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Abstract−A model for double-diffusive convection in an anisotropic porous layer with a constant throughflow is
explored, with penetrative convection being simulated via an internal heat source and subjected to a vertical magnetic
field and variable gravity effect. The validity of both the linear instability and global nonlinear stability thresholds are
tested using three dimensional simulation. Our results show that the linear theory produce a good prediction on the
onset of instability in the steady state throughflow. It is known that as Rc increases the onset of convection is more likely
to be via oscillatory convection as opposed to steady convection, and the three dimensional simulation results show
that as Rc increases, the actual threshold moving toward the nonlinear stability threshold and the behaviour of the per-
turbation of the solutions becomes more oscillated.
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INTRODUCTION

Most available studies focus on the natural convection heat trans-
fer through a porous medium saturated by an electrically noncon-
ducting fluid, as in most practical situations. Recently, the equally
important problem of hydromagnetic convective flow of a conduct-
ing fluid through a porous medium has been the centre of much
investigation. Subjected to a magnetic field, the motion of an elec-
trically conducting fluid induces an electric current whose fluid
velocity is reduced, in general, by interaction between the electric
current and the motion. The natural convection of electrically con-
ducting fluids in porous media where a magnetic field exists has
not, however, been the subject of much research, although there
are potential applications. An example is the study of the interac-
tion of the geomagnetic field with the fluid in geothermal regions,
where the Earth’s crust functions as a porous medium, is regarded by
geophysicists as being of considerable importance. Also, with contin-
uous casting, an example of metallurgical applications, electromag-
netic stirring can improve the solidification structure to produce a
fine-grained structure, with better final mechanical properties. Where
dendritic solidification of alloys is concerned, dendrites in the mushy
zone can be regarded as a porous medium. Some attention has been
focussed on how a magnetic field affects the onset of instability in
porous medium layers (cf. [1-3] and the references therein).

Double diffusive convection in porous media has been a focus
for researchers, since it has applications in a number of areas, includ-
ing geophysics, the enhanced recovery of petroleum reservoirs, the
underground diffusion of chemical wastes, seabed hydrodynam-
ics, and crystal growth. Nield and Bejan [4] have studied this to

some depth, and there is a plentiful supply of other scientific litera-
ture dealing with the matter. In the porous layer, throughflow (the
non-isothermal flow of fluids through porous media) occurs during
the in-situ processing of energy resources such as coal, oil shale or
geothermal energy and packed bed reactors. Research has recently
been undertaken into the consequences of vertical throughflow on
convective instability in a porous layer, cf. Nield [5], Shivakumara
[6,7] and Shivakumara and Khalili [8].

Where practical issues are involved, control of double-diffusive
convection in porous media is of significance, as in developing an
effective method of waste material disposal and energy extraction.
In this connection, various physical procedures can be employed,
for example rotation and/or magnetic field or the use of non-uni-
form basic temperature gradients [9], which may occur owing to:
transient heating or cooling at the boundaries, a uniform heat source
in the porous layer, radiation heating and vertical throughflow. In
a study by Rudraiah et al. [10], into the effect of the Coriolis force
on double-diffusive convection in a sparsely packed porous medium
it was found that the effect of the Taylor number at the marginal
state was to increase the systems stability. However, in the case of
overstability the bottom-heavy solute gradient and the Taylor num-
ber were shown to destabilise the system under certain conditions.
The results in the case of rotation were similar to this in Shivaku-
maras [11], analysis of the corresponding double-diffusive mag-
neto-convection problem.

The literature on the study of the effect of vertical throughflow
on convective instability in a porous medium is much less wide-
spread, although recent studies include Shivakumara and Suma
[12], Shivakumara and Khalili [13], Shivakumara and Sureshku-
mar [14], Nield and Kuznetsov [15], Hill et al. [16] and Harfash
and Hill [17].

However, the effects of vertical throughflow on double-diffu-
sive convection in a porous medium are significant in applications
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in engineering, geophysics and seabed hydrodynamics (for exam-
ple, in hydrothermal vent systems). Although sufficient attention
has not been given to the problem in research literature, its impor-
tance in the directional solidification of concentrated alloys, in which
a porous layer with double diffusive origin, or a mushy zone, exists,
is considerable.

The object of this paper is, therefore, to investigate the linear
instability and nonlinear stability theories a of a porous layer with
simultaneous temperature and solute concentration gradients for
both strong and weak constant vertical flow and subjected to a ver-
tical magnetic field. Assessing the onset and type of convection is
crucial in understanding this system, which can be achieved by ana-
lysing both the linear instability and nonlinear stability thresholds
of the governing model. Comparing these thresholds allows for the
assessment of the suitability of linear theory to predict the physics
of the onset of convection. In order to establish stability results we turn
our attention to the highly adaptable energy method [18]. Nonlin-
ear energy methods are particular useful as they delimit the param-
eter region of possible subcritical instability (the region between
the linear instability and nonlinear stability thresholds). Hence, quan-
tifying the discrepancy between these two thresholds makes it pos-
sible to provide an assessment of the suitability of linear theory to
predict the de-stabilisation of the double diffusive convection in
anisotropic porous media with throughflow, magnetic and vari-
able gravity effects. Recent contributions on the study of convec-
tive instabilities in fluid and porous media include [19-31].

When the difference between the linear (which predicts insta-
bility) and nonlinear (which predicts stability) thresholds is very
large, the validity of the linear instability threshold to capture the
onset of the instability is unclear. Thus, we select regions of large
subcritical instabiltiies and then develop a three dimensional sim-
ulation for the problem to test the validity of these thresholds. To
achieve this we transform the problem into a vorticity-pseudost-
ream function formulation and utilise second order finite differ-
ence schemes. Recently, in [32-36], the accuracy of the linear in-
stability thresholds are tested using three-dimensional simulations.
Our results show that the linear threshold accurately predicts on
the onset of instability in the basic steady state. However, the re-
quired time to arrive at the steady state increases significantly as
the Rayleigh number tends to the linear threshold.

In the next section, we present the governing equations of motion
and derive the associated perturbation equations. In Section 3, we
introduce the linear and nonlinear analysis of our system. In Sec-
tion 4, we introduce the numerical technique to solve the eigen-
value systems. In Section 5, the numerical results for the linear theory
and a direct comparison with those of the global nonlinear theo-
ries are presented. In Section 6, we transform our system to the
vorticity-pseudostream function formulation and introduce the nu-
merical solution of the problem in three dimensions. The three di-
mensions results of our numerical Model are then compiled and
discussed in the final section of the paper.

