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AbstractMachine learning based approaches to material discovery are reviewed with the aim of providing a per-
spective on the current state of the art and its potential. Various models used to represent molecules and crystals are
introduced and such representations can be used within the neural networks to generate materials that satisfy specified
physical features and properties. For problems where large database for structure-property map cannot be created, the
active learning approaches based on Bayesian optimization to maximize the efficiency of a search are reviewed. Suc-
cessful applications of these machine learning based material discovery approaches are beginning to appear and some
of the notable ones are reviewed.
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INTRODUCTION

In the past few years, there has been increasing interest in research
pertaining to applying machine learning to material discovery,
spurred by the recent advancements in deep learning [1-3] as well
as the large amount of available databases of molecules and mate-
rials [4]. Given the importance of artificial intelligence and big
data, data-driven discovery is already thought as the “fourth para-
digm of science” [5]. The aim of this perspective article is to sum-
marize the recent advancements in the field of machine learning
and applications to materials discovery. We first present the differ-
ent contexts where machine learning tools are applied to materi-
als discovery, where implementations can vary depending on the
nature of the inputs and the amount of data available. Also, rele-
vant higher-level machine learning concepts are presented with an
overview of some widely used representations of molecules and
materials, and some of the relevant applications are summarized.
For further illustration, designs of crystalline materials and com-
posites are specifically discussed.
1. Machine Learning and Material Discovery

Machine learning is a field of computer science that extracts
knowledge and patterns from a set of data. In supervised learning,
the best-known branch of machine learning, one tries to map the
input representation to the desired outputs in myriad of different
applications (e.g., classification of the number images). In general,
classic machine learning, without deep learning, uses high-level,
manually constructed features, while deep learning uses relatively
low-level features. To illustrate this difference, an example in mate-
rials science can be drawn where higher-level abstract concepts such

as void fraction, density, surface area of materials can be used as
inputs in classical machine learning, whereas modern machine learn-
ing techniques like the deep neural networks use the actual posi-
tions of the atoms that comprise the materials. In general, high-
level features are often material properties (e.g., density, void frac-
tion) that can be calculated from low-level features (e.g., atomic posi-
tions, bond connectivity). This difference stems from the fact that
deep learning uses multiple layers to build a hierarchy of features,
starting from low-level features like atom positions to higher ones.
This can be an important advantage, as the extraction of low-level
features from the data is easier than that of high-level features. The
power of deep learning comes from the fact that high-level features
can be automatically learned (i.e., representation learning) during
the training process. It should be pointed out that the features of
learned representations from the deep learning model may not be
human-interpretable like a property of the materials, but nonethe-
less be still useful because it contains the compressed data infor-
mation. The schematic that illustrates the high-level relationship
between machine learning and material science is shown in Fig. 1.

Fig. 1. Abstraction of relationship between machine learning and
materials.
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As seen from Fig. 1, machine learning can map the material space
to the property space (e.g., drug similarity, surface area, formation
energy or abstract vectors). By using the mapping functionality,
one can predict desired properties directly or find/generate materi-
als of desired property via inverse mapping from property space to
material space (inverse design).
2. Contexts of Material Discovery Problems

Material discovery problems can vary widely in context and com-
plexity. In simple cases like composite design, the input space may
simply be the composition of various known components of the
composite, e.g., resins, hardener, accelerant, etc. The input may also
include some operating parameters (e.g., temperature) relevant for
the manufacturing process. More generally, one may try to design a
new material with a specific set of targeted properties. In the case
of crystalline materials, the problem is more complicated, compared
to simple molecules, as such materials have more parameters (e.g.,
angles) and the generation algorithm needs to abide by periodic
boundary conditions. A typical input space for such a problem may
be huge, given the large choices of atoms as well as branching struc-
tures. Efficient handling of the large input space is where machine
learning can be primarily helpful, as we saw in the case of AlphaGo
[3].

Yet, another important challenge is to relate the molecular struc-
ture to targeted properties, i.e., to build the structure-property rela-
tionship. For this, experimental data and molecular simulations
can be used. However, depending on the property being targeted,
such data may not be readily available, at least not in the quanti-
ties needed, or easy to produce, thus impeding the discovery pro-
cess. For example, in composite design, it may be very difficult to
gather a large set of data to build a recipe-property relationship that
is valid over a wide range. If sufficient structure-property data can-
not be accessed, the structure-property map built from the limited
data would carry significant uncertainties, which may be quanti-
fied and used in experimental design or running time-consuming
molecular simulations. In this case, the role of machine learning
may be to suggest a set of candidates to try in experiment or molecu-
lar simulation, in an iterative manner, so that the whole discovery
process can be sped up. As such, the key would be to control the
exploration vs exploitation balance, which requires a model that car-
ries the uncertainty information.

