A novel CCU approach of CO₂ by the system 1,2-ethylenediamine+1,2-ethylene glycol

Bo Guo, Tianxiang Zhao, Feng Sha, Fei Zhang, Qiang Li, and Jianbin Zhang†

College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China (Received 7 September 2015 • accepted 25 January 2016)

Abstract−As a new, effective CO2 fixation system, 1,2-ethylenediamine and 1,2-ethylene glycol (EDA+EG) can efficiently activate CO₂ and directly convert it into a novel CO₂-storage material (CO₂SM) with 46.3% yield. The aqueous $CO₂SM$ solution can react with $Ca(OH)₂$ -saturated limpid solution to generate morphology-controllable CaCO₃ microparticles with additional CO₂ bubbling and Ca(OH)₂. Additionally, the aqueous EDA+EG solution could be recycled multiple times without significant loss of $CO₂$ capturing and releasing capabilities.

Keywords: CO₂ Capture, Storage and Utilization, CO₂-storage Material, Absorption-desorption Cycle, CaCO₃ Microparticle

INTRODUCTION

In an effort to control the concentration of atmospheric carbon dioxide $(CO₂)$, a very important greenhouse gas produced by various industrial processes [1-5], the reduction, capture or utilization of CO2 has become one of the greatest scientific and technological challenges in the 21st century $[6-9]$. $CO₂$ capture and storage/sequestration (CCS) [10-13] into adsorbents [14-17] has been mainly based on the adsorption [18] and membrane separation technology [19,20]. Compared with CCS, a $CO₂$ capture and utilization (CCU) approach [21] would be more attractive because it would not only consume thermodynamically stable CO₂ but also produce value-added chemicals [22-24]. For example, numerous systems based on liquid primary or secondary amines have been developed [25,26] to chemically convert $CO₂$ into carbamic acids and the corresponding ammonium carbamates. Then, dehydration of the generated ammonium carbamates could generate substituted ureas and the fixed $CO₂$ could be released upon heating. However, these processes have major drawbacks, such as a corrosive nature and volatility of the amines, their occasional decomposition and the high energy cost of their regeneration [27-32]. Jeesop et al. [33-36] reported an innovative class of $CO₂$ binding organic liquids ($CO₂BOLs$), amidinium or guanidinium alkylcarbonate salts with good reactivity and high absorption capacity, which were generated from an alcohol and an amidine (or guanidine) superbase. Nevertheless, these systems are still expensive and are not able to attract significant industrial attention.

It has been known that 1,2-ethylenediamine (EDA) can react readily with $CO₂$ with an absorption ability of about 0.46 mol $(CO₂)$ / mol(EDA) [37]; however, the volatility of EDA significantly reduces its $CO₂$ absorption ability. Park et al. [38] reported that amidines could react efficiently with CO₂ to produce alkylcarbonate salts in the presence of an alcohol, and it was believed that the hydrogen bonding interactions and the hydrogen bonded structures in the

E-mail: tadzhang@pku.edu.cn

Fig. 1. A simplified process flow diagram of EDA+EG based CCU, the process by which the system EDA+EG was used to react with CO₂ under mild condition. A potential application of alkylcarbonate salts (CO₂SM) would take advantage of release CO₂ of CO₂SM as original materials to develop power CaCO₃ **materials. And the aqueous EDA+EG solution was recycled** multiple times to $CO₂$ capturing and releasing without any important loss of CO₂ capability.

amine-alcohol mixed solvents decreased the loss of amines [39,40]. In this study, an anhydrous system of EDA and EG (1 : 1 molar ratio) was developed to capture, store, and convert CO₂ into CO₂SM at room temperature under atmospheric pressure, as shown in Fig. 1. The captured $CO₂$ could be released from the aqueous $CO₂SM$ solution to react with the $Ca(OH)_{2}$ -saturated limpid solution repeatedly, thus continuously producing CaCO₃ microparticles with controlled morphologies.

MATERIALS AND METHODS

1. Materials

The analytical grade EG was purchased from Beijing Reagent

Copyright by The Korean Institute of Chemical Engineers.

