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AbstractKnowledge of the surface tension of ionic liquids (ILs) and their related mixtures is of central importance
and enables engineers to efficiently design new processes dealing with these fluids on an industrial scale. It’s obvious
that experimental determination of surface tension of every conceivable IL and its mixture with other compounds
would be a herculean task. Besides, experimental measurements are intrinsically laborious and expensive; therefore,
accurate prediction of the property using a reliable technique would be overwhelmingly favorable. To do so, a model-
ing method based on artificial neural network (ANN) trained by Bayesian regulation back propagation training algo-
rithm (trainbr) has been proposed to predict surface tension of the binary ILs mixtures. A total set of 748 data points
of binary surface tension of IL systems within temperature range of 283.1-348.15 K was used to train and test the
applied network. The obtained results indicated that the predictive values and experimental data are quite matching,
representing reliability of the used ANN model for such purpose. Also, compared with other methods, such as SVM,
GA-SVM, GA-LSSVM, CSA-LSSVM, GMDH-PNN and ANN trained with trainlm algorithm the proposed model
was better in terms of accuracy.
Keywords: Ionic Liquids, Surface Tension, Binary Mixtures, Prediction, Artificial Neural Network

INTRODUCTION

Ionic liquids (ILs), as a new family of ionic organic salts having
melting points near or below room temperature, are typically made
up of relatively large organic cations and small inorganic or organic
anion. The relatively low melting point of ILs results from their high
degree of asymmetry, which puts obstacles in the way of ILs to form
crystals. ILs have recently attracted great attention of both academia
and industry by virtue of their tempting features in competition with
other traditional compounds for different applications, such as
extremely low volatility, high thermal and electronic stability, high
ionic conductivity, a wide liquid temperature and good solubility
[90]. However, the most salient feature of ILs is that their proper-
ties can be finely adjusted to fulfill the requirements of any particu-
lar application by changing the cations and anions. This is why they
can legitimately be christened “designable materials” [23,30,59]. Defi-
nitely, for accomplishment of efficient process design knowledge
about thermophysical, physicochemical, and/or thermodynamic
properties of the involved ILs and their related mixtures is of con-

siderable importance [28]. For designing and operation of new
industrial processes such as absorption, extraction and distillation
involving ILs, the accurate knowledge of surface tension of such
fluids and their relevant mixtures is necessary [11,66].

It is obvious that the properties of every conceivable IL and its
mixture with other compounds (Note that industrial processes are
mostly concerned with mixtures of two or more components) can-
not be obtained solely by experimental measurement since there
are limitless numbers of possible systems. Besides, experimental meas-
urements are intrinsically time-consuming, costly, and with probable
non-negligible uncertainties [28]. So, it is highly desirable to develop
and utilize predictive methods for estimating the various proper-
ties of these kinds of systems.

Rigorous reviews on the methods for prediction of surface ten-
sion of pure compounds have been already well presented in the
literature [27-29,68]. In addition, Tariq et al. [83] and Gharagheizi
et al. [30] conducted reviews about various methods used espe-
cially for the prediction of the surface tension of ILs and we do not
repeat them here. However, there are two main conclusions to be
drawn from the aforementioned literature reviews:

• Surface tension of ILs is estimated by a few models, so mod-
eling of such property of ILs is still an open field of research.

• Gharagheizi et al. [30] stated that these methods, the ones used
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for modeling of surface tension of ILs, have their own disadvan-
tages. They mentioned associated shortcomings.

In addition, group contribution method, which was used by
Gharagheizi et al. [30], demands thorough understanding of the
structure of the ILs and, in some cases, are not beneficial in time and
simplicity, and above all the group parameters of various functional
groups in the IL structures are not yet specified, so such methods
are still very restricted in their usage [39]. Thus, there is a need for
alternative methods.

The artificial intelligence methods such as artificial neural net-
works (ANNs), evolutionary computation (EC), and fuzzy systems
(FS), which allows developing a model for the complicated systems,
have recently appeared as capable approaches. ANNs have been the
focus of much attention during the past decades as viable and effi-
cient tools in numerous research areas due to their simplicity and
multi-functionality [40]. Basically, ANNs are numerical configura-
tions emerging from the learning process in the human brain [74].
The advantages of artificial neural networks can generally be per-
ceived as their capability to map any relation with any degree of
complexity and self-learning ability which eliminates the need for
reprogramming [40]. Further and detailed explanations about ANN
are available in the literature [16,96].

This well-known sort of artificial intelligence paradigm has been
successfully applied to analyze different properties, e.g., ANNs have
been used for prediction of the thermal conductivity of pure gases
at atmospheric pressure over a broad range of temperatur [19], to
assess the conductivities of binary gaseous mixtures at atmospheric
pressure [20], to predict the surface tension, viscosity, and thermal
conductivity for common organic solvents [42], and characterize the
basic properties of pure substances and petroleum fractions [10].
In addition ANN approaches have been applied to predict metal
alloys properties [5,65,67,82]. Also, a comprehensive review has
been carried out by Taskinen and Yliruusi [84] about works on neu-
ral network anticipation of physicochemical properties from a phar-
maceutical research point of view such as boiling point, heat capacity,
critical pressure, vapor pressure, critical temperature, enthalpy of
sublimation, surface tension, density, viscosity, thermal conductiv-
ity, acentric factor and heat of vaporization.

In addition, Urata et al. [88], He et al. [36], Mohanty [62], Rohani
et al. [72], Lashkarbolooki et al. [48,49] have applied ANN to model
and predict phase equilibria of different systems. Laugier and Richon
[52] used neural network system as a prediction tool for the PVT
behavior of refrigerants. Mohebbi et al. [63] used the ANN model
to predict the liquid density of 19 pure components and six mix-
tures of refrigerants. Furthermore, Lashkarbolooki et al. [50] com-
pared the sufficiency of the ANN model with EOS’s for prediction
of solid solubility in supercritical carbon dioxide.

