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AbstractThe operational flexibility requirement has brought great challenges to control systems of thermal power
plants. Through the big data and deep-learning technology, intelligent thermal power plant can greatly improve the qual-
ity of deep peak-load regulation. Based on the framework of an intelligent thermal power plant, this paper proposes a con-
trol optimization framework by constructing a hybrid deep-learning simulation model adaptable for multiple disturbances
and wide operational range. First, Gaussian naive Bayes is utilized to classify data for identification, in conjunction with
prediction error method for fine data extraction. Second, deep long-short term memory is explored to fully learn extracted
data attributes and identify the dynamic model. Third, based on the simulation model, two aspects are considered for con-
trol optimization: i) For a variety of immeasurable disturbances in thermal processes, the extended state observer is
employed for disturbance rejection, and ii) as a widely used heuristic algorithm, particle swarm optimization is applied to
optimize the parameters of controllers. Superheated steam temperature (SST) control system is the key system to maintain
the safety and efficiency of a power plant; thus the proposed deep learning modeling and control optimization method
is applied on the SST system of a 330 MW power plant in Nanjing, China. Simulation results compared with actual
data and the index analysis demonstrated the effectiveness and superiority of the proposed method.
Keywords: Gaussian Naive Bayes, Prediction Error Method, Long-short Term Memory, Extended State Observer, Parti-

cle Swarm Optimization

INTRODUCTION

Operational flexibility required by the high penetration of renew-
able energy has brought great challenges to control systems for ther-
mal power plants. Operational flexibility involves fast ramp rate,
sufficient power capacity and energy capacity [1] for power units to
meet the peak-load regulation requirements from the power grid.
Currently, conventional proportional-integral-derivative (PID) con-
trol is used in thermal power plants. It is easy to implement and
maintain, but it adopts the linearization method, which is not good
in dealing with nonlinear dynamics and external disturbances that
often result in a flexible operation process [2]. Therefore, it is nec-
essary to improve PID control systems in parameters or strategies
for peak-load thermal power units.

The open-loop step-response test for tuning PID parameters is
no longer suitable for peak-load thermal power units. A closed-
loop simulation model with wide operational range and multiple
disturbances becomes necessary for tuning the parameters and opti-
mizing the structure of the control system. Intuitively, the effective-
ness of the controller optimization depends on the precision of
simulation model. Therefore, this paper proposes an effective high-
quality modeling framework by using novel machine-learning
methods based on the big-data database that stores all possible oper-

ational data of peak-load thermal power units, which serves as a mod-
eling tool for closed-loop control optimization simulation system.

In this paper, two aspects are considered for improving the accu-
racy of the model. The first is data extraction. In industrial pro-
cesses, system identification is affected by external interferences, and
sometimes special manipulation or manual operation, which may
break the closed-loop identifiable condition and cause inevitable
identification error. For obtaining a high-precision model, the identi-
fication data must meet the conditions for closed-loop identifica-
tion of a large inertia process to achieve sufficient informatization
[3]. To estimate the parameters of the thermal plant the input sig-
nal must be persistently excited. Therefore, the input and output of
each plant must be under continuous dynamic changes in signifi-
cant amount so that the dynamic characteristics of thermal pro-
cesses can be manifested. Therefore, digging for identifiable data is
the first important step for model identification. There are many
studies on data-mining for fault diagnosis [4], decision-making
analysis [5], communication network [6] and so on, but little on
digging the closed-loop identifiable data. To mine the best identify-
ing data from big-data samples, Gaussian Naive Bayes (GNB) clas-
sifier is used in conjunction with prediction error method (PEM)
to form a two-step classifier.

Actually, as a powerful classifier, Naive Bayesian can effectively
mine data to learn the relationship between attributes, which has
been fully utilized and developed in many aspects of life, for instance,
for improving the precision of meteorological data mining [7], ana-
lyzing driver injury severity in rear-end crashes [8], micro-blog topic
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tracking [9], and improving network security performance [10].
As a popular probabilistic method, it also has been widely used in
industry. Adedipe, Shafiee and Zio [11] reviewed and evaluated
existing work on Bayesian network model in the field of wind
energy. They found that the use of Bayesian networks in the wind
energy industry is very broad, which includes wind power and
weather forecasting, fault diagnosis and prognosis. Marlis, et al. [12]
proposed a new implementation of the GNB classifier for classifi-
cation in all searchlights and demonstrated its advantage compared
to other more complex classifiers. Based on these observations, this
paper studied the GNB data classifier for screening the closed-loop
identifiable data from the big data.

Another aspect of model identification is accuracy. PEM adopts
the maximum likelihood theorem to estimate model parameters
to reduce the error continuously between the model output and
the actual data. PEM has been widely used and various optimized
PEMs have been proposed. Relatively simple PEM based on non-
stationary predictors that are linear in the outputs is presented by
Abdalmoaty and Hjalmarsson [13] to solve the estimation prob-
lem for stochastic parametric nonlinear dynamic models. Aiming
to model nonlinear and unstable target system, Maruta and Sugie
[14] also proposed a stabilized PEM. Currently, data-driven prac-
tices mainly involve black-box modeling, fault diagnosis, etc., in
power plants, but rarely involve data extraction before modeling.
Therefore, a data extraction method based on massive data resources
is proposed uniting GNB classifier and PEM to improve the qual-
ity of identification model, where GNB classifier can preliminarily
extract data and PEM can set thresholds to further extract identifi-
able data.