Company (Beijing, China, Content ≥99.0%). The analytical grade EDA was purchased from Beijing Reagent Company (Beijing, China, Residue on ignition ≤0.1%). They were used after drying over 0.4 nm molecular sieves and decompression filtration before measurements, and were degassed by ultrasound just before the experiments. The purity of final EG, as found by gas chromatograph (GC), was better than 99.3%. The compressed pure $CO₂$ (99.999% vol) gas was purchased from the Beijing Gas Company. Deionized water was used throughout the experiments. All other reagents used were analytical grade and were used without further purification.

2. Conversion of CO₂ into CO₂SM

 $CO₂$ was bubbled through approximately 40 g of the EDA+EG (1 : 1 mole ratio) solution continuously for about 90 min under mild conditions, and the weight, temperature, and electrical conductivity changes were recorded every minute. The electrical conductivity of solution was measured with a highly sensitive conductivity meter (DDSJ-308A) having a temperature accuracy of ±0.02K. The EDA+EG system was also used to capture $CO₂$ into solid $CO₂SM$. The as-made $CO₂SM$ was washed with ethanol and dried under vacuum at 60 °C for 3 h. XRD measurements were carried out on a Siemens D/max-RB powder X-ray diffractometer with a 2θ range of 10-70°. FTIR spectra of solid samples were taken as 1% dispersion on a Nexus 670 FTIR spectrometer with a resolution of 2θ range of 10-70°. FTIR spectra of solidispersion on a Nexus 670 FTIR spectra 1 cm^{-1} in the range of 4,000-400 cm⁻¹ 1 cm^{-1} in the range of 4,000-400 cm⁻¹, and a base line correction was made for the spectra recorded in air at room temperature. ¹³C-NMR spectrum was recorded on a Bruker ARX-400 nuclear magnetic resonance spectrometer with a 4 mm standard CP/MAS probe.

3. Properties and Utilization of CO₂SM

For thermogravimetric analysis (TGA, Entzsch-Sta 449) of CO₂SM, the sample was heated to 400 °C at a heating rate of 10 °C/ min under a flow of nitrogen. For stability tests, CO₂SM powder was made into tablets and then exposed to air and sunlight for 100 d. In addition, an aqueous $CO₂SM$ solution was reacted with a $Ca(OH)_2$ -saturated limpid solution at 100 °C for 1 h to afford $CaCO_3$ microparticles with controlled morphologies. The as-obtained CaCO₃ was washed with water and ethanol, and dried under vacuum at 120 °C for 5 h. The absorption-preparation cycles were carried out similarly, in which the aqueous $CO₂SM$ solution reacted with the $Ca(OH)_2$ -saturated limpid solution to afford $CaCO_3$ microparticles, and then the filtrate with EDA and EG but without $CaCO₃$ precipitate was reused to absorb $CO₂$. After the adsorption of $CO₂$, an appropriate amount of $Ca(OH)_{2}$ solution was added into the absorbent system to prepare the $CaCO₃$ precipitate again.

4. Absorption-desorption Processes

Absorption-desorption cycles of the aqueous EDA+EG system with $CO₂$ were at an absorption temperature of 20 °C and a desorption temperature of 97 °C under ambient pressure. The absorption process was conducted for 15 min and desorption for 90 min. All reactions were in a 100 mL gas-washing bottle, and the mass was measured on an electronic balance with an accuracy of 0.1 mg (Sartorius BS224S). Desorption experiments were carried out after the absorption. The CO₂-saturated absorption system was heated in a pre-heated oil bath. The absorption-desorption cycle was continued after the system was cooled.

RESULTS AND DISCUSSION

1. Mechanism Study of Absorbing CO₂

Before the $CO₂$ absorption capability of the EDA+EG system was determined, the absorption of $CO₂$ in pure EDA or EG was studied under the same conditions. Results showed that the pure EDA reacted rapidly with bubbling $CO₂$ to become a viscous liquid. Because the reaction was exothermic, the solution temperature reached 100 °C. The maximum $CO₂$ absorption capability was about $0.46 \text{ mol(CO}_2)/\text{mol(EDA)}$. In contrast, the maximum $CO₂$ absorption capability in pure EG was about 0.0031 mol $(CO₂)$ / mol(EG), suggesting that EG had a very weak action on $CO₂$. Additionally, no solid product was formed in either pure EDA or pure EG with bubbling $CO₂$.