More importantly, success stories of ANN for correlating the
properties of the ILs have already been reported by several groups
around the world. Zeinolabedini Hezave and coworkers demon-
strated the good capability of ANNs to predict thermal conductivity
of pure ILs [40], the binary heat capacity [47], ternary electrical con-
ductivity [39], ternary bubble points [38], binary density [48], and
ternary viscosity [45] of the systems containing ILs. Lazzús [53]
reported successful application of ANN for a total of 2410 data sets
in predicting density within a wide range of temperatures and pres-

sures (-T-P), corresponding to 250 ionic liquids. In addition, Tor-
recilla et al. [86] presented an optimized ANN model to estimate the
melting point of a group of 97 imidazolium salts of diverse anions.
Their model was able to correlate the melting point with mean pre-
diction error of 1.30%, a regression coefficient of 0.99 and a mean
P-value of 0.92. Bini and coworkers [9] reported that the recursive
neural network (RNN) was an applicable tool to predict the melt-
ing points of several pyridinium based ILs. Miao et al. [60] used
the ANN model to predict the compositional viscosity of binary
mixtures of room temperature ILs [Cn-mim] [NTf2] with n=4, 6,
8, 10 in methanol and ethanol for the whole domain of molar
fraction within an extensive temperature (T=293.0-328.0 K) range.
Eslamimanesh et al. [18] applied ANN procedure to represent the
solubility of supercritical CO2 in 24 mostly used ionic liquids. Note
that employed pseudo-critical properties of ionic liquids in their
studies, were estimated by group contribution method. Torrecilla
et al. [86] explored, in addition to multiple linear regression (MLR)
and multiple quadratic regression (MQR), radial basis network (RB),
and multiLayer perceptron (MLP) neural network models predict
the CO2 solubility in 1-n-ethyl-3-methylimidazolium hexafluorophos-
phate, 1-n-hexyl-3-methylimidazolium hexafluorophosphate, 1-n-
butyl-3-methylimidazolium tetrafluoroborate, 1-n-hexyl-3-methylim-
idazolium tetrafluoroborate and 1-n-octyl-3-methylimidazolium
tetrafluoroborate ILs at sub and supercritical conditions. Safamir-
zaei and Modarress [77] proposed a scheme based on neural net-
work paradigm and molecular properties to model solubility of
carbon dioxide, carbon monoxide, argon, oxygen, nitrogen, meth-
ane and ethane in 1-butyl-3-methylimidazolium tetrafluoroborate
and also they [76] used ANN for prediction of Henry’s law con-
stants of gases in [bmim][PF6] at low values of pressure. Interested
readers are referred to the literature for more application of ANN
and other machine learning algorithms such as support vector
machine (SVM), decision tree (DT) algorithm and gene expression
programming (GEP) in the field of ILs [1,2,15,21,32,61,64,78,80,
81,86].

To pursue the research in computational intelligence schemes
and combine them with ILs, in this study ANN with two hidden
layer and trained by trainbr algorithm was applied to anticipate the
surface tension of binary mixtures containing ILs. Reviewing the
literature indicates a few papers are devoted solely to the topic of
predicting surface tension of mixtures, especially multicomponent
system containing ILs [6,34,37,46,66].

DATASET PREPARATION

The experimental data employed for modeling consisted of 748
binary surface tension (ST) data points at atmospheric pressure were
assembled from the NIST Standard Reference Database [3,17,26,
41,43,70,71,91-94]. The selection of input variables as the model’s
independent variables was the subsequent step after identifying and
assembling the data set. In this regard, the operational temperature
(T), the IL component compositions (xIL), molecular weight of IL
components (MwIL) and density of IL components (IL) along with
the boiling point (Tbnon-IL) and molecular weight (Mwnon-IL) of non-
IL component were introduced as entrance parameters. Table 1 has
been provided to illustrate MwIL and IL; in addition, the Tbnon-IL and
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Mwnon-IL are illustrated in Table 2 [3,12,24,25,33,41,44,54,55,79,87,
89,91,94]. So, the functionality of binary surface tension of ILs is
given as follows:

=f(T, xIL, MwIL, IL, Tbnon-IL, Mwnon-IL)

Note that the model needs some criteria to distinguish the sub-

Table 1. Molecular weight and specific density range of used ILs in this study [34]

No. Name Formula Mw
gr·mol1

Specific density/
Kg·m3 (In the

range of investigated
temperature)

Maximum
experimental
error margin

(specific density)

Ref.

01 1-Hexyl-3-methylimidazolium bis[(trifluoro-
methyl)sulfonyl]imide ([HMIM] [TF2N])

C12H19F6N3O4S2 447.42 1324-1385.4
@ (283.1-348.15) K

±4 0[3]

02 1-Butyl-3-methylimidazolium bis[(trifluoro-
methyl)sulfonyl]imide ([BMIM] [TF2N])

C10H15F6N3O4S2 419.36 1419.8-1438.9
@ (293.15-313.15) K

±1.6 [87]

1436
@ (298) K

±15 [91]

03 1-Ethyl-3-methylimidazolium bis[(trifluoro-
methyl)sulfonyl]imide ([EMIM][TF2N])

C8H11F6N3O4S2 391.31 1503.3-1523.6
@ (293.15-313.15) K

±2.7 [79]

04 1-Butyl-3-methylimidazolium L-lactate 
([BMIM][L-lactate])

C11H20N2O3 228.29 1097.7-1111.2
@ (298.15-318.15) K

±6 [41]

05 1-Butyl-3-methylimidazolium tetrafluoroborate 
([BMIM] [BF4])

C8H15BF4N2 226.02 1200.85
@ 298.15 K

±0.4 [89]

06 1-Ethyl-3-methylimidazolium tetrafluoroborate 
([EMIM] [BF4])

C6H11BF4N2 197.97 1280.5
@ 298.15 K

±1.9 [79]

07 1-Hexyl-3-methylimidazolium tetrafluorobo-
rate ([HMIM] [BF4])

C10H19BF4N2 254.08 1145.6
@ 298.15 K

±1.1 [44]

08 1-Methyl-3-octylimidazolium tetrafluoroborate 
([OMIM] [BF4])

C12H23BF4N2 282.13 1103.7
@ 298.15 K

±2.9 [33]

09 1-Ethyl-3-methylimidazolium butyl sulfate 
([EMIM][BS])

C10H20N2O4S 264.34 1176.2
@ 298.15 K

±1.2 [12]

10 1-Ethyl-3-methyl imidazolium octyl sulfate 
([EMIM] [OS])

C14H28N2O4S 320.45 1095.7
@ 298.15 K

±1 [12]

11 1-Ethyl-3-methyl imidazolium-hexyl sulfate 
([EMIM] [HS])

