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AbstractWe developed and implemented an intelligent control system to be used in an extractive distillation col-
umn that produces anhydrous ethanol using ethylene glycol as solvent. The concept of artificial neural networks
(ANN) was used to predict new setpoints after disturbances, and proved to be a fast and feasible solution. The devel-
oped control system receives data from temperature, flowrate and composition measurements of the azeotrope feed,
and the ANN estimates the new set-points of the controllers to maintain 99.5 mol% of ethanol at the top and less than
0.1 mol% at the bottom; feed composition was also estimated using an ANN. All ANN were trained to provide output
data corresponding to an optimized operating condition. The results showed that the intelligent control system can pre-
dict a new operating condition for any disturbance in the column feed and presented superior performance when com-
pared with the control system without ANN.
Keywords: Ethanol, Extractive Distillation, Artificial Neural Networks, Control, Set-points

INTRODUCTION

Control of distillation columns is complex because it is interac-
tive, non-linear, often not stationary, and it is subject to restric-
tions. One of the major restrictions in the distillation process is
related to the mode from which values of the product composi-
tions are obtained, since the composition is generally not directly
measurable and hence difficult to control [1].

Mejdell and Skogestad [2] report that one of the greatest diffi-
culties in distillation column control is measuring the composition
of the products, with gas chromatography being one of the most
used techniques among the alternatives of physical analyzers.
However, this technique presents long delays in obtaining meas-
urements and presents high operational costs while used on-line.

Several studies present indirect methods that measure the com-
position in real time, from a mathematical model built to infer the
composition of products (top and bottom) through variables such
as temperature, which mainly present low-cost measurers, good
accuracy and fast response [3-6].

Model predictive control (MPC) is a widely studied technique
that refers to a class of control algorithms that consider the future
response of the process from its mathematical model, aiming to
keep the process output in well-defined set-points. However, most
MPC algorithms are based on a linear process model, and this is
their main disadvantage because they may provide low control per-
formance throughout the operating range and large disturbances.

Non-linear controllers based on phenomenological modeling can
be developed; however, for practical reasons, they must offer an
acceptable response within a short time interval, where it is often

not possible. In fact, one of the main difficulties for the widespread
use of non-linear models in advanced control techniques in chem-
ical/petrochemical industries is the high computational effort. Fur-
thermore, the high number of equations of a distillation column
model increases the number of parameters which are hard to esti-
mate, and could lead to convergence difficulties or produce results
with low accuracy [7-10].

Using artificial neural networks (ANN) it is possible to quickly
infer important parameters of a system from real data. In this way,
the use of ANN presents an option which may result in many con-
trol strategies [11-14]. ANN utilizes a type of empirical modeling: it
describes the process by mapping the input and output data. Thus,
the ANN associates a given input pattern to an output signal, where
the size of the input pattern may be different from the output pat-
tern. However, it is necessary to train an ANN, and a data set must
be presented containing a representative behavior of the full expected
amplitude in which the plant will operate.

Our aim was to develop an intelligent control system based on
ANN, capable of maintaining the specifications of the distillate
and bottom streams of an extractive distillation column for anhy-
drous ethanol production using ethylene glycol as solvent. In this
work, the developed ANN receives data from process disturbances:
temperature, flowrate and composition of the azeotropic feed; then
the ANN estimates the new set-points of the controllers present in
the plant. The intelligent controller was developed to maintain 99.5
mol% of ethanol at the top, and less than 0.1 mol% at the bottom.
The ANN was trained with data obtained from a model imple-
mented in Aspen PlusTM to provide output data corresponding to
an optimized operating condition.