Although EDA could strongly absorb $CO₂$, volatilization of EDA reduced its $CO₂$ absorption capabilities significantly. Because of the close intermolecular interactions formed when the molar ratio of EDA to EG was $1:1$ [40], in this study, $CO₂$ absorption capability, temperature, and conductivity of the EDA+EG system with 1 : 1 molar ratio were recorded and shown in Fig. 2.

As shown in Fig. 2(a), weight of product was increased with increasing reaction time. The reaction was complete within about 20 min, and the maximum $CO₂$ absorption capacity reached about $0.79 \text{ mol}(\text{CO}_2)/\text{mol}(\text{EDA})$, which was higher than that of various aqueous alkanolamines [41-43], including MEA (0.4628 mol $CO₂$ per mol amine), DEA $(0.2360 \text{ mol } CO₂$ per mol amine), TEA $(0.1944$ mol $CO₂$ per mol amine), DGA (0.7796 mol $CO₂$ per mol amine), and MDEA $(1.3442 \text{ mol } CO₂$ per mol amine). The temperature change of the solution (Fig. 2(b)) showed that the process was exothermic and that the system reached its maximum temperature within about 20 min. After the reaction was finished and the temperature had reached its highest point, the temperature dropped upon the formation of dope, which attenuated the mass transfer of the system. As shown in Fig. 2(c), the initial conductivity of the anhydrous EDA+EG system was $32.8 \mu\text{S/cm}$. When the $CO₂$ was bubbled, its conductivity was increased rapidly as an ionic com-

Fig. 2. The variation of weight (a), temperature (b), and electrical conductivity (c) changes for EDA+EG system at CO₂ flow **rate of 250 ml/min.**

Fig. 3. The reaction process of EDA+EG with CO₂ at various time.

Fig. 4. XRD spectrum of CO₂SM.

Fig. 5. FTIR spectrum of CO₂SM.

pound was formed. The maximum conductivity was about 4,560 μS/cm. Nevertheless, with the longer reaction times, the solution became more and more viscous, and as ion movement was hindered, the conductivity was decreased. In both cases, the reaction system appeared cloudy at the end of the reaction due to the formation of a fine suspension of a white solid CO₂SM as shown in

Fig. 6. ¹³C-NMR spectrum of CO₂SM.

Fig. 3.

The as-made $CO₂SM$ was washed three times with ethanol and dried for 3 h. The dried CO₂SM was characterized with XRD (Fig. 4), FTIR (Fig. 5) and ¹³C-NMR (Fig. 6). The XRD pattern showed that CO_2SM had characteristic peaks at 17.58° , 21.54° , 22.46° , 25.65° , 29.30° and 35.35°, which is similar to the peak pattern found with ethlenediamine carbamate $(-NH-CO₂)$ characteristic diffraction peaks.

as shown in Fig. 5, the peak at 3,308 cm⁻¹ was assigned to the etching vibration of N-H [44,45] and characteristic peak of pri-
etching vibration of N-H [44,45] and characteristic peak of pri-
ary ammonium salts (NH⁺) stretching vibration of N-H [44,45] and characteristic peak of pri-
stretching vibration of N-H [44,45] and characteristic peak of pri-
mary ammonium salts (NH₃) was found at 2,185 cm⁻¹ [21]. The
peak at 1,637 cm⁻¹ mary ammonium salts (NH_3^+) was found at 2,185 cm⁻¹ [21]. The ,637 cm⁻¹ was assigned to the deformation of NH₃⁺ [46], mary ammonium salts (NH₃⁺) was found at 2,185 cm⁻¹ [21]. The peak at 1,637 cm⁻¹ was assigned to the deformation of NH₃⁺ [46], 1,575 cm⁻¹ and 1,483 cm⁻¹ were attributed to -CO₂⁻ asymmetric and −shows that stretching vibrations (4.143) was solid at 2,109 cm
1,575 cm⁻¹ and 1,483 cm⁻¹ were attributed to -CO₂ asy
symmetric stretching vibrations [47-50] and 1,329 cm⁻¹ symmetric stretching vibrations $[47-50]$ and $1,329$ cm⁻¹ was assigned to N - CO_2^- skeletal vibrations [46]. However, the out-of-plane vibration of bicarbonate anion appeared at 835 cm⁻¹ cm−1.32 cm−1.32 cm−1.52 skeletal vibrations [45]. However, the tion of bicarbonate anion appeared at 835 cm⁻¹ tion of bicarbonate anion appeared at 835 cm^{-1} [51,52]. Therefore, the as-obtained solid product was likely composed of alkylcarbonate salts.