C12H24N2O4S 292.39 1130.4
@ 298.15 K

±1.4 [24]

12 1-Ethyl-3-methyl imidazolium-ethyl sulfate 
([EMIM] [ES])

C8H16N2O4S 236.29 1237.2
@ 298.15 K

±0.4 [25]

13 1-Ethyl-3-methyl imidazolium methyl sulfate 
([EMIM][MS])

C7H14N2O4S 222.26 1289.48
@ 293.15 K

±0.53 [12]

14 3-Ethyl-1-methylimidazolium (S)-2-hydroxy-
propanoate ([EMIM][L-lactate])

C9H16N2O3 200.23 1146.1
@ 298.15 K

±2.8 [55]

15 3-Butyl-1-methyl-1H-imidazolium (S)-2-
amino-4-carboxybutanoate ([BMIM][Glu])

C13H23N3O4 285.34 1175.2-1192.4
@ 308.15- 343.15 K

±2.8 [94]

Table 2. Molecular weight and boiling point of investigated non-IL components [34,54]
No. Name Formula Mw/gr·mol1 Boiling point/K
1 1-Octene C8H16 112.21 395±2
2 Dimethyl Sulfoxide C2H6OS 078.13 464±7
3 Acetonitrile C2H3N 041.05 354.8±0.4
4 Tetrahydrofuran C4H8O 072.11 339±1
5 Methanol CH4O 032.04 337.8±0.3
6 Water H2O 018.02 373.17±0.04
7 1-Butanol C4H10O 074.12 390.6±0.8
8 Ethanol C2H6O 046.07 351.5±0.2
9 1-Propanol C3H8O 60.1 370.3±0.5
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stances involved. For this purpose, molecular weight, density and
boiling point were considered as the parameters to differentiate
among the different substances. Also, there are different operational
parameters including pressure, temperature and different compo-
sitions which affect directly the output value (i.e., surface tension).
Herein the considered parameters are the composition and tem-
perature at constant pressure (atmospheric pressure), which leads
to have different conditions [38,40,45].

ARTIFICIAL NEURAL NETWORK

Artificial neural network (ANN) combines artificial neurons
which are computational models inspired in the natural neurons,
to obtain patterns and discern trends that are extremely complex.

There are several types of ANNs and the most common type of
ANN is the multi-layer feed-forward neural network, which con-
sists of groups of interconnected neurons divided into three sets:
input layer, hidden layer and output layer, where each layer is made
up of a set of neurons that partake of the same input and output
connections, but do not connect amongst themselves. Also, the
connections strictly travel in one itinerary (input to output) and
there is no feedback (loops). The neurons in the input layer accept
real world inputs from an external source, and the neurons in the
output layer transmit the dependent variables.

The task of determining the number of neurons in the input
and output layers, hence, is specified by the input and output vari-
ables, respectively. In between the input and the output layer(s)
there is a hidden layer (there may be several hidden layers) that can
have any number of neurons. There were no definite values for the
numbers of hidden layers and the neurons comprising this/these
layer(s), unlike the output and input neurons. So there is no rule of
thumb to find how many you need as it depends on the intricacy
of the issue being solved by the network and in demand accuracy.

The outputs of hidden and the output neurons are computed
by transforming their inputs by dint of a transfer function. So trans-
fer function commutes a neuron’s weighted sum of all inputs to its

output activation.
The three transfer functions, named Linear transfer function

(purelin), Log-Sigmoid transfer function (logsig) and Hyperbolic
Tangent Sigmoid (tansig), are the most-used transfer functions and
are formulated as follows:

• purelin
(1)

• logsig

(2)

• tansig

(3)

The architecture of three-layer feed-forward neural network used
herein presented in Fig. 1 takes one output layer and two hidden
layers. In this study the output of the third layer, a3, was the network
output, and this output was labeled as y. In this figure, the input
vector P which is an R length input vector is shown by the solid
upright block at the left. This network has S1 neurons in the first
layer (hidden layer #1), S2 neurons in the second layer (hidden layer
#2) and S3 neurons in the third layer (output layer), as above men-
tioned it is assumed S3=1.

Parts of each layer contains the weight matrix wi, the multiplica-
tion operation, the bias vector bi, the summer and the transfer func-
tion i, where superscript i assigns ith layer. The sizes of the matrices
are presented just below their matrix variable names.

Bias is an extra input, which takes a value of 1 and is dealt with
like other weights [13]. The reason for adding the bias term is that
it will allow the network to produce arbitrary outputs different from
the defaults, which may be critical for successful learning and weights
are adjustable coefficients that decide the intensity of the input sig-
nal [75].

Note that wi and bi are both changeable parameters of the neu-
ron. The main idea of neural networks is that such parameters can

 n   n

 n   
1

1 en
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 n   
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  en

en
  en
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Fig. 1. ANN structure designed for prediction of the surface tension of binary mixtures.



1560 R. Soleimani et al.

July, 2018

be modified so that the network function approximates a given
function as closely as possible. Thus, during training the weights and
biases of the network are systematically adjusted to minimize the
network performance function (error function). The performance
function of ANN model in this study is sum square error (SSE) —
the sum of squared error between the ANN outputs and the tar-
get outputs (supervised training). There are many different types
of training algorithms. Back-propagation, which is a supervised
training algorithm, is one of the most commonly used method for
training feed-forward neural networks [4,14]. Mathematical aspects
of several different training algorithms are described in the litera-
ture [7,22,35,58].

RESULTS AND DISCUSSION

1. Statistical Criteria
The reliability and accuracy of the ANN model is based on diverse

statistical quantities: Mean square error (MSE); Mean absolute error
(MAE); Mean relative squared error (MRSE); Mean relative abso-
lute error (MRAE); Coefficient of Determination (R2); Correlation
Coefficient (R); Accuracy Factor (Af) and Bias Factor (Bf) given by
the following formulas:

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

where N is the number of data points (input and output pairs), yexp

is the value of experimental data sets at the sampling point i, yi
cal is

the ith value of the ANN predicted datasets and  and  are the
average of the experimental and predicted data using the ANN
model, respectively, which are defined as:

(13)

(14)

Furthermore, the criteria suggested by researchers [31,69] were used
to ensure more validity of the ANN model. These statistics are given
as follows:

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

These parameters are defined to substantiate the validity of the
ANN model and indicate whether this model can be applied to
estimate desired surface tension of studied binary mixtures con-
taining ILs.