Another aspect to improve modeling accuracy is considering a
deep-learning method. In theory, neural networks can approximate
arbitrary nonlinear models by fully learning the attributes from data.
With the deepening of the neural network depth, the model accu-
racy will get better. Considering that industrial data are all time-
series from dynamic systems, recurrent neural networks (RNN) are
often adopted as dynamic models [15]. However, due to the com-
plex structure of the traditional RNN, sometimes with the increase
of the network depth the problem of gradient disappearance and
explosion will gradually limit the development of the network [16].
To circumvent this problem, long short-term memory (LSTM) has
emerged. It can be superimposed on other types of neural networks
to solve different problems. For instance, convolutional long short-
term memory (Conv-LSTM) has been developed to identify diabe-
tes from the clinical and physical data [17] to address the human
action recognition issue [18]. Besides, some new types of LSTM have
been applied to industrial prediction and modeling. An aggre-
gated LSTM model was proposed by Haoran et al. [19] to predict
air pollution effectively and accurately. A nonlinear voltage predic-
tion algorithm based on LSTM with model construction was pre-
sented by Chen [20] to predict deformation mirror voltages. Con-
sidering its strong capability to describe nonlinear dynamic charac-
teristics and stable computational performance based on python, this
paper adopts a deep LSTM (DLSTM) modeling method to carry
out the modeling after data extraction, resulting in GNB-PEM-
DLSTM for short.

Based on the resulting accurate model with the GNB-PEM-

DLSTM, the aim of optimizing control strategy and parameters can
be achieved based on the closed-loop control system. It is highly
convincing to verify the optimization results by comparing the
simulation with actual data because of the high fidelity of modeling.
This deep-learning modeling and control optimization method con-
forms to the idea of intelligent control of a thermal power plant
with the prospect of broad application. Fig. 1 shows an overall scheme
of an intelligent thermal power plant. Relying on the big-data stor-
age platform, a large number of power plant data can be stored in
the platform according to different delivery strategies, which can
be analyzed in different aspects using big-data analytic methods.
For different control purposes, the results of data analysis can be
used on different control modules. The proposed deep-learning
modeling and control optimization method in this paper can be
integrated into the artificial intelligence (AI) deep-learning assem-
ble and improve the actual control process. By control optimiza-
tion, the controllers of thermal power plants can be further updated
with new actual data acquired. According to the new data enter-
ing into the big-data storage platform, new dynamic characteristics
of models can be learned further for control strategy optimization.

As a main component of a boiler, the superheated steam tem-
perature (SST) control system needs special attention among the
multiple control systems. SST is located at the last stage of the steam-
water flow path where there is much disturbance from the gas side
of heat-exchangers and has the dynamics of large inertia, time-vary-
ing parameters, and nonlinearity, which are difficult for conven-
tional PID to handle [21]. Some advanced control strategies have
been proposed to solve the above problems, e.g., the multi-objective
optimization (MOO) algorithm with conflicting objectives [22],
neuro-PID controller [23] and active disturbance rejection control
(ADRC) [24] for SST improvement, and the basic fuzzy control
for high-pressure SST in a once-through boiler [25]. These works

Fig. 1. Interaction between the simulation system and the power
plant monitoring system.
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optimize the control strategy of SST from various angles to improve
the control performance.

In this paper, the cascaded PID control of superheater in a ther-
mal power plant in Nanjing, China, is taken as the object of study,
where the PID optimal control is studied from two aspects. First,
an extended state observer (ESO) is augmented to the original PID
control system to improve the disturbance-rejection performance.
The SST system has several unknown disturbances, such as elec-
tricity or heat load changes, boiler soot blowing, changes of coal
types, and so on. The ESO can estimate the disturbance and com-
pensate for it in real time based on the input and output data. In
industrial process control, many people have combined other con-
trol methods to study the anti-interference ability of the ESO. Chen
et al. [26] developed a fuzzy ESO according to the stable fuzzy pre-
dictive control which has been validated on a power plant model.
To improve the control performance for power level in a nuclear
power plant, Hui et al. [27] proposed an ESO based adaptive dynamic
sliding mode control scheme. Improved ESO combined with other
controller can also be applied for frequency control of wind power
[28] and wide range load tracking without being affected by un-
known disturbances [29].

Secondly, the PID parameters need to be retuned after the aug-
mentation of ESO since it usually changes the system characteris-
tics. Data-driven closed-loop parameter optimization is adopted
based on the convenience of the big-data platform. The PID parame-
ters optimized with actual data including disturbances are more
practical than the parameters set by the open-loop tuning. In power
systems, particle swarm optimization (PSO) is used for various pur-
poses, such as optimizing the economic dispatching of the electric
power systems [30], performance evaluation of turbo-generator
subsystem [31], determining the optimal allocation of distributed
generators to reduce the total active and reactive losses and volt-

age regulations of the network [32], and the optimization of the
design and operating conditions of post combustion CO2 capture
(PCC) [33]. The PSO can also optimize parameters of other algo-
rithms to achieve the goal of the corresponding algorithms, for
example, power load prediction [34]. Therefore, PSO is used in
this paper for PID parameter optimization in order to achieve the
ideal control performance when the ESO-augmented PID control
system is put into automation.

With the requirement of operational flexibility on peak-load ther-
mal power units, good control performance of the SST is essential
for maintaining device safety and the plant efficiency. To strictly
control the SST, this paper considers the deep-learning approach
and utilizes the big-data resource to develop more valid modeling
and control optimization approaches on the SST, which can be inte-
grated into the intelligent power plant. The following are the main
contributions of this paper:

(1) This paper proposes an advanced data extraction method
for the united Gaussian Naive Bayes classifier and the PEM for estab-
lishing an accurate model of the SST system.

