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AbstractProcess monitoring plays an essential role in safe and profitable operations. Various data-driven fault detec-
tion models have been suggested, but they cannot perform properly when the training data are insufficient or the
information to construct the manifold is confined to a specific region. In this study, a process monitoring framework
integrated with data augmentation is proposed to supplement rare but informative samples for the boundary regions of
the normal state. To generate data for augmentation, a variational autoencoder was employed to exploit its advantage of
stable convergence. For the construction of the process monitoring system, an autoencoder that can extract useful fea-
tures in an unsupervised manner was used. To illustrate the efficacy of the proposed method, a case study for the Ten-
nessee Eastman process was applied. The results show that the proposed method can improve the monitoring
performance compared to the autoencoder without data augmentation in terms of fault detection accuracy and delay,
particularly within the feature space.
Keywords: Process Monitoring, Fault Detection and Isolation (FDI), Autoencoder, Variational Autoencoder, Data Aug-

mentation

INTRODUCTION

Multivariate statistical process monitoring (MSPM) is an indis-
pensable part of the successful operation of chemical processes used
to guarantee the safety and quality of the products. The various
MSPM methods can be classified into two approaches: prior knowl-
edge-based methods, such as first principle equations or empirical
equations, and historical data-driven methods [1]. Historical data-
driven methods have the advantage of generality, and thus there is
no need for process-specific domain knowledge. These have the
advantage of general applicability owing to the fast and straightfor-
ward model construction in general. Data-driven process monitor-
ing models make use of the data under normal operation in de-
veloping the monitoring statistics and defining a boundary of nor-
mal states that detect the process faults by checking whether the
online monitoring statistics violate the boundary. Conventional
multivariate statistical models using latent variables for process moni-
toring, such as principal component analysis (PCA) and partial least
squares (PLS), have been widely used as dimensionality reduction
methods. PCA, which defines orthogonal latent variables that maxi-
mize the variance of the original data, is used as a dimensionality
reduction method for monitoring in a reduced dimensional fea-
ture space. PLS is an extension of PCA that incorporates quality
variables under inspection. Independent component analysis (ICA)

utilizing higher-order statistics, unlike PCA, which only employs
second-order statistics such as the mean and variance, performs
better on data following a non-Gaussian distribution. However, it
still has certain limitations with respect to the nonlinearity of the
data owing to a linearity assumption. To deal with nonlinearity,
kernel PCA (KPCA) has been suggested [2]. KPCA exploits the
kernel trick to map the nonlinear data into a higher dimensional
linear space, such that it can perform feature extraction better than
a directly applied PCA on nonlinear data. However, it is limited in
that the computational complexity in the kernel method increases
exponentially as the number of dimensions and samples increases.
In addition, the kernel method has limitations in that it exhibits an
inconsistent performance that is significantly dependent on the
kernel type and hyperparameters. Autoencoders (AEs), which are
a type of neural network for unsupervised dimensional reduction,
have recently been suggested as a notable alternative to overcome
these limitations with the help of recent advances in machine learn-
ing techniques. Various studies have demonstrated that AEs show
a better performance compared to a conventional dimensionality
reduction method in process monitoring [3].

Hinton [4] compared the performance of the AEs and PCA as
a conventional dimensionality reduction technique for various types
of data. Notable results also suggest that AEs achieve a better per-
formance in reducing the dimensionality of the data than conven-
tional methods, such as PCA, ICA, and KPCA when sufficient
computational resources, sufficient numbers of training data, and
a plausible initialization of the weight parameters are secured [4].
Since it was first reported by Hinton, many studies on process moni-
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toring using AEs have been actively conducted and have proven
the competitiveness of AEs when combined with nonlinear activa-
tions in terms of the effectiveness of nonlinear feature extraction
in process monitoring [5,6]. Advancing from the classical form of
AEs, various AEs used to cope with noisy process data have been
proposed, such as denoising autoencoder (DAE) [7], contractive
autoencoder (CAE) [8], and robust autoencoder [9]. DAE and CAE
were used to demonstrate the improvement in monitoring perfor-
mance over the basic AE and PCA for the Tennessee Eastman pro-
cess (TEP), a benchmark chemical process selected as the target
process in the present study [3]. As a new structure of autoencoder-
based process monitoring system, parallel autoassociative neural
network [10] have been proposed and demonstrated for the same
benchmark process, TEP. The AEs were integrated with another
averaging approximator such as k-nearest neighbor (kNN) to sug-
gest a newly refined monitoring metric [11] or combined with a
regularization method such as elastic net to enhance the robust-
ness of the monitoring model under abundant training data [12].
Even if sufficient amounts of training data can be provided, a data-
rich but information-poor problem still remains, resulting in a
typical overfitting issue of the models [13]. For this reason, diverse
attempts have been made to supplement information through data
augmentation, which makes manifold learning robust for both
overfitting and underfitting.

Data augmentation techniques can be classified into two ap-
proaches: conventional methods and generative models. Two rep-
resentative methods for conventional data augmentation have been
developed in the fields of image processing and computer vision
applications: data warping [14] and the synthetic minority over-sam-
pling technique (SMOTE) [15]. Data warping involves the synthe-
sis of data by applying a deformation from intuitive features in the
original data space, such as translation, rotation, and skewing from
existing samples. Although SMOTE can be applied in both the data
space and the feature space to produce artificial samples, it was pri-
marily proposed to alleviate class imbalance problems during clas-
sification. Being implemented through an affine transformation in
the feature space as well, SMOTE has the advantage of being applied
independent of the applications owing to the fact that a feature
space can represent the salient structure of the data. Wong [16]
reported that both warping and SMOTE can improve the perfor-
mance of a classification model.