MATHEMATICAL FORMULATION AND GOVERNING 
EQUATIONS

Let us consider a layer Ω of a water saturated porous medium

bounded by two horizontal planes as shown in Fig. 1. Let d>0, Ω=
R

2=(0, d) and Oxyz be a Cartesian frame of reference with unit
vectors i, j, k. Denoting v, T and C to be the velocity, temperature
and concentration of the dissolved species. The porous medium in
the box with porosity ε. The fluid is subjected to the buoyancy
forces resulting from temperature difference (TL−TU) and the dif-
fusion of mass due to the concentration difference (CL−CU) between
the upper and lower planes where TL>TU and CL>CU, behind that
the electromagnetic force resulting from convection of fluid in an
uniform magnetic field. The diffusion in the box is unsteady and
three-dimensional, subject to a uniform magnetic field B. We assume
that the variables (u, T, C and p) are periodic in the x and y direc-
tions with periodically cells. Also, assuming that the Oberbeck-Bous-
sinesq approximation is valid (cf. [4] and [18] and references therein),
the flow in the porous medium is governed by Darcy’s law

(1)

vi, i=0, (2)

(3)

εC, t+vi C, i=κc C, (4)

where (2) is the incompressibility condition and (3) and (4) are the
equations of energy and solute balance, respectively. The deriva-
tion of Eqs. (1)-(4) may be found in [4].

We have denoted P, μ, ε, g, J, B and κc to be the pressure, vis-
cosity, porosity, gravitational acceleration, current, magnetic induc-
tion field and salt diffusivity, respectively. The density ρ is of the
form

ρ(T, C)=ρ0(1−αt(T−T0)+αc(C−C0))

where ρ0, T0 and C0 are a reference density, temperature and con-
centration, respectively, and αt and αc are the coefficients for ther-
mal and solutal expansion, respectively.

μ

K z( )
-----------vi = − P, i − kig z( )ρ T, C( ) + J B,×

1
M
-------T, t + viT, i = κt∇

2T + Q,

∇2

Fig. 1. A schematic of the physical domain.
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The permeability of the porous medium is taken to be of the
form

K(z)=K0s(z),

where K0 is a reference permeability and s(z)=1+λ1z/d, with con-
stant λ1>−1 to ensure s(z)>0. The effective thermal conductivity
of the saturated porous medium κt is defined by the ratio between
the thermal diffusivity of the porous medium and the heat capac-
ity per unit volume of the fluid:

where κs and κf are the thermal diffusivities of the solid and fluid
components of the porous medium, respectively and cp is the spe-
cific heat of the fluid at constant pressure. The coefficient M is the
ratio of heat capacities defined by

(5)

In (5) c is the specific heat of the solid, and

(ρ0c)m=(1−ε)(ρ0c)s+ε(ρ0cp)f,

denotes the overall heat capacity per unit volume of the porous me-
dium. The subscripts f, s and m referring to the fluid, solid and porous
components of the medium, respectively.

The Q (>0) term in (3) is a (constant) internal heat source, with
its inclusion allowing the model to describe penetrative convec-
tion in the porous layer.

Convectional hydrodynamic stability theory is mainly concerned
with the determination of critical values of Rayleigh number, demar-
cating a region of stability from that of instability. To make the con-
vective overturning instability problem tractable we employ the quasi-
static MHD approximation of Galdi and Straughan [37]. This as-
sumes that the electric field, E, may be derived from a potential
E=−  The magnetic field H and the electric field satisfy Max-
well’s equations, cf. Roberts [38], Fabrizio and Morro [39], so that

Here B=μH and then Galdi and Straughan [37] show that if the
vertical component in the perturbed motion is zero in the limit
magnetic Prandtl number Pm=ν/η→0, where η is the resistivity,
then J×B in Eq. (1) may be replaced by

J×B=σ1(v×B0)×B0, (6)

where σ1 is the electrical conductivity and B0=(0, 0, B0) is a mag-
netic field with only the vertical component. We now employ (6)
in (1).

The temperature and concentration boundary conditions for the
problem are T=TU and C=CU at z=d and T=TL and C=CL at z=0,
where TL>TU and CL>CU, so that the system is being heated and
salted from below.

Let us now consider the basic steady state solution of (1)-(4),
with a throughflow in the z direction of the form

where V is constant. Utilising the boundary conditions, Eqs. (3)
and (4) yield the temperature and concentration steady states

To investigate the stability of these solutions, we introduce pertur-
bations (ui, p, θ, φ) by

The perturbation equations are nondimensionalized according to
the scales (stars denote dimensionless quantities)

where R2
t and R2

c are the thermal and solute Rayleigh numbers,
respectively, and Tf is the non-dimensional form of the through-
flow. The dimensionless perturbation equations are (after omit-
ting all stars)

(7)

(8)

(9)

(10)

with w=u3 and f(z)=1+λz (with λ>−1 to ensure f(z)>0),

It is important to note that ε>0 and ε<0 correspond to heating
from below and above, respectively. These equations hold in the
region {z∈2 (0, 1)}×{(x, y)∈R2} and the boundary conditions to
be satisfied are:

u=0, θ=0, φ=0, at z=0, 1, (11)

where ui, p, θ and φ are assumed periodic in the x and y directions.

LINEAR AND NONLINEAR STABILITY THEORIES

To obtain the threshold for linear instability where we know con-
vection occurs we neglect the nonlinear terms in Eqs. (7)-(10). Then,
due to linearity we may seek solutions like ui(x, t)=ui(x)eσt, θ(x,

κt = 
1− ε( )κs + εκf

ρ0cp( )f
-------------------------------

M = 
ρ0cp( )f

ρ0c( )m
---------------.