MOLECULE AND CRYSTAL DESIGN

1. Representation of Molecules and Crystals
In most machine learning problems, the proper representation

of the input to the machine learning model is essential in improv-
ing the performance. It is not intuitively obvious on how to best
represent molecules and crystals, and as such, this is still the major-
ity of on-going research. In general, molecules and crystals are dif-
ferent in that the former can be accurately described using a finite
number of atoms, whereas the latter is, in principle, an infinitely
extended material with periodic boundary conditions. As such, dif-
ferent representations are being investigated for what is essentially
two different types of materials. Although human extracted high-
level features, such as pore diameter and surface area of porous
materials, can be used to train machine learning models, we focus

more on the end-to-end atomic level representations in this section.
In 2012, Rupp et al. created a simple molecular representation

named Coulomb matrix (CM) [6], where the CM is constructed
using the pairwise distance of atoms and the nuclear charges of
the atoms in the molecule. CM is invariant with respect to transla-
tion and rotation because the distances between atoms do not
change for these operations. Using the CM representation, in their
work, molecular atomization energy was successfully predicted
with kernel rigid regression (KRR) [7]. Hansen et al. suggested an
extension of the CM named “bag of bonds” (BoB) [8], which was
inspired by the concept of bag-of-words used in natural language
processing (NLP). In this representation, the elements of CM are
stored in a specific bag according to particular bond types (e.g., C-
C, C-N) and the stored values are concatenated with zero pad-
ding with equal size for all the bags. The simplified molecular-
input line-entry system (SMILES) [9,10], which has already been
widely used in biochemical society, is another popular representa-
tion of molecules. Useful concepts and machine learning model of
NLP (e.g., recurrent neural network (RNN)) can be applied to the
SMILES representation because it can be treated as similar to lan-
guage with its own unique syntax. In addition, the SMILES repre-
sentation is actively used for generative models (e.g., generation of
small molecules with user-desired properties) because facile con-
version from SMILES can be to molecular structures and vice versa.
More recently, molecular graph [11,12] representation has been
gaining considerable traction, where the nodes and edges in a molec-
ular graph are represented by vectors that contain information of
the chemical (e.g., atom types, bond types, bond lengths). Funda-
mentally, the graph representation of molecules can be determined
uniquely. However, the permutation variant of the adjacency matrix
of graphs can be a problem from the perspective of machine learn-
ing, because this problem leads to the non-uniqueness of the materi-
als. Recent advances in graph neural networks [13,14] have solved
the problems. In graph neural networks, the invariances of graphs
are imposed by the neural network architecture. Other than these,
there are other types of input representations such as the smooth
overlap of atomic positions (SOAP) [15] and Fourier series of atomic
radial distribution (FR) [16], and more likely, this will be a field of
interest for the foreseeable future.

Compared to small molecules, the representation of crystalline
materials can be more complicated because of periodicity in crystals
and the non-uniqueness of the unit cell selections. These problems
are resolved generally by considering the chemically local environ-
ment with the treatment of periodic boundary condition and obtain-
ing normalized quantities within that environment. Valle et al.
suggested a crystal fingerprint that relates pair correlation function
and diffraction patterns [17]. The fingerprints of the crystals are
obtained by calculating distances between different atom types and
concatenating over the dimension for all possible atom type pairs.
The similarity between different crystal structures can be meas-
ured using the crystal fingerprint with the cosine similarity met-
ric. Schütt et al. suggested using partial radial distribution func-
tion (PRDF) [18] as a suitable representation for crystalline systems.
The PRDF is obtained by calculating the radial distribution func-
tion (RDF) of all possible element pairs and concatenating the
RDFs.
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Some researchers took representations that worked on small
molecules and expanded their usage to crystal systems. Faber et al.
[19] extended CM to Ewald sum matrix, extending Coulomb-like
matrix and sine matrix to account for periodic systems. The Ewald
sum matrix and extended Coulomb-like matrix take into account
long-range interactions in the periodic system via the Ewald sum-
mation. The sine matrix replaces the long-range electrostatic inter-
action to arbitrary function that is periodic with respect to the
lattice vector. Xie et al. extended the molecular graph to the peri-
odic system using undirected multigraph and named it “crystal
graph” [20]. The crystal graph considers the periodicity when the
edges are built. To utilize the crystal graph as an input, they devel-
oped an ANN architecture named crystal graph convolutional neu-
ral network (CGCNN). The invariance of unit cell choice is attained
by the normalization of the pooling operation in the CGCNN.
The CGCNN can take different sized inputs, such as different
number of atom types and number of atoms, and encode them to
the same size vector, which allows comparisons of diverse type of
input crystals.

