
1047

Korean J. Chem. Eng., 33(3), 1047-1058 (2016)
DOI: 10.1007/s11814-015-0163-2

pISSN: 0256-1115
eISSN: 1975-7220

INVITED REVIEW PAPER

†To whom correspondence should be addressed.
E-mail: changjaee@uos.ac.kr
Copyright by The Korean Institute of Chemical Engineers.

Chemical potential and solid-solid equilibrium of near-spherical
Lennard-Jones dumbbell crystal

Sangwon Lee, Minkyu Kim, and Jaeeon Chang†

Department of Chemical Engineering, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul 130-743, Korea
(Received 16 June 2015 • accepted 26 July 2015)

Abstract−We studied the orientational order-disorder transition of crystals made up of near-spherical Lennard-Jones
dumbbells, of which reduced bond lengths are 0.225, 0.250 and 0.275. Various techniques of Monte Carlo (MC) simu-
lations are used to calculate the chemical potentials of ordered and disordered crystals, and thereby to predict order-
disorder phase transition. First, we performed NPT MC simulations to determine crystal structure, equilibrium posi-
tions and orientations of the molecules. We then calculated the free energies of the crystals using the expanded ensem-
ble MC simulations combined with the Einstein-molecule method and the thermodynamic integration method. The
solid-solid phase equilibrium is determined from the free energy profiles of the individual phases by equating the chemi-
cal potential. The predictions of phase transition obtained from the conventional NPT MC simulation and the free
energy simulation were in excellent agreement with each other, which confirms the validity of the present method of
calculating the chemical potential of crystal. In addition, the Gibbs-Duhem integration was performed to obtain a
complete coexistence curve between the two crystal phases. Orientational probability distributions of molecular axes
were analyzed to find the characteristic behavior of rotational motion of molecule in the crystal. At sufficiently low
temperature, flipping rotation of molecule in the ordered crystal is suppressed. In contrast, the flipping rotation occurs
at higher temperature close to the transition while orientationally ordered structure is still maintained. In the free-
energy calculation, such a unique rotational behavior requires to use a suitable form of external rotational potential
with proper symmetry number. The present study demonstrates how one can judiciously choose a correct simulation
scheme for the calculation of chemical potentials of molecular crystals.
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INTRODUCTION

An important application of statistical thermodynamics to solid
phase is to determine the most stable crystal structure from the
knowledge of intermolecular interactions among constituting mol-
ecules. Even for simple molecules like nitrogen and carbon diox-
ide, there exist a variety of crystal structures depending on tem-
perature and pressure of the system. Among many possible crys-
tal structures, a structure with the lowest chemical potential is real-
ized at equilibrium, and the collection of such knowledge on the
entire range of temperature and pressure is represented as phase
diagram. Therefore, the calculation of the chemical potential or
free energy is important to understand the thermodynamic behavior
of crystal system and plays a key role in predicting coexistence con-
dition for multiple phases.

For solid phase, the Einstein-crystal method developed by Fren-
kel and Ladd has been widely used [1,2], in which the classical
Einstein crystal of known free energy is used as a reference sys-
tem. The difference in the free energy between the reference and
real crystals is calculated by molecular simulations on a reversible
path characterized by a coupling parameter that bridges the refer-
ence and real crystals. Recently, Vega and Noya [3] proposed a vari-

ant of the Einstein-crystal methods, the so-called Einstein-molecule
method. Both methods are theoretically equivalent, and they give
the same value of the free energy within simulation uncertainty. In
practice, the Einstein-molecule method is easier to implement in
molecular simulations.

Most molecular crystals made up of small and non-spherical
molecules exist as orientationally ordered crystals in which the rota-
tional motion of the molecule is restricted due to high energy bar-
riers formed by its surrounding neighbors. This is in contrast to
the molecules in fluid phases in which they can assume any orien-
tations. The orientationally ordered crystal is non-ergodic in the
sense that only a fragment of orientational configuration space is
accessed in time by the evolution of physical process of the sys-
tem. There are other type of molecular crystals called orientation-
ally disordered crystals, i.e., plastic crystals in which molecule can
rotate within its lattice cell. The molecules forming plastic crystals
usually have near-spherical shapes such as methane, hexafluoro-
ethane, SF6, C60 and C70 fullerene molecules.

The entropy or free energy of molecular crystal should account
for the orientational degeneracy or symmetry number of mole-
cule [4,5]. The symmetry number plays the role of making quan-
tum mechanical correction so as not to overcount indistinguishable
orientational configurations. Whereas the symmetry number of a
molecule in gas or liquid phase is considered to be constant, the
symmetry number of the molecule in crystal depends on the extent
of packing given by surrounding neighbor molecules. In orienta-
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tionally disordered crystal, all the possible (but quantum mechani-
cally identical) orientational configurations are realized by physical
process, and the symmetry number is thus the same as that in the
fluid phases. For example, the symmetry number for high-tem-
perature C60 fullerene crystal is sixty [4], and for the phase I (plas-
tic crystal) of methane is twelve [6]. However, in orientationally
ordered crystal, only a single orientational state is realized out of
the many possible orientational states. For this reason, a proper value
of the symmetry number in the ordered crystal should be unity. It
is understood that the symmetry number depends upon not only
the inherent property of a molecule, but also the rotational charac-
teristics of the molecule in condensed phase [5].

However, there are a few exceptional cases for which it is diffi-
cult to have a unique value of symmetry number. In certain crys-
tals, some molecules can rotate in their lattice cells while the others
are rotationally confined. In this case, it is necessary to assign dif-
ferent symmetry number for each molecule in the unit cell. Another
problematic situation is related to orientational order-disorder tran-
sition. Far below transition temperature, the ordered crystal sys-
tem samples only a fragment of the orientational configuration space,
which is consistent with the symmetry number of unity. As tem-
perature becomes close to the transition temperature, some mole-
cules propelled with larger kinetic energy may cross over the rotational
barrier. The rotational barrier-crossing, which has been referred to
as orientational defect in the ordered crystal [4], actually occurs in
real systems. However, in the aspect of calculating entropy and free
energy it would be difficult to deal with such a sudden expansion
of the accessible region in the configuration space triggered by the
barrier-crossing. Thus, it is necessary to understand how we can
relate the symmetry number to the rotational characteristics of mol-
ecules in crystal and also to the functional form of external rota-
tional potential used in free energy calculations.