The generative model that belongs to the neural network-based
method can be categorized into two groups: variational autoen-
coder (VAE) and generative adversarial network (GAN). Unlike a
conventional method, generative models generally estimate the
underlying distribution in the feature space. Based on the feature
space, new vectors, which are latent vectors, are sampled and then
fed into a generator unit corresponding to each generative model
to create artificial data. By leveraging the inherent manifold knowl-
edge rather than directly manipulating the sample data in the original
space, the generative modeling approach has proven its superior-
ity in terms of the quality and effectiveness of augmentation in
previous studies conducted in diverse fields [14,15]. This property
becomes more significant as the number of dimensions increases
because the Euclidean distance, commonly used as the distance
metric, weakens the meaning as a similarity measure in the origi-

nal space. To make use of the indispensable merits of stable con-
vergence of VAE in modeling compared to those of GAN, which
possesses an adversarial training process between two networks,
VAE has been employed to augment the supplementary training
data. Because most of the chemical process data might not violate
the assumption of VAE in which the class for encoding and the
prior distribution are restricted as multivariate Gaussians, it makes
use of the VAE characteristic in which the latent vectors can be
sampled from the explicit distribution in the feature space. This
enables the manipulation of the latent vectors to reflect the inten-
tion of the data augmentation, such as selective sampling within
the boundary regions of a normal distribution, which corresponds
to rare samples. The capability of a selective production of artifi-
cial data to convey the intention for augmentation can contribute
to the improvement of the process monitoring modeling by pro-
viding insufficient information.

Various studies have used generative models as tools for data
augmentation, particularly in the field of computer vision. Several
studies have improved the performance of image classifiers through
data augmentation using generative models, such as VAEs, GANs,
and their variants [15-17]. The models for speech recognition [21]
or translation [17] can be supported by data augmentation tech-
niques to alleviate the class imbalance problem or allow the reuse
in another domain, as applied in transfer learning. Although they
applied a variant of GAN to construct a generative model, and not
VAE, Gao et al. [22] suggested that augmentation in the case of
process data can also contribute to improvements as a classifier for
process monitoring.

This research was motivated by previous studies promoting the
quality of manifold learning, which is an essential part of model-
ing for fault detection, through data augmentation. Integrated with
the idea of an exclusive augmentation of data that rarely appear but
should be classified as a normal state similar to the training data-
set, the proposed method suggests a framework to boost the mon-
itoring performance for fault detection by supplementing the in-
sufficient information of the training dataset. Based on a specific
strategy to reflect the intention of the augmentation, an edge-based
oversampling scheme [23] is utilized with a general transformation
to explicitly aim the boundary region of the normal state within
the feature space [24]. The synthetic samples generated from the
latent vectors of the border of a normal region are augmented in
the training dataset to promote manifold learning by imposing
more weight.

The remainder of this paper is organized as follows. In Section
2, the preliminaries of the proposed method are introduced. A
description of the Tennessee Eastman process which is the target
process used in the case study, the data augmented monitoring
methodology, and the implementation results of the TEP are pre-
sented in Section 3. In Section 4, the results of the case study are
discussed. Finally, Section 5 provides concluding remarks and areas
of future study.

PRELIMINARIES

1. Autoencoder
AE is an unsupervised machine-learning technique for feature
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extraction. It encodes the input data onto low-dimensional latent
features and reconstructs the data using only the encoded feature
by squeezing the middle layer of the symmetric network, as shown
in Fig. 1. The compression part of the network, which produces a
latent feature, is the encoder and the opposite part, which is the
decoder, applies the converse functionality. The encoder function
mapping an input xRn into a latent vector hRm through gen-
eral functions is as follows:

(1)

where W1 is an m×n weight matrix, b1 is an m×1 bias vector, and
f(·) is an activation function. The activation for hidden layers typi-
cally employs nonlinear functions such as a sigmoid, tangent hyper-
bolic, and rectified linear units, except for the visible layers having
linear activations. By adopting a bottleneck structure in the latent
space, AE is guided to extract a rich representation that is advanta-
geous to the reconstruction of the input. The reconstruction of h
is as follows:

(2)

where W2 is an n×m weight matrix, b2 is an n×1 bias vector, and
g(·) is an activation function. The weight matrices W1 and W2 have
distinct weight values in general, but can be tied, i.e., W1=W2

T, in
some cases.

The objective function of an AE, which is the loss function that
the optimizer should minimize, has different forms depending on
the data type, such as the squared error and cross-entropy. Follow-
ing the typical choices in the cases of linear regression, the recon-
struction loss function across a given set of training samples, D,
can be represented as follows:

(3)

The network can be extended to an arbitrary number of hid-
den layers and nodes in both the encoding and decoding parts.
Special attention is needed to determine the dimensions of net-
works, depending on the applications to prevent underfitting and/
or overfitting. As a typical approach in machine learning, regular-
ization methods such as weight regularization, where the objec-
tive function includes the norm of the weights [25], dropouts [26],
batch normalization [27], and pruning [28,29] can implicitly help
a network avoid overfitting starting from a network with suffi-
cient model capacity.

The operations through weights and biases used to reveal the
latent vector h correspond to the projection of input data from the
original to feature space in PCA. If linear activation replaces the
nonlinear functions, AE is reduced to PCA, which is conceptually
equivalent [30]. Thus, AE is a nonlinear generalization of PCA,
which is a conventional dimensionality reduction method used for
purposes such as feature extraction, visualization, and data com-
pression. Although KPCA [2], a nonlinear extension of PCA using
kernel trick, can be compared with AE using the same nonlinear
dimensionality reduction method, the performance of KPCA de-
pends entirely on the type of kernel and represents poor robust-
ness against the kernel parameters, depending on the applications.
However, AE copes inherently with nonlinearity through nonlin-
ear activation functions in each layer. Meanwhile, there exist vari-
ants of AE to improve the limitations in terms of robustness against
process noise. Denoising autoencoder (DAE) [7] can improve the
robustness by intentional random corruption of the input data to
promote the reconstruction ability even under noisy situations.
For a similar purpose, contractive autoencoder (CAE) [8] was
devised by explicitly penalizing the objective function by adding a
term representing the sensitivity of hidden representations to the

input perturbations, 

The construction of statistics for process monitoring using AE
is carried out using the same procedure as that used in PCA. After
the network training is completed, test statistics defined in the two
spaces are used to monitor the abnormality of a process. One is
H2, which is the squared scalar value of the latent vector correspond-
ing to T2 in PCA calculated in the feature space, and the other is
the squared prediction error (SPE) in the original space [3]. Subse-
quently, the control limit used to characterize the normal operat-
ing region is defined by a non-parametric density estimator called
kernel density estimation (KDE). Based on the KDE results for the
normal operation training samples, the 95 percentile values for
each space are typically determined criteria for process monitor-
ing. After the offline training procedure based on a set of training
samples is finished, the test samples are mapped into the low-dimen-
sional manifold and reconstructed into the original dimensional
space online. Process monitoring is conducted by comparing the
statistics of the test data to the control limit in each space.
2. Variational Autoencoder