PROBLEM STATEMENT

The case-study of this work is the extractive distillation process,
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normally used to promote the separation of mixtures that form
azeotrope, where a third component named the solvent is used to
alter the relative volatility of the initial azeotropic mixture, making
separation possible. Gil and Rodríguez [15] studied the conven-
tional extractive distillation process where a control configuration
was developed using temperature to control the composition. Ac-
cording to the authors, larger off-sets are observed for disturbances
in the azeotrope composition because it implies in a different tem-
perature profile, including the temperature of the sensitive stage, in
order to maintain the desired products’ specifications. To minimize
the off-set, Ramos et al. [16] used dual control for temperature,
although this is not recommended by many researchers.

To use temperature, it is necessary to determine the best stage
to have this variable controlled, which consists in selecting the tray
where considerable temperature variations from tray-to-tray exist.
There are several methods for selecting a sensitivity tray; however,
all types of disturbances should be considered because the choice
is theoretically definitive.

Fig. 1 shows the required temperature value of the sensitive tray
to keep product specification for feed disturbances constant (flow-
rate, temperature and composition) for an extractive distillation
column with 24 stages in order to produce high purity anhydrous
ethanol using ethylene glycol as solvent. According to Fig. 1, it is
possible to infer difficulties to keep the product specification when
the option is to control the sensitive stage temperature because of
the ongoing need to change the set-point of the controller.

Temperature and flow meters are cheap and accurate; however,
some problems arise to measure feed composition. For this case,
the ideal tool would be an online analyzer with acceptable response
time, reasonable accuracy and low cost, which is hardly found in
industrial practice [17,18]. Alternative techniques based on the analy-
sis of refractive index, density and dielectric constant can also be
used, but they do not ensure good precision to determine it. There-
fore, we developed a soft sensor based on ANN as an option to
estimate the feed composition.

A soft sensor could be developed to infer the composition of
products, and this way the estimate value would be used in a feed-
back controller. However, the advantage of inferring the composi-

tion in the feed is that it can be used as input information to another
model based on ANN, and this can be used to predict the best
operating condition of the plant to keep the product compositions
constant. In other words, it suppresses deficiency in the feedback
control, which implies in the necessity of the existence of an error
so that the controller takes some action.

In summary, feeding disturbances (temperature, flowrate and
composition of azeotropic) are introduced into the model using
the ANN, so that the intelligent controller provides a feedforward
response. No article was found with this type of control system in
the consulted literature.

STEADY-STATE AND DYNAMIC SIMULATIONS

The performance of the developed intelligent controller was tested
using a model implemented in Aspen PlusTM, and playing the role
of an industrial plant, as shown in Fig. 2. Condensers and reflux
vessels were decoupled from the column to obtain a more rigorous
and realistic model. The RadFracTM routine was used for model-
ing the column, with a fixed Murphree efficiency of 100%. The
condenser and reflux vessel was simulated with Heater and Flash2
routines, respectively; moreover, total condensation was assumed
in the condenser by setting null vapor fraction, leading to no vapor
production in the reflux vessel.

Phase equilibrium (VLE) was represented through a - proce-
dure with the nonrandom two-liquid (NRTL) model for activity
coefficient calculations (), and Redlich-Kwong equation of state
(EOS) for calculating fugacity values [19,20].

According to Fig. 2, the azeotropic mixture of ethanol/water
(AZEOTROP) is fed into the middle region of the extractive col-
umn (COL1), while pure ethylene glycol (EG) is fed close to the
top. The distillate product from the extractive column is practically
pure ethyl alcohol (ETOH), and the bottom product is essentially
a water/ethylene glycol binary mixture (EG+H2O). The vapor from
the top of the column is condensed in a heat exchanger (EXCH1), and
then flows to a reflux vessel (DRUM1). After pumping (PUMP1),

Fig. 1. Stage 22 temperature of an extractive column to maintain
product compositions within specifications.

Fig. 2. Flowsheet used for steady-state simulations.
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the condensed overhead product is sent to a splitter (SPLIT1),
with one fraction being used for reflux and the other is withdrawn
as top product (ETOH).

Design and process data to reach the desired specifications are
shown in Table 1, and were based on literature reports [15,19-22].
The data not referenced are results of this work.