The main goal of the present work is to address how one can
cope with the aforementioned rotational barrier crossing occurred
in ordered crystal when calculating the free energy of the crystal
close to order-disorder transition. As a simple model, we consider
homonuclear Lennard-Jones dumbbell (LJ-d) of short bond length.
This near-spherical LJ diatomic model forms orientationally ordered
crystal at low temperature, while it forms orientationally disordered
crystal at high temperature prior to melting. Because of the small
anisotropy of the LJ-d model, the order-disorder transition may be
observed in conventional molecular simulations by varying the tem-
perature and pressure. Another advantage is that by using a well-
defined theoretical model any ambiguity in the intermolecular inter-
actions can be avoided. A closely related model is hard-sphere dumb-
bell model, for which many simulation studies have been done on
the orientational order-disorder transition. Singer and Mumaugh
[7] first predicted plastic crystal-fluid coexistence of fused hard dumb-
bells of the reduced bond length L*(=L/σ)<0.4 where L is the bond
length and σ is the size of segment. Monson and his coworkers
extensively studied the solid-fluid equilibria of the hard dumbbells
[8-10]. They predicted athermal order-disorder transitions among
the ordered crystals of CP1, CP2 and CP3 structures and disor-
dered (plastic) crystal of FCC structure. It was found that the dis-
ordered crystal phase of the hard dumbbells becomes stable at low
pressure when L*<0.38, and that among the ordered crystals the

CP1 structure, in which dumbbell molecules are arranged in an
ABC sequence similar to the FCC structure, is the most stable phase
at high pressure. Later, Vega et al. predicted the phase diagram of
tangential LJ diatomic model of L*=1 for fluid-solid equilibrium
and vapor-liquid equilibrium [11]. The triplet point among vapor,
ordered CP1 solid and plastic solid is found to be at the reduced
temperature of 0.282. The determination of the phase diagram involv-
ing solid phases was done by explicitly calculating the free energy
(or chemical potential) with the Einstein-crystal method. In gen-
eral, it is preferred to use the free energy calculation to determine
phase equilibrium involving crystal phases. In fact, by conventional
molecular simulations, it is difficult to observe phase transition be-
tween crystals consisting of slender molecules of large anisotropy.

In this work, we study the solid-solid phase transition of LJ dumb-
bell molecule between the ordered crystal of CP1 structure and
the disordered crystal of FCC structure. We chose diatomic mod-
els of short bond lengths because these near-spherical molecules
can rotate relatively easily in the crystal. As a benefit of the almost
spherical molecular shapes, phase transformation between differ-
ent crystal structures may actually occur in the course of molecular
simulations. First, we performed NPT MC simulations to deter-
mine the crystal structure and the equilibrium positions and ori-
entations of the molecules. In doing so, spontaneous order-disorder
transitions are observed by varying the temperature and pressure.
These spontaneous crystal-crystal transitions, although they are
not in true thermodynamic equilibrium, may give a rough picture
of phase changes, and it could serve as a criterion to check whether
our free energy calculation is correct. Next, the free energies of the
crystals are calculated by using the expanded ensemble Monte Carlo
(EEMC) method and the thermodynamic integration (TI) method
[4-6]. Coexistence condition for the solid-solid equilibrium is deter-
mined from the equality of chemical potential, and its consistency
is checked by comparing with the transition behavior observed in
the NPT MC simulations.

In calculating the free energy of ordered crystal consisting of sym-
metric molecules, a symmetric functional form that reflects the sym-
metry of the molecule may be used for the external rotational poten-
tial of the reference Einstein crystal [12]. Alternatively, asymmetric
functional form may also be used if the crystal is strongly ordered
without having orientational defect [13]. Since the details of the
external potential function should not affect the free energy of real
crystal, there must be a certain equivalence between the two dif-
ferent descriptions. We will investigate this aspect in great detail
for the ordered crystals of LJ dumbbells with or without contain-
ing orientational defects, and we will also explain a criterion as to
how we can choose a proper value of the symmetry number that
depends on the form of external potential as well as the symme-
try of the molecule by taking into account the rotational character-
istics of the molecules in crystal.

THEORY AND SIMULATION METHOD

We study phase transitions between crystals made up of the LJ-d
molecules of fixed bond length. Homonuclear diatomic molecules
having near-spherical shapes with short reduced bond lengths of
L*=0.225, 0.250 and 0.275 are considered. These bond lengths are
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chosen because the model molecules can rotate easily in crystal
when phase transformation occurs between orientationally ordered
and disordered crystals [8-10]. Two segments in different mole-
cules interact by the Lennard-Jones interaction potential,

(1)

where u is potential energy, r is the distance between the two LJ
segments, σ is the size parameter and ε is the well depth. As the LJ
dumbbell is treated as a rigid body, bond vibration is not consid-
ered. In simulation, the intermolecular interaction is truncated at
3σ and standard long range corrections are considered. To deter-
mine crystal structure and the equilibrium positions and orienta-
tions of the molecules, we perform NPT MC simulations. The mag-
nitudes of maximum translational and rotational moves of the mole-
cules in MC simulation are chosen so as to yield about 50% accep-
tance. All nine degrees of the freedom of triclinic cell are fully ex-
plored to find the equilibrium crystal structure using the NPT MC
algorithm of Yashonath and Rao [14]. Although not rigorous, the
NPT MC simulation gives a rough sketch of phase transitions with
hysteresis resulting from the metastability of condensed phase.

With a fixed crystal structure and density determined from the
NPT MC simulation, the Helmholtz energy of crystal is calculated
using the Einstein-molecule method [3]. In this method, an arbi-
trary chosen reference molecule, say, molecule 1 is fixed in space,
and the translational degrees of freedom of the reference molecule
are treated separately. This is contrasted with the conventional Ein-
stein-crystal method [2] in which the center of mass of the system
is constrained. To understand essential features of the Einstein-mole-
cule approach, let us consider the partition function of a finite crys-
tal consisting of N identical monatomic molecules as

(2)

where Q is the canonical partition function, U is the configura-
tional energy, k is the Boltzmann constant, T is the temperature, V
is the volume of system, Λ is thermal wavelength given by Λ=h/
(2πmkT)1/2 with h being the Planck constant and m being the mass
of molecule, and ri is the position vector of molecule i. In the Ein-
stein-molecule approach, the reference molecule denoted by mole-
cule 1 is fixed in space, while separately accounting for its contribution
to the canonical partition function, V/Λ, the same as that of an ideal-
gas molecule [3]. Also, by virtue of the fixed reference molecule
the drift of crystal is avoided even when external potential is turned
off when the system approach the real crystal.