It is conceivable that the representation can vary based not only
in their periodicity but their properties. One way to utilize machine
learning in chemistry is to predict the potential energy surface using
artificial neural networks and derive the neural network potential
(NNP). In the area of NNP, the symmetry function [21-23] is widely
used, and it is designed to predict the potential energy and atomic
forces of the molecule. As such, the symmetry function is differen-
tiable with respect to atomic position in order to calculate the
forces from the potential energy. The symmetry function is calcu-
lated from the local environment of the atoms, and the representa-
tion also can be used in crystal system if the building of neighbors
list of the atoms considers the periodic boundary condition. Even
though the symmetry function aims to predict the potential energy
surface, this representation can also predict other properties. The
variants of the symmetry function have been also suggested [24,25].

It is possible that the neural network can predict potential energy
surface without symmetry functions from the basic information
regarding the elements and atomic configurations, where the materi-
als representation also can be incorporated into the ANN architec-
ture. Schütt et al. developed a specialized neural network architecture
named SchNet [26,27] that uses embeddings of atoms for repre-
sentation, which are trained during the learning process. In the
SchNet, the local environment of atoms within the cutoff radius is
considered in special network architecture named interaction
blocks and filter-generating network. Due to the flexibility of SchNet
and the representation, it can be used for variable number of spe-
cies and number of atoms and periodic system. In addition, SchNet
has better performance than other models for larger size of train-
ing set due to the characteristics of the representation learning.
2. Structure-property Maps

In practice, one can list all the important properties inherent to
a given molecule or a material and repeat this exercise for a large
database of molecules/materials to accumulate a large dataset that
can potentially let us formulate a coherent relationship between
the “structure” and its “property”. With the facility in which one can
obtain data, both computationally via molecular simulations and
experimentally through accumulation of data, many researchers

have used this information to construct structure-property maps
for many different molecules/materials. For example, in the case
for porous materials and zeolites in particular, Lin et al. used data
from large-scale screening of over 100,000 materials to unearth
structure-property relationship between the zeolite structures and
various properties relevant to carbon dioxide capture [28]. There
have been many studies conducted on metal-organic frameworks
(MOFs) to elucidate the relationship between the large chemical
space found within MOFs and some of the properties that relate
to various applications such as gas storage and separations [29-31].

Due to the linkage that exists between the structures and the
properties, one can exploit this relationship to inversely design mol-
ecules/materials that contain the user-desired properties. In more
conventional direct analysis, one starts from the molecules/materi-
als and then derives the associated desired properties. Given that
the direction of the inverse design is opposite to the direct analy-
sis, one can conceivably save significant time and effort in finding
and focusing on just the user-desired molecules/materials without
wasting resources in analyzing sub-optimal chemical structures.
With the advent of machine learning/deep learning models, there
has been much more effort to generate molecules/materials via
VAE, GAN, RL and other neural networks to design the materials
inversely. This type of workflow will continue to be popularized in
many applications, including drug discovery, photovoltaics, and
other applications.
3. Applications

Scientific and engineering applications for nanomaterials are quite
diverse and can differ based on the type of material (e.g., inorganic
crystals, organic crystals, nanoporous materials, proteins, drugs).
For small molecules, the application that interests AI researchers is
drug discovery. Due to the enormously large chemical space for
drug molecules [32], inverse design with machine learning is an
enticing tool to facilitate the discovery of useful drugs. Using the
SMILES representation of drug molecules, research work for both
the forward model (property prediction) and inverse model (drug
discovery) has been widely demonstrated [33]. More recently, inverse
molecule design for drugs is being actively studied with the intro-
duction and success of generative models in deep learning. Some
of these generative models include generative adversarial network
(GAN) [34], variational autoencoder (VAE) [35], and generative
recurrent neural network (RNN). Gómez-Bombarelli et al. devel-
oped a VAE that consists of RNN encoder and decoder with the
SMILES representation [36]. Using this ANN, they successfully
generated molecules with user-desired property by optimizing the
encoded molecule vectors in the latent space (Fig. 2(a)). Many dif-
ferent generative models are being continuously developed to pro-
duce molecules with user-desired properties, making this an exciting
field for research [33,37-47].

For solid and inorganic materials, many works have been con-
ducted on structure, composition, property prediction and inverse
design. Zhou et al. [48] developed an unsupervised machine learn-
ing model named Atom2Vec, in which they extracted the import-
ant features from the atomic environment of the crystal from the
materials database. The learned atomic vectors captured the con-
ventional trends of atoms (e.g., family and valence trend), and using
these vectors, the formation energy of elpasolites ABC2D6 was well
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predicted with concatenated atom vector as representation (con-
catenation of atom vectors of A, B, C and D). Ziletti et al. [49]
demonstrated that their deep learning model can predict the crys-
tal structure for both perfect crystal and defective crystals, while
conventional classification method was shown to be highly sensi-
tive to the imperfection of the crystals (e.g., random displacements
and vacancies).