The top pressure value was chosen to permit using cooling water
as utility and medium pressure steam was used in the column
reboiler.

The column diameter was calculated using the tray sizing tool
from Aspen PlusTM, while length and diameter of reflux vessels and
sump column height were calculated using the methodology pro-
posed by Luyben [23] for a 5 min hold-up when the vessel or col-
umn base is 50% full, as based on the entering or exiting volumetric
flowrates.

We decided to use a single temperature control in this work,
and selected the sensitive tray based on the following methods [15,
23]: successive stages, sensitivity symmetry, maximum sensitivity
and singular value decomposition (SVD). The sensitivity analysis
was done in an open loop with disturbances of ±5% in the reboiler
heat duty. The two most sensitive stages were determined in each
analysis, and according to Table 2, stage 22 showed the best results,
thus being chosen as the sensitive stage.

The steady state simulations performed in Aspen PlusTM were
exported to Aspen Plus DynamicsTM, and a basic control scheme
was implemented, including:

• Feed flowrate control;
• Top pressure of the column by manipulating the condenser

duty;
• Reflux vessel level by manipulating the distillate flowrate;
• Sump column level by manipulating the bottom product flow-

rate.
Furthermore, the following controllers were also added:
• Reflux ratio by manipulating the reflux flowrate [24];
• Stage 22 temperature by manipulating the reboiler heat duty;
• Ratio between the solvent and azeotropic feed flowrates (S/F)

by manipulating the solvent flowrate [15].
The process flow diagram (PFD) in Aspen Plus DynamicsTM

environment, including all controllers, is presented in Fig. 3. Level
controllers are only proportional with Kc=2 for reflux vessels, and
Kc=10 for sump level [15,25]; pressure controllers are proportional-
integral with Kc=20 and I=12 min [15]. Flowrate controllers are
proportional-integral with Kc=0.5 and I=0.3 min [25]. To tune
the temperature control, an analysis was conducted with distur-
bances in the reboiler heat duty within the range of ±5% of its nomi-
nal value. Next, the parameters were calculated using the Tyreus-
Luyben method [25,26] for a Proportional-Integral (PI) type con-
troller, with Kc=3.59 and I=10.56 min.

SOFT-SENSOR AND INTELLIGENT CONTROLLER

The general idea is that the developed ANN receives informa-
tion about process disturbances and calculates new controller’s set-
points, for the new operating condition. The objective of this type
of control is to adapt itself to the new situations in order to take
the process to a new steady-state with the minimum energy con-
sumption, while keeping the product specifications. To reach this
objective, the ANN was developed with the help of neural net-
works toolbox (NNT) from Matlab® and trained using steady-state
data from Aspen PlusTM. The software Aspen Plus DynamicsTM

was used to reproduce a real plant operation, which environment
enables the integration with Matlab® and allows the control sys-
tem using ANN to be tested in transient regime.

The link between AspenTM and Matlab® was done using the

Table 1. Extractive column and stream data

Variable
Stream

Azeotrope Solvent Distillate
Temperature (oC) 40 [20] 80 [20] 75.3
Mole flowrate (kmol·h1) 100 [15] 76.94 85.4
Mole composition of ethanol 0.85 [19] - 0.995
Mole composition of ethylene glycol - 1.0 [20] 113 ppm

Column
Number of stages 24 [20]
Reflux ratio 0.377
Top pressure (atm) 1.0 [22]
Bottom pressure (atm) 1.2 [21]
Solvent feed stage 4 [21]
Azeotrope feed stage 12 [20]
Column diameter (m) 0.8

Table 2. Comparison of methods for determining the optimal stage
for temperature measurement

Method Chosen stage
Successive stages 22 or 23
Sensitivity symmetry Inconclusive
SVD from the sensitivity matrix 22 or 21
Maximum sensitivity 22 or 23

Fig. 3. Flowsheet used in dynamics simulations.
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Elipse Supervisory Control and Data Acquisition (SCADA) soft-
ware. In this specific application, Aspen Plus DynamicsTM and
Matlab® work as the client and Elipse SCADA works as the server.
Fig. 4 shows a scheme of the communication between the soft-
ware and works.