Most of these statistics are discussed in greater detail in the liter-
ature [95]; in the context of forecasting; different statistics are also
discussed in previous published papers [56,57]. However, Af and
Bf are less introduced in the texts, so a brief description of these
statistics is given in the following.

The Af and Bf were proposed by Ross [73] as criteria for assess-
ing of model performance. The overall agreement between esti-
mated and actual values is indicated by the Bf value. It will specify
whether the estimations lie averagely above or below the line of
equivalence, and by how much. Equal weighting is specified to over-
estimation, where the estimated value is greater than the actual
one, and under-estimation. The Bf is defined with the Eq. (12) [8].

A Bf of 1 means complete agreement. A value larger than 1 would
show that, on average, the estimations were larger than the actual
values and would stand for a fail-dangerous model; for instance a
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Table 3. Effects of number of hidden neurons in hidden layer(s) on MSE and R

Network
topology

MSE R
All Training Validation Testing All Training Validation Testing

01 6-2-1 1.4401E-05 1.4093E-05 1.4871E-05 1.5375E-05 0.9274 0.9303 0.9215 0.9169
02 6-3-1 1.1431E-05 1.0746E-05 1.2073E-05 1.3996E-05 0.9428 0.9486 0.9372 0.9145
03 6-4-1 9.5883E-06 7.7913E-06 1.6421E-05 1.1162E-05 0.9523 0.9615 0.9116 0.9491
04 6-5-1 5.3160E-06 5.5469E-06 3.9181E-06 5.6339E-06 0.9738 0.9752 0.9738 0.9653
05 6-6-1 4.6725E-06 4.7307E-06 4.8465E-06 4.2265E-06 0.9770 0.9780 0.9755 0.9750
06 6-7-1 3.0219E-06 2.3196E-06 6.6009E-06 2.7282E-06 0.9852 0.9891 0.9661 0.9849
07 6-8-1 2.1344E-06 2.1345E-06 2.2948E-06 1.9734E-06 0.9896 0.9902 0.9872 0.9890
08 6-9-1 1.8278E-06 1.7513E-06 1.7878E-06 2.2257E-06 0.9911 0.9918 0.9897 0.9892
09 6-10-1 1.7327E-06 1.7408E-06 1.9844E-06 1.4431E-06 0.9915 0.9917 0.9910 0.9907
10 6-11-1 1.4125E-06 1.2951E-06 1.6112E-06 1.7631E-06 0.9931 0.9934 0.9926 0.9923
11 6-12-1 1.2205E-06 1.1311E-06 1.4053E-06 1.4541E-06 0.9941 0.9947 0.9920 0.9932
12 6-13-1 1.2633E-06 1.1849E-06 1.7061E-06 1.1874E-06 0.9938 0.9943 0.9930 0.9927
13 6-14-1 1.1213E-06 1.0385E-06 1.3613E-06 1.2686E-06 0.9945 0.9950 0.9928 0.9941
14 6-15-1 9.4381E-07 8.2422E-07 1.5736E-06 8.7351E-07 0.9954 0.9960 0.9923 0.9957
15 6-16-1 9.8200E-07 8.3731E-07 6.7071E-07 1.9702E-06 0.9952 0.9961 0.9957 0.9907
16 6-17-1 8.3066E-07 7.5134E-07 1.0103E-06 1.0221E-06 0.9960 0.9964 0.9940 0.9954
17 6-18-1 7.9155E-07 5.4823E-07 1.6101E-06 1.1114E-06 0.9961 0.9974 0.9932 0.9935
18 6-19-1 8.2842E-07 7.1467E-07 1.0061E-06 1.1830E-06 0.9960 0.9966 0.9945 0.9943
19 6-20-1 7.8904E-07 6.8972E-07 9.9947E-07 1.0433E-06 0.9962 0.9967 0.9957 0.9947
20 6-2-2-1 1.0721E-05 9.4547E-06 1.8269E-05 9.0961E-06 0.9465 0.9531 0.9217 0.9457
21 6-3-3-1 6.6121E-06 5.9846E-06 7.7295E-06 8.4306E-06 0.9673 0.9692 0.9636 0.9630
22 6-4-4-1 2.5976E-06 2.3775E-06 3.0075E-06 3.2172E-06 0.9873 0.9880 0.9849 0.9865
23 6-5-5-1 1.5708E-06 1.4778E-06 1.6448E-06 1.9321E-06 0.9923 0.9928 0.9926 0.9913
24 6-6-6-1 7.8659E-07 6.8052E-07 1.3017E-06 7.6776E-07 0.9962 0.9965 0.9948 0.9962
25 6-7-7-1 7.2295E-07 6.7236E-07 8.4137E-07 8.4122E-07 0.9965 0.9967 0.9961 0.9960
26 6-8-8-1 3.0665E-07 2.7575E-07 4.5942E-07 2.9845E-07 0.9985 0.9987 0.9976 0.9984
27 6-9-9-1 1.5138E-07 1.2080E-07 2.0690E-07 2.3892E-07 0.9993 0.9994 0.9991 0.9987
28 6-10-10-1 1.3436E-07 1.2804E-07 1.3772E-07 1.6060E-07 0.9993 0.9994 0.9994 0.9992
29 6-11-11-1 1.3168E-07 8.8461E-08 1.3877E-07 3.2678E-07 0.9994 0.9996 0.9992 0.9988
30 6-12-12-1 8.7914E-08 7.3271E-08 7.3665E-08 1.7067E-07 0.9996 0.9996 0.9996 0.9993
31 6-13-13-1 3.5358E-07 2.6944E-07 7.3166E-07 3.6915E-07 0.9983 0.9987 0.9963 0.9984
32 6-14-14-1 3.6125E-07 2.8248E-07 6.4388E-07 4.4714E-07 0.9982 0.9986 0.9974 0.9979
33 6-15-15-1 3.7344E-07 2.9223E-07 7.5284E-07 3.7397E-07 0.9982 0.9985 0.9970 0.9984