VAE is a popular generative model that learns the data distribu-
tion to generate new samples aside from existing data in an unsu-
pervised manner. Once the training of VAE is completed, the latent
vector z to be used as the input for the generation process is sam-
pled in the feature space. The main objective of VAE is to gener-
ate new synthetic samples of the original space using the latent
vector z sampled from a low-dimensional feature space through a
generation network that corresponds to the decoder, as shown in
Fig. 2. Meanwhile, it is insufficient to train a generation network to
generate plausible samples with only randomly sampled vectors
drawn from a prior distribution p(z), which is typically assumed
as a normal distribution that possesses little information produc-
ing meaningful samples. Thus, the encoder network is introduced
to provide evidence to produce a latent vector that allows the decoder
to reconstruct at least the training samples well. At this point, the

h   F x    f W1 x   b1 ,

x'   G h    g W2 h   b2 ,

L   x D
  W, b  
lim x    x' 2/ D    x D

  W, b  
lim x    G F x  

2/ D .min min

Jf x  F
2

   ij
hj x 
xi

--------------
 
 

2

.

Fig. 1. Conceptual scheme of AE.
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true posterior p(z|x), which is generally intractable, is replaced by
the approximated posterior q(z|x) parameterized by , which is
typically assumed as a multivariate Gaussian, leading to a closed-
form loss term, that is the variational inference method.

As a result, the entire structure incorporating an inferential encod-
ing network and a generative decoding network is analogous to
AE in terms of compressing the input data into a low-dimensional
latent space and then restoring the data. Thus, the methodology,
which is an autoencoder with a variational inference method for
generative modeling, is called a variational autoencoder. Given the
ultimate purpose of development and the process of establishing a
generative model, the basis of VAE has little to do with AE, except
for the structural similarity of the final form of the objective func-
tion [24].

For a vanilla VAE, first introduced by Kingma et al. [4], the
objective function is

(4)

where the first term on the right-hand side, which represents the vari-
ational inference process, forces the approximate posterior q(z|x(i))
to match the true posterior p(z|x(i)) by using Kullback-Leibler
(KL) divergence, and the second term is the evidence lower bound
(ELBO) on the marginal likelihood of data point i. Because the KL
divergence is non-negative, the marginal likelihood is greater than
the ELBO. The ELBO can be further decomposed as follows:

(5)

Instead of directly maximizing the marginal likelihood, the
ELBO is maximized with respect to both the variational parame-

ters  and the generative parameters . It is noteworthy that the
reparameterization trick suggested by Kingma et al. [4] makes it
possible for the VAE formulation to jointly optimize both parame-
ters in the encoder and decoder by utilizing the stochastic gradi-
ent descent method, even though it includes a non-differentiable
sampling process, as shown in Fig. 2. In addition, by assuming
both the prior p(z) and the inferential posterior q(z|x(i)) as hav-
ing a multivariate Gaussian distribution, and the generative poste-
rior p(x(i)|z) as a multivariate Gaussian or Bernoulli distribution
depending on the application, the ELBO can be represented as a
closed form using the parameters of the encoder and decoder net-
work. The detailed proof and formula can be found in the study
by Kingma et al. and the appendix thereof [4]. In conclusion, the
two terms in Eq. (5) can be, respectively, interpreted as a recon-
struction error and a regularization encouraging the approximated
posterior to fit into the prior, which will eventually be used as a
sampling distribution.

Meanwhile, InfoVAE [31] has recently been proposed to improve
the problem of vanilla VAE ignoring the latent vectors, i.e., so-
called uninformative latent vectors, because it has been shown that
a decoding network with sufficient capacity can take over the role
of reconstructing inputs even with meaningless random vectors.
Thus, the latent vectors, which must potentially retain significant
information needed to restore the data, are forced to fit the prior
distribution by minimizing the second term in Eq. (5). This is a
fatal limitation in that a latent vector cannot contain any data fea-
tures, particularly when there is a significant manipulation to im-
pose any intention in the latent space. Zhao et al. [31] introduced
an additional regularization term in the objective that allows the
encoded distribution in the latent space to preserve the data fea-
tures. Organizing the ELBO objective of the original VAE as an

plog x i 
    DKL q z|x i 

 ||p z|x i 
     L , ; x i 

 ,

p x i 
 log L , ; x i 

 

  Eq z|x  p x i |z log    DKL q z|x i 
 ||p z  .

Fig. 2. Conceptual scheme of VAE and reparameterization trick.
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equation,

(6)

The objective function of InfoVAE, including a mutual informa-
tion maximization term that leads to meaningful features, is defined
as follows:

(7)

where the scaling parameter  in the original study [31] was as-
sumed to be one for simplicity. According to the proof and deriva-
tion in InfoVAE, the final form of the objective function can be
computed by replacing the last term in Eq. (7) with an equivalent
divergence family, i.e., the maximum mean discrepancy (MMD).
Hence, an operation in the latent space can convey implications to
be reflected on the generated data. It provides conditions under
which operations in the learned latent space may have meaning-
ful implications for the generated data, which cannot be utilized
by an uninformative latent code.

PROPOSED MONITORING METHODOLOGY

1. Tennessee Eastman Process
The Tennessee Eastman process is a widely used benchmark

chemical process for a performance comparison in process moni-
toring algorithms or control structures. It consists of five modules:

a reactor, condenser, product separator, stripper, and compressor
for the recycle stream, as shown in Fig. 3. The irreversible and exo-
thermic gas-phase catalytic reactions of reactants A, C, D, and E
occur to produce two liquid products, G and H. The following
steps, including condensation, separation, and compression, recy-
cle the unconverted reactants in the product streams and make up
the fresh reactants rectified through the stripper. Some reactions
involve inert gas B and byproduct F, which are primarily removed
by the purge stream. A detailed description of the TEP can be found
in the original suggestion of the Fortran [32] and revised MATLAB
[33] models. The model used in this study contains the control
strategy proposed by Ricker [34] based on the revised MATLAB
model.

There are 41 measurements, i.e., 22 continuous variables and 19
composition variables from the installed analyzers. The model also
includes 12 manipulated variables used in the process control. In
this study, 50 variables, excluding three manipulated variables remain-
ing as fixed values (compressor recycle valve, stripper steam valve,
and agitator speed), were investigated. The target variables for the
analysis are listed in Table 1. The MATLAB model modified based
on the original Fortran model includes 28 pre-defined fault cases,
and 8 (21-28) more fault cases were added to the 20 fault cases in
the original model [32]. A total of 28 faults in the TEP cover vari-
ous types, such as step change, random variation, slow drift, and
sticking of a certain variable. The fault scenarios in the TEP are
summarized in Table 2. The proposed methodology for process
fault detection, which is described in detail in the following sec-
tions, is validated and analyzed using the TEP in the following
sections.

