quantum algorithm that employs low-
depth quantum circuits at the expense of additional classical opti-
mization. This trade-off is useful when using NISQ devices with-
out error correction. Apart from the circuit model, regression tasks
can also be performed with quantum annealers facilitated by an
AQC platform [79]. Annealing-based regression has been applied
to computational biology [80] and may have similar implications
for molecular modeling and materials design in chemical engi-
neering.

Apart from supervised machine learning methods, QML mod-
els have also seen advancements in unsupervised learning that learn
patterns from untagged data when class labels are unavailable. Quan-
tum generative adversarial network (QuGAN) is a quantum vari-
ant of a popular deep learning architecture for unsupervised learning
tasks of generative modeling and uses PQCs like any quantum
neural network architecture [81]. Quantum Boltzmann machines
(QBMs) can learn complex data distributions [82] better than Boltz-
mann machines that serve as the basis of powerful deep learning
models. Variational QBM is its variant developed to run on NISQ
devices [83]. QBM inspired architectures trained with quantum
annealing processors have been used for fault diagnosis in com-
plex industrial processes and could be potentially applied in chem-
ical industries [73,84]. PQCs have also been used as function ap-
proximators for value functions in reinforcement learning tasks for
sequential decision making [85]. Such reinforcement learning
algorithms can be deployable on near-term NISQ devices and scal-
able for large-scale process control applications in chemical engi-
neering.

LONG-TERM IMPACT OF QC

Efficient error correction that allows for recovering from quan-
tum errors even with the presence of noise within the quantum
device’s individual components should lead to the fault-tolerant
QC era. The development of scalable fault-tolerant quantum com-
puters will have major implications in fields such as engineering,
experimental physics, computational chemistry, and many more. It
has been speculated that fault-tolerant QC devices may be able to
easily simulate any quantum mechanical phenomenon in nature
at intermediate length scales [86]. Quantum algorithms that may
be useful for practical applications in the future and have been
proven to outperform classical algorithms substantially may require
a very large number of qubits and gates. For example, factoring an
integer represented by ten bits requires at least 42 qubits with high
fidelity gates and measurement operators. Fault-tolerant comput-
ers capable of mitigating errors accumulated from the noisy qubits
and quantum gates should be able to perform such large-scale
quantum computations for chemical engineering applications with
error-correcting quantum codes [87].
1. Optimization in the Fault-tolerant Era

Quantum chemistry simulation for materials design is one of the
most promising applications of quantum computers, as the noise
present in quantum systems is representative of the physical envi-
ronment in which the simulated molecule exist. VQE algorithm is
capable of exploiting the errors as features by using low-depth cir-
cuits to determine the electronic configuration of a molecule in its
ground state. As of now, the largest computational chemistry prob-
lem involving 12 hydrogen atoms and a diazene molecule was
solved and validated on a current quantum computer by making
use of 12 and 10 qubits, respectively, and up to 72 two-qubit gates
[88]. Similarly, to perform quantum chemistry simulations for gen-
eral-purpose molecules like penicillin would potentially use ap-
proximately 286 qubits and 160 qubits for caffeine with high-depth
circuits. Applications involving the design of drugs to target a spe-
cific disease pathway, new materials for electronics, and large mol-
ecules like polymers would require scalable fault-tolerant quantum
computers that are capable of lowering the overhead associated
with long quantum computations.

Large-scale combinatorial optimization problems formulated as
QUBO problems could also be efficiently solved with fault-toler-
ant quantum computers. QAOA is known for its performance im-
provement with the depth of the quantum circuit used [61]. Fault-
tolerant devices, due to their ability to execute high depth circuits
with minimal overhead on the hardware, may allow for the solu-
tion of NP-hard problems and assess any quantum advantage offered
[89]. Such error-correcting approaches may even perform better
for difficult instances of QUBO problems where quantum anneal-
ing fails due to small spectral gaps. In addition to binary optimiza-
tion problems, semidefinite programs (SDP) that include both LPs
and quadratically constrained convex optimization problems are
often solved for the optimal control problems in process systems
engineering. Since process control systems are expected to com-
pute decisions frequently and quickly especially for stable and sus-
tainable operation of chemical plants, it is crucial to develop
optimization strategies that can efficiently tackle SDP problems at
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larger scales. Quantum improvements to SDP solution techniques
like [90] and [91] require extensive quantum resources to provide
a speedup. Fault-tolerant computers may help achieve the desired
quantum speedups while solving large-scale SDPs, as shown in
Fig. 4, that are otherwise intractable to solve on classical comput-
ers due to their exponential scaling.
2. Machine Learning in the Fault-tolerant Era