1) Aspen Plus DynamicsTM provides data for Elipse SCADA.
2) Elipse SCADA sends data to Matlab®.
3) Matlab® accesses the ANN (trained using simulations data

obtained by Aspen PlusTM) from its neural networks toolbox tool
(NNT).

4) ANN returns a response (new set-point values) to Matlab®.
5) The value of the ANN output is available on Ellipse SCADA.
6) Aspen Plus DynamicsTM receives new set-point values of the

controllers.
As cited before, online analyzers are hardly found in the industry,

and an alternative is to use soft sensors, which are commonly devel-
oped to infer the composition of products to estimate the value to
be used in a feedback controller. However, in this work, we devel-
oped a soft sensor based on ANN as an option to estimate the feed
composition [27-30].

To obtain the models based on ANN, the first step is to ana-
lyze the behavior of the column outside its nominal state. In this
way, it is possible to raise historical data of the plant in an operat-
ing range at which it is likely to operate. The obtained data to train,
validate and test the ANN were obtained from the steady-state simu-
lations using Aspen PlusTM for two different moments: to infer the
composition of ethanol in the feed stream, and to predict the set-
points of the controllers to keep the product specifications for the
process operating at optimum condition.

The first artificial neural network (ANN1) was created to esti-
mate the composition of ethanol in azeotrope feed stream. For
this, disturbances in reboiler heat duty, reflux ratio, distillate flow-
rate, solvent flowrate and azeotrope feed (flowrate, temperature and
composition) were carried out. Disturbances ensure that the his-
torical data is significant and cover the major problem domain.
Several and important easy-to-measure variables will be used as
ANN1 input data to relate them to the variable to be inferred (ANN1

output):
• ANN1 input - azeotrope feed flowrate (F); Azeotrope feed tem-

perature (T); reboiler heat duty (QR) reflux ratio (RR); solvent
flowrate (S); Distillate flowrate (D); Temperatures of stages 4 (T4),
8 (T8) and 22 (T22) of the extractive column;

• ANN1 output: Ethanol composition in the azeotrope feed (xETOH).
Regarding the choice of variables used as inputs to ANN1, it is

important to emphasize that the cited disturbances change the tem-
perature profile of the column, so it is necessary to modify other
variables to define a new temperature profile that maintains prod-
uct specifications with minimum energy consumption for a new

operating condition, and for which their choices as inputs to the
network are justified. These variables can be classified into two dif-
ferent types: directly manipulated (solvent flowrate, distillate flow-
rate, temperature and azeotrope feed flowrate) and indirectly
manipulated (reboiler heat duty, reflux ratio and column tempera-
ture profile).

Temperatures of all stages of the column were not used because
the training set would be very large, resulting in greater computa-
tional effort and slow inference by the ANN. The temperatures of
stages 4, 8 and 22 were chosen because they present significant
variations with disturbances, according to sensitivity analysis per-
formed in the previous item.

The second artificial neural network (ANN2) was used for the
development of an intelligent controller system. The temperature,
flowrate and composition of the azeotrope feed were changed in
Aspen PlusTM.

Optimal values   o f the variables to be controlled for operating
at minimum energy consumption were observed for different dis-
turbance combinations, thereby maintaining the product specifica-
tions. This procedure was possible using the model analysis tool/
optimization from Aspen PlusTM, which uses the sequential qua-
dratic programming (SQP) method for optimization.

Energy consumption of the distillation column reboiler (QR) is
defined as the objective function (Fobj) to be minimized, Eq. (1),
manipulating the following decision variables: reflux ratio, solvent
flowrate and distillate flowrate. The model analysis tools/constraint
was used to consider the process constraints: mole fraction of eth-
anol (xETOH) and recovered mole fraction (FRETOH) in distillate, ac-
cording to Eqs. (2) and (3), respectively.