Table 4. Effect of training algorithm on network performance

Training
algorithm

MSE R
All Training Validation Testing All Training Validation Testing

01 Trainbfg 1.2476E-05 1.0608E-05 1.1083E-05 2.2608E-05 0.9375 0.9469 0.9439 0.8858
02 Trainbr 8.7914E-08 7.3271E-08 7.3665E-08 1.7067E-07 0.9996 0.9996 0.9996 0.9993
03 Traincgb 8.3442E-06 7.6229E-06 7.7799E-06 1.2283E-05 0.9586 0.9635 0.9588 0.9318
04 Traincgf 1.2838E-05 1.3182E-05 1.2427E-05 1.1639E-05 0.9356 0.9377 0.9317 0.9257
05 Traincgp 8.8324E-06 7.3462E-06 9.6662E-06 1.4952E-05 0.9562 0.9625 0.9535 0.9335
06 Traingda 3.0531E-05 2.9031E-05 3.7833E-05 3.0249E-05 0.8457 0.8606 0.7951 0.8187
07 Traingdx 2.6303E-05 2.6210E-05 2.9483E-05 2.3557E-05 0.8683 0.8732 0.8520 0.8565
08 Trainlm 6.6522E-07 2.9835E-07 2.3194E-06 7.2743E-07 0.9968 0.9985 0.9900 0.9963
09 Trainoss 1.9678E-05 1.9742E-05 1.7913E-05 2.1142E-05 0.9009 0.9069 0.8890 0.8828
10 Trainrp 6.5366E-06 6.0244E-06 9.8420E-06 5.6275E-06 0.9677 0.9703 0.9558 0.9702
11 Trainscg 7.6698E-06 7.7182E-06 8.0997E-06 7.0135E-06 0.9620 0.9626 0.9612 0.9609
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Bf of 1.3 would show that the estimations were 30% larger than
actual values [8]. A value less than 1 would show a fail-safe model
where, on average, the estimations were shorter than actual values.
The over (+) and under () estimations can negate each other during
calculation of the Bf. They do not then show the absolute errors in
the model. This goal can be attained by the use of the Af (accu-
racy factor). This is based on a similar equation to (19) but ignores
whether the difference between the estimated and actual value is
positive or negative.

The Af value will always be equal to (if there is perfect agreement)
or greater than one as all variances are positive. The Af value of 1.4

indicates that, on average, the estimated value is 40% different (either
larger or smaller) from the actual value.

In short, the SGB predictions are ideal if MSE, MAE, MRSE,
MRAE, R2, R, Af and Bf are found to be close to 0, 0, 0, 0, 1, 1, 1
and 1, respectively.
2. Creating an ANN Model

The aim of the study was to build a model, capable of predicting
the surface tension of binary mixtures containing ILs as dependent
variable. It is supplied by the T, xIL, MwIL and IL along with Tbnon-

IL and Mwnon-IL data as independent variables (input arguments).
ANN was used as the prediction technique to carry out the task.

Table 5. Optimal values of weights and biases obtained during ANN training
Input weight matrix destination: hidden layer #1; Source: inputs

Layer weight matrix destination: hidden layer #2; Source: hidden layer #1

Layer weight vector destination: Output Layer; Source: hidden layer #2

Bias vector destination: Hidden Layer #1

Bias vector destination: Hidden Layer #2

Bias scalar destination: Output Layer

w1 

0.1175 0.4646 1.2032 1.5219 3.2049 1.1517
0.3957 0.8603 1.3409 2.2488 1.7823 0.5923
0.4073 9.8283 3.0883 2.3222 2.0155 0.1361

0.3802 1.6325 0.6590 0.0858 0.8652 1.4491
0.2004 2.7077 1.8364 1.7052 1.2306 0.0403
0.0995 0.4371 0.0824 2.3188 0.6802 0.2481

0.0435 0.1233 1.5630 0.8628 2.4379 0.2780
0.8408 0.5287 2.7406 2.5344 0.8479 0.2260

0.3373 2.2723 2.1543 2.2708 0.7429 2.9994
0.0893 0.2943 0.8918 0.7854 0.0499 0.6965
0.1157 0.7054 0.4832 0.0708 1.5824 0.9099
0.5157 10.8179 4.2810 2.9734 3.6468 2.4995

w2
  

0.0563 0.3205 0.2805 0.1819 0.1389 1.6434 0.1792 0.0627 0.0347 1.1277 0.2592 1.3123
0.0115 1.2863 0.3544 0.3923 0.1260 1.2873 0.0669 1.8359 0.1140 0.0877 0.1272 0.2181
0.0551 1.0692 0.2998 1.0509 0.2809 1.5626 0.0738 0.6774 0.1789 0.2285 0.2578 0.2103

0.1007 0.4720 10.3768 0.1789 0.0206 0.8154 1.4072 0.7920 4.0085 0.6788 2.3345 10.8589
0.8379 0.3847 8.6672 4.4612 2.0421 0.0674 0.8113 1.8946 2.9053 0.5852 3.0063 8.2085
0.2034 0.0437 1.1131 0.3224 0.9284 0.6781 0.1512 0.4754 0.3608 0.7860 0.6866 0.1339

0.8447 0.1144 0.0579 0.4727 0.5599 1.1139 0.1848 2.1465 0.5442 0.5484 1.0438 0.4132
0.9713 0.8580 0.8116 0.1676 0.7223 0.6772 0.8171 0.1685 0.1266 0.1849 1.0291 0.3906
1.1275 1.0061 1.2611 0.2740 0.4977 1.3262 1.6710 1.1292 0.1942 1.4318 1.3098 0.4365

0.1013 0.5021 0.1369 0.1989 0.5345 0.5707 0.0662 0.9548 0.2810 0.2502 0.3053 0.2142
0.1969 0.7450 0.5015 0.7148 1.2064 1.3904 1.1691 0.6759 0.2780 1.1109 0.7267 1.4307
0.6868 1.4973 1.0003 0.0656 0.0223 1.2401 0.8945 0.3966 0.0029 1.2263 0.1860 1.2068

w3
  1.4180 3.2917 2.6890 2.8796 8.2024 0.8980 2.8720 0.8641 0.6091 0.9566 0.5293 0.9184 

b1 0.6228 2.2896 8.2126 0.6068 0.4720 2.4934 0.0011 1.7273 0.3188 0.1550 0.2403 10.6928 
T

b2
  0.0463 0.0666 2.1364 0.7053 3.7678 0.2872 0.3797 0.3838 0.6307 0.6374 0.7568 0.0101 

T

b3
  2.4181 
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70% (524 data points out of a total of 748 data points) and 15% of
the data were, respectively, used to train and validate the network
and the rest is put aside for testing the trained network.