∇χ.

curl H = J, curl E = − 
∂B
∂t
------.

v = 0, 0, V( ),

T z( ) = 
Qz
V
------- + TL + 

V TL − TU( ) + Qd

V eVd/κt
 −1( )

-------------------------------------- 1−  eVz/κt( ),

C z( )  = CL + 
CL − CU

1− eVd/κc
------------------- eVz/κc

 −1( ).

vi = ui + vi, P = p + P, T = θ + T, C = φ  + C.

p = 
μκt

K0
--------p*, θ  = θ

 
* dQμ

ρ0αtK0
----------------, xi = dxi

*, φ  = φ*
μκt CL − CU( )
ρ0αcK0d

------------------------------,

ui = 
κt

d
----ui

*, t = 
d2

κtM
-----------t*, ε̂ = Mε, Le = 

κt

κc
----, Tf = 

Vd
κt
-------,

Rt
2

 = 
ρ0αtK0d3Q

μκt
2

--------------------------, Rc
2

 = 
ρ0αcK0d CL − CU( )

μκt
------------------------------------------,

ε = 
TL − TU( )κt

Qd2
--------------------------, M = B0

σ1κ

μ
---------,

1
f z( )
--------ui = − p, i + Rtg z( )θki − Rcg z( )φki + M2 u k×( ) k×[ ]i,

ui, i = 0,

θ, t + uiθ, i + Tfθ, 3 = Rtf1 z( )w + ∇2
θ,

ε̂φ, t + uiφ, i + Tfφ, 3  = Rcf2 z( )w  + 
1

Le
-----∇2

φ,

f1 z( )  = 
Tf

eTf
 −1

------------ ε + 
1
Tf
----

 ⎝ ⎠
⎛ ⎞eTfz

 − 
1
Tf
----,

f2 z( )  = 
LeTf e

LeTfz

eLeTf
 −1

-----------------------.
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t)=θ(x)eσt, φ(x, t)=φ(x)eσt and P(x, t)=P(x)eσt, where σ is a com-
plex constant. This leads to the system

(12)

(13)

(14)

To proceed further we then take curlcurl of (12), and retain the third
component of the resulting equation, namely

(15)

where Δ*=∂2/∂x2+∂2/∂y2 and D=d/dz.
Next, due to the periodicity of the solution in the (x, y) variables

we may write w and φ as

w=W(z)h(x, y), θ=Θ(z)h(x, y) and φ=Φ(z)h(x, y),

where h is a plane-tiling planform so that

Δ*h=−a2h, (16)

where a is the wavenumber. Such planforms are discussed in detail
in [?], p.43-52 and [18], p.51. Eqs. (13)-(15) reduce to

(17)

(18)

(19)

System (17)-(19) represents an eigenvalue problem for the eigen-
values σ.

When adopting a linear analysis approach, the perturbation to
the steady state is assumed to be small, and so nonlinear terms in
the governing set of partial differential equations are discarded. It
has been proved that linear analysis often provides little informa-
tion on the behavior of the nonlinear system [18], so in such cases
only instability can be deduced from the linear thresholds, as any
potential growth in the nonlinear terms is not considered.

To develop a nonlinear stability analysis, let V be a period cell
for the disturbance solution in Eqs. (7)-(10). Let || · || and (·, ·) be
the norm and inner product on the Hilbert space L2(V). We mul-
tiply Eq. (7) by ui and integrate over V. After some integrations by
parts, use of the boundary conditions (11), and employing Eq. (8)
we derive the identity

(20)

Next, multiply Eqs. (9) and (10) by θ and φ, then integrate over V,
to see that after further integrations by parts and use of (8) and
(11), we obtain

(21)

(22)

The idea is to now add (20)+λ1 (21)+λ2 (22) for positive parame-
ters λ1 and λ2 which we later select optimally. This leads to the energy
equation

(23)

where E, I and D are defined by

(24)

where u is explicitly written as u=(u, v, w). Define now

(25)

where H is the space of admissible solutions and then from (23)
we find

(26)

If RE>1 then with χ1 being the constant in poincare’s inequality, it
follows that D>cE where c=min{2(χ1+ξ2)ps

−1, 2χ1pr
−1}. Hence it

follows that

Thus, letting ϱ=c(RE−1)/RE we have E(t)≤E(0)e−ϱt which tends to
0 as t→∞, so we have shown the decay of φ, θ and u.

The Euler-Lagrange equations which arise from (25) are:

(27)

(28)

(29)

where ζ is a lagrange multiplier. To solve the energy eigenvalue
problem (27)-(29) we remove the ζ term by taking curlcurl of (27)
to arrive at the system

(30)

(31)

(32)

Again, the representations w=W(z)h(x, y), θ=Θh(x, y) and φ =
Φ(z)h(x, y) are introduced and we solve (30)-(32) as

2f(D2−a2)W−2DfDW+2M2f2D2W−a2Rcf2(g−λ2f2)Φ
2f(D2−a2)W−=−a2Rtf2(g+λ1f1)Θ, (33)

2λ1(D2−a2)Θ=−Rt(g+λ1f1)W, (34)

2λ2(D2−a2)Φ−Rc(g−λ2f2)W=0, (35)

1
f z( )
--------ui = − π, i + Rtg z( )θki − Rcg z( )φki + M2 u k×( ) k×[ ]i,

σθ = Δθ + Rtf2 z( )w.

ε̂σφ  = Δφ  + Rcf2 z( )w.

0 = − 
1

f z( )
--------Δw + 

f' z( )

f2 z( )
----------w, z + Rtg z( )Δ*θ − Rcg z( )Δ*φ  − M2D2w,

f z( ) D2
 − a2( )W − f' z( )DW + a2Rtf

2 z( )g z( )Θ

− a2Rcf
2 z( )g z( )φ  + M2f2 z( )D2W = 0,

D2
 − a2( )Θ − TfDΘ + Rtf1 z( )W = σΘ,

1
Le
----- D2

 − a2( )φ  − TfDφ  + Rcf2 z( )W = ε̂σφ,

0 = − u, 1f
--u⎝ ⎠

⎛ ⎞  + R w, gθ( )  − Rc w, gφ( )  − M2 u 2
 − w 2( ).

1
2
--

d
dt
----- θ 

2
 = R f1w, θ( ) − ∇θ 

2.