LELBO , ; x i 
   Eq z|x  p x i |z log    DKL q z|x i 

 ||p z  

   DKL q z ||p z     Eq z  DKL(q x i |z ||p x i |z ) 

LInfoVAE , ; x i 
  Eq z|x  p x i |z log    DKL q z|x i 

 ||p z     Iq

  EpD x Eq z|x  p x|z log    1   EpD x DKL q z|x i 
 ||p z  

   1 DKL q z ||p z  ,

Fig. 3. Process flow diagram of Tennessee Eastman process [35].
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Table 2. Process faults in TEP
No. Description Type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition, A/C ratio constant (stream 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss–reduced availability (stream 4) Step
IDV(8) A, B, C feed composition (stream 4) Random variation
IDV(9) D feed temperature (stream 2) Random variation
IDV(10) C feed temperature (stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) *Unknown (Deviation of heat transfer within stripper heat exchanger) *Unknown (Random variation)
IDV(17) *Unknown (Deviation of heat transfer within reactor) *Unknown (Random variation)
IDV(18) *Unknown (Deviation of heat transfer within condenser) *Unknown (Random variation)

IDV(19) *Unknown (recycle valve, stripper steam valve, underflow separator
(stream 10), underflow stripper (stream 11)) *Unknown (Sticking)

IDV(20) *Unknown *Unknown
IDV(21) A feed temperature (stream 1) Random variation
IDV(22) E feed temperature (stream 3) Random variation
IDV(23) A feed pressure (stream 1) Random variation
IDV(24) D feed pressure (stream 2) Random variation
IDV(25) E feed pressure (stream 3) Random variation
IDV(26) A & C feed pressure (stream 4) Random variation
IDV(27) Reactor cooling water pressure Random variation
IDV(28) Condenser cooling water pressure Random variation

*Unknown: Uncovered by A. Bathelt in revised version of MATLAB model

Table 1. Process variables of TEP subject to process monitoring
Variable No. Variable name Variable No. Variable name

01 A feed flowrate (stream 1) 18 Stripper temperature
02 D feed flowrate (stream 2) 19 Stripper steam flowrate
03 E feed flowrate (stream 3) 20 Compressor work
04 A & C feed flowrate (stream 4) 21 Reactor c/w outlet temperature
05 Recycle flowrate (stream 8) 22 Condenser c/w outlet temperature
06 Reactor feed rate (stream 6) 23-28 Reactor feed analysis (A-F mol%) (stream 6)
07 Reactor pressure 29-36 Purge gas analysis (A-H mol%) (stream 9)
08 Reactor level 37-41 Product analysis (D-H mol%) (stream 11)
09 Reactor temperature 42 D feed flow valve (stream 2)
10 Purge rate (stream 9) 43 E feed flow valve (stream 3)
11 Product separator temperature 44 A feed flow valve (stream 1)
12 Product separator level 45 A & C feed flow valve (stream 4)
13 Product separator pressure 46 Purge valve (stream 9)
14 Product separator under flowrate (stream 10) 47 Separator pot liquid flow valve (stream 10)
15 Stripper level 48 Stripper liquid product flow valve (stream 11)
16 Stripper pressure 49 Reactor c/w flow valve
17 Stripper under flowrate (stream 11) 50 Condenser c/w flow valve
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2. Process Monitoring Integrated with Data Augmentation
In this section, we propose a method that makes use of the advan-

tage of data augmentation, particularly of the boundary of the nor-
mal operation data, such that it can help the classifier generalize
better in terms of the manifold learning of the normal state. The
method for edge-based sampling and data generation, proposed
under the term DOPING technique [23], showed an improve-
ment of image classification for the well-known MNIST dataset.
Although the study was tested in different domains and utilized a
different type of generative model and classifier from this study, it
revealed the effectiveness of data augmentation based on the edge
of a certain class. The borderline-SMOTE [15], which is a modi-
fied minority over-sampling method used only to generate sam-
ples near the borderline of the minority class, also presents evidence
of further improvements with the help of borderline samples.

In this study, we propose an approach to supplementing rare
samples in the same class to mitigate the in-class data imbalance,
unlike previous studies that augment the minority class to resolve
the between-class imbalance. From the viewpoint of process fault
detection, the proposed method was designed to augment rela-
tively large amounts of rare samples that occur with low probabil-
ity distributed within the boundary region of a normal state. As a
result, by deliberately adding rare normal instances to the training

Fig. 4. Flowchart of the proposed method for process fault detec-
tion model.

Table 3. Structure of the generative model using Info-VAE
Layer Dimension Activation Remarks

Input 50 -
Encoder 1 40 Leaky ReLU Alpha: 0.2
Encoder 2 for Mean 30 Linear
Encoder 2 for STD 30 Softplus
Feature 30 -
Decoder 1 40 Leaky ReLU Alpha: 0.2
Decoder 2 for Mean 50 Linear
Decoder 2 for STD 50 Softplus
Output 50 -

data, the monitoring system can better perform in terms of in-
creasing the fault detection rate (FDR) while keeping the false alarm
rate (FAR) below the acceptable level.

The essential steps of the workflow are summarized in Fig. 4.
To prepare the data at similar scales and variabilities, a preprocess-
ing step is first required. The generative model using Info-VAE
was trained on the original data to generate artificial data for aug-
mentation. Once the generative model is prepared, various sets of
data are generated by sampling in the latent space and retrieving
data of the original space through the decoder network. The gen-
erated data are merged with the original data as the augmented
training data for modeling the fault-detection model using AE.
2-1. Data Generation Using Info-VAE

Before employing the modeling of the generative and monitor-
ing models, the data scaling process, which imposes equal impor-
tance against all variables in the model, works as a critical prepro-
cessing, as in other machine learning algorithms. This is also import-
ant in terms of the stable convergence of the model, which is valid
for all methods employed in this study. The standardization to
scale each variable is as follows:

(8)

where X is the original variable, and  and  are the mean and
standard deviation of each variable based on the training data,
respectively. To establish the stopping criteria of the training pro-
cess, the original dataset was divided into training and validation
sets, each having 6,000 and 1,200 samples out of a total of 7,200
samples.