Recently, inverse design studies using generative models for inor-
ganic materials have been conducted. Noh et al. [50] developed for
the first time a VAE based model for inverse design of inorganic
solid. They used 3D images as the representation and these images
are calculated by applying Gaussian function to crystal structures.
In order to utilize the 3D images for inverse design, they devel-

oped the Image-Based Materials Generator (iMatGen), which is a
hierarchical two-step VAE (Fig. 2(b)). Inverse design using iMat-
Gen was applied to vanadium oxide materials for proof of con-
cept and forty completely new VxOy structures were found. Kim et
al. [51] developed a GAN-based model that is memory-efficient
and uses inversion-free representation. They directly used frac-
tional atomic coordinates concatenated to cell parameters that is
similar to the point cloud. Their model was applied to predict prom-
ising Mg-Mn-O ternary materials and twenty-three new struc-
tures with reasonable stability and band gap were discovered. In
addition to inverse design, a study has also been conducted to pre-
dict the synthesizability of inorganic solids. Jang et al. [52] devel-
oped for the first time a deep learning model that can predict the

Fig. 2. (a) Inverse design of small molecules. SMILES strings are encoded to the latent vector and optimized for optimal property over latent
space. Then the optimal latent vector is decoded to SMILES. Figure adapted from Ref. [36] Copyright 2018 with permission from
American Chemical Society. (b) ANN architecture for the inverse design of inorganic crystals. The hierarchical VAE encodes 3D
image obtained from inorganic crystal to latent vector. The latent vector is optimized for optimal property and the optimal latent vec-
tor is decoded to 3D image. Figure adapted from Ref. [50] Copyright 2019 with permission from Elsevier.
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synthesizability of inorganic materials from the structure. They used
CGCNN as a model and applied positive and unlabeled machine
learning techniques for the training of the model, because only
positive labels exist due to the nature of experimental data. The
CGCNN was trained to predict crystal-likeness scores (CLscore), a
metric for synthesizability, and showed 86.2% true positive rate for
experimental papers published between 2015 and 2019. It also
confirmed that 71 of the 100 high-scoring virtual substances were
already synthesized and published in the literature.

Nanoporous materials such as zeolites, metal-organic frameworks
(MOFs), and covalent organic frameworks (COFs) contain many
pores that are on the order of few Angstroms to nanometers. Due
to the large surface area and pore volume, these materials are seen
as promising materials for wide range of energy and environmen-
tal related applications. Fernandez et al. introduced large-scale quanti-
tative structure-property relationship (QSPR) to predict the methane
uptake in the MOFs [53] and predict high performing carbon
capture MOFs [54]. Simon et al. predicted Xenon/Krypton selec-
tivity using random forest algorithm with structural descriptors such
as void fraction and crystal density [55]. In addition, they introduced
a new descriptor called Voronoi energy that provides the average
energy of Xenon at the accessible Voronoi nodes. They conducted
hybrid screening by combining molecular simulation and the devel-
oped prediction model. From the screening result, they found two
most selective materials that are already synthesized but not tested
for the Xe/Kr separations. Chung et al. developed an efficient search-
ing algorithm on an MOF database to find high performing pre-
combustion CO2 capture MOFs [56]. In this work, MOFs are re-
presented by building block components such as the type of inor-
ganic node, organic linkers, functional groups and information of
interpenetration. These descriptors are optimized using genetic algo-
rithm to find the high performing MOFs. The algorithms are shown
to be more efficient than brute force search, and one of discovered
MOFs showed better CO2 working capacity than any previously
published MOF under the process conditions used in this study.

Machine learning can also be used to predict the atomic prop-
erty of atoms in MOFs. Raza et al. developed a deep learning
model that can predict partial charge of atoms in MOFs [57]. The
crystal graphs were used as representations, and message passing
natural network (MPNN) was used as a machine learning model
to consider local bonding environments in MOFs. The MPNN
were trained using DFT-derived DDEC charges as training data
and showed reasonable prediction performance and fast evaluation
speed (mean absolute deviation on test set: 0.025, runtime: ~3 s).