To further determine the alkylcarbonate salt rather than the bicarbonate [53], a ¹³C-NMR spectrum of the solid $CO₂SM$ was obtained as shown in Fig. 6.

The new peak at 164.45 ppm was consistent with an alkylcarbonate salt [54,55] because the bicarbonate anion is often found at 160.4 ppm [51]. Peaks at 41.09 and 38.54 ppm were assigned to the $-CH_{2}$ - [49]. Therefore, according to these results and our previous work [40], a possible formation mechanism of CO₂SM was proposed (Scheme 1). Similarly, Jessop et al. [33-36,56] also presented a class of $CO₂$ binding organic liquids ($CO₂BOL$) which produced amidine or guanidine alkylcarbonate salts from an alcohol and an amidine or guanidine superbase.

2. Characteristic and Utilization of CO₂SM

As shown in Fig. 7, a TGA of $CO₂SM$, the decomposition of $CO₂SM$ began approximately at 60 °C with small quantities of $CO₂$

$$
\begin{array}{c}\nO & O \\
\uparrow \\
n H_2NCH_2CH_2NH_2 + n HOCH_2CH_2OH \xrightarrow{\text{CO}_2} H_3NCH_2CH_2NH_3 \xrightarrow{\text{\textcircled{0}}}\n0 & 0 & 0 \\
\uparrow \\
\uparrow \\
\Delta & \downarrow \\
\end{array}
$$

Scheme 1. EDA+EG system react with $CO₂$ give to alkylcarbonate salt.

Fig. 7. Thermogravimetric analysis curves of CO₂SM.

and EDA released. Decomposition accelerated at about 95 °C with more CO₂ released. At about 118 °C, a large exothermic peak was observed because the thermal decomposition of EDA and the release of CO₂ were completed.

Additionally, when the $CO₂SM$ powder was made into tablets and exposed to air and sunlight for 100 d, CO₂SM was found to be stable (Fig. S1).

3. Preparation of CaCO₃

Based on the TGA result, CO_2SM could release CO_2 at 100 °C. The $CO₂$ released from the aqueous $CO₂SM$ solution could then react with the $Ca(OH)_{2}$ -saturated limpid solution to generate $CaCO_{3}$ microparticles via hydrothermal synthesis at 100 °C within 1 h. Most importantly, the as-released EDA and EG from those processes could act as surfactants. Therefore, the as-made CaCO₃ mor-
phology could be controlled by adjusting the CO₂SM concentration.
For example, belt shaped product was obtained using 0.6 g·L^{−1} of phology could be controlled by adjusting the $CO₂SM$ concentration. For example, belt shaped product was obtained using $0.6 \text{ g} \cdot L^{-1}$ of phology could be controlled by adjusting the CO₂SM concentration.
For example, belt shaped product was obtained using $0.6 \text{ g} \cdot L^{-1}$ of CO₂SM, while spherical shaped was obtained using 60 $\text{g} \cdot L^{-1}$ of $CO₂SM$ (Figs. 8 and 9). These results indicated that there were different phases of $CaCO₃$ under different concentrations of $CO₂SM$. Furthermore, the filtrate containing EDA and EG without CaCO₃ precipitate could be reused to absorb $CO₂$. After the adsorption of $CO₂$, CaCO₃ precipitate was formed with an appropriate amount of $Ca(OH)_{2}$ solution added into the absorbent system. $CaCO_{3}$ microspheres still could be produced smoothly at 100 °C within

Fig. 9. FTIR spectra of morphologies CaCO₃ material from the reaction of CO₂SM with Ca(OH)₂ via hydrothermal synthesis at 100 °C for 1 h, in which the concentration of CO₂SM were **0.6 g**·L^{−1} (a) and 60 g·L^{−1} (b), respectively.
 0.6 g·L^{−1} (a) and 60 g·L^{−1} (b), respectively.