ε̂

2
--

d
dt
----- φ 

2
 = Rc f2w, φ( )  − ∇φ 

2.

dE
dt
------ = I − D,

E t( )  = 
λ1

2
----- θ 

2
 + ε̂

λ2

2
----- φ  

2,

I = Rt w, θ g + λ1f1[ ]( ) − Rc w, φ g − λ2f2[ ]( ),

D = u, 1f
--u⎝ ⎠

⎛ ⎞  + λ1 ∇θ 

2
 + λ2 ∇φ  

2
 + M2 u 2

 + v 2( ),

1
RE
------ = 

I

D
----

H

lim ,max

dE
dt
------ −  D 1− 

1
RE
------

⎝ ⎠
⎛ ⎞,≤

dE
dt
------ −  cE

RE −1
RE

-------------
⎝ ⎠
⎛ ⎞.≤

−  2
f
------ui + Rtki g + λ1f1( )θ − Rcki g − λ2f2( )φ  − 2M2 ui − kiw( ) = ζ, i,

2λ1Δθ  + Rt g + λ1f1( )w  = 0,

2λ2Δφ  − Rc g − λ2f2( )w = 0,

−  2
f
------Δw  + 

2f'
f2
------w, z − 2M2w, zz + Rt g + λ1f1( )Δ*

θ

− Rc g − λ2f2( )Δ*

φ  = 0,

2λ1Δθ  − Rt g + λ1f1( )w  = 0.

2λ2Δφ  − Rc g − λ2f2( )w = 0.
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together with boundary conditions (19). Numerical results are pre-
sented in the next section.

NUMERICAL TECHNIQUE

In this section, we use the Chebyshev collocation method to solve
the eigenvalue systems (17)-(18) and (33)-(35). Firstly, the systems
is transformed onto the Chebyshev domain (−1, 1) and the solu-
tions W, θ and φ treated as independent variables and expanded in
a series of Chebyshev polynomials

(36)

then, we insert (36) into the Eqs. (17)-(18), and then substitute the
Gauss-Labatto points which are defined by

(37)

Thus, we obtain 3N−3 algebraic equations for 3N+3 unknowns
W0, …, WN, Θ0, …, ΘN, Φ0, …, ΦN. Now, we can add six rows using
the boundary conditions (19) as follows

The inner product of each equation is taken with some Tk and the
orthogonality of the Chebyshev polynomials exploited to obtain
the following generalised eigenvalue problem.

(38)

where X=(W0, …, WN, Θ0, …, ΘN, Φ0, …, ΦN), O is the zeros matrix,
I(n1, n2)=Tn2(zn1), D(n1, n2)=T'n2(zn1), D

2(n1, n2)=T''n2(zn1), γ1(n1, n2)=
f1(zn1)I(n1, n2), γ2(n1, n2)=f2(zn1)I(n1, n2), Σ(n1, n2)=f2(zn1)g(zn1)I(n1,
n2), Ω1=f(zn1)(4D2(n1, n2)−a2I(n1, n2))−2f '(zn1)D+M2f2(zn1)D

2(n1,
n2), Ω2=4D2(n1, n2)−a2I(n1, n2)−2TfD(n1, n2), n1=0, …, N−2, n2=0,
…, N. We computed the differentiation matrices, which are corre-
sponded to the trail functions (36) analytically using Matlab rou-
tines.

We have solved system (38) for eigenvalues σj by using the QZ
algorithm from Matlab routines. Once the eigenvalues σj are found
we use the secant method to locate where σ R

j, σj=σ R
j+σ I

j being
the real and imaginary parts of eigenvalue σj. The value of R which
makes σ R

1=0, σ R
1 being the largest eigenvalue, is the critical value

of R for a2 fixed. We then use golden section search to minimize
over a2 and find the critical value of R2 for linear instability. Numer-

ical results are reported in the next section. In our use of the Che-
byshev collocation method, we used polynomial of degree between
20 and 30. Usually 25 was found to be sufficient but convergence
was checked by varying the degree by examining the convergence
of the associated eigenvector (which yields the approximate associ-
ated eigenfunction).

Returning to the nonlinear eigenvalue system (33)-(35), the the
Chebyshev collocation method yields

(39)

where

Λ11(n1, n2)=(λ1f1(zn1)+g(zn1))I(n1, n2),
Λ12(n1, n2)=f2(zn1)(λ1f1(zn1)+g(zn1))I(n1, n2),
Λ21(n1, n2)=(−λ2f2(zn1)+g(zn1))I(n1, n2)

and

Λ22(n1, n2)=f2(zn1)(−λ2f2(zn1)+g(zn1))I(n1, n2)

Then, we can determine the critical Rayleigh RaE for fixed a2, λ1

and λ2. Next, we employ golden section search to minimize in a2

and then maximize in λ1 and λ2 to determine RaE for nonlinear
energy stability,

(40)

where for all R2<RaE we have stability. In fact, the optimization
problem (40) turns out to be very tricky. Numerically it was found
that there are local maxima and one has to be very careful when
searching to locate a maximum which is useful. Numerical results
are reported in the next section and compared to those of linear
instability theory.

STABILITY ANALYSIS RESULTS

The numerical results are presented for the gravity field g(z)=
1−ε1z, while the numerical routine is applicable to a wide variety

W = wnTn z( ),
n=0

N
∑ Θ = ΘnTn z( ),

n=0

N
∑ Φ = ΦnTn z( ),

n=0

N
∑

yi = 
πi

N − 3
------------⎝ ⎠
⎛ ⎞cos , i = 0, …, N − 2.

BC1: Wn = 0
n=0

N
∑ , BC2: −1( )n

n=0

N
∑ Wn = 0, BC3: Θn = 0,

n=0

N
∑

BC4: −1( )n
Θn = 0

n=0

N
∑ , BC5: Φn

n=0

N
∑  = 0, BC6: −1( )n

Φn = 0.
n=0

N
∑

Ω1 a2RtΣ − a2RcΣ

BC1 0…0 0…0
BC2 0…0 0…0
Rtγ1 Ω2 O
0…0 BC3 0…0
0…0 BC4 0…0
Rcγ2 O Ω2

0…0 0…0 BC5

0…0 0…0 BC6⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X = σ 

O O O
0…0 0…0 0…0
0…0 0…0 0…0

O I O
0…0 0…0 0…0
0…0 0…0 0…0

O O ε̂I
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of other fields. To investigate the possibility of a very widely vary-
ing gravity field (one which even changes sign) we choose ε1 to vary
from 0 to 1.8. The results in this paper are given for =5 and Le=1.