Recently, there have been attempts to conduct inverse design of
MOF using generative models. Yao et al. presented for the first
time an MOF inverse design methodology using generative mod-
els [58]. Due to the large size and complexity of the MOF struc-
tures, they used a different approach other than using the atomic
information directly. They decomposed the MOFs into topology,
metal cluster vertex, organic vertex and organic edge. The first three
components are represented as the categorical variable from already
known data (e.g., topology database), and for organic edges, the
graph representation is used as normal small molecules. This rep-
resentation limits diversity because it uses only existing topologies
and vertices, but can be considered reasonable for complex mate-

rials such as MOFs. They developed a supramolecular variational
autoencoder (SmVAE) that can map these representations to latent
space. The MOFs were optimized in the latent space to find MOFs
to be used in CO2 separation applications. As a result, promising
MOFs were found that are competitive against best-performing
MOFs and zeolites ever reported.

Recently, Lee et al. predicted the performance limit of methane
gas storage in zeolites by generating a hypothetical potential energy
surface using developed generative adversarial network architec-
ture (ESGAN) [59]. In the work, the interaction energy between
methane and the zeolite is stored in a three-dimensional grid (energy
shape) (see Fig. 3(a)) and the ESGAN is trained to generate an
energy shape similar to the real one (see Fig. 3(b)). For the gener-
ated energy shape, grand canonical Monte Carlo simulations were
conducted to obtain the working capacity. Even without high per-
forming zeolites in training set, ESGAN successfully generated high
performing energy shape with almost top performance. Kim et al.
developed unique ANN called ZeoGAN that can generate nano-
porous zeolite structures [60]. The ZeoGAN is based on the ESGAN
architecture, but unlike its predecessor, ZeoGAN takes the mate-
rial shape as an input additionally (see Fig. 4). The material shape
is a three-dimensional grid that contains atomic position smeared
by Gaussian function. They also successfully generated zeolites
with user-desired property (in this work, heat of adsorption) by
adding a penalty function to the generator of ZeoGAN.

In general, given the high computational cost associated as well
as millions of materials available, machine learning can provide an
alternative way to computationally identify the optimal materials
for the given application. It remains to be seen whether the vari-
ous approaches that do not utilize AI/machine learning can be
compatible or adversarial to the current machine learning works.

MATERIALS BY ADAPTIVE DESIGN

In the previous section, we summarized the machine learning

Fig. 3. (a) The energy shape calculation of the zeolite. The green sur-
face represents the potential energy contour between meth-
ane gas and the zeolite. The interaction energy is calculated
using Lennard-Jones potential, (b) Schematics of energy shape
generation of ESGAN.
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approaches for predicting various material properties or even design-
ing new molecular structures given large databases, for example,
those generated by high throughput DFT calculations. However,
in practice, many material problems involve multicomponent com-
pounds, solid solutions, and defects, which the current state-of-
the-art machine learning tools are not best suited to handle [61].
In such a case, it may be very difficult to build a large database
from high throughput calculations, as such simulations may not
be possible or demand high computational resources. Alternatively,
one can generate data by experiments but experimental datasets
are typically limited since conducting experiments can be time-con-
suming and expensive. Therefore, a method to efficiently search
materials with target properties given a small dataset is needed.

One of the emerging methodologies to address this issue is Bayes-
ian optimization (BO), also studied under the name of surrogate-
based optimization [62] and efficient global optimization [61]. Bayes-
ian optimization is an experimental design strategy which adap-
tively guides the next experiments, or calculations, by balancing
the merits of exploring high-uncertainty regions that have not been
previously sampled and exploiting previously explored regions where
materials with good properties can be found with a high level of
certainty. It provides a general framework for iteratively finding
the desired materials with the minimum number of experiments.
Bayesian optimization has been successfully applied to design prob-
lems of various materials including organic-inorganic molecules,
alloys, functional oxides, and polymers [61,63,64]. In the follow-
ing, the basic concept of the BO is introduced in section 3.1, and
its extensions for further effective experimental design are sur-
veyed in section 3.2. Finally, several BO applications in materials
design are presented in section 3.3.
1. Bayesian Optimization

Bayesian optimization, which is a strategy for finding a global

optimum of an objective function as efficiently as possible, is usu-
ally used when it is expensive and time-consuming to evaluate the
objective function. The high efficiency of Bayesian optimization in
terms of data requirements has been shown in several articles [65-
67]. This efficiency is achieved by optimizing the balance between
exploration and exploitation of the search space based on Bayes’
theorem. Bayes’ theorem states that the posterior probability of
model M from observed data E is related to the likelihood of the
data and the prior belief of the model. Mathematically, the theo-
rem says.

P(M|E)P(E|M)P(M).

This provides a way to quantify the posterior distribution of the
model starting from the prior belief by combining it with the like-
lihood of the observations. Bayesian optimization has two main
components to in using the theorem: a surrogate model and an
acquisition function.

