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Abstract−We study the problem of double diffusive convective movement of a reacting solute in a viscous incom-
pressible occupying a plane layer in a saturated porous medium and subjected to a vertical magnetic field. The thresh-
olds for linear instability are found and compared to those derived by a global nonlinear energy stability analysis. Then,
the accuracy of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimen-
sional simulation. The strong stabilizing effect of gravity field and magnetic field is shown. Moreover, the results sup-
port the assertion that the linear theory, in general, is accurate in predicting the onset of convective motion, and thus,
regions of stability.
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INTRODUCTION

Penetrative convection refers to a convective motion, where part
of the layer has a tendency to be unstable, which then induces insta-
bility in the rest of the layer (cf. Nield and Bejan [1]). One of the
most widely employed mechanisms to describe penetrative con-
vection is internal heating. An internal heat source (or sink) can
give rise to a situation where one part of a layer is naturally con-
vecting while the other remains stable, allowing penetrative con-
vection to occur. Recently, mathematical models to describe pene-
trative convection have been developed and analyzed intensely by
Ganesan and Suganthi [2], Hwang [3], Kim [4-6], Liu et al. [7], Lungu
et al. [8], Nield and Kuznetsov [9-13], Sharma et al. [14] and Sho-
jaeian and Shojaee [15].

Most available studies focus on the natural convection heat trans-
fer through a porous medium saturated by an electrically noncon-
ducting fluid, as in most practical situations. Recently, the equally
important problem of hydromagnetic convective flow of a conduct-
ing fluid through a porous medium has been the center of much
investigation. Subjected to a magnetic field, the motion of an elec-
trically conducting fluid induces an electric current whose fluid
velocity is reduced, in general, by interaction between the electric
current and the motion. The natural convection of electrically con-
ducting fluids in porous media where a magnetic field exists has
not, however, been the subject of much research, although there
are potential applications. An example is the study of the interac-
tion of the geomagnetic field with the fluid in geothermal regions,
where the Earth’s crust functions as a porous medium is regarded
by geophysicists as being of considerable importance. Also, with

continuous casting, an example of metallurgical applications, elec-
tromagnetic stirring can improve the solidification structure to pro-
duce a fine-grained structure, with better final mechanical properties.
Where dendritic solidification of alloys is concerned, dendrites in
the mushy zone can be regarded as a porous medium. Some atten-
tion has been focussed on how a magnetic field affects the onset of
instability in porous medium layers (cf. [16-20] and the references
therein).

Double-diffusive flows in porous media are widely encountered
both in nature and in technological processes [21]. Bioremedia-
tion, where micro-organisms are introduced to change the chemi-
cal composition of contaminants is a very topical area, cf. Chen et
al. [22], Suchomel et al. [23]. Contaminant/pollution transport is
yet another area of multi-component flow in porous media which
is of much interest in environmental engineering, cf. Curran and
Allen [24], Ewing and Weekes [25], Franchi and Straughan [26].
Other very important and topical areas of salt/heat transport in
porous flows are in oil reservoir simulation, e.g. Ludvigsen et al.
[27], and salinization in desert-like areas, Gilman and Bear [28].

In this study, we analyzed a model of double diffusive convec-
tion in a porous medium with chemical reaction, variable gravity
field and magnetic field effects. Coupled heat and mass transfer
problems in presence of chemical reaction are important in many
processes and have, therefore, received considerable amount of atten-
tion. In drying, distribution of temperature and moisture over agri-
cultural fields and groves of fruit trees, damage of crops due to freez-
ing, evaporation at the surface of a water body, energy transfer in a
wet cooling tower and flow in a desert cooler, heat and mass trans-
fer occur simultaneously. Possible applications of this type of flow
can be found in many industries. For instance, in the power indus-
try, among the methods of generating electric power is one in which
electrical energy is extracted directly from a moving conducting
fluid. For more details on these application see [29], [30] and [31]
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and references therein.
Modeling as realistically as possible these physical phenomena

is the main impetus behind the extensive research into fluid mechan-
ics. The mathematical idealisation of the stability of these real world
problems is achieved through the use of partial differential equa-
tions to model the physical problem. The study of the stability of
such systems of partial differential equations is a key aspect in their
physical interpretation (see e.g. Nield and Bejan [1] and Straughan
[32]), and continues to be one of the most pursued topics in fluid
mechanics. To find regions of stability we must use linear instabil-
ity and nonlinear stability theories. Between the stability and insta-
bility boundaries, neither the linear nor nonlinear methods provide
information about the stability; instead the equations must be solved
using a three-dimensional computation. In some instances, non-
linear stability bounds obtained are far below the linear instability
bounds and the region of unknown stability is large.

However, when the difference between the linear (which pre-
dicts instability) and nonlinear (which predicts stability) thresh-
olds is very large, the accuracy of the linear instability threshold to
capture the onset of the instability is unclear. Thus, we select a regions
which have large subcritical instabiltiies and then develop a three-
dimensional simulation for the problem to test the accuracy of these
thresholds. To achieve this we transform the problem into u−curl(u)
formulation and utilize second-order finite difference schemes. Re-
cently, in [33-41], the accuracy of both the linear instability and
global nonlinear energy stability thresholds was tested using three-
dimensional simulations. Our results show that the linear thresh-
old accurately predicts on the onset of instability in the basic steady
state. However, the required time to arrive at the steady state in-
creases significantly as the Rayleigh number tends to the linear
threshold.