(2) Advanced deep neural network, LSTM, is used to establish
the model. By fully learning the extracted data attributes, the LSTM
can accurately reflect the model’s dynamic characteristics and achieve
quality control.

(3) The PSO is employed to optimize parameters in the inner-
and outer-loop of PID, and the add-on ESO controller is designed
for disturbance rejection.

The structure of the proposed strategy is shown in Fig. 2. First,
the field data and historical data are sent in GNB-PEM for ex-
traction. Second, before identification, the extracted data is normal-
ized and then the DLSTM is utilized to identify the model. Third,
the proposed control optimizations such as ESO-PID, PSO-PID
and ESO-PSO-PID are utilized searching for better performance and

Fig. 2. The structure of the proposed modeling and control optimization strategy.
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then their control performances are compared among the controllers.
The rest of the paper is organized as follows. A deep-learning

modeling method is introduced in Section 2. In Section 3, an accu-
rate SST model is identified and compared with the linear model,
and the accuracy of identified model is verified and control opti-
mizations are carried out. On the basis of simulation, the advanced
control strategies of the SST control system are evaluated with com-
parison in Section 4, and conclusions are drawn in Section 5.

DEEP-LEARNING MODELING

Deep learning involves data extraction and modeling. In this
section, a hybrid of Gaussian Naive Bayesian (GNB) and predic-
tion error method (PEM) for data extraction is presented first and
then a deep long short-term memory (LSTM) neural network is
presented for modeling.
1. Data Extraction Approach

Because real industrial data contains many influencing factors,
such as variable operating conditions of equipment, random inter-
ferences, measurement noise and so on, it is necessary to extract a
data segment that meets the model identification requirements
through a data extraction approach. Therefore, in this paper, a sta-
tistical method, called GNB-PEM data extraction approach, is pro-
posed to effectively extract the massive data to improve modeling
accuracy. The flowchart of the GNB-PEM extraction approach is
shown in Fig. 3.

The brief steps of the GNB-PEM data extraction method are
presented as follows:

(1) In the preliminary screening, the identifiable data is made
into a training set, and the on-site data is also made into a testing
set after variable selections.

(2) The classifier is trained according to the principle of Gauss
Naive Bayes, and the test set is preliminarily classified.

(3) Based on the PEM rapid model construction and the model
fitting threshold, data can be extracted in detail.

(4) If the data does not fit the requirement for modeling, new
data are sampled.

1-1. Preliminary Extraction of Data Based on GNB Classifier
Power plant desuperheater data is made of a number of attri-

butes, such as the inlet steam temperature, the valve opening and
the total steam flow. Data for each attribute can be categorized into
two categories: recognizable data and difficult-to-recognize data.
Then the Naive Bayesian classification can be expressed as follows.
When the category is certain, the conditional independence between
attributes is shown as:

(1)

where x is a set of attributes of the plant to be identified, a is the
categories of attributes, P(a) and P(x|a) are, respectively, the prior
probability and conditional probability; P(x) is probability of attri-
butes which is the same for all categories; d is the number of attri-
butes. To estimate P(a|x), both P(x|a) and P(a) need to be cal-
culated based on the training data.

Assuming that all the attributes are independent of each other,
the Naive Bayesian probability Pnb of all categories is calculated by
comparing the maximum probability and its corresponding cate-
gory, which is shown as:

(2)

When the power plant operates near the nominal operating point,
the data distribution of superheated steam temperature can be
approximately Gaussian distribution. Therefore, the conditional prob-
ability will be shown as:

(3)

where a and 2
a are both under category a; a is the mean of x;

2
a is the variance.

1-2. Detailed Extraction of Data Based on PEM
The prediction error method (PEM) is a widely used identifica-

tion method [12]. Parameter  of the model is adjusted to reach
the minimum root mean squared error. The prediction error model
is defined as:

(4)

where u(t) and z(t) are, respectively, the input and output vectors
at time t; e(t, ) is the prediction error.

According to the above model, e(t, ) is minimized and the best
model is selected. To achieve the purpose, DN() is used as a cost
function which is associated with the covariance matrix of e(t, ):

(5)

where m and N are, respectively, the beginning and end of the data.
The estimation criteria are usually in the following two forms:

(6)

(7)

where R is a positive definite matrix.
Generally, to minimize J1

N() or J2
N(), a nonlinear steady-state
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Fig. 3. The flow chart of GNB-PEM.
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system model parameter estimation technique, such as gradient
method, is usually adopted.

According to the above principle, PEM can be used for model-
ing without overly considering the accuracy of the model. By set-
ting a reasonable model fitting threshold, it can be used to further
extract the preliminarily extracted data.

R-Squared (R2) principle is a commonly used indicator to deter-
mine the degree of model fit. Since it eliminates the influence of
dimensions, it is better than other indicators, such as MSE, MAE,
and RMSE. Based on the R-Squared principle [35], the fitting thresh-
old is shown to be:

(8)

where z,  and  are, respectively, the actual output, the simulated
output and the mean of actual output.
2. Deep Long Short-Term Memory for Modeling

After the data extraction, the modeling method for nonlinear
dynamic system is further considered. Deep-neural networks are a
multi-layer neural network that can fit nonlinearity well. Considering
that the data from industrial processes is always time series from

dynamic systems, long short-term memory (LSTM) neural net-
work is applied for model construction in this paper, which is bet-
ter than the traditional fully connected RNN, whose output at time
k is calculated by the unit state at time k1 and the input at time k.