A surrogate model tries to mimic an objective function from
data/observations to represent the unknown objective function
over the design space X. A more commonly used form of the sur-
rogate model is a Gaussian process (GP). Gaussian process mod-
els provide the prediction mean m(x) as well as its variance (x)
over the design space based on given data. A Gaussian process is
defined by its mean function m(x) and covariance function k(x, x'):

f(x)~GP(m(x), k(x, x')), x, x'X.

The mean function m(x) represents the expected value of func-
tion f at input x, whereas the covariance function k(x, x'), often
referred to as the kernel function, expresses the smoothness of the
function, i.e., how much it varies from the mean and how its devi-
ations are correlated. The most popular choice for the kernel func-
tions is the radial basis function (RBF). The RBF kernel has the

Fig. 4. The calculation of energy shape and material shape in ZeoGAN. The energy shape is calculated like ESGAN and the material shapes
are calculated using the Gaussian function (highest value at atomic positions).
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following mathematical form:

The above implicitly assumes that the correlation decreases in a
negative exponential manner as the distance between two points x
and x' increases. The length-scale parameter  is a hyperparame-
ter which has to be tuned for each application. Since the RBF is
infinitely differentiable, the implicit assumption is that the under-
lying objective function is smooth [68].

The acquisition function suggests next points for experiment, or
simulation, based on the information provided from the surro-
gate model constructed using the prior collected data. The recom-

mendation is made to balance exploration (trying points in a new
region, which usually comes with huge uncertainty) and exploita-
tion (optimizing within the region of prior data, which provides
predictions of high confidence), which enables active learning of
the objective function. For this, acquisition functions are designed
to be large near the points potentially having high values of the
objective function. There are three most commonly used forms of
the acquisition function (Fig. 5): possibility of improvement (PI),
expected improvement (EI), and upper confidence bound (UCB).
Among three candidates, the most popular choice is the EI, which
is the expected size of improvement upon the currently found maxi-
mum or minimum:

where f(x+) is the value of the best sample so far. Jones et al. [69]
derived the following closed form expression of the EI: 

where (x) and (x) are the mean and the standard deviation of
the GP posterior at x, respectively. (·) and (·) denote the stan-
dard cumulative distribution function and the standard normal
probability density function, respectively. The EI acquisition func-
tion consists of two terms: the first term can be increased by in-
creasing the mean and the second term can be increased by in-
creasing the variance. This explicitly encodes a balance between
exploitation and exploration, respectively. A popular variant of the
EI function is the knowledge gradient (KG) function, which was
introduced in [70]. In the KG function, f(x+) is replaced by the
minimum over all the data including the training and search
space. The exact computation of the KG is more costly than that
of the EI. Choosing a good acquisition function is crucial for the
performance of Bayesian optimization.

The Bayesian optimization algorithm can be outlined as fol-
lows:

1) Construct a surrogate model from the data in-hand
2) Select a next experiment point which maximizes the acquisi-

tion function
3) Conduct the recommended experiment and acquire a new

datapoint
4) Go back to 1
These steps are repeated until a chosen convergence criterion is

met or computational resources are exhausted. Fig. 6 shows a
visual representation of Bayesian optimization procedure with an
example of 1-D function.
2. Adaptive Experimental Design with Bayesian Optimization

To effectively apply the BO to experimental design for acceler-
ated material search, several additional factors need to be consid-
ered. First, many real-world material design problems involve
multiple objectives. For example, in polymer material design, one
may wish to find a polymer that has high strain and stress but low
viscosity. In such a case, one needs to consider multiple objectives
that potentially conflict with each other. One possible formulation
is to maximize the polymer strain, subject to the constraint that
the viscosity of the polymer is below a certain threshold, leading to

k x, x'     
1

22
-------- x   x' 2

 
 exp

EI x    E max f x     f x+ , 0  

EI x     x    f x+   Z      x  Z 

where Z  
 x    f x+ 

 x 
---------------------------

Fig. 5. Three different acquisition functions: (a) The probability of
improvement is the probability that a query point will exceed
the current maximum. (b) The expected improvement is the
expected size of improvement upon the current maximum.
(c) The upper confidence bound is a fixed number of stan-
dard deviations from the function mean.
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a constrained optimization problem. Additionally, it may be desired
to test several experimental conditions simultaneously in the lab.
Development of Bayesian optimization techniques for considering
multiple objectives, constraints, and parallel evaluations is an active
research area, which is briefly surveyed in the following sections.
2-1. Multiple Objectives

In many practical optimization problems involving multiple ob-
jectives, the objectives tend to be conflicting, such that all the ob-
jectives cannot be optimized individually. Therefore, the goal in
the traditional multi-objective optimization literature is to identify
the set of optimal solutions, called a Pareto set or Pareto front. To
address the multiple objectives in the framework of BO, several
variants of the standard BO have been proposed.