The external potential for the reference Einstein crystal consist-
ing of homonuclear diatomic molecules is given by

(3)

where λt is translational force constant, λo is rotational force con-
stant, ri is the position vector of the center of mass of molecule i,
r0, i is its equilibrium value, θi is angle made by the axis of molecule
i and its equilibrium orientation and n is an integer that determines
the periodicity of the external rotational potential. The equilibrium
positions and orientations of the molecules are prepared from pre-

liminary NVT MC simulation. The value of n may be chosen as
n=1 for asymmetric potential or as n=2 for symmetric potential,
respectively. The first term in the right-hand side of Eq. (3) is trans-
lational part of the external potential, and the last term represents
rotational part for the molecule with line symmetry. The transla-
tional part for the Helmholtz energy of the reference Einstein crys-
tal is given by [3,15]

(4)

where A is the Helmholtz energy and β is 1/kT. The reduced form
of Eq. (4) is written as

(5)

where A* is reduced Helmholtz energy per molecule (=A/Nε), T*

is reduced temperature (=kT/ε), and V* is reduced volume (=V/
Nσ 3), and λt

* is reduced force constant defined by λt
*=βλtσ

2. In
deriving Eq. (5), we set, for convenience, the thermal wavelength
Λ to (T*)−1/2 omitting factors independent of temperature. The val-
ues of the force constants of the external potential are chosen in a
way such that each of positional and orientational distributions of
the molecules in the Einstein crystal resembles the corresponding
distribution in the real crystal. In fact, their precise values do not
affect the free energy of the real crystal, but it is required that the
configuration space of the reference system sufficiently overlap
with that of the real system. For the present LJ-d crystal, the trans-
lational force constant is set to λt

*=1000 in the reduced unit. The
rotational part for the free energy of the Einstein crystal is given
by

(6)

where I is the moment of inertia of the molecule, σs is the symme-
try number, and Fn is the excess contribution of the rotational part
of the partition function due to the external rotational potential of
the periodicity n. The reduced form of Eq. (6) is written as

(7)

(8)

where λo
* is reduced rotational force constant (=βλo). The first terms

in the right-hand sides of Eqs. (6) and (7) represent the ideal-gas
contribution of rigid diatomic molecule. In deriving Eq. (7), we
set, for convenience, 8π2Iε/h2 to unity. The integrals in Eq. (8) are
evaluated numerically.

Whereas the symmetry number of a homonuclear diatomic mol-
ecule in gas and liquid phases is two, the symmetry number for
the molecule confined in crystal depends on the extent of packing
given by surrounding neighbor molecules. In orientationally disor-
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dered crystal at high temperature, two indistinguishable orienta-
tional configurations are realized by the flipping rotation of molecule.
Thus, the symmetry number is two so as not to overcount the identi-
cal configurations twice, which is the same reason as in the fluid
phases. However, in orientationally ordered crystal at low tempera-
ture, the flipping rotation rarely occurs within finite observation
time; only a single orientational configuration is realized out of the
two possible configurations. The orientational distributions of the
molecules, restricted by a high rotational barrier at θ=π/2, are asym-
metrically populated near the equilibrium orientation of θ=0. There-
fore, the proper value of symmetry number for the orientationally
ordered crystal without rotational barrier-crossings (strongly ordered
crystal) should be unity, σs = 1. In the free energy calculation with
σs=1, either asymmetric form (n=1) or symmetric form (n=2) for
the external rotational potential of the ordered crystal may be used.
When symmetric potential is used, the upper bound of the inte-
gral in Eq. (8) is π/2. This is because orientation angles beyond θ=
π/2 are never realized in the strongly ordered crystal at low tem-
perature far below the order-disorder transition. A similar sym-
metric form of the external potential was used in the previous study
of hard-dumbbell crystals [8]. In the discussion, we will demon-
strate that there is a numerical equivalence between the symmet-
ric and asymmetric external rotational potentials for calculating
the free energy of the strongly ordered crystal.

Contrastingly, in orientationally ordered crystal at higher tem-
perature close to the order-disorder transition there may occur rota-
tional barrier-crossing or orientational defect. The onset of the rota-
tional barrier-crossing does not usually coincide with the order-
disorder transition, and it begins to occur at somewhat lower tem-
perature than the transition temperature, while the orientations of
the molecules in the crystal remain still ordered. This type of crys-
tal is referred to as weakly ordered crystal. In terms of statistical
mechanics, the rotational barrier-crossing gives rise to an abrupt
expansion of the accessible region in the configuration space. Upon
its occurrence, the configuration space of the real system might
become quite different from that of the reference system, and the
free-energy calculation with asymmetric external rotational poten-
tial would fail. To deal with the difficulty caused by the rotational
barrier-crossing, the symmetric potential that reflects the molecu-
lar symmetry can be used instead [16]. For homonuclear diatomic
molecule, the symmetric potential with σs=2 in Eq. (8) now cov-
ers the full range of the orientational angle, but by dividing the parti-
tion function by the symmetry number in Eqs. (6) and (7) over-
counting flipped orientation by 180o is avoided. Numerically, due
to the symmetry of the potential, the value of the integral with σs=
2 in Eq. (8) becomes twice than that with σs=1, but the free energy
does not change due to the division by the symmetry number. Thus,
the symmetric potential with σs=2 may also be used for the strongly
ordered crystal, although the meaning of the symmetry number
becomes less physical. The same prescription may be used for ori-
entationally disordered (plastic) crystal, but since the orientational
distribution in the disordered crystal is almost uniform, we do not
need to use external rotational potential.

In addition, if the dumbbell molecule were regarded as a het-
eronuclear molecule consisting of two identical but distinguish-
able segments, the entropy per molecule would increase by k ln 2

for all phases. With regard to the strongly ordered crystal, since the
diatomic molecule in crystal cannot make flipping rotation, the
increase of entropy resulting from the segment-segment distinguish-
ability is preserved as residual entropy, similarly as in the crystal of
carbon monoxide. Therefore, the phase behaviors of molecular crys-
tals have nothing to do with the distinguishability of segments or
atoms because the entropy of each phase is changed by the same
amount. In practice, the isotope effect on the phase behaviors is
very small since the intermolecular interactions remain almost the
same upon the exchange of isotopic elements.

In EEMC simulation of solid phase, the potential energy of the
system varies linearly with a coupling parameter λ ranging from
zero for the reference Einstein crystal to unity for the real crystal as

(9)

The partition function of the expanded ensemble is a weighted sum
of the partition functions of subensembles given by [17]

(10)

Transition between adjacent subensembles (λi↔λj) is accepted by
the Metropolis scheme with predetermined weight factor wi. Free
energy difference is derived from Eq. (10) as

βAj−βAi=wj−wi− ln(Pj/Pi), (11)

where Pi is the probability of observing the system with the cou-
pling parameter λi during the EEMC simulation. The details of im-
plementing the EEMC method for solid phase and optimizing the
weight factors on the fly were described in our previous studies
[18,19].

Once coexistence condition is determined at a fixed pressure,
complete coexistence curve can be predicted by the Gibbs-Duhem
integration method [20]. In fact, it is the same as integrating the
Clapeyron equation given by

(12)

where ΔH and ΔV are differences in enthalpy and volume between
two coexisting phases, respectively. Starting from a known transi-
tion temperature determined at zero pressure, we integrate Eq. (12)
in discretized form while performing NPT MC simulations of the
individual phases to obtain the enthalpy and volume.