The thresholds of both the numerical linear instability and non-
linear stability results are presented in Fig. 2. More comparable lin-
ear and nonlinear thresholds are apparent as the onset of convection
predicted by the linear theory becomes fully stationary. However,
their agreement does deteriorate as the solute Rayleigh number
becomes large, indicating that the linear theory may fail to suit-
ably emulate the physics of the onset of convection. The behaviour
of the linear instability curves is in good agreement with that seen
in [40]. The kink in the curves represents the point at which con-
vection switches from steady convection (σ=0) to oscillatory (σr=0,
σi≠0). Note that as Rc increases the onset of convection is more
likely to be via oscillatory convection as opposed to steady convec-
tion. We observe from Fig. 2 that for Rc=0 there is very good agree-
ment between the nonlinear stability and linear instability bounds.
We also note that as Rc is small the linear and nonlinear results be-

come closer and remark that since the critical Rayleigh numbers
are so close (for Rc sufficiently small) we expect the linear analysis
to have captured the essential physics of the onset of convection.
However as Rc increases the agreement between the two thresh-
olds is not so good and we highlight this area as a region of possi-
ble subcritical instabilities.

Fig. 3 gives a visual representation of the linear instability and
nonlinear stability thresholds, with critical thermal Rayleigh num-
ber Ra plotted against the magnetic field. The remaining parame-
ters are held fixed at Tf =1, ε=0.1, λ=0.5, ε1=0.5, Rc=6. This figure
shows the effect of increasing M2 on the critical Rayleigh number.
It is clear from this figure that an increase in M2 causes the system
the become more stable, which we would physically expect. For
M2>4, the stationary convection become dominator in the linear
instability thresholds. When M2

≤4, the oscillatory modes become
present in the linear instability thresholds. Fig. 3 demonstrates that
Ra increases with increasing M2 which shows the stabilizing effect
of M2. It is very noteworthy that the nonlinear stability curves are

ε̂

Fig. 2. Visual representation of stationary linear instability (solid line) and nonlinear stability (dashed line) thresholds, with critical Rayleigh
number plotted against Rc, where Tf =1, ε =0.1 and (a) λ=0, M2=0, ε1=0, (b) λ=0.5, M2=5, ε1=0.5.

Fig. 3. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against M2, where Tf =1, ε=0.1, λ=0.5, ε1=
0.5, Rc=6.

Fig. 4. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against ε1, where Tf =1, ε=0.1, λ=0.5, M2=
2, Rc=6.
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close to those of linear theory. This shows that possible sub-criti-
cal instabilities may arise in a small range of Rayleigh numbers,
and it also demonstrates that linear instability theory does correctly
capturing the physics of the onset of convection. It is worth point-
ing out that such stabilizing effect of the magnetic field has been
observed in [1-3].

Fig. 4 gives a visual representation of the linear instability and
nonlinear stability boundaries, with critical thermal Rayleigh num-
ber Ra plotted against ε1. The remaining parameters are held fixed
at Tf =1, ε=0.1, λ=0.5, M2=2, Rc=6. It is clear from this figure that
Ra increases with increasing ε1 which refers to the stabilizing effect
of ε1. It is clearly demonstrated in these figures that for small val-
ues of ε the linear and non-linear thresholds have substantial cor-
relation, demonstrating the suitability of linear theory to predict
the physics of the onset of convection. As ε increased the thresh-
olds have less correlation.

Fig. 5 shows how increasing ε, corresponds, to destabilization. It

is clear from Fig. 5 that an increase in ε causes the system the be-
come more unstable, which we would physically expect. Again, it
is very noticeable that the nonlinear energy stability curves are close
to those of linear instability. This is reinforcing the fact that the lin-
ear curves are true representation that the physics of the onset of
convection is being correctly reflected. The gap between the curves
represents the small band where sub-critical bifurcation may pos-
sibly occur. For ε<0, the stationary convection become dominator
in the linear instability thresholds. However, for ε≥0, the oscillatory
convection appears in the linear instability.

A visual representation of the influence of λ on the critical Rayleigh
numbers of linear instability and global nonlinear stability is given
in 6. From 6 we observe that changes in the value of λ does have a
significant impact on the shape of the neutral curves. As one would
physically expect, λ<0 is more stable than λ>0 as the permeability
is decreasing (as opposed to increasing) from the bottom to the
top layer, inhibiting the flow. For Tf =1, it is interesting to note that

Fig. 5. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against ε, where Tf =1, λ=0.5, M2=2, ε1=0.5,
Rc=6.

Fig. 6. Visual representation of stationary linear instability (solid line), oscillatory linear instability (dashed line) and nonlinear stability (dot-
ted line) thresholds, with critical Rayleigh number plotted against λ, where ε =0.1, M2=2, ε1=0.5, Rc=6.

Fig. 7. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against Tf, where ε=0.1, λ=0.5, M2=2, ε1=
0.5, Rc=6.
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the oscillatory and stationary modes become present in the linear
instability thresholds, for λ≥0.1 and λ<0.1, respectively. Also, For
Tf =−1, the oscillatory convection appears in the linear instability
when λ≥0 while the stationary convection in linear instability be-
come dominator for λ<0.

A visual representation of the linear instability and global non-
linear stability thresholds is given in 7. To assist in the interpreta-
tion of the results, we recall that ascending and descending through-
flow are represented by the positivity and negativity of the value of
Tf, respectively. Fig. 7 clearly demonstrate that the linear and non-
linear thresholds have excellent agreement for 0≤Tf≤4. When Q is
negative the thresholds demonstrate less substantial agreement. This
pattern of results is similar to the behaviour of throughflow in a
fluid layer (cf. [41]). For −2≤Tf≤3, the oscillatory convection become
dominator in the linear instability thresholds, and otherwise, the
stationary convection appears in the linear instability. A similar
structure is observed in the case where the density is quadratic in
temperature [16].

VORTICITY-PSEUDOSTREAM FUNCTION 
FORMULATION

In Sections 6 and 4 we now develop a three-dimensional approach
to solve the time dependent governing Eqs. (1)-(4) in order to assess
the accuracy of the linear instability and nonlinear stability thresh-
olds. A schematic diagram of the three-dimensional space (based
on Fig. 1) under consideration is given in Section 7.