In the next section, we present the governing equations of motion
and derive the associated perturbation equations. In Section 3, we
introduce the linear and nonlinear analysis of our system. In Sec-
tion 4, the numerical results for the linear theory and a direct com-
parison with those of the global nonlinear theories are presented.
In Section 5, we transform our system to u−curl(u) formulation
and introduce the numerical solution of the problem in three dimen-
sions. The results of our numerical investigation are then compiled
and discussed in the final section of the paper.

MATHEMATICAL FORMULATION AND GOVERNING 
EQUATIONS

Consider a layer Ω of a water saturated porous medium bounded
by two horizontal planes as shown in Fig. 1. Let d>0, Ω=R2=(0, d)
and Oxyz be a Cartesian frame of reference with unit vectors i, j,
k. Denoting v, T and C to be the velocity, temperature and con-
centration of the dissolved species. The porous medium in the box
with porosity ε. The fluid is subjected to the buoyancy forces result-
ing from temperature difference (TL−TU) and the diffusion of mass
due to the concentration difference (CL−CU) between the upper
and lower planes where TL>TU and CL>CU, behind that the elec-
tromagnetic force resulting from convection of fluid in an uniform
magnetic field. The diffusion in the box is unsteady and three-dimen-
sional, subject to a uniform magnetic field B. We assume that the

variables (u, T, C and p) are periodic in the x and y directions with
periodically cells. Also, assuming that the Oberbeck-Boussinesq
approximation is valid (cf. [1] and [32] and references therein), the
flow in the porous medium is governed by Darcy’s law

(1)

(2)

(3)

(4)

where (2) is the incompressibility condition and (3) and (4) are
the equations of energy and solute balance, respectively. The deri-
vation of Eqs. (1)-(4) may be found in [1].

We have denoted p, μ, g, κ, C0, K1, j and κc to be the pressure,
viscosity, gravitational acceleration, permeability of the porous me-
dium, reference concentration, chemical reaction rate, current and
salt diffusivity, respectively. The density ρ is of the form

ρ(T, C)=ρ0(1−αt(T−T0)+αc(C−C0))

where ρ0 and T0 are a reference density and temperature, respec-
tively, and αt and αc are the coefficients for thermal and solutal
expansion, respectively.

The effective thermal conductivity of the saturated porous me-
dium κt is defined by the ratio between the thermal diffusivity of
the porous medium and the heat capacity per unit volume of the
fluid:

where κs and κf are the thermal diffusivities of the solid and fluid
components of the porous medium, respectively and cp is the spe-
cific heat of the fluid at constant pressure. The coefficient M1 is the
ratio of heat capacities defined by

μ

κ
---vi = − p,i − kig z( )ρ T, C( )  + j B,×

vi,i = 0,

1
M1
-------T,t + viT,i = κt∇

2T,

ε C,t + viC,i = κc∇
2C  − K1 C − C0( ),

κt = 
1− ε( )κs + εκf

ρ0cp( )f
-------------------------------

Fig. 1. A schematic of the physical domain.
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(5)

In (5) c is the specific heat of the solid, and

(ρ0c)m=(1−ε)(ρ0c)s+ε(ρ0cp)f,

denotes the overall heat capacity per unit volume of the porous me-
dium. The subscripts f, s and m referring to the fluid, solid and porous
components of the medium, respectively.

Convectional hydrodynamic stability theory is mainly concerned
with the determination of critical values of Rayleigh number, demar-
cating a region of stability from that of instability. To make the con-
vective overturning instability problem tractable we employ the quasi-
static MHD approximation of Galdi and Straughan [42]. This as-
sumes that the electric field, E, may be derived from a potential
E=− χ. The magnetic field H and the electric field satisfy Max-
well’s equations, cf. Roberts [43], Fabrizio and Morro [44], so that

Here B=μH and then Galdi and Straughan [42] show that if the
vertical component in the perturbed motion is zero in the limit
the magnetic Prandtl number Pm=ν/η→0, where η is the resistiv-
ity, then j×B in Eq. (1) may be replaced by

j×B=σ1(v×B0)×B0, (6)

where σ1 is the electrical conductivity and B0=(0, 0, B0) is a mag-
netic field with only the vertical component. We now employ (6)
in (1). The steady state, for which there is no fluid flow, is given by

where

To investigate the stability of these solutions, we introduce pertur-
bations (ui, p, θ, φ) by

The perturbation equations are nondimensionalized according to
the scales (stars denote dimensionless quantities)

where pt and ps are the thermal and solute Prandtl numbers and
Rt

2 and Rc
2 are the thermal and solute Rayleigh numbers, respec-

tively. The dimensionless perturbation equations are (after omit-
ting all stars)

ui=−p,i+Rtkig(z)θ−Rckig(z)φ+M2[(u×k)×k]i, (7)

ui,i=0, (8)

pr(q,t+M1uiq,i)=Rtw+ θ, (9)

ps(φ,t+ uiφ,i)=Rcf(z)w+ φ−ξ2φ, (10)

with w=u3 and

These equations hold in the region {z∈(0, 1)}×{(x, y)∈R2} and
the boundary conditions to be satisfied are:

u=0, θ=0, φ=0, at z=0, 1, (11)

where ui, p, θ and φ are assumed periodic in the x and y directions.
Remark 2.1 We observe that as g(z)=1, M=0 and x→0, f→1,

the chemical reaction term disappears and we recover the standard
double diffusive convection problem. However, the presence of the
f(z) term considerably complicates the linear instability/nonlinear
stability analysis.