The structure of the Info-VAE used in this study is summa-
rized in Table 3. First, the distributions of the inferential posterior,
q(z|x(i)), and the generative posterior, p(x(i)|z), are assumed to be
multivariate Gaussians because process variables with continuous
values are considered. The input layer dimension is matched with
the dimensions of the benchmark process system, TEP, which has
50 variables, as suggested in Table 1. As one of the most critical
parameters in the application of the autoencoders, the reduced
dimensions of the latent space should be determined. Several heu-
ristics exist to determine the dimensionality of the latent space,
such as the elbow of the scree plot, the cutoff the eigenvalues greater
than 1, or the cumulative percentage of explained variance (CPV).
As shown in Fig. 5, the first criterion, the elbow of the scree plot, is

Xscaled  
X   


------------,
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insufficient to account for the variance of the TEP data in the latent
space because it results in excessive loss of information during
dimension reduction. Therefore, a case study was performed to
decide the dimension of the latent space that is the most efficient
in terms of the monitoring performance. Based on the settings of
the base case which will be introduced later in this section, the
case study was conducted by varying the dimensionality of the
latent space from 60% to 90% CPV. According to each case, the
averages of the FDR over the 28 fault cases in TEP were derived
and compared as Fig. 6. According to the result of the case study, it
can be concluded that the 80% CPV is enough to efficiently reduce
the dimension of the latent space based on the monitoring perfor-

mance. Thus, the number of nodes in the bottleneck layer was set
to 30. The result is reflected in the output dimension of the sec-
ond layer in the encoder. In this study, the number of hidden layers
between the input and output, which is another essential hyperpa-
rameter determining the performance of the model, was deter-
mined to be one in both the encoding and decoding networks to
prevent an overfitting. The nonlinear activation functions for the
hidden layers are set to the leaky rectified linear unit (ReLU), except
for the output levels, such as the feature and reconstruction layers.
In general, no activation function is adopted for the output layers
in the regression models, which corresponds to the linear activa-
tions to fit the means of a multivariate Gaussian for the feature vector
and reconstruction of the input. In the case of layers used to fit the
standard deviations of the feature vectors or the reconstructions,
another type of activation function, i.e., softplus activation, is
employed to explicitly impose a positive definite constraint for the
standard deviations. The relevant hyperparameters for configur-
ing the generative model using Info-VAE are listed in Table 4. The
weight parameter adjusting the relative importance between the
reconstruction loss term and the replaced divergence term from
the KL divergence, i.e., the MMD, should be selected to balance
the relative scale of each element.

After the training process was finished, the Info-VAE model
was used to augment the original training dataset with artificial
samples. The model generates samples that can help the manifold
learning of AE by emphasizing the boundary of the training data
based on the latent distribution. To selectively specify the bound-
ary of the normal samples distributed by a multivariate Gaussian,
a ring-shape transformation is applied that can be easily extended
to a shell of a sphere or a hypersphere within a higher space. First,
random samples are extracted from the prior distribution, which
has a multivariate normal distribution in a typical VAE having the
same dimensionality as the feature space. A specific mapping of the
samples from the Gaussian to ring-shape distribution is then applied
to rearrange the sample vectors based on the latent space, such that
the sample vectors suggest the meaning of the boundary region
based on the original dimensional space. The mapping to the bound-
ary is defined as follows:

(9)

where a and b are responsible for the scatteredness and radius of
the resulting ring, respectively.

The results of the case studies for various sets of parameters a
and b based on two-dimensional Gaussian data are shown in Fig.
7. By using this mapping from the randomly sampled points from
a normal distribution, as shown in Fig. 7(a), we can exclusively

R z    
z
a
--   b z

z
-----,

Fig. 5. Scree plot for selection of the reduced dimension of the latent
space.

Fig. 6. Case study to decide the reduced dimension of the latent
space (The dimensionality of the latent space in each case is
represented in parentheses.).

Table 4. Hyperparameters of Info-VAE
Variable name Value
MMD weight 50
Mini batch size 256
Optimizer RMSProp
Learning rate 0.001
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select the input vectors representing boundaries in the latent space,
which is based on the notion that the latent space contains the
inherent features of the original data. By adjusting parameters a
and b in Eq. (9) to point to the objective region corresponding to
the boundaries of the normal state based on the two-dimensional
feature space, the desired area in the feature space can be specified
as shown in Fig. 7(b), (c), and (d) depending on the purpose. Al-
though the case study is only demonstrated for two-dimensional
data, it can also be expanded into higher-dimensional data with-
out a loss of generality.

The generated samples can be classified as distinct groups rep-
resenting different regions of the normal samples to adjust the
number of the different augmentation groups by manipulating the
scatteredness and radius through a and b, respectively. To flexibly
control the number of augmented datasets with different charac-
teristics, a strategy that divides boundaries into several specific
groups and then merges a different number of samples for each
group for augmenting into the original dataset was used in this
study.
2-2. Data Augmentation

The detailed methodology for augmenting the synthetic data is
based on a case study of TEP. Although the dimension of the fea-
ture space is beyond the visualizable limit, the main idea of the

proposed method for data augmentation can be conceptually ex-
plained in a two-dimensional space. The candidate groups for aug-
mentation were divided into five groups, as shown in Fig. 8. The
groups were chosen to be able to thoroughly cover the areas that
were originally described by the prior distribution while not over-
lapping each other. Each group can be distinguished based on its
distance from the mean.

The groups of infrequent samples that exist far from the mean
have a higher weight among the augmented data to supplement
the deficient information in the original data. The sample vectors
near the center, such as G1, G2, and G3, as well as the outer groups
such as G4 and G5 representing the boundary, are also included
in the samples to generate artificial data for augmentation to avoid
a data imbalance problem owing to an excessive supplementation
of the boundary data indiscriminately. Instead, relatively high weights
are assigned to the outer groups to emphasize the meaning of the
augmentation of the boundary samples that correspond to rare
normal samples. The parameters of the boundary transformation
and the respective amount of data augmentation for each group
are presented in Table 5.