The LSTM is an improved RNN model, learning long-term
information to solve the gradient vanishing and explosion prob-
lem. It introduces the concept of gate, which differs from the tradi-
tional RNN. The gate can reduce the interference of the new in-
formation to the existing information so as to achieve the long-
term storage effect of information of modules. The specific descrip-
tion of LSTM is introduced in Appendix A.

MODELING OF SUPERHEATED STEAM 
TEMPERATURE CONTROL SYSTEM

The SST control system of a 330 MW thermal power unit in
Nanjing, China, was modeled based on the pre-data extraction and
deep-learning modeling method for control optimization in this
section.
1. Variable Selection of SST System

In the SST system, the steam is desuperheated by the desuper-

R2
 1 

 z   ẑ 2

 z   z 2
------------------

ẑ z

Fig. 4. Schematic diagram of the secondary SST control system.
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heating water and then heated by the secondary superheater. The
general temperature of secondary superheated steam is controlled
by secondary desuperheating water within 540±5 oC.

The secondary SST control system, shown in Fig. 4, has two de-
superheaters and one superheater, and cascaded PID control strat-
egy is applied for controlling. The steam temperature is desuper-
heated to 1 and 2, and then heated to 3, in oC. Furthermore,
the actual water leakage of the desuperheating water valve at Side
A is much more than that of the valve at Side B in this specific
thermal power unit.

From a comprehensive analysis from thermodynamics and cor-
relations among variables, the inputs of the two desuperheaters are
the desuperheater inlet steam temperature (oC), total steam flow
(t/h) and valve opening of desuperheating water (%), denoted either
as ua1, ua2, ua3 or ub1, ub2, ub3. The output of the two desuperheaters
is the outlet steam temperature (oC) of desuperheaters, denoted as
ya or yb. The input of the secondary superheater is the inlet tem-
perature of secondary superheater of Sides A and B (oC) and steam
flow of Sides A and B (t/h), which are denoted as u1, u2, u3 and u4.
The outlet temperature of secondary superheater (°C) is the out-
put denoted as y.

For closed-loop identification of a thermal power generating
plant, a long time relative steady-state data around 950t/h steam is
generated for the modeling. The sampling time is 1 second, with
17,608 groups of data. When there is a large change in the total steam
flow, the valve opening and the steam temperature of the desuper-
heaters vary greatly. Located at the rear of the flue gas passage, the
secondary SST is affected by unknown disturbances and always
has strong fluctuations.
2. GNB-PEM Classification

From the historical data, only a small amount of data can be
used for the identification of the secondary SST. By data analysis,
the categories of attributes are two, divided into (i) recognizable
data and (ii) difficult-to-recognize data, and the P(a) in Equation
(1) is calculated with historical data and found to be 1/10, which is
the probability of the recognizable data distribution. According to
P(a), the training set can be composed of 10,000 recognizable data
and 90,000 difficult-to-recognize data. The new field data is cho-
sen as the testing set. The label of identifiable sample is set to 1 and
the unidentifiable sample is set to 2.

The GNB classifier is tested by testing set, and the two following
identifiable data segments are extracted and shown in Appendix B.

There are some differences between Fig. B1 and Fig. B2, which
means the dynamic characteristics of the two data segments are
different. In Fig. B1, the amount of flow has a steady increase in
the beginning and a sharp decrease after that. But in Fig. B2, most of
the time, the flow stays at the same level around 940t/h and shows
an upward trend at the end. The valve openings at Side A and Side
B are around 7% and 20%, respectively, but the fluctuation of the
valve opening is obvious. With the fluctuation of valve opening, input
steam temperature of desuperheater and the steam flow, the other
variables fluctuate, reflecting the characteristics of the system. Over-
all, both data segments meet the requirements of identification.

According to Eq. (8), the threshold of model fit is set to 60%.
Based on PEM and the two extracted identifiable data segments,
two linear models of the two desuperheaters at Sides A and B are

built rapidly. After comparing the fit of the two models with the
threshold, the 100-10,100th group of data is obtained as the best
data segment for identification.

The identified linear desuperheater models at Sides A and B and
the secondary superheater model are, respectively, shown below:

(9a)

(9b)

(10)

where the variables are as defined in Section 3.1, i.e., ua1, ua2, and
ua3 (or ub1, ub2, and ub3) are, respectively, the desuperheaters’ inlet
steam temperature (oC), total steam flow (t/h), and valve opening
of desuperheating spray water (%) on Side A (or Side B); ya or yb

are the outlet steam temperature (oC) of desuperheaters on Side A
or Side B, and y is the outlet temperature of the secondary super-
heater (oC).
3. Model Construction by Deep LSTM Aided with Thermo-
dynamic Calculation

The closed-loop system of the SST can be simulated based on
the dynamic model identified from the obtained identifiable data
and the actual power plant control strategy. However, since there is
only a total steam flow measurement on the head for the two desu-
perheaters in the power plant, it cannot be used in modeling both
sides of the desuperheater satisfactorily. Therefore, a thermody-
namic calculation is used for estimating the absent steam flow split
on both sides.
3-1. Thermodynamic Calculation for Absent Measurement Points

By analyzing the dynamic characteristics of the secondary SST
system in Fig. 5, the steam flow of Sides A and B denoted as u3

and u4 can be estimated accurately.
According to the measured steam temperature t1, t3 and steam

pressure p1, p3, respectively, at the inlet and outlet of desuperheater,
and the temperature t2 and pressure p2 of the desuperheating water,
the corresponding enthalpy H1, H2, H3 can be calculated. Based on
energy conservation theory, an equation can be established for the
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Fig. 5. Schematic diagram of the secondary SST control system.
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thermodynamic systems of desuperheaters at Sides A and B as
shown below:

FL(H3H1)=FP(H3H2) (11)

where FL is the steam flow at Side A or B; H3 and H1 are, respec-
tively, the enthalpy of the steam at the outlet and inlet of desuper-
heater; FP is the spray flow at Side A or B; H2 is the enthalpy of spray
water.