LINEAR AND NONLINEAR ENERGY STABILITY 
THEORIES

To obtain the threshold for linear instability where we know con-
vection occurs, we neglect the nonlinear terms in Eqs. (7)-(10). Then,
due to linearity we may seek solutions like ui(x, t)=ui(x)eσt, θ(x,
t)=θ(x)eσt, φ(x, t)=φ(x)eσt and P(x, t)=P(x)eσt, where σ is a com-
plex constant. This leads to the system

ui=−π,i+Rtg(z)θki−Rcg(z)φki+M2[(u×k)×k]i, (12)

prσθ=Δθ+Rtw. (13)

psσφ=Δφ−ξ2
φ+Rcf(z)w. (14)

To proceed further we then take curlcurl of (12), and retain the third
component of the resulting equation, namely

0=−Δw+Rtg(z)Δ*θ−Rcg(z)Δ*φ−M2D2w, (15)

where Δ*=∂2/∂x2+∂2/∂y2 and D=d/dz.
Next, due to the periodicity of the solution in the (x, y) variables

we may write w and φ as

w=W(z)h(x, y), θ=Θ(z)h(x, y) and φ=Φ(z)h(x, y),

where h is a plane-tiling planform so that

Δ*h=−a2h, (16)

where a is the wavenumber. Such planforms are discussed in detail
in [45], p.43-52 and [32], p.51. Eqs. (13)-(15) reduce to

M1= 
ρ0cp( )f

ρ0c( )m
---------------.

∇

curlH = j, curlE = − 
∂B
∂t
------.

vi 0,≡

dC
dz
------- = − 

ΔC
d
-------f z

d
---; ξ, η⎝ ⎠
⎛ ⎞,

T = − βz + TL,

dp
dz
------ = − g z( )ρ T, C( ),

f z
d
---; ξ, η⎝ ⎠
⎛ ⎞  = 

ξ

ξ( )sinh
----------------- 1−  η 1− ξ( )cosh( ){ } ξ

z
d
---

⎝ ⎠
⎛ ⎞cosh  − ξη ξ

z
d
---

⎝ ⎠
⎛ ⎞,sinh

ξ = A1d, A1
2

 = 
K1

κc
------, ΔC = CL − CU , ΔT = TL − TU , η  = 

CL

ΔC
-------, β = 

ΔT
d
-------.

vi = ui + vi, p = P + p, T = θ + T, C = φ  + C.

x = x*d, t  = t*
ρ0κ

μ
--------, u = Uu*, θ = T#

θ*, φ  = C#
φ*, P  = PP*,

C#
 = U μdΔC

ρ0κcαcκ
-------------------, Rc = 

κρ0αcdΔC
μκc

-------------------------, T#
 = U d2

μβ

κρ0κtαt
------------------,

Rt = 
d2
κρ0βα

μκt
---------------------, ε̂  = 

1
ε
--, U = 

dμ
κρ0
--------, P = 

dμ
κ
------U,

M = B0
σ1κ

μ
---------, pr = 

d2
μ

M1κρ0κt
---------------------, ps = 

εd2
μ

κρ0κc
-------------.

∇2

ε̂ ∇2

f z( ) = 
ξ

ξ( )sinh
----------------- 1+ η 1− ξ( )cosh( ){ } ξz( )cosh  + ξη ξz( ).sinh
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((1+M2)D2−a2)W+Rtg(z)a2
θ−Rcg(z)a2

Φ=0, (17)

(D2−a2)Θ+RtW=prσΘ. (18)

(D2−a2)Φ−ξ2Φ+Rcf(z)W=psσΦ. (19)

The boundary conditions we employ herein are those appropriate
to two fixed surfaces and so

W=Θ=Φ=0, on z=0, 1. (20)

System (17)-(20) represents an eigenvalue problem for the eigen-
values σ with parameters a, M, ξ, η, pr, ps, Rt and Rc.

When adopting a linear analysis approach, the perturbation to
the steady state is assumed to be small, and so nonlinear terms in
the governing set of partial differential equations are discarded. It
has been proved that linear analysis often provides little informa-
tion on the behavior of the nonlinear system [32], so in such cases
only instability can be deduced from the linear thresholds, as any
potential growth in the nonlinear terms is not considered.