The total number of augmented samples was designed to be
half of the original training data that can maximize the final mon-
itoring performance through augmentation. The relative numbers

Fig. 7. Case study for various parameters of boundary transformation in 2D Gaussian data.
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of each group in the augmented samples were set to be linearly
proportional from the center to the outside. Hyperparameters such
as the relative scale of the augmentation compared to the original
data, the importance among the various groups, and the number
of different groups summarized in Table 5 are adjustable depend-
ing on the applications.
2-3. Fault Detection Modeling Using AE

After the augmented training dataset for the construction of the
fault detection system using AE was prepared, the training of the
normal state for the process fault detection system was performed
by defining the normal manifold to be used as a monitoring model.
The 6,000 samples for the training data out of the total 7,200 sam-
ples of the original data from the TEP simulation model were set
apart from the validation data after a random shuffling process,
which is in accord with the structure of the AE assuming each
sample as being independent. The validation data were used to deter-
mine the termination point of the training to prevent an overfit-
ting using the early stopping criteria. Both the training and validation
data in the original dataset were the same as those used in the
modeling of Info-VAE, so standardization was applied as a scaling

process. Because the synthetic data obtained from the generative
model are scaled, the data for augmentation are attached to the
original training and validation dataset resulting from the genera-
tion by Info-VAE. Finally, the detailed configuration of the train-
ing and validation datasets after the augmentation of the synthetic
data is summarized in Table 6. The relative size of the total training
dataset was set to five times that of the validation data, as deter-
mined through a case study for various amounts of augmentation.

As the dimensions of the inner part, the number of nodes of
the feature layer was set to 30, which is the same as in the case of
generative modeling using Info-VAE in Section 3. 2. 1. However,
the intermediate structure of the monitoring system using AE can
be set differently from that of the generative model, where the
capacity of the model is limited owing to the lack of the original
training data. To make full use of AE for the monitoring system,
the number of hidden layers and the size of each layer can be ad-
justed according to the application. A case study to tune the hyperpa-
rameters, such as the number of hidden layers and nodes of the
AE monitoring system, determined the final structure, as shown

Fig. 8. (a) Sampling from 2D Gaussian distribution (b) Candidate groups of samples transformed by the boundary mapping.

Table 5. Parameters and the number of samples in each group for
the TEP case study

Boundary
groups

Parameters Augmented
samplesa b

G1 4 0.01 0,200
G2 4 0.50 0,400
G3 4 1.00 0,600
G4 4 1.50 0,800
G5 4 2.00 1,000

Table 6. Configuration of the dataset for training the AE monitor-
ing model

Training data Validation data
Original dataset 6,000 1,200

Augmented
datasets

G1 0,200 0,040
G2 0,400 0,080
G3 0,600 0,120
G4 0,800 0,160
G5 1,000 0,200

Total 9,000 1,800
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in Table 7. All layers employed a fully connected layer, and the
weights in all cases were initialized using a truncated normal dis-
tribution. The nonlinear activation functions of the AE monitor-
ing model used to cope with the nonlinearity of the chemical process
data were set to a rectified linear unit (ReLU) with the same hy-
perparameters. The nonlinear activations for the output layers for
the encoder and decoder of the AE monitoring model, which cor-
respond to the feature and reconstruction layers, respectively, were
not applied to leave them as linear units following the convention
used in regression problems. Kernel regularization was adopted in
the first layers of the encoding and decoding networks to control the
weight parameters from being excessively large by penalizing them.

The additional hyperparameters used to set up the training con-
ditions are listed in Table 8. The loss to be minimized during the
training process is set by the mean squared error (MSE) between
the input and its reconstruction at the end of the network. Adam
with a default learning rate of 0.001 was applied as the optimizer.
For the reproducibility of the monitoring system under the same
conditions, early stopping criteria were introduced during the train-
ing process. The early stopping criteria are a methodology suggest-
ing the termination of the training process if no improvements
more than the minimum changes are made, that is, min_delta in
Table 8, during a predefined patience epoch by monitoring the
validation loss. To compare the proposed method under the same
conditions as the base case, which establishes the monitoring sys-
tem using only the original training data, the same specifications
for the training process are applied to the proposed case, as shown
in Table 8.

The configurations of the KDE, which are used to determine

the control limit for the monitoring system, are presented in Table
9. Although the original process data follow a Gaussian distribution,
the hidden representations and reconstructions used to obtain the
monitoring statistics might not follow the same distribution after
passing through AE. Hence, KDE is utilized as the general approach
to estimate the probability density function of the monitoring sta-
tistics, which is the basis of the decision of the control limit in each
space. The Gaussian kernel, the most common type of kernel, was
used to estimate the density of each monitoring statistic. The band-
widths, which are the most significant parameters of KDE influ-
encing the results of the estimation, were selected based on a 20-
fold cross-validation to cover all data samples in determining the
hyperparameter. Since the control limits are determined based on
the models of the base case and the proposed case respectively, they
have different values in each case, as shown in Table 9.

To monitor the process fault, two monitoring statistics are defined
in the feature space and the original space, similar to that of PCA
[36]. Instead of T2 in the case of PCA, H2 can be analogously defined
based on the hidden representations in the feature space as follows:

(10)

where fEni represents the ith hidden layer in the encoder network,
and M is the number of intermediate layers between the input and
feature layers. Similar to the other statistics in PCA, the SPE can
be calculated from the reconstruction error between the input and
its reconstruction as

(11)

H2
   hT h,

h   fEnM fEnM1  


 fEn1 x   ,

SPE  eT e,

e   x   gDeM gDeM1 


 gDe1 h   ,

Table 7. Structure of the monitoring system using AE
Layer Dimension Activation Remarks

Input 50 -
Encoder 1 46 ReLU Alpha: 0.2; Kernel_regularizer: L2(0.2)
Encoder 2 42 ReLU Alpha: 0.2
Encoder 3 38 ReLU Alpha: 0.2
Encoder 4 34 ReLU Alpha: 0.2
Feature 30 Linear
Decoder 1 34 ReLU Alpha: 0.2; Kernel_regularizer: L2(0.2)
Decoder 2 38 ReLU Alpha: 0.2
Decoder 3 42 ReLU Alpha: 0.2
Decoder 4 46 ReLU Alpha: 0.2
Output 50 Linear

Table 8. Hyperparameters for the training of AE
Variable name Value

Mini batch size 256
Loss MSE
Optimizer Adam
Learning rate 0.001

Early stopping
min_delta 5*104

patience 320
mode min

Table 9. Settings for KDE and the control limits for each case
Base case Proposed case

Kernel type Gaussian Gaussian
Bandwidth (20-fold
cross-validation)

H2 6.158 2.335
SPE 1.438 1.128

Control limits H


2 57.85 63.75
SPE


31.40 32.25
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where gDei denotes the ith hidden layer in the decoder network.
With the proposed method, the two statistics are observed in real
time against the process data for fault detection.