Finding a suitable ANN architecture is of central importance due
to its major effects on the produced results. However, the optimal
architecture (the number of hidden layers and neurons within each
layer), is problem specific and needs the trial and error approach.
Small network cannot be trained with desirable and high accuracy.
On the other hand, an overly complex network becomes noise de-
pendent. Table 3 presents the performance of different configura-
tions of ANN models with different number of neurons in the hid-
den layers for one and two hidden layer structures. Owing to the
impact of initial weights on model performance, 20 runs were
performed for each network structure. Then, the best trained net-

work was chosen as an optimum one. According to the statistical
analysis results, a network with two hidden layers is the optimal net-
work structure containing twelve neurons in both hidden layers.

There are many learning algorithms which update network weight
and bias. Table 4 shows the effect of use of various training algo-
rithms on the network prediction performance. The studied learn-
ing algorithms herein are: BFGS quasi-Newton backpropagation
(trainbfg), trainbr, Powell-Beale conjugate gradient backpropaga-
tion (traincgb), Fletcher-Powell conjugate gradient backpropaga-
tion (traincgf), Polak-Ribiére conjugate gradient backpropagation
(traincgp), Gradient descent with adaptive learning rule backprop-
agation (traingda), Gradient descent with momentum and adap-
tive learning rule backpropagation (traingdx), Levenberg-Marquardt
backpropagation (trainlm), One step secant backpropagation (trainoss),

Table 6. Details of the obtained error analysis for each investigated binary system

No. Binary system MRAE R Bf Af
RAE

Min Max
01 1-Octene/[HMIM] [TF2N] 0.0078598 0.9970812 1.0000778 1.0078915 0.0002617 0.0231721
02 Dimethyl sulfoxide/[BMIM] [TF2N] 0.0020092 0.9993311 0.9999487 1.0020124 0.0000638 0.0121864
03 Dimethyl sulfoxide/[EMIM] [TF2N] 0.0022999 0.9987286 0.9999753 1.0023024 0.0001170 0.0064810
04 Acetonitrile/[BMIM] [TF2N] 0.0019477 0.9988967 0.9998361 1.0019498 0.0001082 0.0059617
05 Tetrahydrofuran/[BMIM] [TF2N] 0.0015893 0.9994814 0.9999434 1.0015903 0.0001122 0.0079979
06 Methanol/[BMIM][L-lactate] 0.0033384 0.9998234 0.9999396 1.0033443 0.0003308 0.0082174
07 Water/[BMIM][L-lactate] 0.0041841 0.9992998 1.0000011 1.0041936 0.0000860 0.0176242
08 1-Butanol/[BMIM][L-lactate] 0.0038115 0.9996236 1.0000205 1.0038173 0.0000254 0.0165081
09 Ethanol/[BMIM][L-lactate] 0.0036234 0.9997985 1.0000557 1.0036304 0.0002938 0.0097373
10 Water/[BMIM] [BF4] 0.0096630 0.9861769 1.0002559 1.0096862 0.0000669 0.0637528
11 Water/[EMIM] [BF4] 0.0037216 0.9985736 0.9999654 1.0037257 0.0004452 0.0120364
12 Ethanol/[BMIM] [BF4] 0.0076920 0.9992201 1.0010296 1.0077193 0.0016520 0.0170804
13 Ethanol/[HMIM] [BF4] 0.0063175 0.9990704 0.9991971 1.0063468 0.0015640 0.0144016
14 Ethanol/[OMIM] [BF4] 0.0042477 0.9989667 1.0018500 1.0042465 0.0002983 0.0123116
15 Water/[HMIM] [BF4] 0.0028144 0.8105856 0.9988301 1.0028232 0.0005576 0.0089302
16 Ethanol/[EMIM] [BF4] 0.0044801 0.9995208 1.0003688 1.0044817 0.0000165 0.0121983
17 Water/[EMIM][BS] 0.0100995 0.9277086 1.0004031 1.0101581 0.0000575 0.0279926
18 Water/[EMIM][OS] 0.0043715 0.9994442 0.9999150 1.0043803 0.0005507 0.0137550
19 Water/[EMIM][HS] 0.0043426 0.9996848 0.9999823 1.0043521 0.0002940 0.0090474
20 Ethanol/[EMIM][OS] 0.0023309 0.9994483 1.0003342 1.0023336 0.0001549 0.0067161
21 Water/[EMIM][ES] 0.0027608 0.9997536 0.9999257 1.0027655 0.0000243 0.0055502
22 Ethanol/[EMIM][HS] 0.0042473 0.9994116 0.9983632 1.0042619 0.0010732 0.0091980
23 Ethanol/[EMIM][ES] 0.0031598 0.9999079 0.9991681 1.0031693 0.0004546 0.0078215
24 Ethanol/[EMIM][BS] 0.0040642 0.9994574 1.0006696 1.0040689 0.0003351 0.0110019
25 1-Butanol/[BMIM] [TF2N] 0.0051579 0.9988538 0.9991892 1.0051743 0.0012166 0.0124764
26 1-Propanol/[BMIM] [TF2N] 0.0047864 0.9990546 1.0011243 1.0047925 0.0006275 0.0096051
27 Methanol/[EMIM][MS] 0.0043936 0.9998081 0.9999487 1.0043971 0.0004476 0.0169095
28 Ethanol/[EMIM][MS] 0.0040037 0.9998347 1.0000545 1.0040099 0.0000006 0.0132884
29 1-Butanol/[EMIM][MS] 0.0071602 0.9993916 1.0000977 1.0071717 0.0000975 0.0251925
30 Water/[EMIM][L-lactate] 0.0068524 0.9955055 1.0000341 1.0068720 0.0016862 0.0216618
31 Water/[BMIM][Glu] 0.0047556 0.9983140 0.9999608 1.0047698 0.0000257 0.0125535

All dataset MRAE R Bf Af
RAE

Min Max
0.0042650 0.9995726 1.0000057 1.0042731 0.0000006 0.0637528
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Resilient backpropagation (trainrp), Scaled conjugate gradient back-
propagation (trainscg). From the results it can be confirmed that the
optimum training function is ‘trainbr’ and the optimum values of
weights and biases of ANN architecture shown in Fig. 1, are sum-
marized in Table 5. Consequently, the ANN model for the predic-
tion of binary surface tension can be described as a composite
mapping:

Y=3(w3(2(w2(1(w1x+b1))+b2))+b3) (24)

As described in previous section i is the vector of transfer func-
tion corresponding to layer i (i=1-3) and the other terms i.e. wi, bi

and x stand for the weights, biases and inputs, respectively.
3. Results of the Used ANN Model

The criteria including R, Bf, Af and MRAE along with maximum
and minimum values of RAE for different binary systems were
calculated and presented in Table 6. The obtained results which
were given in Table 6 revealed that the ANN model is capable of
estimating the binary surface tension of the ILs mixtures regard-
ing to all of the concerned systems with the R, Bf, Af and MRAE
of 0.9995726, 1.0000057, 1.0042731 and 0.0042650 respectively.

Also the MSE, MAE, MRSE, MRAE, R2, k, k', m and n as well
as Rm

2 values for all data sets including training, validation and test-
ing are shown in Table 7. As can be seen, the high ability and validity
of the ANN model is clearly shown.

The regression plots, shown in Fig. 2, show the ANN predic-
tions with respect to experimental values for all three data sets, i.e.,
training, validation, and test sets. For an ideal fit, the points should

lie along a 45o line, where the ANN estimations are equal to the
actual values. As shown, the results are very good for three data sets
as R values in each case are 0.99929 or above.

3D illustration of surface tension of binary mixtures as a func-
tion of IL concentration and temperature for different binary sys-
tems is in Figs. 3-5. According to the figures, the goodness of ANN
approach to predict solubility of surface tension of binary mixtures
is acceptable for the whole range of temperature and IL concentration.

Table 7. Calculated values of different statistics for the training, val-
idation and test data set

Training data Validation data Testing data
MSE 7.32707E-08 7.36649E-08 1.70672E-07
MAE 1.60619E-04 1.84412E-04 1.52674E-04
MRSE 4.02002E-05 3.80531E-05 5.66226E-05
MRAE 4.30232E-03 4.51578E-03 3.82851E-03
R 9.99641E-01 9.99625E-01 9.99293E-01
R2 9.99283E-01 9.99250E-01 9.98587E-01
Bf 9.99749E-01 1.00013E+00 1.00108E+00
Af 1.00431E+00 1.00453E+00 1.00385E+00
k 1.00043E+00 1.00020E+00 9.97914E-01
k' 9.99523E-01 9.99751E-01 1.00197E+00
m 7.15405E-04 7.49547E-04 1.36117E-03
n 7.14767E-04 7.49211E-04 1.36623E-03
Rm

2 9.72564E-01 9.71903E-01 9.61771E-01

Fig. 2. Regression plots of ANN for prediction of surface tension of binary systems containing ILs.
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Furthermore, Fig. 6 shows the RAE% of all data points in the
form of the percentage samples in each range of RAE%. As shown,
92.25% ANN predictions were in the error range of 0-1% and
0.13% of ANN model prediction had errors exceeding 6% and the
maximum RAE% was 6.37%. Taking all above-mentioned consid-
erations into account, it can be concluded that the ANN model

can be used as a very competent and highly precise scheme to pre-
dict the surface tension of binary systems containing ILs.

To determine relative importance of the input variables on the
desired target of this study that is surface tension of IL binary mix-
tures, a statistical method has been implemented. The obtained
results from the statistical analysis are exhibited in Fig. 7. As shown,
the normal boiling point of non-IL component has the highest effect
on the surface tension of investigated binary systems based on F
value.
4. Comparison of the Used Model vs. the Others

The capability and feasibility of the used ANN model for predict-
ing the surface tension of different binary systems containing ILs
was compared to other computational intelligence schemes includ-
ing support vector machine (SVM), least squared support vector
machine optimized by genetic algorithm (GA-LSSVM) and least
squared support vector machine optimized by coupled simulated
annealing (CSA-LSSVM) [34] from MRAE point of view. Error anal-
ysis reported in Table 8 shows that the proposed ANN prediction
model which was trained by trainbr (MRAE% of 0.44) appears
more competent to correlate the binary surface tension compared
with the three models of ANN with one hidden layer trained by
trainlm algorithm (MRAE % of 1.06) [46], SVM (MRAE % of
3.71) [34], CSA-LSSVM (MRAE% of 1.07) [34] and GA-LSSVM
(MRAE % of 1.87) [34] based on the same data for 21 distinct binary
systems. Note that the ANN which used trainlm as learning algo-
rithm [46] considered temperature, mole fraction together with the
melting point and molecular weight of the IL and non-IL compo-
nents as model input variables to differentiate between the various
compounds involved in binary systems, while the density of IL

Fig. 3. 3D diagram of surface tension of binary mixture ethanol &
[BMIM][L-lactate] as a function of temperature and concen-
tration of IL component.

Fig. 4. 3D diagram of surface tension of binary mixture methanol
& [BMIM][L-lactate] as a function of temperature and con-
centration of IL component.

Fig. 5. 3D diagram of surface tension of binary mixture dimethyl
sulfoxide & [EMIM][TF2N] as a function of temperature and
concentration of IL component.

Fig. 7. Relative importance of input parameters on dependent vari-
able (surface tension of binary mixtures).

Fig. 6. Distribution of the RAE% of the ANN outputs from the cor-
responding experimental values of binary surface tension.
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and boiling point temperature of non-IL instead of melting point
of IL and non-IL components were selected in this study the same
as SVM, GA-LSSVM and CSA-LSSVM models [34]. Although
Lashkarbolooki [46] used a simpler network (with one hidden layer
instead of two) than the current model, the ANN model trained
by trainbr in this study yielded more accurate outputs.