To develop a nonlinear energy stability analysis, let V be a period
cell for the disturbance solution in Eqs. (7)-(10). Let ||·|| and (·, ·)
be the norm and inner product on the Hilbert space L2(V). We mul-
tiply Eq. (7) by ui and integrate over V. After some integrations by
parts, use of the boundary conditions (11), and employing Eq. (8)
we derive the identity

0=− ||u||2+R(w, gθ)−Rc(w, gφ)−M2(||u||2− ||w||2). (21)

Next, multiply Eqs. (9) and (10) by θ and φ, then integrate over V,
to see that after further integrations by parts and use of (8) and
(11), we obtain

(22)

(23)

The idea is to now add (21) + λ1 (22) + λ2 (23) for positive param-
eters λ1 and λ2 which we later select optimally. This leads to the
energy equation

(24)

where E, I and D are defined by

(25)

where u is explicitly written as u=(u, v, w). Define now

(26)

where H is the space of admissible solutions and then from (24)
we find

(27)

If RE>1 then with χ1 being the constant in poincare’s inequality, it
follows that D>cE where c=min{2(χ1+ξ2)ps

−1, 2χ1pr
−1}. Hence it

follows that

Thus, letting ε=c(RE−1)/RE we have E(t)≤E(0)e−εt which tends to
0 as t→∞, so we have shown the decay of φ, θ and u.

The Euler-Lagrange equations which arise from (26) are:

−2ui+Rtki(g+λ1)θ−Rcki(g−λ2f)φ−2M2(ui−kiw)=ζ,i, (28)

2λ1Δθ+Rt(g+λ1)w=0, (29)

2λ2Δφ−2λ2ξ
2
φ−Rc(g−λ2f)w=0, (30)

where ζ is a lagrange multiplier. To solve the energy eigenvalue
problem (28)-(30) we remove the ζ term by taking curlcurl of (28)
to arrive at the system

−2Δw−2M2w,zz+Rt(g+λ1)Δ*

θ−Rc(g−λ2f)Δ*

φ=0, (31)

2λ1Δθ−Rt(g+λ1)w=0. (32)

2λ2Δφ−2λ2ξ
2φ−Rc(g−λ2f)w=0. (33)

Again, the representations w=W(z)h(x, y), θ=Θh(x, y) and φ=
Φ(z)h(x, y) are introduced and we solve (31)-(33) as

2(D2−a2)W+2M2D2W−a2Rc(g−λ2f)Φ=−a2Rt(g+λ1)Θ, (34)

2λ1(D2−a2)Θ=−Rt(g+λ1)W, (35)

2λ2(D2−a2)Φ−2λ2ξ
2
Φ−Rc(g−λ2f)W=0, (36)

together with boundary conditions (20). Numerical results are pre-
sented in the next section.

STABILITY ANALYSIS RESULTS

We approximate (17)-(19) using three different numerical tech-
niques to ensure accuracy, namely Chebyshev collocation, finite
elements and finite differences methods (cf. [46]). Then, we have
solved the resulting system for eigenvalues σj by using the QZ algo-
rithm from Matlab routines. Once the eigenvalues σj are found we
use the secant method to locate where σj

R, σj=σj
R+σj

I being the
real and imaginary parts of eigenvalue σj. The value of R which
makes σ1

R=0, σ1
R being the largest eigenvalue, is the critical value

of R for a2 fixed. We then use golden section search to minimize
over a2 and find the critical value of R2 for linear instability.

Moreover, system (34)-(36) was approximated by using the
same numerical methods which have been used for linear stabil-
ity analysis. Then, we can determine the critical Rayleigh RaE for
fixed a2, λ1 and λ2. Next, we employ golden section search to min-
imize in a2 and then maximize in λ1 and λ2 to determine RaE for
nonlinear energy stability,

(37)

where for all R2<RaE we have stability.
In our use of the Chebyshev collocation method, we used poly-

nomial of degree between 20 and 30. Usually 25 was found to be

pr

2
----

d
dt
----- θ 

2
 = R fw, θ( )  − ∇θ 

2.

ps

2
----

d
dt
----- φ  

2
 = Rc fw, φ( )  − ξ

2
φ  

2
 − ∇φ  

2.

dE
dt
------  = I − D,

E t( ) = pr
λ1

2
----- θ 

2
 + ps

λ2

2
----- φ  

2,

I = Rt w, θ g + λ1[ ]( )  − Rc w, φ g − λ2f[ ]( ),

D  = u 2
 + λ1 ∇θ 

2
 + λ2 ∇φ  

2
 + λ2ξ

2
φ  

2
 + M2 u 2

 + v 2( ),

1
RE
------  = 

I

D
----

H

lim ,max

dE
dt
------ −  D 1− 

1
RE
------

⎝ ⎠
⎛ ⎞,≤

dE
dt
------ − cE

RE −1
RE

-------------
⎝ ⎠
⎛ ⎞.≤

RaE =    Rt
2 a2, λ1, λ2( ),

a2
lim

λ1, λ2

lim minmax
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sufficient but convergence was checked by varying the degree by
examining the convergence of the associated eigenvector (which
yields the approximate associated eigenfunction). However, for finite
elements, we have checked the convergence and found that con-
vergence to eight decimal places was achieved with three elements
with each element containing 11 nodes. For the finite difference
scheme the convergence was tested and we found that convergence
to eight decimal places was achieved with h=0.001.