RESULTS AND DISCUSSION

For crystals consisting of 500 LJ-d molecules of reduced bond
lengths, 0.225, 0.25 and 0.275, NPT MC simulations were performed
at various temperatures and pressures. Each simulation was done
with an equilibration run of 2×105 cycles followed by a produc-
tion run of 2×105 cycles. The simulation gives the equilibrium posi-
tions and orientations of the molecules as well as the crystal structure.
Because of the small anisotropy of the molecule, ordered crystal at
low temperature (at high pressure) readily transforms into orienta-
tionally disordered crystal as the temperature is raised (as the pres-
sure is lowered), and phase transition between the two crystals is
observed in the course of the NPT MC simulations.
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In Fig. 1, we show simulation results of the configurational en-
thalpy of the LJ-d crystal of L*=0.225 at zero pressure. The config-
urational enthalpy is defined by Hc=Uc+PV, which becomes equal
to the configurational energy Uc at zero pressure. The reduced con-
figurational enthalpy per molecule, Hc

*=Hc/Nε, is plotted with respect
to the reduced temperature. The LJ-d crystal at low temperature
has orientationally ordered structure in which the rotational motions
of the molecules are restricted. As the temperature increases, crys-
tal structure becomes orientationally disordered FCC structure in
which molecules rotate almost freely in the crystal. Two series of
simulations were carried out along two opposite paths of increas-
ing temperature (heating-up path) and of decreasing temperature
(cooling-down path). The closed circles are simulation results ob-
tained by following the heating-up path starting from an ordered
crystal at low temperature, and the open circles are simulation re-
sults obtained by following the cooling-down path starting from a
disordered crystal at high temperature, respectively. Both paths gave

Fig. 1. The configurational enthalpy of the LJ-d crystal of L*=0.225
at zero pressure.

Table 1.NPT MC simulation results for the configurational energy
and the density of the LJ-d crystal of L*=0.250 at zero pres-
sure. The numbers in parentheses are simulation uncer-
tainties in last digit
Ordered phase Disordered phase

T* Uc
* ρ* T* Uc

* ρ*

0.300 −26.930(3) 0.9007(4)0 0.456 −26.40(1)0 0.8922(1)0
0.320 −26.874(6) 0.8997(1)0 0.458 −25.83(2)0 0.8811(7)0
0.340 −26.813(2) 0.8987(1)0 0.460 −25.83(1)0 0.8810(3)0
0.360 −26.749(3) 0.8977(2)0 0.480 −25.771(4) 0.87946(5)
0.380 −26.683(7) 0.8967(2)0 0.500 −25.720(3) 0.8780(1)0
0.400 −26.615(7) 0.89556(3) 0.520 −25.670(7) 0.8767(4)0
0.420 −26.542(2) 0.89440(1) 0.540 −25.622(6) 0.8754(3)0
0.440 −26.47(2)0 0.8932(4)0 0.560 −25.575(2) 0.87416(6)
0.460 −26.381(6) 0.8919(2)0 0.580 −25.528(3) 0.8729(1)0
0.480 −26.28(1)0 0.8904(1)0 0.600 −25.483(6) 0.8717(2)0
0.490 −26.23(2)0 0.8896(2)0 0.620 −25.439(3) 0.87059(9)
0.492 −25.740(4) 0.8786(5)0 0.640 −25.394(7) 0.8694(6)0

0.660 −25.349(4) 0.8683(2)0

Table 2.NPT MC simulation results for the configurational energy
and the density of the LJ-d crystal of L*=0.275 at zero pres-
sure
Ordered phase Disordered phase

T* Uc
* ρ* T* Uc

* ρ*

0.320 −26.146(2)0 0.87911(7) 0.474 −25.652(1) 0.8700(1)0
0.340 −26.087(2)0 0.87807(7) 0.476 −24.831(8) 0.8530(3)0
0.360 −26.0258(8) 0.87696(5) 0.480 −24.818(9) 0.8527(4)0
0.380 −25.964(4)0 0.8758(2)0 0.500 −24.763(3) 0.8512(3)0
0.400 −25.901(4)0 0.87465(8) 0.520 −24.710(4) 0.8498(3)0
0.420 −25.837(3)0 0.87345(6) 0.540 −24.658(5) 0.8485(2)0
0.440 −25.771(1)0 0.8722(3)0 0.560 −24.608(7) 0.8472(1)0
0.460 −25.702(5)0 0.87092(2) 0.580 −24.559(3) 0.8460(2)0
0.480 −25.630(2)0 0.8696(1)0 0.600 −24.510(3) 0.8448(2)0
0.500 −25.556(7)0 0.8682(2)0 0.620 −24.462(2) 0.8435(3)0
0.520 −25.48(1)00 0.8667(2)0 0.640 −24.415(5) 0.8424(3)0
0.540 −25.390(3)0 0.8651(2)0 0.660 −24.367(1) 0.84116(8)
0.560 −25.29(2)00 0.8632(5)0 0.680 −24.321(3) 0.83998(7)
0.574 −25.20(4)00 0.8616(8)0 0.700 −24.274(2) 0.8388(1)0
0.576 −24.569(4)0 0.8462(2)0

Fig. 2. The configuration enthalpy of the LJ-d crystals at zero pres-
sure showing the first-order phase transition predicted by
NPT MC simulation; (a) L*=0.250 and (b) L*=0.275. The ver-
tical dashed line is the phase transition temperature predicted
by the EEMC simulation (see Fig. 3).
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the same results without showing hysteresis. Phase transition between
the two crystal phases occurred at about T*=0.44, but it appears to
be the second-order phase transition, which is due to the small anisot-
ropy of the molecule.

For the LJ-d models of larger anisotropies, L*=0.250 and 0.275,
the first-order phase transitions are clearly observed. In Tables 1
and 2 are given the NPT MC simulation results for the reduced
configurational energy Uc

* (=Uc/Nε) and reduced density ρ* (=1/
V*) of these crystals at zero pressure, and in Fig. 2 the reduced con-
figurational enthalpies versus the reduced temperature are plotted.
In each phase the density and configurational energy change grad-
ually with the temperature, but they show discontinuous jumps
between the two phases exhibiting the first-order phase transitions.
The closed circles are for heating-up simulations starting from an
ordered crystal of the CP1 structure, and the open circles are for
cooling-down simulations starting from a disordered crystal of the
FCC structure. Unlike the crystal of the smaller anisotropic mole-
cule in Fig. 1, these crystals show hysteresis with different onsets of
transitions along the opposite paths due to the metastability, which
makes the condensed phase more or less resistant to phase trans-
formation. The hysteresis loop becomes wider for the more slen-
der molecule of L*=0.275 than for the shorter one of L*=0.250. This
is because the molecules of longer bond can suppress the onset of
transition more effectively with higher free-energy barrier. Unfor-
tunately, the presence of hysteresis gives rise to a difficulty in find-
ing equilibrium transition temperature (coexistence temperature).
Thus, the NPT MC simulations can give at most rough estimates
for lower and upper bounds of the transition temperature. These
bounds might also depend on the finite size of the system. For the
purpose of comparison, coexistence temperature determined by
free-energy simulation is shown in Fig. 2 indicated by the vertical
dashed line (the details will be explained with Fig. 3). The coexis-
tence temperature is certainly within the hysteresis loop, but it is
not simply at the middle of the hysteresis loop, somewhat shifted
towards the upper bound of the transition temperature. At zero
pressure, the coexistence temperature for L*=0.250 is 0.483 in the
reduced unit, and the coexistence temperature for L*=0.275 is 0.548,
respectively: The larger the bond length, the higher the coexistence
temperature.