Fobj=QR (1)

Subject to

xETOH0.995 (2)

FRETOH0.999 (3)

The two developed ANN work together; the ethanol composi-
tion in the azeotrope feed is estimated by ANN1 and this result is
used as input to ANN2, as shown in Fig. 5.

Using Aspen PlusTM, a collection of 8000 input patterns with

Fig. 4. Communication between used software programs.

Fig. 5. Two ANN in cascades to predict the best set-points of the
controllers.
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their desired responses was used to estimate the composition of
ethanol in the azeotrope feed; 70% was used for training, 25% for
validation and 5% for testing. To develop an intelligent controller,

Fig. 6. Diagram of the intelligent control system using ANN.

Table 3. Summary of ANN results for soft sensor development

Number of
hidden layers

Number of
neurons per layer

Feedforward networks Recurrent elman networks
MSE (×108) Maximum error

(×103)
MSE (×108) Maximum error

(×103)Training Validation Training Validation
1 “10” 500.66 508.51 20.30 98.85a 98.97a 20.31a

2 “5 5” 020.66 021.10 20.54 20.31a 20.88a 18.32a

2 “10 10” 001.99 001.99 03.64 00.51a 01.02a 03.25a

3 “5 5 5” 001.58 002.10 05.23 00.06a 00.07a 05.14a

3 “10 10 10” 0.88 0.97 1.66 0.11a 0.12a 0.60a

3 “20 20 20” 001.78 002.01 02.48 00.18a 02.15a 00.14a

4 “5 5 5 5” 002.11 002.13 03.55 00.12a 00.19a 02.36a

4 “10 10 10 10” 003.22 003.23 02.39 00.18a 00.18a 02.36a

4 “20 20 20 20” 001.09 001.54 01.71 01.25a 01.29a 01.22a

aBest results

Table 4. Summary of ANN results used to develop intelligent controllers

Number of
hidden layers

Number of
neurons per layer

Feedforward networks Recurrent elman networks
MSE (×106) Maximum

error
MSE (×106) Maximum

errorTraining Validation Training Validation
2 “2 3” 3.21 3.24 0.0298 3.05a 3.20a 0.0277a

2 “5 6” 3.13 3.30 0.0193 2.85a 2.94a 0.0193a

2 “10 10” 3.03 3.10 0.0194 2.97a 3.21a 0.0208a

3 “10 5 6” 2.94 2.98 0.0223 3.55a 3.78a 0.0221a

3 “10 6 9” 2.97 3.08 0.0204 2.84a 2.99a 0.0197a

3 “9 8 8” 2.76 2.91 0.0199 2.51a 2.70a 0.0183a

4 “10 4 8 10” 2.44 2.46 0.0185 2.01a 2.13a 0.0171a

4 “5 6 7 2” 2.64 2.55 0.0187 2.5a0 2.58a 0.0190a

4 “8 9 10 6” 3.10 3.11 0.0189 3.14a 2.19a 0.0192a

aBest results

a collection of 5300 input patterns from Aspen PlusTM was used:
50% were used for training, 10% for validation and 40% for test-
ing.

As shown in Fig. 6, it is possible to predict the values of the set-
points (output) needed to maintain product specifications from dis-
turbances in azeotrope feed (input) at minimal reboiler heat duty:

• ANN2 input - ethanol molar composition (xETOH) estimated
by ANN1, temperature (T) and feed flowrate (F) of azeotrope;

• ANN2 output - temperature of stage 22 (T22), reflux ratio (RR)
and feed ratio between solvent and azeotrope streams (S/F).