In this paper, we present an efficient, stable, and accurate finite
difference schemes in the vorticity-vector potential formulation for
computing the convective motion of an incompressible fluid in a
porous material. The emphasis is on three dimensions and non-
staggered grids. We introduce a second-order accurate method based
on the vorticity-vector potential formulation on the nonstaggered
grid whose performance on uniform grids is comparable with the
finite scheme. We will pay special attention to how accurately the
divergence-free conditions for vorticity, velocity, and vector poten-
tial are satisfied. We will derive the three-dimensional analog of
the local vorticity boundary conditions.

By using the curl operator to Eq. (7), one gets the following di-
mensionless form of the vorticity transport equation:

(41)

where the vorticity vector =(ξ1, ξ2, ξ3) is defined as

(42)

To calculate velocity from vorticity, it is convenient to introduce a
vector potential =(ψ1, ψ2, ψ3), which may be looked upon as the
three-dimensional counterpart of two-dimensional stream func-
tion. The vector potential is defined by

(43)

It easy to show the existence of such a vector potential for a solenoi-
dal vector field (∇· =0), which is required to be solenoidal, i.e.,

(44)

Substituting Eq. (43) in Eq. (42) and using Eq. (44) yields

(45)

The set of Eqs. (9), (10), (41), (43) and (45) with appropriate bound-
ary conditions form the basis for the numerical computations. The
discretized form of these equations using second order finite dif-
ference scheme can be written as:

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

 i, j, k=1, …, m.

where δ 2
x, δ 2

y, δ 2
z are the second-order central difference operators

and δx, δy, δz are the first-order central difference operators. Here,
     and  are computed explicitly from

(49), (50), (51), (54), (55) and (56), respectively, while  
  and  are computed from (46), (47), (48), (52), and

(53), respectively, implicitly using the Gauss-Seidel iteration method.
The temperature and concentration on the boundary can be com-
puted explicitly using (11).

Here, we should mention that our scheme is flexible for various
Ra values and thus the grid resolution has been selected accord-
ing to the Ra values. We decrease the values of Δx, Δy and Δz as
the value of Ra increases. However, for this problem, we find that
Δx=Δy=Δz=0.02 is enough to give us very accurate results.

NUMERICAL RESULTS

In this section, RaL, is the critical Rayleigh number for linear
instability theory and RaE is the critical Rayleigh number for the
global nonlinear stability theory. The corresponding critical wave-
numbers of the linear instability and the global nonlinear stability
will be denoted by aL and aE, respectively. In Table 1, we present
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numerical results of the linear instability and non-linear stability
analyses. The dimensions of the box, which are calculated accord-
ing to the critical wavenumber, are shown in Table 1. We assume
that the perturbation fields (u, θ, φ, P) are periodic in the x and y
directions and denote by Ω=[0, 4π/ax]×[0, 4π/ ay]×[0, 1] to be
the periodicity cell, where ax and ay are the wavenumbers in the x
and y directions, respectively. ax and ay are evaluated according to
the critical wavenumbers aL where a2

L=a2
x+a2

y, where Lx=4π/ax

and Ly=4π/ ay. These values of Lx and Ly are consistent with the
hexagonal pattern of convection.

For numerical solutions in three dimensions, we used Δt=5×
10−5 and Δx=Δy=Δz=0.02. The convergence criterion have been
selected to make sure that the solutions arrive at a steady state. The
convergence criterion is

and we select χ=10−6. The program will continue computing the
results for new time steps until the results satisfy the convergence
criterion. Otherwise, if the solution cannot arrive at any steady state

and oscillate, we present the results at τ=6, where τ is the meas-
urement of the time.

To solve Eqs. (46)-(48) using the Gauss-Seidel iteration method,
in the first time step we give an initial value to the potential vector
and we denote    to be the potential vector. Then,
using these initial values, we compute new values which we denote
by    and use these values to evaluate new val-
ues. The program will continue in this process until the conver-
gence criterion is satisfied, which is

In the next time steps, the values of ψ1ijk, ψ2ijk, ψ3ijk in the time step
n will be the initial values to the next time step.

Fig. 8 shows contour of perturbation velocity w at three loca-
tions in x−y plane z=0.05, z=0.5 and z=0.95, at τ=4, Tf =3, ε=
0.1, λ=0.5, M2=0 and ε1=1. Fig. 8(a), (b) and (c) at Rc=0 and Ra=
1268, while Fig. 8(d), (e) and (f) at Rc=12 and Ra=1705. The Figs.
(a), (b) and (c) show multi cells symmetric in the shape about the
center cell, where the center cell have two compound cells. These
cells are negative sign and these symmetric because the periodic
condition at the x and y sides of the problem. The minimum inten-
sity of w at location z=0.5 (wmin=−20), this may be returned to far
away from the disturbance of boundaries at z=0 & (d). In the Figs.
(d), (e) and (f) the number of cells are increased, and become with
two signs positive and negative (with sequence in the intensity and
sign). This behavior because increase the value of Rc and Ra (Rc=
12 and Ra=1705), where the increase the effect of concentration
and temperature with throughflow make the distribution of w is
varying. The value of w are wmax=3.7×10−4, wmax=0.084, wmax=0.072
at (d), (e) and (f) respectively.

Fig. 9 clears contour of perturbation velocity w for three posi-
tions z=0.05, z=0.5 and z=0.95, at τ=4, Rc=20, Tf=3, ε=0.1, λ=
0.5, M2=0 and ε1=1, for two cases: (a), (b) and (c) at Ra=2000, and
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Table 1. Critical Rayleigh and wavenumbers of the linear instabil-
ity and nonlinear stability theories for Tf =3, ε=0.1, λ=0.5,
M2=0 and ε1=1

Rc RaL a2
L RaE a2

E

00 1267.260 23.836 656.928 14.197
06 1502.994 25.731 656.928 14.197
08 1584.707 23.899 656.928 14.197
12 1704.129 24.917 656.928 14.197
16 1852.505 25.979 656.928 14.197
20 2032.226 27.109 656.928 14.197

Fig. 8. Contour plot of w at τ=4, Tf=3, ε=0.1, λ=0.5, M2=0 and ε1=1. In (a), (b), (c) Rc=0 and Ra=1268. In (d), (e), (f) Rc=12 and Ra=1705.
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(d), (e) and (f) at Ra=2020. This figure show multi rotating cells
with sequence symmetric in the intensity, shape and sign (positive
and negative). It can be seen from the figure that the increase of
Rayleigh number Ra gives increase the perturbation of w (positive
and negative), which returned to increase temperature difference
between lower plate (TL) and upper plate (TU), where wmax=4×10−6,
wmax=0.028, wmax=0.025, wmax=1.2×10−5, wmax=0.082, wmax=0.075
at (a), (b), (c), (d), (e) and (f) respectively.