Moreover, three prediction models proposed by Atashrouz et al.
[6], named GA-SVM, GA-LSSVM and group method of data han-
dling type polynomial neural network (GMDH-PNN), which con-
sidered temperature, mole fraction of IL, together with the surface
tension of pure components as model input variables, were selected
as comparative models in order to show the advances and signifi-

Table 8. Comparison of the used ANN algorithm with other methods in terms of MRAE%

No. Binary system
MRAE%

ANN [46]
trained with trainlm

SVM
[34]

GA-LSSVM
[34]

CSA-LSSVM
[34]

ANN trained
with trainbr

01 1-Octene/[HMIM] [TF2N] 2.07 03.12 0.98 1.09 0.79
02 Dimethyl sulfoxide/[BMIM] [TF2N] 0.34 01.77 1.53 0.62 0.20
03 Dimethyl sulfoxide/[EMIM] [TF2N] 0.34 02.81 0.92 0.20 0.23
04 Acetonitrile/[BMIM] [TF2N] 0.41 03.32 0.72 0.18 0.19
05 Tetrahydrofuran/ [BMIM] [TF2N] 1.30 02.61 0.23 0.24 0.16
06 Water/[BMIM] [BF4] 2.62 05.56 5.88 4.05 0.97
07 Water/[EMIM] [BF4] 0.87 03.48 3.90 1.70 0.37
08 Ethanol/[BMIM] [BF4] 0.66 03.80 1.71 0.93 0.77
09 Ethanol/[HMIM] [BF4] 1.28 02.06 0.42 0.58 0.63
10 Ethanol/[OMIM] [BF4] 0.81 01.85 0.45 0.15 0.42
11 Water/[HMIM] [BF4] 0.25 02.28 0.13 0.01 0.28
12 Ethanol/[EMIM] [BF4] 0.58 12.22 2.60 0.25 0.45
13 Water/[EMIM] [OS] 2.39 05.73 5.59 4.66 0.44
14 Ethanol/[EMIM] [OS] 0.23 02.00 0.74 0.14 0.23
15 Water/[EMIM] [ES] 1.12 05.94 3.18 1.51 0.28
16 Ethanol/[EMIM] [ES] 0.49 01.89 0.20 0.41 0.32
17 1-Butanol/[BMIM] [TF2N] 2.14 02.59 1.33 0.39 0.52
18 1-Propanol/[BMIM] [TF2N] 1.63 02.91 0.81 1.46 0.48
19 Methanol/[EMIM] [MS] 0.96 03.07 0.80 0.34 0.44
20 Ethanol/[EMIM] [MS] 0.55 03.06 1.51 0.46 0.40
21 1-Butanol/[EMIM] [MS] 1.32 05.88 5.73 3.04 0.72

Average 1.06 03.71 1.87 1.07 0.44

Table 9. Comparison of the GA-SVM, GA-LSSVM, GMDH-PNN [6] and ANN models for prediction of surface tension of 13 binary mixtures

No. Binary system
MRAE%

GA-LSSVM GA-SVM GMDH-PNN ANN
01 Dimethyl sulfoxide/[BMIM] [TF2N] 0.58 0.92 2.45 0.20
02 Dimethyl sulfoxide/[EMIM] [TF2N] 0.37 0.68 1.74 0.23
03 Acetonitrile/[BMIM] [TF2N] 0.56 0.91 2.60 0.19
04 Tetrahydrofuran/[BMIM] [TF2N] 0.82 0.83 1.30 0.16
05 Ethanol/[BMIM] [BF4] 2.57 0.88 7.87 0.77
06 Ethanol/[HMIM] [BF4] 1.12 0.55 3.10 0.63
07 Ethanol/[OMIM] [BF4] 3.54 3.48 1.35 0.42
08 Water/[HMIM] [BF4] 3.67 5.94 1.48 0.28
09 Water/[EMIM] [BS] 1.02 0.96 2.26 1.01
10 Ethanol/[EMIM] [OS] 1.36 1.09 3.30 0.23
11 Ethanol/[EMIM] [HS] 1.61 1.43 2.76 0.42
12 1-Butanol/[BMIM] [TF2N] 3.27 2.45 8.22 0.52
13 1-Propanol/[BMIM] [TF2N] 0.94 1.56 3.40 0.48

Average 1.65 1.67 3.22 0.43
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cance of the ANN model in the current research based on the same
data for 13 distinct binary systems. Table 9 indicates the proposed
ANN model in this study has lower MRAE% value against others.
Atashrouz et al. [6] developed two different models for organic based
mixtures and water based mixtures, while in this study just one
integrated model based ANN which can be successfully used for
both organic based mixtures and water based mixtures, presented.

Apparently, from the figures and statistical analyses, the proposed
model exhibits the best performances for such prediction. As shown
in Tables 8 and 9, we can note the superiority of the ANN with two
hidden layers and trainbr as training function to SVM, GA-LSSVM,
CSA-LSSVM, ANN trained by trainlm and GMDH-PNN. Statis-
tical criteria presented in Tables 6 and 7 record the proposed model
could predict surface tension of binary mixtures containing ILs,
with high precision, and the good correlations presented by R and
R2 illustrate that the predicted data are consistent with experimen-
tal values.

CONCLUSION

The ANN model with two hidden layers and trained by trainbr
algorithm has been utilized by for prediction of the surface tension
of binary mixtures containing 31 diverse ILs based on the opera-
tional temperature (T), the IL component compositions (xIL), molec-
ular weight of IL components (MwIL) and density of IL components
(IL) along with the boiling point (Tbnon-IL) and molecular weight
(Mwnon-IL) of non-IL component. 748 of data points were gathered
from diverse literature resources to employ in the ANN model as
training, validation and testing data points. The following conclu-
sions can be drawn:

(1) Very reasonable results were obtained with the proposed
ANN method. This fact is supported by the acceptable statistical
quality confirmed by various parameters, and the low errors of the
ANN model results indicate that it can accurately predict the sur-
face tension of binary mixtures including ILs which is of great
practical significance.

(2) The binary surface tension predictions trend is also concor-
dant with the experimental.

(3) In addition to the high precision of the obtained results, the
most important advantage of the method suggested in this study is
that it correlated the values obtained exclusively from experimen-
tal data, which is an important feature for the scientific commu-
nity and engineers in using such model with confidence.

(4) Compared with the traditional computation approaches, such
as cubic plus association (CPA) equation of state, PVT corrections
caused by the effect of high pressure and temperature are not
required in applying ANN model, and give high accuracy. Also, it
presents excellent prediction competence and high precision ver-
sus other algorithms, such as SVM, GA-SVM, CSA-LSSVM, GA-
LSSVM, GMDH-PNN and ANN trained with one hidden layer
and trainlm as training function.
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