CHOOSING THE ANN

The choice of the ANN architecture includes decisions about
the number of layers, number of units in each one, type of activa-
tion function and the training algorithm. We decided to select two
different types of architectures and evaluate them according to
their performance related to the problem data. The selected ANNs
were:

• Feedforward backpropagation: this is an ANN without feed-
back, where information is distributed in only one direction [27].

• Elman recurrent: this ANN has an added feedback in its feed
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layer of the outputs of this layer to the input thereof; this makes it
capable to store passed information [31].

Tangent sigmoid activation function was used for all layers, since
it showed good results with respect to the other one tested. The
number of hidden neuron layers was set empirically and takes into
account the trade-off between success and computational effort;
however, the number of neurons in the input and output layers is
determined in accordance with the problem. The ANN training
method used in this work was the Levenberg-Marquardt algo-
rithm [32].

Tables 3 and 4 give the best results of some types of feedfor-
ward and recurrent Elman ANN [31]. The number of hidden lay-
ers and neurons per layer is presented as the name that identifies
the neural network. For example, the network “2 3” indicates that
the ANN has two neurons in the first hidden layer, and three neu-
rons in the second hidden layer.

According to Table 3, the network chosen as the best option to
estimate the ethanol composition in the azeotrope feed was the
Elman network “10 10 10” with three hidden layers. According to
Table 4, the network chosen as the best option to predict the best
set-points was the Elman network “10 4 8 10” with four hidden
layers. In fact, the best ANNs have the lowest mean squared error
(MSE), which indicates that the networks lead to good results and
the largest error obtained in the test set is small compared to the
others. Recurrent neural networks can reuse the transformed infor-
mation, producing dynamic mappings. The presence of feedback
information allows for creating internal connections and memory
devices capable of processing and storing temporal information
and sequential signals [29]. Other networks which are not in the
tables presented larger errors, indicating that they converged to
local minimums.

A different data set from those used in the training and valida-
tion phase was used during the testing phase of the highest ranked
neural network. The absolute error (E) for each sample (j) was ob-
tained according to Eq. (5):

(5)

Fig. 7 presents the errors and the comparison between predicted

results (ANN1 estimation) and expected results (Aspen output) of
the ethanol composition in the feed stream of the azeotrope.

It can be concluded from Fig. 7 that the RNA training chosen
for the development of the soft sensor presented good convergence,
since the difference between the simulator result and the result
estimated by the soft sensor is minimal. Consequently, the errors
present uniform values, showing that the network has an excel-
lent estimation capacity.

In the tests to predict the new setpoints after the disturbances, it
was noticed that for a given set of points, the errors found were
quite higher compared to the others; therefore, the network in this
region was not sufficiently trained. Thus, a new ANN training was
performed with an increase of 500 points around the deficit region
to solve this problem. When analyzing the results, it could be noted
that the increase in the number of training data reduced the error
in the deficit region, but there was considerable loss in the estima-
tion quality of other points, indicating that the condition obtained
in the initial training was lost. An alternative was to create and
train a new neural network (ANN3) with the same features of the
best network already chosen, acting exclusively in the deficit region
and with the addition of new points around this region (Fig. 8).

Fig. 8 shows that retraining using two neural networks can im-
prove the large errors region without damaging the other, and this
reflects in better control of product composition (as shown next).
To predict the set-points in on-line use, the two ANNs (ANN2 and
ANN3) never act simultaneously, since each one is programmed to
operate in distinct and specific regions where the smallest errors
are observed.

CONTROL SYSTEM PERFORMANCE

The intelligent controller developed was tested with the aim to
maintain the ethanol composition at the top at 99.5 mol%, and with

E  
dj  yj

dj
--------------

Fig. 7. Comparison between the (a) values generated by Aspen plus
and the values estimated by ANN; and (b) the respective ab-
solute errors.

Fig. 8. Absolute errors for the variables (a) reflux ratio, (b) stage 22
temperature and (c) S/F ratio with two ANN in the retraining.
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a loss lower than 0.1 mol% at the bottom stream of the column for
disturbances in the azeotropic feed stream.