One class of approaches uses the transformations of the multi-
objective problem into a single-objective problem via scalarization,
which allows using the standard BO. ParEGO [71] uses random
scalarization to recover the whole Pareto front. At each iteration of
the algorithm, a weight vector is drawn at random from a uni-
form distribution, which is used to compute a scalarized single-
objective function. The next evaluation point is then chosen by

maximizing an acquisition function using the surrogate model fit-
ted on the single-objective. ParEGO is simple and fast, but the sca-
larization approach has a limitation in that it works only when the
Pareto curve is convex [72].

SMSego [73] is an alternative approach that utilizes the hyper-
volume contribution to decide which point is evaluated next. The
hypervolume measure is one of the most popular quality indica-
tors for the assessment of Pareto front approximations, indicating
the size of the dominated space with respect to a given reference
point. In SMSego, to compute the hypervolume contribution, an
optimistic estimate of the objectives is used in a UCB fashion.
Pareto active learning (PAL) [74] is similar to SMSego but pro-
vides a theoretical guarantee on the algorithm’s sampling cost to
achieve a desired accuracy.

Expected hypervolume improvement (EHI) [75] and sequen-
tial uncertainty reduction (SUR) [76] are two similar methods,
based on another approach for multi-objective Bayesian optimiza-
tion. They use the EHI as an acquisition function, which is a natural
extension of the EI to a multi-objective setting. However, comput-
ing the expected increment of the hypervolume is very expensive,
and thus EHI and SUR are computationally intractable in practi-
cal cases with more than three objectives. On the other hand, Her-
nandez et al. [77] proposed a predictive entropy search (PESMO),
which is based on reducing the entropy of the posterior distribu-
tion over the Pareto front. The PESMO acquisition function is
defined as a sum of objective-specific acquisition functions, which
allows for decoupled evaluation scenarios, to identify the most dif-
ficult objectives that require more evaluations. The computational
cost of PESMO scales linearly with the number of objectives, while
the other methods incur exponential costs.
2-2. Constraints

Several BO formulations have been proposed for handling con-
straints. Schonlau et al. [78] suggested multiplying the EI by the
probability of feasibility, i.e., the probability that the point is feasible.
The resulting acquisition function will become zero where there is
a very low likelihood of feasibility. For considering multiple con-
straints, the product of the probabilities of feasibility of the individ-
ual constraints can be used. One concern for this method is that
one of the product terms may dominate, to prevent the algorithm
from exploring points on the constraint boundary where the true
optimum may lie [79]. To overcome this limitation, Sasena et al.
[80] proposed a penalty method, where a large constant (i.e., a
penalty) is added to the acquisition function to prevent the search
from choosing samples in the infeasible region. It has been shown
that the penalty method can find samples closer to the constraint
boundary than the probability method [79].

Another method for constraint handling uses the concept of the
‘expected violation (EV)’ [81]. The EV is calculated in the same
way as the EI function and it is vector-valued for problems with
multiple constraints. This method first computes the infinity norm
of the EV vectors at all the candidate points and then considers
the candidates with norm values less than a user-specified thresh-
old as ‘acceptable candidates’. The expected improvement is then
evaluated only for the set of acceptable candidate points. In addi-
tion, augmented Lagrangian methods have been proposed [82,83]
and several approaches to deal with discontinuous or binary con-

Fig. 6. Bayesian optimization procedure.
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straints have been studied [84,85].
2-3. Batch Experiments

In many applications, it is possible and also desirable to per-
form multiple evaluations (e.g., in high throughput experiments)
in parallel. For that, a ‘batch BO’ formulation, which guides the
next batch of experiments to evaluate at once, is needed. Several
studies on batch BO have been conducted, most of which involve
the explicit use of the predictive distributions from the surrogate
model. The simulation matching algorithm of Azimi et al. [86] uses
the posterior distribution of the surrogate function to generate Monte
Carlo simulations of a sequential policy, so as to design a set of
experiments that matches the expected behavior of a sequential
policy as closely as possible. Here, the sequential policy refers to
the standard BO where one experiment is selected at each itera-
tion sequentially. Similarly, in [87] and [88], the predictive distri-
bution is used to generate fake observations.