The numerical results are presented for the gravity field g(z)=
1− z, while the numerical routine is applicable to a wide variety
of other fields. To investigate the possibility of a very widely vary-
ing gravity field (one which even changes sign) we choose  to vary
from 0 to 1.5. Such fields are of interest in laboratory experiments
in areas of crystal growth and other applications, although a plane

ε̃

ε̃

Fig. 2. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against Rc, where M2=0, =0, ξ=1 and η=1.ε̃

Fig. 3. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against Rc, where M2=2, =0, ξ=1 and η=1.ε̃

Fig. 5. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against M2, where Rc=15, =1, ξ=1 and η=1.ε̃

Fig. 4. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against Rc, where M2=4, =0, ξ=1 and η=1.ε̃

layer would not be the geometry studied. Nevertheless, our results
may help us to understand such situations. The results in this paper
are given for pr=M1= =1 and ps=5.

If the layer is salted and heated from below, a linear instability
analysis is more difficult because it includes an oscillatory convec-
tion. We found that the values of wave numbers for oscillatory con-
vection are very close to the values of wave numbers for stationary
convection; thus the computations of the critical Rayleigh num-
bers will be difficult, especially in the period around the intersec-
tion points.

Figs. 2, 3 and 4 give a visual representation of the linear instabil-
ity and nonlinear stability thresholds with different strengths of the
magnetic field. The remaining parameters are held fixed at =0,
ξ=1 and η=1. These figures show the effect of increasing solute

ε̂

ε̃
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Rayleigh number on the critical Rayleigh number for various val-
ues of M2. It is clear that an increase in M2 causes the system to
become more stable, which we would physically expect. As Rc is
increased, the oscillatory modes become present in the linear insta-
bility thresholds. This causes the correlation between the linear and
nonlinear thresholds to substantially deteriorate. Fig. 5 demonstrates
that Ra increases with increasing M2, which shows the stabilizing
effect of M2. Note that the nonlinear stability curves are not close
to those of linear theory. This shows that possible sub-critical insta-
bilities may arise in a very large range of Rayleigh numbers, and it
also demonstrates that linear instability theory does not correctly
capture the physics of the onset of convection.

Figs. 6, 7 and 8 give a visual representation of the linear instabil-
ity and nonlinear stability boundaries for a selection of gravity field
strength. The remaining parameters are held fixed at M2=1, ξ=1
and η=1. It is clear that Ra increases with increasing , which refersε̃

Fig. 7. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against Rc, where M2=1, =1, ξ=1 and η=1.ε̃

Fig. 9. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against , where Rc=15, M2=1, ξ=1 and η=1.ε̃

Fig. 6. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against Rc, where M2=1, =0.5, ξ=1 and η=1.ε̃

Fig. 8. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against Rc, where M2=1, =1.5, ξ=1 and η=1.ε̃

to the stabilizing effect of . Clearly, for small values of Rc the lin-
ear and nonlinear thresholds have substantial correlation, demon-
strating the suitability of linear theory to predict the physics of the
onset of convection. As the solute Rayleigh number increase, the
thresholds have less correlation. An alternative energy analysis may
have to be devised to improve threshold correlation. Also, Fig. 9
shows the stabilizing effect of  where the critical Rayleigh num-
ber increases with increasing gravity field strength.

Fig. 10 shows how increasing ξ corresponds, in general, to sta-
bilization. This figure demonstrates quantitatively the stabilizing
effect of the chemical reaction. Again, it is very noticeable that the
nonlinear energy stability curves are not close to those of linear
instability. This reinforces the fact that the linear curves are not a
true representation that the physics of the onset of convection is
being correctly reflected. The gap between the curves represents
the large band where sub-critical bifurcation may possibly occur.

ε̃

ε̃
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THREE-DIMENSIONAL SIMULATIONS

We now develop a three-dimensional approach to solve the time-
dependent governing Eqs. (1)-(4) to assess the accuracy of the lin-
ear instability and nonlinear stability thresholds.

In this paper, we present an efficient, stable, and accurate finite
difference scheme for computing the convective motion of an incom-
pressible fluid in a porous solid. The emphasis is on three dimen-
sions and nonstaggered grids. We introduce a second-order accurate
method based on the u−curl(u) formulation on the nonstaggered
grid whose performance on uniform grids is comparable with the
finite scheme. We will pay special attention to how accurately the
divergence-free conditions for u and curl(u) are satisfied.

By using the curl operator in Eq. (7), one gets the following di-
mensionless form of the transport equation:

(38)

where the vector w =(ζ1, ζ2, ζ3) is defined as

(39)

To calculate u from ω, it is convenient to introduce a vector
ψ=(ψ1, ψ2, ψ3) which may be looked upon as the three-dimen-
sional counterpart of two-dimensional stream function. The vec-
tor potential is defined by

(40)

It easy to show the existence of such a vector potential for a sole-
noidal vector field ( ). Such a vector potential can be required
to be solenoidal, i.e.,

(41)

Substituting Eq. (40) in Eq. (39) and using Eq. (41) yields

(42)

The set of Eqs. (9), (10), (38), (40) and (42) with appropriate bound-

ary conditions were found to be a convenient form for numerical
computations. The discretized form of these equations using sec-
ond-order finite difference scheme can be written as:

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

where  are the second-order central difference operators,
and  are the first-order central difference operators. Here,

     and  are computed explicitly from
(46), (47), (48), (51), (52) and (53), respectively, while  

  and  are computed from (43), (44), (45), (49), and
(50), respectively, implicitly using the Gauss-Seidel iteration method.
The temperature and concentration on the boundary can be com-
puted explicitly using (11).