Once the training process is completed, the original training data
under normal operating conditions are fed into the network. Based
on the two statistics, H2 and SPE, calculated based on the original
training data, KDE was applied to predefine the control limits for
each monitoring chart [37]. The typical choice for a significance
level of =0.05 was adopted such that the confidence limits in
detecting the faulty conditions when the monitoring statistics of
the new samples exceed the limits were set to 95%.

CASE STUDY AND DISCUSSION

In this section, the monitoring system based on the proposed
method is tested on the TEP fault cases, and the monitoring results
are analyzed. To demonstrate the advantage of data augmentation
in building a fault detection system, the performance of the pro-
posed method was compared to that of the base case, which only
utilizes the original training data in constructing a monitoring sys-
tem. The simulation was run for a total of 7200 samples with a
sampling frequency of 0.01 hr/sample in the Simulink model, which
corresponds to 72 hr of plant operation. The simulation data of
the faulty condition have the same size as the training data under
normal operations, although the process faults are introduced at
1000 simulation time for all cases of faulty conditions.

To compare the performance of the monitoring systems quanti-
tatively, two performance metrics were set up: FDR and FAR [38].
These two metrics were defined based on the results of the binary
classification test. The monitoring results of the data points can be
classified into four groups, as shown in Fig. 9 [39]. FDR and FAR
can be calculated based on the number of instances in each group
as follows:

Fig. 9. Binary classification criteria based on the monitoring results
of data points.

Fig. 10. Monitoring charts of fault 1 for the base case ((a) and (b)) and the proposed case ((c) and (d)).
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(12)

FDR is the ratio of the samples exceeding the control limit to
the entire sample time since the fault has been introduced. Con-
versely, FAR is the number of samples falsely going beyond the
control limit per total number of normal operation samples. FDR
needs to be maximized on the abnormal data while keeping FAR
for the normal data as low as possible, which is generally deter-
mined as 5%. These two metrics should be compared simultane-
ously because a monitoring system with a high FDR and high FAR
under a normal state is undesirable.

For the first case, the monitoring chart of fault 1 of the TEP is
shown in Fig. 10. The blue and orange lines represent the moni-
toring statistics of the test samples in the feature space and residual
space, H2 and SPE, respectively. The red horizontal lines in each
monitoring chart are the respective control limits, H

2 and SPE, as
determined by KDE in Table 9. For fault 1 in the TEP, both statis-
tics can detect the process fault immediately after the occurrence
of the process anomaly, similar to other methodologies used in
previous research [3]. In the investigation during the first 1000 sam-
ple times before the fault was introduced, it was confirmed that
more than 95% of the samples were classified as being in a nor-
mal state, distributed within the control limits. Considering the sce-
nario of fault 1, which incurs a step deviation of the feed ratio of
streams A and C, it is obvious that the majority of the process
variables deviate from their nominal values during normal opera-

tion. These results verify that the monitoring statistics in both spaces
can properly define a normal manifold and differentiate the faulty
process condition from it.

For fault 11, which is the random variation of the reactor cool-
ing water inlet temperature, the monitoring performance of the
proposed method does not show a significant improvement in
terms of the FDR or FAR compared to the base case. However,
based on the results of the monitoring charts in the feature spaces
shown in Fig. 11(a) and (c), the proposed method showed a more
pronounced isolation with a larger magnitude in the monitoring
statistics for the faulty samples compared to the normal operation
samples. The false-negative rate, similar to the type II error in the
statistical analysis, was reduced from 10.9% to 5.5%. Therefore,
data augmentation can improve the monitoring systems. The im-
provement in the feature space is also noteworthy because it is in
the feature space where data augmentation is designed to empha-
size the boundary region of the normal space.

The monitoring result of fault 14, which incurs the sticking of
the reactor water cooling valve, is shown in Fig. 12. Although more
than 7.5% of the monitoring statistics of the base case in Fig. 12(a)
improperly stay below the monitoring limit since a fault occurs in
the 1000 sample time, the results of the proposed method in Fig.
12(c) exceed the limit for all but 0.15% of the faulty samples. In
terms of the fault detection rate, the fault was detected with high
accuracy by the proposed method 99.85% of the time, with 92.37%
being the base case. This demonstrates the effectiveness of the pro-
posed method, particularly in the feature space. In addition, it can

FDR  
TP

TP   FN
-------------------, FAR  

FP
TN   FP
-------------------

Fig. 11. Monitoring charts of fault 11 for the base case ((a) and (b)) and the proposed case ((c) and (d)).



Data-driven fault detection for chemical processes using autoencoder with data augmentation 2419

Korean J. Chem. Eng.(Vol. 38, No. 12)

Fig. 12. Monitoring charts of fault 14 for the base case ((a) and (b)) and the proposed case ((c) and (d)).

Fig. 13. Monitoring charts of fault 18 for the base case ((a) and (b)) and the proposed case ((c) and (d)).
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be confirmed that the proposed method is effective with other
types of faults, such as the sticking of a valve as fault 14.

For fault 18, in which the deviation of the heat transfer within
the condenser occurs as a random variation type, a similar result
can be observed in the monitoring result as shown in Fig. 13. The
monitoring charts in both cases have common trends where the
fault pushes the state far from the normal condition, followed by
the control actions compensating it iteratively. Given the control
scheme applied to the TEP model used in this study [34], the trends
of the monitoring charts in Fig. 13 are the result of controlling the
separator temperature by utilizing the condenser coolant valve.
Meanwhile, the proposed method showed a distinct result, mini-
mizing the restoration of the normal state and emphasizing the
magnitude of the fault compared to the base case result, as shown
in Fig. 13(a) and (c). Considering the monitoring results in the
residual space, Fig. 13(b) and (d) shows a better performance than
that of the feature space in both cases, and the improvement of the
monitoring performance in the feature space from the base case,
as shown in Fig. 13(c), can be interpreted as evidence that the data

augmentation encourages manifold learning. As another advantage
of the proposed method, the monitoring indices exhibit a larger
magnitude of deviation in the monitoring statistics, which means
that the proposed method can isolate the fault condition better.
The fault detection rates for all 28 faults in the TEP are summa-
rized in Table 10. The detection rate in the residual space, SPE, is
slightly higher in the base case, but the difference is negligible con-
sidering that the base case maintains a relatively higher FAR of
8.58% on the normal operation data than that of the proposed
case (6.92%). It is also noteworthy that the proposed method in
the feature space outperforms the base case for most situations
while maintaining a lower FAR than the base case, which means
that it can distinguish between normal and abnormal states more
accurately.