The contour of perturbation temperature θ is shown in the Fig.
10 for three locations in x−y plane z=0.05, z=0.5 and z=0.95, at

τ=4, Tf =3, ε=0.1, λ=0.5, M2=0 and ε1=1. Fig. 10(a), (b) and (c)
at Rc=0 and Ra=1268, while Fig. 10(d), (e) and (f) at Rc=12 and
Ra=1705. It can be seen that the figures (a), (b) and (c) consist
from multi cells of isotherm θ, the center cell have minimum magni-
tude and negative sign (T= −θ). Also, the side cells are symmet-
ric about the center cell, because the periodic condition at the x
and y sides of the problem. The change of solute number Rc from
0 ((a), (b) & (c)) to 12 ((d), (e) & (f)) makes the cells dense and
have sequence symmetric in the in the intensity, shape and sign
(positive and negative). Also, the values of maximum and minimum

T

Fig. 9. Contour plot of w at τ =4, Rc=20, Tf=3, ε =0.1, λ=0.5, M2=0 and ε1=1. In (a), (b), (c) Ra=2000. In (d), (e), (f) Ra=2020.

Fig. 10. Contour plot of θ at τ=4, Tf=3, ε=0.1, λ=0.5, M2=0 and ε1=1. In (a), (b), (c) Rc=0 and Ra=1268. In (d), (e), (f) Rc=12 and Ra=1705.
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values of θ are lowered with increasing Rc, because increase the con-
centration difference (CL−CU), which increase the diusion.

The effect of increment of Rayleigh number Ra on θ is illustrated
in Fig. 11, which plots the contour of θ at τ=4, Rc=20, Tf =3, ε=
0.1, λ=0.5, M2=0 and ε1=1, for two cases: (a), (b) and (c) at Ra=
2000, and (d), (e) and (f) at Ra=2020. From the figure, there are
multi cells with sequence symmetric in the intensity, shape and sign
(positive and negative). The values of maximum θ are: θmax=4.5e−5,
θmax=1.7×10−4, & θmax=0.0061 at (a), (b) & (c) respectively, and θmax=
7.1×10−4, θmax=0.0046, θmax=0.014 at (d), (e) and (f) respectively. It

can be noted that θmax increases with Ra, because increase the tem-
perature difference (heat flow).

The Fig. 12 clears the contour of perturbation of concentrate φ
at three locations z=0.05, 0.5 & 0.95, at τ=4, Tf =3, ε=0.1, λ=0.5,
M2=0 and ε1=1. The contours of φ distribute as longitudinal cells
with mirror images about x and y axises. These cells have positive
sign (C= +φ), and are: φmax=7.6×10−6, φmax=5.9×10−5, & φmax=
3.610×10−5 at (a), (b) & (c) respectively. The boundary conditions
of C (C=CL at z=0 and C=CU at z=d) make the diffusion of con-
centrate from lower surface to the upper surface and concentrated

C

Fig. 11. Contour plot of θ at τ =4, Rc=20, Tf=3, ε =0.1, λ=0.5, M2=0 and ε1=1. In (a), (b), (c) Ra=2000. In (d), (e), (f) Ra=2020.

Fig. 12. Contour plot of φ at τ=4, Tf=3, ε=0.1, λ=0.5, M2=0 and ε1=1. In (a), (b), (c) Rc=0 and Ra=1268. In (d), (e), (f) Rc=12 and Ra=1705.
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at the center of the box. Figs. (d), (e) & (f) show that the value and
sign of the φ is varied with solute number Rc. This may be returned
to increase the value of Rc and Ra (Rc=12 and Ra=1705), where
throughflow make the distribution of φ is varying.

Finally, Fig. 13 illustrates the effect of varying Rayleigh number
Ra ((a), (b) and (c) at Ra=2000, and (d), (e) and (f) at Ra=2020)
on the contours of φ at τ=4, Rc=20, Tf =3; ε=0.1, λ=0.5, M2=0
and ε1=1. It can be noted that increase of Ra makes the cells of φ
more dense with symmetric about x, y axises and diagonal. The
minimum and maximum intensity of φ at ((a), (b) and (c)) lower
than φ at ((d), (e) and (f)), because affect the density (ρ) with in-
creasing Rayleigh number (temperatures differences (TL−TU). In
general the solute and Rayleigh numbers have distinct effect on
the distribution of w, θ and φ.

Figs. 14-19 show a summary of the numerical results where the
maximum and minimum values of the third component of veloci-
ties versus time with Tf=3, ε=0.1, λ=0.5, M2=0 and ε1=1 are pre-
sented. The solid, dash, dot, dash dot, dash dot dot and short dash
lines represent umax, umin, vmax, vmin, wmax and wmin, respectively. We
repeated the experiment with M2=1, and we found the behaviour
of the stability is exactly similar to the case of M2=0. The really in-

teresting situation from both a geophysical and a mathematical
viewpoint arises when the layer is simultaneously heated from below
and salted from below. In this situation heating expands the fluid
at the bottom of the layer and this in turn wants to rise thereby
encouraging motion due to thermal convection. On the other hand,
the heavier salt at the lower part of the layer has exactly the oppo-
site effect and this acts to prevent motion through convective over-
turning. Thus, these two physical effects are competing against each
other. Due to this competition, it means that the linear theory of
instability does not always capture the physics of instability com-
pletely and (sub-critical) instabilities may arise before the linear
threshold is reached. Due to the possibility of sub-critical instabili-
ties occurring, it is very important to test the accuracy of the lin-
ear instability threshold in capturing the onset of the instability of
the double diffusive problem when the layer is heated and salted
from below.