Using the EEMC simulation together with the Einstein-mole-
cule approach, the Helmholtz energies of the LJ-d crystals were cal-

culated, and the simulation results are presented in Table 3 for L*=
0.250 and Table 4 for L*=0.275, respectively. The EEMC simula-
tion was performed with the fixed crystal structure determined
from the previous NPT MC simulation. The values in the third col-
umn of the table are the Helmholtz energies of the reference Ein-
stein crystals AEin

* in the reduced unit, and values in the fourth col-
umn are differences in the Helmholtz energy between the Einstein
crystal and the real crystal obtained from the EEMC simulation.
In the last column, the values of the reduced Helmholtz energy of
the real crystal A* are given as the sum of the two contributions.
The numbers in parentheses are simulation uncertainties in last
digit estimated over five independent EEMC simulation runs. For
the orientationally ordered crystal, symmetric external potential
with the rotational force constant of λo

*=10 was used with the sym-
metry number of two. This somewhat small value of λo

* is used so
that the flipping motion of molecule in the reference crystal occurs
as frequently as in the real crystal at temperature close to transition.
To obtain high precision results, the step size in coupling parame-
ter was chosen as Δλ=0.01, and even finer step sizes were used for
λ≥0.90 to maintain the same order of precision and also to obtain
flat distributions of subensembles along λ coordinate.

In Fig. 3, the equilibrium transition temperatures of the LJ-d crys-
tals of L*=0.250 and 0.275 at zero pressure are predicted by the equal-
ity of the chemical potential (the molar Gibbs energy). To determine
the transition temperature the Gibbs energies are calculated by the
thermodynamic integration method as well as the EEMC method.
The symbols are obtained from the EEMC simulations, and the
curves are obtained from thermodynamic integration. For each phase,
thermodynamic integration in temperature is carried out starting
from a known value of free energy calculated by the EEMC simu-
lation at a fixed temperature. To do this, we integrate the Gibbs-
Helmholtz equation given by

(13)

where G is the Gibbs energy and H is the enthalpy of the system.
The enthalpy is obtained by adding the average kinetic energy of
linear rigid molecule, (5/2)RT, to the simulation value of the con-
figurational enthalpy. The values of the enthalpy are then fitted
with a polynomial of temperature, and the Gibbs-Helmholtz equa-
tion is integrated analytically. The results of the thermodynamic
integrations are plotted as the curves in Fig. 3, and almost linear
behaviors in temperature are observed. The values of the Gibbs en-

∂ G/T( )
∂T

-----------------

P
 = − 

H
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Table 3. The Helmholtz energy of the LJ-d crystal of L*=0.250 at
zero pressure obtained from the EEMC simulation. The
numbers in parentheses are simulation uncertainties in last
digit

T* Phase AEin
*

ΔA* A*

0.40 Ordered 6.109 −27.899 −21.789(4)
0.42 Ordered 6.363 −27.964 −21.600(4)
0.44 Ordered 6.615 −28.033 −21.418(2)
0.60 Disordered 6.358 −26.622 −20.264(2)
0.62 Disordered 6.519 −26.659 −20.139(9)
0.64 Disordered 6.679 −26.698 −20.019(5)
0.66 Disordered 6.837 −26.740 −19.903(3)

Table 4. The Helmholtz energy of the LJ-d crystal of L*=0.275 at
zero pressure obtained from the EEMC simulation

T* Phase AEin
*

ΔA* A*

0.42 Ordered 6.363 −27.107 −20.744(3)
0.44 Ordered 6.615 −27.169 −20.554(2)
0.46 Ordered 6.865 −27.235 −20.370(1)
0.64 Disordered 6.679 −25.721 −19.04(1)0
0.66 Disordered 6.837 −25.763 −18.93(2)0
0.68 Disordered 6.993 −25.810 −18.82(7)0
0.70 Disordered 7.148 −25.848 −18.70(2)0
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ergy obtained from both methods are in excellent agreement with
each other, which confirms consistency and accuracy of the two

Table 5.NPT MC simulation results for the configurational energy
and the density of the LJ-d crystal of L*=0.275 at P*=10
Ordered phase Disordered phase

T* Uc
*

ρ* T* Uc
*

ρ*

0.580 −25.439(8) 0.9047(1) 0.667 −25.13(3)0 0.8998(4)
0.600 −25.376(5) 0.9036(3) 0.668 −24.53(2)0 0.8916(5)
0.620 −25.308(3) 0.9026(1) 0.670 −24.525(7) 0.8915(1)
0.640 −25.24(1)0 0.9015(2) 0.680 −24.502(9) 0.8909(2)
0.660 −25.16(3)0 0.9003(4) 0.700 −24.46(1)0 0.8899(6)
0.680 −25.06(3)0 0.8989(4) 0.720 −24.421(4) 0.8889(2)
0.690 −25.00(7)0 0.8981(6) 0.740 −24.383(5) 0.8879(2)
0.691 −24.99(9)0 0.898(1)0 0.760 −24.344(8) 0.8869(3)
0.692 −24.48(2)0 0.8903(3)

Fig. 3. The Gibbs energy of the LJ-d crystals at zero pressure ob-
tained from MC simulations; (a) L*=0.250 and (b) L*=0.275.
The symbols are from the EEMC simulations, and the curves
are from the thermodynamic integration. The phase transi-
tion between orientationally ordered and disordered phases
occurs at T*=0.483 for (a) and at T*=0.548 for (b), respec-
tively. The simulation uncertainties are less than the size of
the symbols.

Fig. 5. The Gibbs energy of the LJ-d crystal of L*=0.275 at P*=10
obtained from MC simulations. The phase transition between
the crystal phases occurs at T*=0.687. The meanings of the
symbols and curves are the same as in Fig. 3.

free-energy calculations. By extrapolating the two curves in Fig. 3,
the intersecting point gives the order-disorder transition tempera-
ture. The uncertainty of the transition temperature using different
starting temperatures is estimated to be less than 1×10−3 in the re-
duced unit. From the comparison of Figs. 2 and 3, the phase tran-
sitions predicted by the NPT MC simulation and the EEMC sim-
ulation are in accord with each other.