Fig. 10. FTIR spectra of the circular preparation of CaCO₃ micro**spheres. (a)-(e) represents the number of experiments.**

1 h after five-successive absorption-preparation cycles. FTIR results (Fig. 10) showed that all $CaCO₃$ particles had the same phase. These results showed that the filtered solution without $CaCO₃$ pre-

Fig. 8. SEM images of morphologies CaCO₃ material from the reaction of CO₂SM with Ca(OH)₂ via hydrothermal synthesis at 100 °C for **1 h, in which the concentration of CO₂SM were 0.6 g·L^{−1} (a) and 60 g·L^{−1}** 1 h, in which the concentration of CO_2SM were $0.6g \cdot L^{-1}$ (a) and $60g \cdot L^{-1}$ (b), respectively.

Fig. 11. Reversible CO₂ capture and release by the 15 wt% aqueous EDA+EG system, where capture was performed at 20 °C and atmospheric pressure with a CO₂ flow rate of 250 ml/ min and release at 97 °C with stirring.

cipitate could not only be used to absorb $CO₂$ repeatedly, but also to produce $CaCO₃$ microspheres repeatedly after the additional bubbling of $CO₂$ into the aqueous $CO₂SM$ solution.

4. Absorption-desorption Cycles

Typically, $CO₂$ absorption with the aqueous EDA+EG (molar ratio 1:1) system was conducted at 20 °C under an atmospheric pressure and sample weight changes were recorded with an electronic balance. According to the TGA curve (Fig. 7), desorption of $CO₂$ from the loaded solution was carried out at 97 °C with stirring until no CO₂ was released from the solution, which lasted for 90 min. The continuous cycling of $CO₂$ absorption-desorption was as shown in Fig. 11.

As shown in Fig. 11, the aqueous EDA+EG solution could be recycled at least for five continuous absorption-desorption cycles without any significant loss of $CO₂$ capturing and releasing capability. The regeneration temperature, lower than that of the traditional MEA system, was in the range of $100-140\degree C$ [57], probably due to the much lower thermostability of the formed alkylcarbonate salts. The maximum $CO₂$ loading capacity reached 1.2602 mol $(CO₂)/mol(EDA)$ [41-43] in the absorption-desorption cycles, Therefore, the aqueous EDA+EG (molar ratio 1 : 1) system could provide high loading capacity, stable absorption-desorption cycles, and low energy requirements for the industry to not only attenuate the volatilization of EDA, but also to capture and utilize $CO₂$ with limited energy loss.

CONCLUSION

The anhydrous $EDA+EG$ system can absorb $CO₂$ under mild conditions to form the novel solid CO₂SM by alkylcarbonate chemical binding, in which EG could successfully fix EDA to significantly decrease the loss of EDA due to volatilization. The aqueous $CO₂SM$ solution can react with the $Ca(OH)₂$ -saturated limpid solution to generate CaCO₃ microparticles with controllable morphologies. Additionally, the aqueous EDA+EG solution can have strong $CO₂$ absorption capability after multiple cycles of absorption (20 $^{\circ}$ C under an atmospheric pressure) and desorption (97 °C with stirring).

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (21166017), the Research Fund for the Doctoral Program of Higher Education of China (20111514120002), the Inner Mongolia Science and Technology Key Projects, the Program for Grassland Excellent Talents of Inner Mongolia Autonomous Region, Program for New Century Excellent Talents in University (NCET-12-1017), and the Inner Mongolia Talented People Development Fund.

SUPPORTING INFORMATION

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/ journal/11814.