According to formula (11), the steam flow on Sides A and B,
denoted as FLA and FLB, can be roughly estimated. Then, accord-
ing to the measured total steam flow F, the estimated steam flows
at Sides A and B are further adjusted by

(12)

where i is A or B; F is the total steam flow.
At last, the calculated steam flow is shown in Fig. 6.
As can be seen in Fig. 6, because the amount of total steam flow

is certain, the characteristics of steam flow at Side A and B are oppo-
site. As the steam flow at Side A increases, the steam flow at Side B
decreases. The amount of steam flow at Side A is around 425t/h,
which is lower than Side B, around 519t/h. The steam flow at both
sides has sufficient fluctuation.
3-2. Modeling by Deep LSTM

Based on the principle of LSTM and the data extracted by the
GNB-PEM, three models are established, respectively, for Sides A
and B desuperheaters and the secondary superheater. Five-fold verifi-
cation method is applied in this paper.

Before training the deep LSTM, normalization of data is neces-
sary. Normalization can unify evaluation standards and avoid unnec-
essary numerical problems. The data normalization is shown by:

(13)

where xi is the i-th feature of input variables, and i is the variance

of xi.
In the structure of the deep LSTM in this paper, the input and

output layers have three neurons and one neuron, respectively.
Twenty-five neurons are in the three gates, respectively, as the hid-
den layers. The biases of the three gates are random numbers.
There are four layers in the deep LSTM.

After training, three models are validated through validation
sets. The fit reaches 75%. The output of the model is introduced in
Appendix C.

From Fig. C1, the volatility of simulated data of all three identi-
fied models is consistent with the actual data. The biases between
field data and simulation are acceptable. Therefore, in this paper,
the GNB-PEM extraction method is feasible and the calculation of
the steam flow at Sides A and B is reasonable.
3-3. Comparison between PEM and LSTM Models

The open-loop simulation on the PEM model and LSTM model
was performed and the inputs of models are the actual desuper-
heater valve openings. The outlet steam temperature of desuper-
heater at Sides A and B and secondary superheater is, respectively,
shown in Fig. 7.

From Fig. 7(c), some differences can be observed between the
output temperature of PEM model and LSTM model. There is
around an 80 s delay in the PEM response compared to the set
point, which is difficult to support the reasonable design of con-
trollers. However, the LSTM response does not have a delay. Espe-
cially, from 5,300 s to 7,000 s, even though the errors between LSTM
and actual data are larger, which may be caused by some unknown
disturbance or the steep change of set point, the trend of LSTM is
consistent with actual data because of having no delay compared
with PEM. As a simulation platform for improving control perfor-
mance, the consistency with actual data on the trend is more im-
portant than accuracy. Furthermore, the superheated steam tem-
perature response by PEM has a steep drop at around 2,700s, which
did not happen in the actual data. Moreover, the response of PEM
fluctuates more than the LSTM response. In general, the deep

FLi  
FLi

FLA   FLB
--------------------F

xi  
xi   xi

i
------------ i 1~n

Fig. 6. Steam flow at Sides A and B.
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LSTM model is better than the PEM model in responding to non-
linearity.
3-4. Closed-loop Simulation Verification

According to the actual control system of the power plant, the
control strategy of SST system is cascaded PID control which is
shown in Fig. 5. The PID control parameters of outer loop are kp=
0.6, ki=0.0005. And the PID control parameters of inner loop of
Sides A and B are kpa=2.4, kia=0.004, kpb=2.5, kib=0.0083. The set-
point of the SST is set manually. The simulation results are shown
in Fig. 8.

As can be seen from Fig. 8, although the secondary superheated
steam temperature has some magnitude error with respect to the
real data, the fluctuation pattern is the same and the valve open-
ings at Sides A and B are consistent with the actual opening. In
general, the GNB-PEM extraction method and the LSTM identi-
fied model are feasible approaches for obtaining an accurate model.
However, to improve the precision of SST, the control strategy needs
to be improved.

OPTIMIZATION ON CONTROL SYSTEM

The operational flexibility required by the high penetration of
renewable energy has brought great challenges to control systems
of thermal power plants. However, traditional PID control can no
longer meet this requirement. In this paper, the improvement on
PID control system on SST is made by two different approaches.
The first one is adding an ESO without affecting the original PID
controller. The second one is optimizing PID parameters by im-
proved PSO.
1. Active Disturbance Rejection Control

In Fig. 8, the PID cascaded controller only controls the valve open-
ings of the desuperheaters. So, the steam flow at each stage and the
inlet steam temperature of desuperheaters can be considered as
disturbances in improving the stability of the SST and valve open-
ings. An active disturbance rejection control (ADRC) can be used
in this model. The specific principle description is introduced in
Appendix D.

Fig. 7. Comparison between PEM and LSTM models. (a) Outlet steam temperature of desuperheater at Side A. (b) Outlet steam tempera-
ture of desuperheater at Side B. (c) Outlet steam temperature of secondary superheater.
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Fig. 8. Closed-loop simulation. (a) Valve opening of Side A. (b) Valve opening of Side B. (c) Outlet steam temperature of secondary superheater.