Fig. 9 shows the ethanol composition behavior at the top prod-
uct from disturbances in the feed stream by comparing the control
system performance with and without the use of the developed
intelligent controller.

The control system without ANN only works for feed flowrate
disturbance. The ethanol composition behavior had no significant

changes to a disturbance of ±20% in the azeotrope feed flowrate
and the results were omitted.

On the other hand, the control system with ANN rejected all
disturbances well. However, it is important to highlight that the
control becomes more difficult when the disturbances are simulta-
neous, so that product specifications are more difficult to reach.
The computational time was approximately 2 min to simulate 20 h
of processing. This computational time is relatively short since the

Fig. 9. Dynamic response for disturbance of 10% (a) and +4.7% (b) in the azeotrope feed composition, and simultaneous disturbances in
composition, flowrate and temperature of the azeotrope feed (c) and (d).

Fig. 10. Dynamic response of reboiler heat duty for disturbances of 20% (a) and +20% (b) in the azeotrope feed flowrate.
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use of ANN reduces calculation requirements. The detector is fed
in online mode, and may be extremely fast in processing the results
since most calculations are performed in the ANN training phase.

It must be emphasized that this type of control not only pre-
sented satisfactory performance, but also presented energy effi-
ciency, meaning that it guarantees the quality of the products with
minimum heat duty and optimizes the operational conditions
during ANN training. For example, the control without ANN can
maintain quality of the product within specifications only for dis-
turbances in the feed flowrate, but with greater energy consump-
tion when compared to the intelligent control system, as shown in
Fig. 10. Therefore, the control using ANN is the most interesting
alternative because the energy consumption in the reboiler presented
savings of 0.90% and 0.94% for disturbances of 20% and +20%
in the azeotrope feed flowrate, respectively.

Fig. 11 shows that the performance of the intelligent control
using two networks (ANN2 and ANN3) is better compared to the
use of only one network (ANN2) to predict the best set-points. A
performance error stems from the fact that any adjustment pro-
moted by a control system takes a while to complete, and accu-
mulates control errors during that time (desired value - set-point -
less measured value). Note that Fig. 11 was constructed using two
different intelligent controllers: a control system with one ANN and
a control system with two ANN. The computational effort is almost
the same because in the final product (control system using two
ANN) each ANN will only act depending on the disturbance in
the feed composition.

For the transient adjustment, the value of the instantaneous error
(ISE), represented by Eq. (6), can also be obtained, resulting in a
cumulative overall error, which depends on the values of the con-
troller action constants.

(6)

The value of ISE for the simulation depicted in Fig. 10 using
one and two neural networks was 9.02×108 and 2.4×108, respec-
tively. The bottom product composition had no significant changes

for all the simulations, with the ethanol composition remaining
below 0.1 mol%.

CONCLUDING REMARKS

An intelligent controller using ANN could predict the new con-
dition from disturbances in the azeotropic feed, making changes
in the set-points of the controllers to keep specifications of the
product at the top and bottom of the column.

The success of an intelligent controller using ANN depends on
a consistent analysis of the system to define which topology best
meets the needs of the proposed problem and in choosing which
data are relevant for processing. The technique used in this study
shows that it is possible to obtain good accuracy in estimating the
values of new set-points using two ANN without increasing the
computational effort.

A third network can be used without increasing the computa-
tional effort because the networks used to predict the set-points
(ANN2 and ANN3) do not act simultaneously, providing good
results when one of the input variables is the ethanol composition
in the azeotrope feed. Such a variable is inferred by ANN1, which
has proven to be an interesting solution to replace expensive meas-
urers of composition.

This new control approach is conceptually simple and can be
easily implemented in the chemical industry, as it improves the
performance of the conventional controller when it acquires feed-
forward characteristics. Furthermore, it is possible to eliminate addi-
tional energy costs and additional costs associated with product
specifications.
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