In Table 5 are given the NPT MC simulation results for the con-
figurational energy and density of the LJ-d crystals of L*=0.275 at
the reduced pressure of P* (=Pσ 3/ε)=10, and the configurational
enthalpies varying with the temperature are plotted in Fig. 4. Note
that there are significant contributions of PV term at high pres-
sure. The transition occurs at higher temperature than that of the
same system at zero pressure, which indicates that the increase of
pressure enhances the stability of the ordered crystal. Also, the width
of hysteresis loop becomes narrower in temperature. The vertical
dashed line in Fig. 4 indicates equilibrium transition temperature
of 0.687 obtained from the free-energy simulations (see Fig. 5). This

Fig. 4. The configuration enthalpy of the of LJ-d crystal of L*=0.275
at P*=10 obtained from NPT MC simulations. The mean-
ings of the symbols and curves are the same as in Fig. 2.
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temperature is located within the hysteresis loop in accord with
the phase behavior observed in the NPT MC simulations. However,
the equilibrium transition temperature is a little shifted towards
the disordered crystal phase in the hysteresis loop. This means that
the disordered phase on transition would have to overcome higher
free energy barrier than the ordered phase because aligning mole-
cules to form an ordered structure would require extra free energy
barrier.

In Table 6 are given the Helmholtz energies of the LJ-d crystals
of L*=0.275 at P*=10 calculated by the EEMC simulation, and the

Table 6. The Helmholtz energy of the LJ-d crystal of L*=0.275 at
P*=10 obtained from the EEMC simulation

T* Phase AEin
*

ΔA* A*

0.60 Ordered 8.556 −27.522 −18.966(3)
0.62 Ordered 8.790 −27.607 −18.817(2)
0.64 Ordered 9.023 −27.695 −18.672(5)
0.72 Disordered 7.302 −25.577 −18.275(6)
0.74 Disordered 7.454 −25.622 −18.17(1)0
0.76 Disordered 7.605 −25.669 −18.07(1)0

Table 7.NPT MC simulation results for the configurational energy
and the density of the LJ-d crystal of L*=0.275 at T*=0.6
Ordered phase Disordered phase

P* Uc
* ρ* P* Uc

* ρ*

01.4 −24.573(6) 0.8529(2)0 0.0 −24.51(1)0 0.8448(5)
01.5 −25.16(5)0 0.8672(7)0 1.0 −24.557(7) 0.8506(3)
02.0 −25.21(6)0 0.8701(7)0 2.0 −24.595(8) 0.8563(4)
03.0 −25.26(2)0 0.8751(4)0 3.0 −24.625(6) 0.8618(1)
04.0 −25.308(7) 0.87982(5) 4.0 −24.649(8) 0.8671(4)
05.0 −25.34(1)0 0.88423(9) 5.0 −24.67(1)0 0.8722(5)
06.0 −25.36(1)0 0.8884(1)0 6.0 −24.68(1)0 0.8772(3)
07.0 −25.37(2)0 0.8924(3)0 6.3 −24.683(1) 0.8787(2)
08.0 −25.379(6) 0.8963(3)0 6.4 −25.36(1)0 0.8900(2)
09.0 −25.379(6) 0.9000(1)0
10.0 −25.375(2) 0.9036(2)0

Table 8.NPT MC simulation results for the configurational energy
and the density of the LJ-d crystal of L*=0.275 at T*=0.7
Ordered phase Disordered phase

P* Uc
* ρ* P* Uc

* ρ*

11.0 −24.451(7) 0.8942(3) 06.0 −24.461(3)0 0.87155(6)
11.2 −24.96(7)0 0.9019(8) 07.0 −24.468(9)0 0.8764(2)0
12.0 −24.97(4)0 0.9050(4) 08.0 −24.471(3)0 0.8810(2)0
13.0 −24.98(3)0 0.9086(4) 09.0 −24.468(6)0 0.8855(2)0
14.0 −24.97(3)0 0.9121(5) 10.0 −24.461(10) 0.8899(2)0
15.0 −24.97(3)0 0.9155(3) 11.0 −24.45(1)00 0.8941(3)0
16.0 −24.95(2)0 0.9188(2) 12.0 −24.44(2)00 0.8983(3)0
17.0 −24.93(3)0 0.9221(5) 13.0 −24.42(2)00 0.9023(6)0
18.0 −24.92(1)0 0.9254(2) 13.5 −24.41(1)00 0.9042(2)0

13.6 −24.98(2)00 0.9108(4)0

corresponding Gibbs energies are plotted as the symbols in Fig. 5.
Also, the Gibbs energies obtained from the thermodynamic inte-
gration method are plotted as the curves. Both of the free-energy
simulation results are in excellent agreement with each other. The
equality of the chemical potential is used to find the equilibrium
transition temperature: By extrapolating the two isobaric curves
intersecting point determines the order-disorder transition tem-
perature, which is found to be 0.687 at P*=10. Compared to the
transition temperature of 0.548 at zero pressure as shown in Fig.
3(b), the transition temperature increases as the pressure increases.

In Tables 7 and 8 are presented the NPT MC simulation results
for the configurational energy and density of the LJ-d crystals of
L*=0.275 at T*=0.6 and 0.7, respectively. In these simulations, the
pressure is varied at fixed temperature. Two opposite isothermal
paths are simulated: pressure-raising path starting from a disor-
dered crystal and pressure-reducing path starting from an ordered
crystal. In Fig. 6 are shown the volumetric properties of the LJ-d
crystals of L*=0.275 at T*=0.6 and 0.7. The closed circles are results
for the pressure-reducing path, and the open circles are results for
the pressure-raising path. Each of the paths shows a first-order tran-
sition with abrupt changes in the density and configurational energy,

Fig. 6. The pressure-density curve of the LJ-d crystal of L*=0.275;
(a) T*=0.6 and (b) T*=0.7. The horizontal dashed line is the
transition pressure predicted by the EEMC simulation (see
Fig. 7).



Chemical potential and solid-solid equilibrium of near-spherical Lennard-Jones dumbbell crystal 1055

Korean J. Chem. Eng.(Vol. 33, No. 3)

but they do not coincide with each other due to the hysteresis effects.
Also shown are equilibrium transition pressures indicated by the
horizontal dashed line determined from the free-energy simula-
tions (see Fig. 7), of which the values are found to be P*=3.178 for
T*=0.6 and P*=11.40 for T*=0.7, respectively. Disordered crystal
beyond the equilibrium transition pressure and ordered crystal
below the transition pressure are metastable phases. As the tem-
perature increases, a transition occurs at higher pressure and den-
sity. Since the equilibrium transition pressure determined from the
free-energy simulations is located within the hysteresis loop ob-
served in the NPT MC simulation, both simulation results are con-
sistent with each other. Specifically, the transition pressure tends to
be in the lower region of the hysteresis loop. This means that on
the spontaneous phase transition from disordered crystal to ordered
crystal the system has to overcome higher free energy barrier than
the reverse direction probably due to extra free energy barrier re-
quired for aligning the molecules to form ordered crystal structure.