Distance-based machine learning techniques like nearest neigh-
bor and k-means have been extensively applied to fault monitor-
ing and outlier detection in process monitoring. In quantum variants
of these methods, we point out that despite using quantum fea-
ture embedding as a subroutine, such QML techniques may fail to
gain an advantage on NISQ devices mainly due to the use of Gro-
ver’s search [92] to locate minima among computed distances.
Training sets of modest size may require more than 15 qubits with
error correction to perform Grover’s search with high fidelity. One
such QML technique for classification is the quantum k-nearest
neighbor [69]. The quantum algorithm for k-means clustering can
be implemented by encoding quantum data to quantum states,
followed by Grover’s search routine that locates the quantum state
with minimum Euclidean distance [93]. Possible applications of
clustering can be observed in process monitoring and control.
Efficient training and inference of such QML methods for these
applications would require error-corrected qubits in fault-tolerant
devices, as summarized in Fig. 5.

The qubit requirement for HHL algorithm is to solve a system
of linear equations in least-squares regression scales logarithmically
with the number of data points in the training set. In addition,
HHL uses quantum phase estimation as a subroutine that is severely
constrained by low reliability and high variability of near-term
quantum devices. An exponential speedup with HHL can be ob-
tained for linear regression tasks [75,76] implemented on fault-tol-
erant devices even with exponentially large datasets [94]. For another
variant of quantum SVM, referred to as qSVM, a least-square SVM
formulation is solved by converting the inequality constraints in
the primal SVM formulation into equalities by introducing slack
variables [95]. This reduces the least-squares SVM problem to a
system of linear equations that can also be efficiently solved with
the HHL algorithm on fault-tolerant devices. Quantum Gaussian
process regression is a Bayesian variant of linear regression that
also requires matrix inversion in HHL [96]. The core component
of a widely used dimensionality reduction technique, called princi-
pal component analysis (PCA), is the eigenvalue decomposition of
the covariance matrix. In quantum PCA, spectral decomposition
of the covariance matrix is performed by use of quantum phase
estimation algorithm followed by the extraction of principal com-
ponents by making measurements on the final state [97]. Chemi-
cal engineering applications have long-established the use of such
dimensionality reduction techniques to overcome the curse of
dimensionality and demonstrate exponential speedup in areas like
process monitoring, chemometrics, and optimal control for energy
management. A quantum reinforcement learning (QRL) frame-
work that actually exploits quantum properties of superposition and
entanglement and not just PQC as function approximators has
been proposed well before the physical realization of any quan-
tum computer [98]. This approach also makes use of Grover’s iter-

ation to determine optimal decisions but would require fault-
tolerant quantum devices for its implementation. QRL-based ap-
proaches could enhance the performance of process control as well
as other chemical engineering applications like materials design.

CONCLUSION

This article presents the challenges and opportunities of apply-
ing QC technologies for chemical engineering applications over
various sectors. We provide a brief primer on different quantum
computer operations and their shortcomings brought on by lack
of technological maturity. Measures taken to mitigate noise pres-
ent in quantum systems are also presented. The physical realiza-
tion of near-term quantum computers with lower fidelity should
not be dismissed since NISQ devices are a significant milestone on
the road towards fault-tolerant QC. We provide insights into the
use of quantum algorithms for specific areas in chemical engineer-
ing with both NISQ and fault-tolerant QC devices. Optimization
and machine learning are used as the basis to classify and review
corresponding quantum techniques. This article intends to inform
the readers of the potential of QC, its challenges, and its advan-
tages in a practical setting within the context of chemical engineer-
ing and consequently spark innovative, intuition-based, and scalable
quantum solutions for complex problems in chemical engineer-
ing-related fields.
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