Note that our scheme is flexible for various Ra values, and thus
the grid resolution has been selected according to the Ra values.
We decrease the values of Δx, Δy and Δz as the value of Ra increases.
However, for this problem, Δx=Δy=Δz=0.02 is enough to give us
very accurate results.

NUMERICAL RESULTS

IIn this section, RaL, is the critical Rayleigh number for linear
instability theory and RaE is the critical Rayleigh number for the
global nonlinear stability theory. The corresponding critical wave-
numbers of the linear instability will be denoted by aL. Table 1 pres-
ents the numerical results of the linear instability and non-linear
stability analyses. The dimensions of the box, which are calculated
according to the critical wavenumber, are shown in Table 1. In this
table Lx and Ly are box dimensions in the x and y directions, respec-
tively. The box dimension in the z direction is always equal to 1.
We assume that the perturbation fields (u, θ, φ, P) are periodic in

ω  = Rt∇ g z( )θk − Rc∇× g z( )φk − M2
ω  + M2∇ wk,××

ω  = ∇ u.×

u = ∇ ψ.×

∇ u =  0⋅

∇ ψ = 0.⋅

∇2
ψ = − ω .
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 2

 + δy
 2

 + δz
 2( )ψ1i, j, k

n+1
 = − ζ1i, j, k

 n+1 , i, j, k =1, …, m  −1,

δx
 2

 + δy
 2

 + δz
 2( )ψ2i, j, k

n+1
 = − ζ2i, j, k

 n+1 , i, j, k =1, …, m  −1,

δx
 2

 + δy
 2

 + δz
 2( )ψ3i, j, k

n+1
 = − ζ3i, j, k
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ui, j, k
n+1

 = δyψ3i, j, k
n+1

 − δzψ2i, j, k
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vi, j, k
n+1

 = δzψ1i, j, k
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 − δxψ3i, j, k
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1+ M2( )ζ2i, j, k
 n+1

 = g zk( ) Rcδxφi, j, k
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 − Rtδxθi, j, k
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Fig. 10. Visual representation of stationary linear instability (solid
line), oscillatory linear instability (dashed line) and nonlin-
ear stability (dotted line) thresholds, with critical Rayleigh
number plotted against ξ, where Rc=15, =1, M2=1 and
η=1.

ε̃
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the x and y directions and denoted by Ω=[0, 2π/ax]×[0, 2π/ay]×
[0, 1] to be the periodicity cell, where ax and ay are the wavenum-
bers in the x and y directions, respectively. ax and ay are evaluated
according to the critical wavenumbers aL where aL

2=ax
2+ay

2, where
Lx=2π/ax and Ly=2π/ay. The values of Lx and Ly in Table 1 may
be rearranged to yield a number of possible solutions for each value
of the critical wavenumbers. However, we select a solution so that
these two values are similar to avoid any possible stabilisation effect
from walls.

For numerical solutions in three dimensions, we used Δt=5×
10−5 and Δx=Δy=Δz=0.02. The convergence criterion was selected
to make sure that the solutions arrive at a steady state. The conver-
gence criterion is

and we select χ=10−6. The program will continue computing the

χ = ζ1i, j, k
 n+1

 − ζ1i, j, k
 n , ζ2i, j, k

 n+1
 − ζ2i, j, k

 n ,{
 i, j, k 
limmax

ζ3i, j, k
 n+1

 − ζ3i, j, k
 n , θi, j, k

 n+1
 − θi, j, k

 n , φi, j, k
n+1

 − φi, j, k
n },

Table 1. Critical Rayleigh and wavenumbers of the linear instability and nonlinear stability theories for =1.5, M2=1, ξ=1 and η=1
Rc RaL aL

2 RaE aE
2

λ1 λ2 Lx Ly
3 201.1400 17.4000 57.3100 14.0000 1.0200 0.31 2.3 2.0
7 241.5700 17.0500 57.3100 14.1600 1.0200 0.32 2.2 2.1

7.5 244.7600 16.8900 57.3100 14.1600 1.0200 0.32 2.9 1.8
12 268.5300 17.7400 57.3100 14.5900 1.0200 0.31 2.4 1.9
20 331.6500 18.4200 57.3100 15.8800 1.0200 0.31 2.5 1.8
30 449.6100 19.0000 57.3100 17.8900 1.0200 0.31 2.2 1.9

ε̃

Fig. 11. Contour plot of u, (a) z=0.25, (b) z=0.5, (c) z=0.75.

Fig. 12. Contour plot of v, (a) z=0.25, (b) z=0.5, (c) z=0.75.

results for new time steps until the results satisfy the convergence
criterion. Otherwise, if the solution cannot arrive at any steady state
and oscillate, we present the results at τ=6.

To solve Eqs. (43)-(45) using the Gauss-Seidel iteration method,
in the first time step we give an initial value to the potential vector
and we denote    to be the potential vector. Then,
using these initial values, we compute new values which we denote
by    and use these values to evaluate new val-
ues. The program will continue in this process until the conver-
gence criterion is satisfied:

In the next time steps, the values of ψ1ijk, ψ2ijk, ψ3ijk in the time step
n will be the initial values to the next time step.