In Tables 9 and 10 are given the Helmholtz energies obtained

from the EEMC simulation for the LJ-d crystals of L*=0.275 at T*=
0.6 and 0.7, respectively. Adding the PV term, we plot simulation
results for the Gibbs energies of the crystals at T*=0.6 in Fig. 7(a)
and those at T*=0.7 in Fig. 7(b), respectively. The equilibrium tran-
sition pressure between the two phases is determined by the equal-
ity of the chemical potential (the molar Gibbs energy). To calculate
the transition pressure accurately, we performed thermodynamic
integration of the following thermodynamic relationship:

(14)

Fitting the simulation results of the volume with a polynomial of
pressure, the integration of Eq. (14) is done analytically for each
phase. This tells us how the Gibbs energy changes with the pres-
sure, and the absolute value of the Gibbs energy is obtained by refer-
ring to a known value of the free energy which was calculated from
the EEMC simulation. In Fig. 7, the results of the thermodynamic
integrations are drawn as curves, and they are compared with the
results of the EEMC simulations plotted as the symbols. Both results
are in excellent agreement with each other. Extrapolating the two
curves, the intersecting point determines order-disorder transition
pressure, which is found to be P*=3.178 at T*=0.6 and P*=11.40 at
T*=0.7, respectively. Note that the Gibbs energies of the two phases
at the same pressure differ only slightly from each other, and the
slopes of the two curves in Fig. 7 are at first glance almost the same.
Thus, high-precision simulation results for the free energy are needed
so as to determine the transition pressure accurately. For clarity,
difference in the Gibbs energy, ΔG*=G* (ordered)−G* (disordered),
is shown in the inset of Fig. 7. Over the range of pressure we stud-
ied, the Gibbs energy difference between the two phases changes
very slightly within 0.1 in the reduced unit whereas the Gibbs energy
itself changes significantly with the pressure. Despite the small Gibbs
energy differences, equilibrium order-disorder phase transition is

∂G
∂P
-------

⎝ ⎠
⎛ ⎞

T
 = V.

Fig. 7. The Gibbs energy of LJ-d crystal with L*=0.275 obtained from
MC simulation; (a) T*=0.6 and (b) T*=0.7. The symbols are
from the EEMC simulations, and the curves are from the
thermodynamic integration. Phase transition between the
ordered and disordered phases occurs at P*=3.178 for (a)
and at P*=11.40 for (b), respectively. The difference in the
Gibbs energy between the two phases, ΔG*=G* (ordered)−
G* (disordered), is shown in the inset.

Table 9. The Helmholtz energy of the LJ-d crystal of L*=0.275 at
T*=0.6 obtained from the EEMC simulation

T* Phase AEin
*

ΔA* A*

1.0 Disordered 6.358 −25.637 −19.279(9)0
2.0 Disordered 6.358 −25.625 −19.267(10)
3.0 Disordered 6.358 −25.606 −19.248(9)0
6.0 Ordered 8.556 −27.672 −19.116(2)0
7.0 Ordered 8.556 −27.638 −19.082(5)0
8.0 Ordered 8.556 −27.602 −19.047(6)0

Table 10. The Helmholtz energy of the LJ-d crystal of L*=0.275 at
T*=0.7 obtained from the EEMC simulation

P* Phase AEin
*

ΔA* A*

07.0 Disordered 7.148 −25.679 −18.531(4)
08.0 Disordered 7.148 −25.634 −18.49(1)0
09.0 Disordered 7.148 −25.584 −18.44(1)0
16.0 Ordered 9.712 −27.653 −17.941(2)
17.0 Ordered 9.712 −27.590 −17.878(2)
18.0 Ordered 9.712 −27.523 −17.811(4)
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well captured by the present free-energy calculations, and the pre-
dicted transition pressure is in accord with the transition behavior
observed in the conventional NPT MC simulations as seen in Fig. 6.

Using the Gibbs-Duhem integration method [20], we predict a
complete coexistence curve between the ordered and disordered
LJ-d crystals of L*=0.275. We integrate Eq. (12) using the Euler
method with the step size of ΔT*=0.0016 starting from a known
coexistence condition of T*=0.548 at zero pressure. The values of
ΔH and ΔV are obtained from the NPT MC simulations of the indi-
vidual phases. Each NPT MC simulation is carried out with an equi-
libration run of 2×104 cycles followed by a production run of 5×
104 cycles. In Fig. 8, the coexistence curve obtained from the Gibbs-
Duhem integration method is shown on the PT diagram. The upper
left region is ordered crystal phase, and the lower right region is
disordered crystal phase. The symbols are the coexistence condi-
tions independently predicted by the previous free-energy calcula-
tions at P*=0, P*=10, T*=0.6 and T*=0.7. Except for the starting
point at P*=0, the coexistence curve obtained from the Gibbs-Duhem
integration agrees well with the coexistence conditions obtained
from the free-energy calculations with explicitly satisfying the equal-
ity of the chemical potential.

Throughout the free-energy calculations of the ordered LJ-d crys-
tals, we have used the symmetric form for the external rotational
potential with the symmetry number of two. This prescription works
well for the ordered crystals with rotational barrier crossings (or
rotational defects) that occur occasionally when the system is close
to the order-disorder transition. This is a clear advantage of the
symmetric external potential over the asymmetric one. When rota-
tional barrier crossing does not occur at very low temperature (or
at very high pressure), both potential forms are equally valid. In
fact, the value of the free energy of real crystal ought not to depend
on the details of the external potential used to represent the refer-
ence system. To elucidate this point, we calculated the Helmholtz
energy of the ordered crystal at T*=0.1 using both asymmetric
and symmetric external rotational potentials, and compared the

results. Thermal energy at this low temperature is much less than
the energy required to cross over the rotational barrier, and as a
result, flipping rotation of the molecule does not occur during the
simulation. Such strongly orientationally ordered crystal is a non-
ergodic system that physically accesses only a fragment of the whole
orientational configuration space. In the free-energy calculation of
the strongly orientationally ordered crystal, the symmetry number
is set to unity for both forms of the external rotational potential.

To have the positional and orientational distributions of the ref-
erence crystal as close as those of the real crystal, we chose the trans-
lational force constant of the reference crystal to be λt

*=1000, and
orientational force constants of asymmetric and symmetric poten-
tials in Eq. (8) to be λo

*=500 and 250, respectively. In both cases,
the orientations of the molecules stay close to the equilibrium ori-
entation of θ=0. In the case of using symmetric potential, although
there is another potential-energy minimum at flipped orientation
θ=π, it is never reached by physical process because molecules
with low thermal energy can hardly jump over the high rotational
barrier at θ=π/2. As the forms of the external potential functions
and potential parameters are different, the Helmholtz energies of
the two reference Einstein crystals differ from each other as shown
in Table 11. However, the final values of the Helmholtz energy of
the real crystal calculated from the EEMC simulations are almost
the same with negligible uncertainties in the fifth significant digit.
This confirms well the methodological equivalence between the
two methods of using the asymmetric and symmetric external rota-
tional potentials.