In Figs. 14 and 15 Rc=0 and Rc=6, respectively, were chosen and
for these cases the critical spectrum σ is found numerically to be
always real. In Fig. 14, Rc=0 was selected, then, according to the
stability analysis RaL=1267.26 and RaE=656.928 are obtained. Here,
there is clearly a very large subcritical stability region as there is a

Fig. 13. Contour plot of φ at τ =4, Rc=20, Tf=3, ε =0.1, λ=0.5, M2=0 and ε1=1. In (a), (b), (c) Ra=2000. In (d), (e), (f) Ra=2020.

Fig. 14. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=0. For this case RaL=1267.26, RaE=656.928.
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big difference between the critical Rayleigh numbers of linear and
nonlinear theories. From Fig. 14, for Ra=1200, it is evident that
the values of velocity satisfy the convergence criteria at τ=2.439
and thus the solution arrives at the basic steady state within a short
time. However, for Ra=1220, the program needs τ=3.2152 to arrive
at the basic steady state, which is expected as the required time to
arrive at a steady state increases with increasing Ra values until the
solution does not reach to any steady state. Also, at Ra=1240, the
basic steady state at τ=4 was not accessed. There was a decrease
in the solutions values, however, and therefore accessing a basic
steady state at future levels can be expected. Moreover, for Ra=1268,
the solutions do not reach any steady state and the program stops
at τ=4. For R2=1268, the program was allowed to run for a signif-
icant period to test the convection’s long time behaviour. It can be
seen that the values of the velocities increase rapidly and continue

in the oscillation behaviour. Here, according to the numerical results,
the linear instability threshold is close to the actual threshold, i.e.
the solutions reach the basic steady state before the linear instabil-
ity threshold. The results in Fig. 15 indicate that the stability be-
haviour is similar to the stability behaviour of Fig. 14, as it was found
that the actual threshold is close to the linear instability threshold.
However, in Fig. 15, Rc=6 and thus the value of Rc very close to
the switching point of convection from steady to oscillatory. In this
case, the actual threshold will move slightly from the linear insta-
bility threshold.

At Rc=8, the nature of convection changes to oscillatory convec-
tion. For Rc=8 and Rc=12, the results are presented in Figs. 16 and
17, respectively, and in these cases, the numerical values of critical
spectrum σ is always complex. In Fig. 16, critical Rayleigh num-
bers for Rc=8 were computed, the systems (39) and (38) were solved,

Fig. 15. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=6. For this case RaL=1502.994, RaE=656.928.

Fig. 16. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=8. For this case RaL=1584.707, RaE=656.928.
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leading to the following stability results: RaL=1584.707 and RaE=
656.928. In this case, the difference between the critical Rayleigh
numbers of linear and nonlinear theories is very large. Fig. 16 shows
that for Ra=1400 and Ra=1500 the solutions reach the basic steady
state and satisfy the convergence criteria at τ=2.06455 and τ=3.44435,
respectively. Moreover, at Ra=1530, the basic steady state at τ=4
could not be achieved, but there was a decrease in the solutions
values and therefore reaching a basic steady state at the next time
levels is expected. Also, for Ra=1550, Ra=1560, Ra=1570 and Ra=
1580, the solutions cannot achieve any steady state and the pro-
gram stops at τ=4. For Ra=1550, Ra=1560, Ra=1570 and Ra=1580,
the convection behaviour was very oscillated and access to a stable
state was impossible. For Fig. 17, Rc=12 was selected, then the Rc

value moved from the switching point of convection from steady
to oscillatory. The results of Fig. 17 demonstrate that the stability

Fig. 17. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=12. For this case RaL=1704.129, RaE=656.928.

Fig. 18. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=16. For this case RaL=1852.505, RaE=656.928.

behaviour is similar to the stability behaviour of Fig. 16, as it was
found that the actual threshold is close to the linear instability thresh-
old but only one difference. The difference is that the actual thresh-
old move form the linear instability threshold. We can see from
Fig. 16 that as the value of Rc moves from the switching point, the
actual threshold will move from the linear instability threshold.

As Rc is increased, the oscillatory modes become present in the
linear instability thresholds. The results for Rc=16 and Rc=20 in
Figs. 18 and 19, respectively, are presented. Fig. 18, shows Rayleigh
numbers for Rc=16, with solutions for systems (39) and (38), which
produced the following stability results: RaL=1852.505 and RaE=
656.928. As can be seen, the difference between the critical Rayleigh
numbers of linear and nonlinear theories is considerable, with Fig.
18 showing that for Ra=1600 and Ra=1750 the solutions achieve
the basic steady state soon and satisfy convergence criteria at τ=
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2.00705 and τ=3.6226, respectively. Moreover, for Ra=1780 and
Ra=1800, the solutions do not satisfy the convergence criterion
and the program stops at τ=4, but it is clear that the solutions can
achieve the convergence criterion on the next occasions. Further-
more, for Ra=1820, Ra=1840 and Ra=1852, the solutions could
not reach any steady state and the program did not progress beyond
τ=4. For Ra=1820, Ra=1840 and Ra=1852, the convection behaviour
oscillated and access to a stable state was impossible. In Fig. 19, the
value of Rc was 20. As previously mentioned, as the value of Rc in-
creases, the actual threshold converges from the nonlinear stability
threshold and the behaviour of the solutions becomes more oscil-
lated.

CONCLUSIONS

In this paper we have explored double-diffusive convection in
an anisotropic porous layer with a constant throughflow. Regions
of very large subcritical instabilities, i.e. where agreement between
the linear instability thresholds and nonlinear stability thresholds is
poor, are studied by solving for the full three-dimensional system.
The results indicate that the linear threshold accurately predicts on
the onset of instability in the basic steady state. However, the re-
quired time to arrive at the steady state increases significantly as
the Rayleigh number tends to the linear threshold.

We find that the linear instability threshold (RaL) gives an accu-
rate prediction to the physical conditions under which the steady
state throughflow will destabilise. If the Rayleigh number Ra is less
than RaL, the temperature, velocity, vorticity and potential pertur-
bations vanish, sending the solution back to the steady state, before
the linear thresholds are reached. Numerically, the required time
to arrive at the steady state increases as the value of Ra increases.
When Ra is close to RaL, the solutions can tend to a steady state
which is different to the basic steady state =(0, 0, V). When Ra>
RaL the steady state throughflow destabilises, with oscillating per-
turbations.
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