To display the numerical results clearly, the temperature, con-
centration, velocity and vorticity contours are plotted in Figs. 11-
17 at τ=6, =1.5, M2=1, ξ=1, Rc=7.5, η=1 and Ra=227 with mesh
size of 146×91×51. In these figures, the temperature, concentra-

ψ 1ijk
1, k, ψ 2ijk

1, k, ψ 3ijk
1, k

ψ 1ijk
1, k+1, ψ 2ijk

1, k+1
ψ 3ijk

1, k+1

η  = ψ 1ijk
1, k+1

 − ψ 1ijk
1, k , ψ 2ijk

1, k+1
 − ψ 2ijk

1, k , ψ 3ijk
1, k+1

 − ψ 3ijk
1, k{ } 10−5.<

 i, j, k 
limmax

ε̃
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tion, velocity and vorticity contours are presented at the time level
τ=6 as the possibility of arriving the solution to any steady state is
impossible. Figs. 11, 12, 13, 14, 15, 16 and 17 show the contours of
u, v, w, ζ1, ζ2, θ and φ, respectively, at z=0.25, z=0.5 and z=0.75.

From Fig. 11, four recirculation cells are formulated and this may
be attributed to finding the porous media which resist the obtained
single cell. The side two cells (left and right) are similar in size and
intensity but different in the rotating direction (clockwise CW and
counterclockwise CCW), while the middle two cells also are simi-
lar in size and intensity but differ in rotating direction. The mid-
dle cells have maximum intensity of u of 1.5, 3.1 and 2.2 at z=0.25,
0.5 and 0.75 respectively.

Fig. 12 indicates the contour of perturbation velocity v at three
locations, z=0.25, 0.5 and 0.75. There are six cells different in rotating
direction that have a mirror images about horizontal and vertical
mid lines of plane x−y. The periodic boundary conditions in the x
and y directions make the rotating cells symmetric about horizon-

tal and vertical mid lines in the x−y plane. The maximum inten-
sity of v at z=0.5 in the opposite middle cells vmax=1.8 CW and
CCW.

The velocity w presents the main velocity because the tempera-
ture difference between the lower and upper boundary TL>TU makes
the buoyancy effect (Boussinesq approximation) in the z-direction;
also the concentration difference between the lower and upper bound-
ary CL>CU makes the mass diffusion in the z-direction. Fig. 13 clears
the contour of w at z=0.25, 0.5 and 0.75. From Fig. 13, the maxi-
mum perturbation velocity in the three directions x, y and z isw,
where the wmax=7.6 CW (negative sign), and there is symmetry
about the mid vertical line because of the periodic conditions in
the x-direction.

The vorticity distribution ζ1 in x−y plane is presented in Fig.
14. The number of rotating cells is six at each location (z=0.25, 0.5
and 0.75). The cells in the upper half are rotated inverse the lower
half; also the intensity of ζ1 is graduated from local z=0.25 to z=0.75

Fig. 15. Contour plot of ζ2, (a) z=0.25, (b) z=0.5, (c) z=0.75.

Fig. 13. Contour plot of w, (a) z=0.25, (b) z=0.5, (c) z=0.75.

Fig. 14. Contour plot of ζ1, (a) z=0.25, (b) z=0.5, (c) z=0.75.



Chemical reaction effect on double diffusive convection in porous media with magnetic and variable gravity effects 1055

Korean J. Chem. Eng.(Vol. 32, No. 6)

and maximum value at z=0.25 (ζ1max=48, ζ1max=18 and ζ1max=5.7
at z=0.25, 0.5 and 0.75 respectively). This may be attributed to near-
ing the boundary layer obtained from diffusion of energy and con-
centration. Fig. 15 plots the contour of ζ2 in the x−y plane. The
number of rotating cells is four cells in the location z=0.25 and z=
0.5 with two directions CW and CCW, and the cells are flattening

Fig. 16. Contour plot of θ, (a) z=0.25, (b) z=0.5, (c) z=0.75.

Fig. 17. Contour plot of θ, (a) z=0.25, (b) z=0.5, (c) z=0.75.

Fig. 18. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=3, RaL=201.14, RaE=57.31, Lx=2.3, Ly=2. The solid, dash, dot, dash dot, dash dot dot and short dash lines represent umax, umin,
vmax, vmin, wmax, and wmin, respectively. (a) Ra=158, (b) Ra=167, (c) Ra=176, (d) Ra=185, (e) Ra=194, (f) Ra=195.

vertically, except at z=0.75, where the value of ζ2 becomes mini-
mum, and the cells are diminished at the left and right sides, because
far away from bottom plane of z. The maximum intensity of ζ2 at
z=0.25, 0.5 and 0.75 is 72, 31 and 4.5 respectively.

The perturbation of temperature θ is shown in Fig. 16, which
shows that the magnitude of θ is graduated from z=0.25 to 0.75,
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where the boundary conditions are T=TL at z=0.25 and T=TU at
z=0.75 (TL>TU). There are three cells that have different sign (pos-
itive and negative), and the side cells (left and right) have the same
size, intensity and sign.