As another performance index for the monitoring system, we
can investigate the detection delay, which is the time required to
detect a fault for the first time since it occurred. Except for a few
hard-to-detect fault cases, such as faults 3, 9, and 15, for which the
monitoring system could not effectively identify the process, the
detection delay was significantly reduced by the proposed method
in some fault cases. In terms of minimizing the loss of profitabil-
ity due to process faults and securing process safety, the proposed
method can inform engineers of faults more rapidly, allowing them
to handle such faults as quickly as possible. Fig. 14 shows that the
delay was significantly reduced by the proposed method. Fault 10,
where a random variation in the temperature of the C feed occurs,
is the case with the greatest reduction in the fault detection delay
while improving the detection accuracy by more than 10%. The
delay in the base case was 351 samples, which corresponds to 210
min considering the sampling frequency of the TEP, whereas the
proposed method can cut down on it by 168 samples, thereby reduc-
ing the fault detection delay by approximately 100 min. Even if the
time when a large fault appears is equivalently assumed in terms
of the monitoring statistics in the feature space, the detection delay
can be reduced by 51 samples, corresponding to 30 min.

For fault 17, where the heat transfer within the reactor deviates
from the nominal condition, the proposed method also shows an
improvement in the detection accuracy and a delay reduction. The
monitoring charts in the feature space for both cases are shown in
Fig. 15. As shown in the enlarged view of the plots, the detection
delay in the proposed case was decreased by 21 sample times, which
corresponds to approximately 12 min; thus, the monitoring accu-
racy is also improved by the proposed method.

CONCLUSION

In this study, a monitoring framework was proposed that inte-
grates manifold learning with data augmentation to supplement
insufficient information for training. The main idea is to augment
the synthetic data into the original training data using a genera-
tive model, Info-VAE, to supplement the training data for the con-
struction of the fault detection system using AE. The synthetic data
are aimed at representing the region of the boundary of the normal
training data, which contain infrequent but informative samples in
the manifold learning of the normal state for process monitoring.
In addition, a generative model that can manipulate latent sample

Table 10. FDR (%) of the base case and the proposed case for all 28
faults in the TEP model (The value in parentheses corre-
sponds to FAR (%) in each space)

Fault
No.

Base case Proposed case
H2 (4.45) SPE (8.58) H2 (3.50) SPE (6.92)

01 99.69 99.95 99.90 99.90
02 99.37 99.81 99.37 99.55
03 01.63 25.98 01.53 15.26
04 99.40 99.97 99.97 99.97
05 02.90 26.95 02.79 17.38
06 99.72 99.72 99.72 99.72
07 99.97 99.97 99.97 99.97
08 97.69 98.87 98.00 98.50
09 02.21 32.24 07.08 20.79
10 62.34 94.44 75.78 93.61
11 89.15 98.87 94.48 98.68
12 20.35 65.34 39.64 56.51
13 98.15 99.47 99.29 99.40
14 92.37 99.97 99.85 99.95
15 02.06 22.21 01.32 14.47
16 01.63 19.29 00.84 12.56
17 91.69 98.69 97.50 98.61
18 57.15 87.60 70.54 85.02
19 92.45 99.45 97.94 99.39
20 92.21 97.87 97.18 97.73
21 04.55 22.98 02.87 14.92
22 04.45 34.19 03.43 21.53
23 03.21 24.77 02.64 15.93
24 75.89 98.21 92.74 98.06
25 36.09 92.90 67.39 89.92
26 64.89 93.78 77.23 92.08
27 50.43 94.05 63.55 92.84
28 03.47 26.93 05.61 18.26
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vectors based on the feature space and decode it through the gen-
erative network was utilized rather than the conventional meth-
ods using the transformation from manually engineered features;
as a result, the proposed method can be applied in various domains.

To demonstrate the effectiveness of the data augmentation for the
development of a monitoring system, a case study using the Ten-
nessee Eastman process was carried out. The analysis results showed
that the fault detection accuracy was improved for most fault cases

Fig. 14. Comparison of the fault detection delay to first alarm for fault 10 base case: 351 samples (210 min), proposed case: 300 samples (180
min) (A fault is introduced at 1000 samples.)

Fig. 15. Comparison of the fault detection delay to first alarm for fault 17 base case: 137 samples (82 min), proposed case: 116 samples (70
min) (A fault is introduced at 1000 samples.).
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in the feature space in accord with the intention of the data aug-
mentation, and the fault detection delay was also reduced.

However, several issues remain to be resolved for further im-
provements. Even if the hard-to-detect fault cases are set aside, there
exist a few cases that the current monitoring system cannot effec-
tively detect despite the data augmentation. The process dynam-
ics, which also includes information about the process state, were
not considered in this study employing a basic AE, which assumes
independence between the data samples. Although a recurrent neu-
ral network (RNN) structure, such as long short-term memory and
a gated recurrent unit, can consider time-series information more
accurately than a conventional AE, which only utilizes the current
information, it requires more weight parameters and a larger amount
of training data as the dimension of the network is expanded
along the time axis. Therefore, if sufficient training data are pro-
vided, the RNN structure can be combined to address such limita-
tions in future studies.

In addition, the generative model can be further investigated to
improve the fidelity of the synthetic sample for data augmentation.
As the hybrid of VAE and GAN, adversarial autoencoder (AAE)
[40] was proposed, which replaces the KL divergence penalizing
the encoding distribution to fit the prior distribution with the dis-
criminative network. By the modification, the assumption that the
encoding posterior q(z|x) should be multivariate Gaussian is no
longer constrained, thus allowing the arbitrary distribution for the
latent vector z. As AAE retains the structure of VAE that can fit
the data distribution in the latent space to a certain distribution,
selective sampling and generation such as the boundary region of
the data distribution can be achieved. Thus, the proposed meth-
odology in this study can be used in various domains by alleviat-
ing the restrictive assumption of the generative model, VAE.
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