Fig. 9. The closed-loop simulation based on ESO.
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From Fig. 5, it can be seen that when other inputs, including
the inlet steam temperature of desuperheaters and the steam flow,
are viewed as disturbances, the system can be considered as two
models with few disturbances connected in parallel. The ADRC is
established based on the above principle and the closed-loop sim-
ulation model is shown in Fig. 9.

Because the calculated steam flow and the measured inlet steam
temperature of the desuperheater are not much different on Sides
A and B, to reduce the design difficulty the ESO parameters of
Sides A and B are designed to be the same. The parameters of ESO
can be set to w0=5, b0=0.5. According to actual parameters, PID
are set to kp=0.6, ki=0.0005, kpa=2.4, kia=0.004, kpb=2.5, kib=0.0083.
The simulation results are shown in Fig. 10.

The tracking effect is more obvious when the disturbance is large
as shown in Fig. 10(c). The anti-interference effect of the ADRC is
mainly reflected in the disturbance of steam temperature. Com-
pared with PID control, the steam temperature under ADRC has
less fluctuation when there is a sudden disturbance. However, the

whole fluctuation of the steam temperature still remains and is
basically the same as that under PID control. This may be caused
by the deviation of the parameters of the PID, so it is important to
explore the optimal parameters of PID.
1-1. Frequency Domain Analysis on Control System

A closed-loop transfer function is essential for system analysis
in frequency domain. Considering the difficulty of analytical descrip-
tion of the closed-loop system with LSTM model, this paper con-
ducts frequency domain analysis on the linear model identified by
PEM whose response is consistent with that of the deep LSTM as
was shown in Fig. 7 as an approximation. The derivation of the
closed-loop transfer function of the superheated steam tempera-
ture is given below.

Based on (D.3) and (D.5) and taking the Laplace transform, z3

can be obtained as:

(14)z3    
w0

2

s   4w0  s   w0 
-------------------------------------- s2y    b0u 

Fig. 10. ADRC simulation. (a) Valve opening of Side A. (b) Valve opening of Side B. (c) Outlet steam temperature of secondary superheater.
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According to the transfer functions of linear models (9)-(10)
and Fig. 9, the whole model containing two desuperheaters and
one superheater can be split into two parallel models for Side A
and B. In each parallel model, input is the desuperheaters’ inlet
steam temperature and output is the superheaters’ outlet steam tem-
perature. Each model is a 2-nd order linear model with transfer
function described as:

(15)

Based on Fig. 9, after simplifying the controlled object and the
control loop composed of ESO, we can obtain the internal model
structure of ESO [39] and the structural transformation of ADRC
which is shown in Appendix E.

Based on the internal model structure, Fig. 11 shows the effect
of the bandwidth changes at Sides A and B observers on the sys-
tem. The bandwidth w0 is set to 5, 10, 15, 20, 25, 30 and 35. With
the increase of w0, Table 1 shows the phase margins and cut-off
frequencies of the closed-loop system.

It can be seen from the table and figures that with the increase

of w0, the cut-off frequency of the system gradually increases, which
results in faster response speed. However, the phase margin and
stability of the system is reduced. Hence, w0 is related to the esti-
mation accuracy of ESO.
2. Optimization of PID Controller Parameters

The SST PID control system controls the temperature of super-
heated steam with two desuperheater control valves, one on Side
A and another on Side B. The characteristics of a desuperheater
control valve are affected by not only variables of desuperheaters
but also the valve at the other side.

There are two more reasons for giving valve opening an impor-
tance. First, valve opening characteristics represent the control action
as one of the indicators of control performance. Under the prem-
ise of ensuring the stability of superheated steam temperature, the
fluctuation of valve opening should be as small as possible for keep-
ing the unit thermal efficiency. Second, different control systems
have different valve characteristics. By comparing the characteristics
of the valves, we can know the control effect of PSO-PID, ESO-
PID and ESO-PSO-PID controllers on the valves. Finally, by com-
paring the control performance of both valves and superheated
steam temperature, a better controller can be determined.

As time passes, the factors that affect the parameters of the SST
system are constantly changing, such as changes in coal type, aging
of equipment, or increased corrosion. Therefore, to obtain a better
control performance, experienced staff tends to be more inclined
to manual control in actual operation of the power plant. However,
this is not in line with the development trend of intelligent power
plants. Therefore, it is necessary to further optimize the PID parame-
ters under the premise of automatic control. Heuristic optimiza-
tion algorithms have been widely used in many production pro-
cesses. As a commonly used heuristic optimization algorithm, PSO
has been considered for its fast convergence speed and efficiency.

In this paper, PSO is used to optimize the PID parameters in

G s   
b

s2
   a1s   a2

-------------------------

Fig. 11. Bode diagram of the closed-loop system, for (a) Side A, and (b) Side B.

Table 1. Cut-off frequency and phase margin with different w0

w0 Cut-off frequency (rad/s) Phase margin (/o)
A B A B

05 0.0620 0.0134 443.28 438.73
10 0.1145 0.0355 422.37 436.57
15 0.1434 0.0507 401.37 426.20
20 0.1553 0.0604 388.78 415.75
25 0.1587 0.0734 380.34 405.34
30 0.1599 0.0797 375.56 397.70
35 0.1631 0.0831 371.48 391.37
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order to make the SST more stable and track the set point closely.
The original PID parameters of the plant are selected as the initial
values of the PSO algorithm. The initial population is 30 and the
maximum iteration is 15. The speed of particles is limited to [1,
1]. The cost function of PSO is improved by considering the vola-
tility of the valve and the integral of time multiplied by the abso-
lute error criterion (ITAE) in the cost function instead of a single
ITAE to select suitable parameters and reduce local optimization.
The PSO parameter optimization process is as follows:

(1) Optimize the PID parameters of inner loop of Sides A and
B. Initialize parameters of PSO.