REFERENCES

- 1. P. Mores, N. Scenna and S. Mussati, Energy, **45**, 1042 (2012).
- 2. K. Han, C. K. Ahn, M. S. Lee, C. H. Rhee, J. Y. Kim and H. D. Chun, Int. J. Greenh. Gas Con., **14**, 270 (2013).
- 3. F. F. Li, Z. H. Yang, R. Zeng, G. Yang, X. Chang, J. B. Yan and Y. L. Hou Ind. Eng. Chem. Res., **50**, 6496 (2011).
- 4. M. Zaman and J. H. Lee, Korean J. Chem. Eng., **30**, 1497 (2013).
- 5. S. C. Ma, G. D. Chen, T. T. Han, S. J. Zhu and J. Yang, Int. J. Greenh. Gas Con., **37**, 249 (2015).
- 6. R. Carapellucci, L. Giordano and M. Vaccarelli, Energy, **85**, 594 (2015).
- 7. A. Goeppert, M. Czaun, G. K. S. Prakash and G. A. Olah, Energy Environ. Sci., **5**, 7833 (2012).
- 8. A. J. Hunt, E. H. K. Sin, R. Marriott and J. H. Clark, ChemSus-Chem., **3**, 306 (2010).
- 9. V. Barbarossa, F. Barzagli, F. Mani, S. Lai, P. Stoppioni and G. Vanga, RSC Adv., **3**, 12349 (2013).
- 10. R. Sathre, M. Chester, J. Cain and E. Masanet, Energy, **37**, 540 (2012).
- 11. H. Li, M. Ditaranto and D. Berstad, Energy, **36**, 1124 (2011).
- 12. H. Jin, L. Gao, W. Han and H. Hong, Energy, **35**, 4499 (2010).
- 13. J. P. Sculley and H. C. Zhou, Angew. Chem. Int. Ed., **51**, 12660 (2012).
- 14. D. Bonenfant, M. Mimeault and R. Hausle, Ind. Eng. Chem. Res., **42**, 3179 (2003).
- 15. D. Camper, J. E. Bara and D. L. Gin, Ind. Eng. Chem. Res., **47**, 8496 (2008).
- 16. H. Seo, D. Y. Min, N. Y. Kang, W. C. Choi, S. Park, Y. Park and D. K. Lee, Korean J. Chem. Eng., **32**, 51 (2015).
- 17. T. Wang and K. Jens, Int. J. Greenh. Gas Con., **37**, 354 (2015).
- 18. J. Y. Wang, L. Huang, R. Y. Yang, Z. Zhang, J. W. Wu, Y. S. Gao, Q. Wang, D. O. Hare and Z. Y. Zhong, Energy Environ. Sci., **7**, 3478 (2014).
- 19. M. T. Ho, G. W. Allinson and D. E. Wiley, Ind. Eng. Chem. Res., **47**, 1562 (2008).
- 20. J. Huang, J. Zou and W. S. Winston, Ind. Eng. Chem. Res., **47**, 1261 (2008).
- 21. D. J. Heldebrant, P. K. Koech, T. M. Ang, L. Chen, J. E. Rainbolt, C. R. Yonkera and P. G. Jessop, Green Chem., **12**, 713 (2010).
- 22. M. D'Alessandro, B. Smit and J. R. Long, Angew. Chem. Int. Ed., **49**, 6058 (2010).
- 23. W. Jones and E. J. Maginn, ChemSusChem., **3**, 863 (2010).
- 24. Y. Takeda, S. Okumura, I. Sasaki and S. Minakata, Org Lett., **14**, 4874 (2012).
- 25. S. Kim, J. Kang, J. Lee and B. Min, Korean J. Chem. Eng., **28**, 2275 (2011).
- 26. H. Lepaumier, D. Picq and P. L. Carrette, Ind. Eng. Chem. Res., **48**, 9061 (2009).
- 27. G. S. Goff and G. T. Rochelle, Ind. Eng. Chem. Res., **45**, 2513 (2006).
- 28. C. Gouedard, D. Picq, F. Launay and P. L. Carrette, Int. J. Greenh. Gas Con., **10**, 244 (2012).
- 29. M. Karl, R. F. Wright, T. F. Berglen and B. Denby, Int. J. Greenh. Gas Con., **5**, 439 (2011).
- 30. F. Mani, M. Peruzzini and P. Stoppioni, Green Chem., **8**, 995 (2006).
- 31. K. Veltman, B. Sing and E. G. Hertwich, Environ. Sci. Technol., **44**, 1496 (2010).
- 32. C. Zheng, J. Tan, Y. J. Wang and G. S. Luo, Ind. Eng. Chem. Res., **51**, 11236 (2012).
- 33. P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert and C. L. Liotta, Nature, **436**, 1102 (2005).
- 34. X. Su, M. F. Cunningham and P. G. Jessop, Chem. Commun., **49**, 2655 (2013).
- 35. X. Su, T. Robert, S. M. Mercer, C. Humphries, M. F. Cunningham and P. G. Jessop, Chem. Eur. J., **19**, 5595 (2013).
- 36. P. G. Jessop, L. Phan, A. Carrier, S. Robinson, C. J. Durr and J. R. Harjani, Green Chem., **12**, 809 (2010).
- 37. Y. Liu, P. G. Jessop, M. F. Cunningham, C. A. Eckert and C. L. Liotta, Science, **313**, 958 (2006).
- 38. M. Kim and J. Park, Chem. Commun., **46**, 2507 (2010).
- 39. R. J. Sengwa, K. Klimaszewski and A. Borun, J. Chem. Eng. Data,