Irrespective of which form of the external rotational potential is
used, it is necessary to have the reference system access the phase
space in a similar way as the real system. When flipping rotation is
completely suppressed as in the strongly ordered crystal, the sys-
tem accesses only a half of the orientational configuration space,
and, correspondingly, the proper symmetry number for the refer-
ence crystal is unity. When flipping rotation occurs as in the weakly
ordered crystal, the system now accesses the whole region of the
orientational configuration space, and the proper symmetry num-
ber for the reference crystal should be two. The same statement
applies to the disordered crystals.

Finally, we analyze the orientational distributions of the diatomic
molecules in crystals. The distributions were obtained from the
NPT MC simulations of the LJ-d crystals of L*=0.275 at T*=0.10
(strongly ordered crystal), at T*=0.54 (weakly ordered crystal) and
at T*=0.56 (disordered crystal) all at zero pressure. In Fig. 9(a), we
compare the orientational distributions of the two ordered crys-
tals. The direction of θ=0 is set to coincide with the equilibrium
orientation of the axis of the molecule. In the strongly ordered crys-
tal at T*=0.10, there is a single peak for the distribution of the axis

Fig. 8. The coexistence between the ordered and disordered LJ-d
crystal of L*=0.275. The symbols are obtained from the EEMC
simulation and thermodynamic integration method, and
the curve is obtained from the Gibbs-Duhem integration
method.

Table 11. The comparison of the Helmholtz energies obtained by
using asymmetric and symmetric external rotational po-
tentials for the ordered LJ-d crystal with L*=0.275 at T*=
0.1 and zero pressure

External potential σs λt
*

λo
* AEin

*

ΔA* A*

Asymmetric 1 1000 500 2.1291 −26.902 −24.773(1)
Symmetric 1 1000 250 2.1983 −26.972 −24.774(1)
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angles about the equilibrium orientation. This implies that the tem-
perature is low enough that the flipping rotation of molecule is almost
completely suppressed in the simulation. As seen in Table 11, this
is the reason that the free energy calculation at sufficiently low tem-
perature is possible with either asymmetric or symmetric external
rotational potential with the symmetry number of unity. In con-
trast, in the weakly ordered crystal at T*=0.54, there are two sym-
metric peaks in the orientational distribution. This indicates that
enhanced thermal motion at higher temperature allows the flip-
ping rotation of molecule to occur occasionally. As a result, the sys-
tem now visits the whole orientational configuration space. If asym-
metric external potential were used for this kind of weakly ordered
crystal, the free energy calculation would fail because of the mis-
match of the configuration spaces, which has been referred to as
the rotational defect [4]. In Fig. 9(b), we compare the orientational
distribution of the molecules in the ordered crystal at T*=0.54 and
that in the disordered crystal at T*=0.56. Although the tempera-
ture difference is small, the structures of the two crystals and their
orientational distributions are quite distinct. In contrast to the two
symmetric peaks for the orientational distribution in the weakly

ordered crystal at T*=0.54, the orientational distribution in the disor-
dered crystal at T*=0.56 shows a uniform probability distribution,
which indicates that the dumbbell molecule rotates almost freely
within its lattice cell. Considering that the densities of the two crys-
tals differ only by 2.1%, the changes of the rotational characteris-
tics are drastic.

CONCLUSIONS

We studied the orientational order-disorder transition between
crystals composed of LJ diatomic molecules of small anisotropy
(reduced bond length) to firmly establish a theoretical framework
to predict coexistence condition between orientationally ordered
and disordered crystal phases. Since the conventional NPT MC sim-
ulation suffers from hysteresis in locating the phase equilibrium,
we employed the EEMC simulation and thermodynamic integra-
tion method to explicitly calculate the chemical potentials of the
individual crystal phases. Despite its inherent shortcomings, the
NPT MC simulation can serve as a guiding tool to check the validity
of the present method of calculating the free energy of crystals and
also of finding the way to choose the symmetry number correctly.

We simulated three LJ-d models of small anisotropies of which
the reduced bond lengths are 0.225, 0.250 and 0.275. These models
are near-spherical so that spontaneous crystal-crystal phase transi-
tions are observed in the NPT MC simulations. It was found that
the ordered crystal of the CP1 structure at low temperature (or at
high pressure) transforms into the disordered crystal of the FCC
structure as the temperature increases (as the pressure decreases).
The crystal composed of the LJ-d model of L*=0.225 shows an order-
disorder transition, but the transition appears to be in second order
because the anisotropy of the molecule is too small. For the crys-
tals with larger anisotropies of L*=0.250 and 0.275, we observed
the first-order phase transitions with hysteresis in the NPT MC sim-
ulations. For these systems, the Helmholtz energies of the crystals
were calculated using the EEMC simulation, and the free energy
profiles of the individual phases were obtained from the thermo-
dynamic integration method. The true thermodynamic order-dis-
order phase transition or the coexistence condition was determined
by the equality of the chemical potential. Such predicted transition
temperature (or transition pressure) is found to be within the hys-
teresis loop of transition. This clearly indicates that the results of
the present EEMC simulations are consistent with those of the NPT
MC simulations.

To deal with the flipping rotations (rotational defects) of mole-
cules in the ordered crystal close to order-disorder transition, we
used a symmetric form for the external rotational potential with
the symmetry number of two. Also, we demonstrated that when
temperature is low enough that the ordered crystal is free of rota-
tional defects, either symmetric or asymmetric form of the exter-
nal rotational potential can be used with the symmetry number of
unity. Finally, the Gibbs-Duhem integration was applied to the LJ-
d crystal of L*=0.275 in order to obtain a complete coexistence
curve for the order-disorder phase transition. The coexistence curve
is found to be in good agreement with the predictions from the
free-energy calculations. This confirms again that the present sim-
ulation scheme to calculate the free energy of molecular crystal

Fig. 9. Orientational probability distributions of the LJ dumbbells
of L*=0.275 in crystal phases; (a) the probability distribu-
tions at T*=0.10 and T*=0.54 both in the ordered crystals,
and (b) the probability distributions at T*=0.54 in the ordered
crystal and at T*=0.56 in the disordered crystal.
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agrees well with the conventional NPT MC simulation.
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NOMENCLATURE

A : Helmholtz energy
F : excess part of the partition function
G : Gibbs energy
H : enthalpy
Hc : configurational enthalpy
h : Planck constant
I : moment of inertia
k : Boltzmann constant
L : bond length
m : mass of molecule
N : number of molecules
n : periodicity of external rotational potential
P : pressure
Pi : probability of observing the i-th subsystem
Q : partition function
r : distance
r : position vector of molecule
r0 : equilibrium position vector of molecule
T : temperature
U : total potential energy
Uc : configurational energy
u : intermolecular potential energy
V : volume
w : weight factor

Greek Letters
β : inverse of kT
ε : Lennard-Jones energy parameter
θ : axis angle
Λ : thermal de Broglie wavelength
λ : coupling parameter
λ
α

: force constant
ρ : density

σ : Lennard-Jones size parameter
σs : symmetry number

Superscripts
Ein : Einstein crystal
* : reduced unit

Subscripts
E : expanded ensemble
o : orientation
t : translation
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