(2) Calculate the fitness of each particle in the population and

update the optimal position of particles.
(3) Update the velocity and position of particles.
(4) After the maximum number of iterations is reached, output

the PID parameters corresponding to the global optimal position.
(5) Repeat the above four steps to optimize the PID parameters

of the outer loop.
After optimization, the PID parameters are kp=0.4704, ki=0.00762,

kpa=3.3332, kia=0.3263, kpb=8.9382 and kib=0.4080. The simula-
tion is shown in Fig. 12, where ESO-PID refers to the disturbance
rejection by ESO based on PID control, PSO-PID refers to the
PID controller optimized by PSO and ESO-PSO-PID refers to the
disturbance rejection by ESO based on optimized PID control.

Fig. 12. PSO-PID simulation. (a) Valve opening of Side A. (b) Valve opening of Side B. (c) Outlet superheated steam temperature.
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According to the parameters optimized by PSO, the control per-
formance of outlet superheated steam temperature has been greatly
improved. The steam temperature can track the set-point tightly.
Besides, the fluctuation of valve opening is in a reasonable range.
Therefore, the optimization of PID parameters is extremely import-
ant for control performance.

There is hardly any significant overshoot in the control perfor-
mance of PSO-PID and ESO-PSO-PID. At around 10,000 s, when
the set-point has increased to 542 oC, the outlet superheated steam
temperature controlled by PSO-PID and ESO-PSO-PID can increase
faster to follow the set-point than PID and ESO-PID. The settling
time of PSO-PID and ESO-PSO-PID is around 478s, which is much
lower than 3,480 s, the settling time of ESO-PID and the PID.

In Fig. 12, the control performances of PSO-PID and ESO-PSO-
PID seem to be similar over the large time range. To examine more
closely, the figures are zoomed in over a short time range, 12,300 s-

12,900 s, as shown in Fig. 13.
According to Fig. 13(c), the control performance of PSO-PID

and ESO-PSO-PID is much better than that of ESO-PID and sin-
gle PID. Furthermore, the error between the set-point and the
control performance of ESO-PSO-PID is smaller than PSO-PID.
Overall, the control performance of ESO-PSO-PID is the best. When
the valve openings between the two controllers are not very differ-
ent, the superheated steam controlled by ESO-PSO-PID is closer to
the set-point. For further study, the following three kinds of analy-
sis strategies are performed.
3. R-Squared and MSE Analysis

The R-squared (R2) fitting threshold (8) can describe the degree
of correlation of two variables. In order to be able to compare the
degree of fit between the SST and the set-point, the field data z in
R2 in (8) is replaced by the set-point. Considering that the model of
the secondary SST control system has several inputs, the following

Fig. 13. Zoomed PSO-PID simulation. (a) Valve opening of Side A. (b) Valve opening of Side B. (c) Outlet superheated steam temperature.
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adjusted R2 [40] is adopted in this paper for more accurate judg-
ment:

(16)

where p is the number of attributes, and n is the number of samples.
Besides R2, MSE is also a commonly used control performance

indicator which can be defined as:

(17)

where ym is set value and  is the simulation result. The R2_ad-
justed and MSE of the three control methods are shown in Table 2.

According to the performance index of MSE, the performance
of the outlet steam temperature under the ESO-PSO-PID control-
ler is much better than the other three controllers. Adding an ESO
without tuning original PID controller can improve the control
effect to a certain extent. However, the PID parameters are the key
factor for the control effect.
4. ITAE Analysis

The ITAE criterion is the minimum criterion of integral of time
multiplied by the absolute error e(t), which can be expressed as:

(18)

Because valve opening has no set-point, the ITAE cannot reflect
the characteristics of the valve opening. To effectively reflect the
fluctuation of the valve opening and compare the advantages and
disadvantages of the three control methods, this paper integrates
the valve opening fluctuations based on the idea of ITAE as

(19)

where u(t) is the valve opening.
For the above three control methods, corresponding perfor-

mance indices are calculated as shown in Table 3.
As can be seen from Table 3, the performance indices of valve

openings and outlet steam temperature of secondary superheater

are the best under the ESO-PSO-PID controller. The ESO-PID can
reject the disturbance within a certain range, and the performance
of outlet steam temperature is improved over the initial PID. Nev-
ertheless, the valve openings have more fluctuations, which makes
the valves switch more frequently. The control performance of PSO-
PID is similar to ESO-PSO-PID. In general, to achieve the most
ideal control performance, tuning of the PID parameters must be
emphasized in all optimizations.

In summary, the comparison of the four PID controllers in Tables
2 and 3 shows that the control performance of ESO-PSO-PID has
the highest R2_adjusted, the least MSE, and the least ITAE, which
means it is better than other three PID controllers.

CONCLUSION

In order to be able to absorb more renewable energy and im-
prove the flexibility of thermal power generating units, the SST
needs to be accurately modeled and controlled at a reasonable inter-
val at all times. To tackle the problem, this paper first combines the
GNB classifier and PEM to extract the closed-loop data of SST.
Then, the optimizations are considered in two aspects in order to
fully control the SST and valve openings. First, an extended state
observer (ESO) is augmented to the original PID control system
to improve the disturbance-rejection performance. Second, the PID
parameters are retuned by PSO after the augmentation of ESO
since it usually changes the system characteristics. From the simu-
lation results the following conclusions are drawn: i) GNB-PEM
can effectively extract actual data for modeling, ii) Deep LSTM can
fully learn the extracted data attributes and reflect the dynamic char-
acteristics of the model to establish an accurate model, iii) ESO can
effectively reject disturbances caused by dynamic changes in set
points, and iv) PSO can effectively search for the optimal PID param-
eters for better control performance. The simulation results show
that the SST fluctuations become smaller and the disturbance is
significantly reduced. In general, the proposed GNB-PEM-DLSTM
can be used in an SST control system to extract the field data and
model the SST dynamics. The PID parameters searched by PSO
can improve the control performance significantly, and the result-
ing intelligent power plant would be an important future power
plant development.