57, 3164 (2012).

- 40. C. P. Li, J. B. Zhang, T. Zhang, X. H. Wei, E. Zhang, N. Yang, N. N. Zhao and M. Su, J. Chem. Eng. Data, **55**, 4104 (2010).
- 41. U. Maheswari and K. Palanivelu, *J. CO₂ Utilization*, **6**, 45 (2014).
- 42. J. Li, C. You, L. Chen, Y. Ye, Z. Qi and K. Sundmacher, Ind. Eng. Chem. Res., **51**, 12081 (2012).
- 43. J. Li, L. Chen, Y. Ye and Z. Qi, J. Chem. Eng. Data, **59**, 1781 (2014).
- 44. J. P. Shang, S. M. Liu, X. Y. Ma, L. J. Lu and Y. Q. Deng, Green Chem., **14**, 2899 (2012).
- 45. H. B. Wang, P. G. Jessop and G. J. Liu, ACS Macro Lett., **1**, 944 (2012).
- 46. C. S. Srikanth and S. S. C. Chuang, J. Phys. Chem. C, **117**, 9196 (2013).
- 47. V. Blasucci, C. Dilek, H. Huttenhower, E. John, V. Llopis-Mestre, P. Pollet, C. A. Eckert and C. L. Liotta, Chem. Commun., 116 (2009).
- 48. A. Danon, P. C. Stair and E. Weitz, J. Phys. Chem. C, 115, 11540 (2011).
- 49. A. Dibenedetto, M. Aresta, C. Fragale and M. Narracci, Green Chem., **4**, 439 (2002).
- 50. L. Phan, J. R. Andreatta, L. K. Horvey, C. F. Edie, A. L. Luco, A. Mirchandani, D. J. Darensbourg and P. G. Jessop, J. Org. Chem., **73**, 127 (2008).
- 51. D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert and C. L. Liotta, J. Org. Chem., **70**, 5335 (2005).
- 52. L. M. Scott, T. Robert, J. R. Harjani and P. G. Jessop, RSC Adv., **2**, 4925 (2012).
- 53. A. N. M. Peeters, A. P. C. Faaij and W. C. Turkenburg, Int. J. Greenh. Gas Con., **1**, 396 (2007).
- 54. F. Barzagli, F. Mani and M. Peruzzini, Energy Environ. Sci., **2**, 322 (2009).
- 55. A. Enrico, P. D. Eoghan, C. Laurie, B. A. Lawrence and R. B. Andrew, Sci. Rep., **4**, 7304 (2014).
- 56. D. J. Heldebrant, C. R. Yonker, P. G. Jessop and L. Phan, Energy Environ. Sci., **1**, 487 (2008).
- 57. M. Packer, Energy Policy, **37**, 3428 (2009).