On the other hand, the so called exploratory approaches [89,90]
use the variance of the predictive distribution for guiding an
exploratory search. Contal et al. [90] proposed the Gaussian pro-
cess upper confidence bound and pure exploration (GP-UCB-PE),
which combines the one UCB strategy and K-1 Pure Exploration
to guide batches of size K. Pure exploration is introduced to
reduce the uncertainty about f in order to improve the guesses of
the UCB procedure. The exploratory approach is based on the prop-
erty that the posterior variance does not depend on the values of
the observations. In addition, other approaches for batch BO have
been studied in the context of multi-armed bandits [91], Bayesian
networks [92], and robust optimization [93].
3. Applications

Adaptive design based on Bayesian optimization has been suc-
cessfully applied to a wide variety of materials search problems,
including those for organic-inorganic molecules, alloys, photovol-
taics, and polymers, through which it has proven its performance.
In this section, we introduce several applications focusing on how
the standard or extended BO techniques presented in the previ-
ous sections are employed in materials search and which features
are used as the input in the respective applications. A more in-
depth review of Bayesian optimization in materials design can be
found in [94] and [95].

Xue et al. [61] applied an adaptive design strategy to find the
composition of NiTi-based shape memory alloys with minimum

thermal hysteresis. They considered Ni50xyzTi50CuxFeyPdz alloys
with x, y, and z compositions, which leads to a potential search
space of ~800,000 compositions. Instead of using the x-y-z com-
positions as features, Xue et al. selected several features for the sur-
rogate model, including Waber-Cromer pseudopotential radii,
Pauling electronegativity, metallic radius, valence electron num-
ber, Clementi’s atomic radii and Pettifor chemical scale, based on
their prior knowledge of alloy materials. In that study, they com-
pared different surrogate models, a GP model and a support vector
regression (SVR) model in combination with bootstrap sampling
to estimate model uncertainty, and interestingly, found that the
SVR with bootstrapping outperforms the GP model. In addition,
different design strategies were compared, and it turned out that
SVR-KI and SVR-EGO gave better performance than other surro-
gate model-acquisition function pairs on the training set. Balachan-
dran et al. showed similar results regarding the choice of surrogate
models and acquisition functions for the composition optimiza-
tion of M2AX compounds [96]. Using the SVR-KI pair, nine design
iterations (including four alloys at a time) were performed, start-
ing with an original training set of 22 alloys. As a result, Xue et al.
successfully synthesized 14 alloys with smaller thermal hysteresis
than any of the original dataset.

Talapatra et al. [97] treated a multi-objective design problem of
MAX phases with maximal bulk modulus and minimal shear
modulus, explored via DFT calculations. Talapatra et al. employed
EHI as an acquisition function for the multi-objective Bayesian
optimization. Instead of using a single GP model as the surrogate
model, they proposed the Bayesian model averaging (BMA) ap-
proach, which uses a marginalized aggregation of all the potential
models (e.g., models based on different feature sets), weighted by
their posterior probability of being the correct model. This work
considered the conventional MAX phases with M2AX and M3AX2,
of which design space consists of 403 MAX phases (see Fig. 7).
The 15 potential features were considered in this study, including
the valence electron concentration, electron to atom ratio, atomic
number, the order of the MAX phase, and so on. The results proved
that the proposed BMA approach can successfully auto-select the
best feature set. This approach might be useful especially when the
number of available data is too small to select good features.

Griffiths et al. [98] employed a constrained Bayesian optimiza-
tion to generate valid and synthesizable molecules. To avoid an

Fig. 7. Elements in the periodic table that react together to form the MAX phases, where M denotes an early transition metal, A is a group A
element, and X is either C and/or N.
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invalid molecular structure that might be present in the uncon-
strained approach, a penalty method for constrained BO was intro-
duced. They compared the performance of constrained BO ap-
proach against the unconstrained BO using the examples of drug
design and organic photovoltaics design. As a result, the constrained
approach shows concrete improvement over the unconstrained
one, in terms of both validity and quality of the generated molecules.

CONCLUSION

The enormous chemical space that exists is a blessing in the
sense that there are endless possibilities when it comes to design-
ing molecule or materials that can map to user-desired applica-
tions. Unfortunately, given such a large space, it is difficult to navigate
through it in an efficient manner and, undoubtedly, there are regions
within this chemical space that are completely unexplored at the
moment. With the advent of machine learning and various neural
networks, we are at the stage where efficient exploration of the
chemical space is possible and, as such, one can obtain properties
of molecules and materials much faster compared to experiments
as well as conventional molecular simulations. Moreover, by utiliz-
ing the structure-property relationship that persists in many mole-
cules/materials, it is possible to use inverse design to discover user-
desired materials catered towards certain applications. The utility
and type of methods deployed depends on the amount of data
available as there are parallel efforts being made to account for dif-
ferent levels of available data. Eventually, these types of discovery
efforts should be connected to ease in which one can synthesize
these new materials, and this is an exciting field of research where
machine learning is also being put to use. With many of these fac-
tors integrated together, it is conceivable that machine learning will
play a dominant role in future materials design, discovery, and syn-
thesis processes.
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