Because of the limited data amount, the model cannot contain
all disturbances, for example, the disturbance from the flue gas or
combustion section. To solve it, our study will continue improving
the model construction and the control strategy. One is to study
further in big data technology and deep-learning method for more
accurate data and models, another is to develop more advanced

R2_adjusted 1 
1  R2
  n 1 

n  p 1
--------------------------------

J  
1
m
---- ym   ŷm 

2

i1

m


ŷm

J  t e t dt
1





J  t u t     u t 1 dt
2





Table 2. R2_adjusted and MSE of four control methods
Controller R2_adjusted MSE
PID 0.398 6.550
PSO-PID 0.895 3.403
ESO-PID 0.423 6.175
ESO-PSO-PID 0.898 3.399

Table 3. Improved ITAE of four control methods

Controller Valve opening
at Side A

Valve opening
at Side B

Outlet steam temperature
of secondary superheater

PID 364.2420 330.1069 3.5672e^04
PSO-PID 168.4789 220.3153 6.6138e^03
ESO-PID 440.1732 480.5423 3.0975e^04
ESO-PSO-PID 167.9860 220.1256 6.5986e^03
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control method to overcome the influence of unmodeled distur-
bance to the whole system.
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APPENDIX A.

The structures of a traditional RNN and the LSTM modules are
shown in Fig. A1.

The unit state Ct1 and the output ht1 transmitted from time t1
and the input Xt at time t constitute the input data of LSTM mod-
ule. The output is the unit state Ct and the output ht at time t.

Three kinds of gate structures are contained in each neural mod-
ule: input gate it, forgetting gate ft, and output gate ot. The input
gate it determines how much input Xt is reserved in Ct, the forget-
ting gate ft determines the influence of Ct1 on Ct, and the output
gate ot determines how much state unit Ct remains in the output
ht. Then Ct and ht are involved in the calculation of LSTM at time
t+1.

The calculation of LSTM module is given as following:

Forgetting gate: ft=sigmoid(Wf[ht1, xt]+bf) (A1)

Input gate: it=sigmoid(Wi[ht1, xt]+bi) (A2)
Unit state: ct=ftct1=ittanh(Wc[ht1, xt]+bc) (A3)

Output gate: ot=sigmoid(Wo[ht1, xt]+bo) (A4)

Output: ht=ottanh(ct) (A5)
where W and b are respectively the weight and the bias of the three
gates.

Sigmoid and tanh are activation functions of LSTM, as defined
below:

(A6)

(A7)

sigmoid x   
1

1 ex
--------------

h x tan   
ex

  ex

ex
  ex

----------------

Fig. A1. Principles of LSTM. (a) The structure of RNN. (b) The neural module of LSTM.
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APPENDIX B

Figs. B1-2 are the 100-10,100th group of data and the 3,100-
13,100th group of data.

Fig. B1. The group of data during the time interval from 100 s to 10,100 s. (a) Total flow and variables at Side A. (b) Superheated steam tem-
perature and variables at Side B.
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Fig. B2. The group of data during the time interval from 3,100 s to 13,100 s. (a) Total flow and variables at Side A. (b) Superheated steam
temperature and variables at Side B.
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APPENDIX C

APPENDIX D

In general, for an n-th order process, an (n+1)-th order observer
would be needed to estimate disturbances. However, since it is dif-
ficult to determine the model order, a low-order ESO is usually
preferred in practice [36]. The principal schematic of ESO is shown
in Fig. D1, where y is the output, r is the set point, Gp denotes the
controlled object, b0 and kp are both the parameters to be adjusted,
z3 is the total disturbance.

When Gp is a second-order system with disturbance, the fourth-
order expanded state observer is designed as shown below:

(D1)

It was shown [37] that the derivation process of ADRC and y, 
and total disturbance can be tracked by variables z1, z2 and z3 well,
with a reasonable tuning of 1, 2 and 3.

To compensate the expanded state, the feedback is chosen as
follows:

(D2)

By combing the variables [38], we can reduce the number of
parameters to be tuned as shown below.

1=3w0 2=3w0
2 3=w0

2 (D3)

where w0 is the system bandwidth.

e1  y   z1
z·1 z2    1e1
z·2    z3   2e1 b0u

z·3     3e1

y·

u  
u0    z3

b0
--------------

Fig. C1. Model identification based on LSTM. (a) The model of desuperheater at Side A. (b) The model of desuperheater at Side B. (c) The
model of secondary superheater.

Fig. D1. Principal schematic of ESO.
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APPENDIX E

From Fig. E1, the internal model’s transfer function can be writ-
ten as:

(E1)

The characteristic equation of the closed-loop system is shown
as follows:

(E2)

where H(s) is the transfer function of the PID controller.
 s    

y s 

u0 s 
-----------  

b s   4w0  s   w0 

b0 s2
  3w0s   3w0

2
  s2

  a1s   a2    bw0
2s2

---------------------------------------------------------------------------------------------

1   s H s     0

Fig. E1. Structural transformation of ADRC.
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