Fig. 17 plots the contour of φ at three positions: z=0.25, z=0.5
and z=0.75. The figure shows two big cells in the sides (right and
left) and a single small cell in the middle which flattens vertically.
Also, Fig. 17(b), (c) indicates two identical cells of perturbation of
concentration φ, having the same the sign (positive sign) and magni-

Fig. 19. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=7, RaL=241.57, RaE=57.31, Lx=2.2, Ly=2.1. The solid, dash, dot, dash dot, dash dot dot and short dash lines represent umax, umin,
vmax, vmin, wmax, and wmin, respectively. (a) Ra=194, (b) Ra=202, (c) Ra=211, (d) Ra=220, (e) Ra=224, (f) Ra=227.

Fig. 20. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=7.5, RaL=244.76, RaE=57.31, Lx=2.9, Ly=1.8. The solid, dash, dot, dash dot, dash dot dot and short dash lines represent umax,
umin, vmax, vmin, wmax, and wmin, respectively. (a) Ra=194, (b) Ra=202, (c) Ra=211, (d) Ra=224, (e) Ra=227, (f) Ra=229.

tude. The maximum magnitude of φ of the side cells is 0.25, 0.54
and 0.58 at z=0.25, 0.5 and 0.75 respectively.

Figs. 18-23 show a summary of the numerical results where the
maximum and minimum values of velocities versus time with =
1.5, M2=1, ξ=1 and η=1 are presented. In Figs. 18 and 19 Rc=3
and Rc=7, respectively, were chosen, and for these cases the criti-
cal spectrum σ is found numerically to be always real. In Fig. 18,
Rc=3 was selected, then, according to the stability analysis RaL=
201.14, RaE=57.31, Lx=2.3 and Ly=2 are obtained. Here, there is

ε̃
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clearly a very large subcritical stability region as there is a big dif-
ference between the critical Rayleigh numbers of linear and non-
linear theories. From Fig. 18, for Ra=158, the solutions satisfy the
convergence criterion at τ=3.0553 and thus the solution arrives at
the basic steady state within a short time. However, for Ra=167,
Ra=176 and Ra=185, the program needs τ=3.20585, τ=3.5958
and τ=4.84635 respectively, to arrive at the basic steady state, which
is expected as the required time to arrive at a steady state increases
with increasing Ra values until the solution does not arrive at any

Fig. 21. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=12, RaL=337.43, RaE=57.31, Lx=2.4, Ly=1.9. The solid, dash, dot, dash dot, dash dot dot and short dash lines represent umax, umin,
vmax, vmin, wmax, and wmin, respectively. (a) Ra=229, (b) Ra=238, (c) Ra=246, (d) Ra=260, (e) Ra=262, (f) Ra=264.

Fig. 22. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=20, RaL=331.65, RaE=57.31, Lx=2.5, Ly=1.8. The solid, dash, dot, dash dot, dash dot dot and short dash lines represent umax, umin,
vmax, vmin, wmax, and wmin, respectively. (a) Ra=290, (b) Ra=299, (c) Ra=308, (d) Ra=312, (e) Ra=327, (f) Ra=330.

steady state. Finally, for Ra=194 and Ra=195, the solutions do not
arrive at any steady state and the program stops at τ=6. For Ra=194
and Ra=195, the program was allowed to run for a significant period
to test the convection’s long time behaviour. The values of the veloci-
ties increase at τ=8, and then decrease at τ=12 and continue in
this oscillation. Here, according to the numerical results, the linear
instability threshold is close to the actual threshold, i.e., the solu-
tions reach the basic steady state before the linear instability thresh-
old. The results in Fig. 19 indicate that the stability behavior is similar
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to the stability behavior of Fig. 18, as it was found that the actual
threshold was close to the linear instability threshold. However, in
Fig. 19, Rc=7 and thus the value of Rc is very close to the switching
point of convection from steady to oscillatory. In this case, the actual
threshold will move slightly from the linear instability threshold.

At Rc=7.5, the nature of convection changes to oscillatory con-
vection. For Rc=7.5 and Rc=12, the results are presented in Figs. 20
and 21, respectively, and in these cases, the numerical value of the
critical spectrum σ is always complex. In Fig. 20, critical Rayleigh
numbers for Rc=7.5 were computed; Eqs. (17)-(19) and (34)-(36)
were solved, leading to the following stability results: RaL=244.76,
RaE=57.31, Lx=2.9 and Ly=1.8. In this case, the difference between
the critical Rayleigh numbers of linear and nonlinear theories is
very large. Fig. 20 shows that for Ra=194, Ra=202 and Ra=211
the solutions reach the basic steady state and satisfy the convergence
criterion at τ=2.94305, τ=3.8275 and τ=4.5548, respectively. More-
over, at R2=224, the basic steady state at τ=6 could not be achieved,
but there was a decrease in the solutions’ values and therefore reach-
ing a basic steady state at the next time levels is expected. Also, for
Ra=227, and Ra=229, the solutions cannot achieve any steady state
and the program stops at τ=6. For Ra=227, and Ra=229 the con-
vection behavior oscillated and access to a stable state was impossi-
ble. For Fig. 21, Rc=12 was selected; then the Rc value moved from
the switching point of convection from steady to oscillatory. The
results of Fig. 20 demonstrate that the stability behavior is similar
to the stability behavior of Fig. 21, as it was found that the actual
threshold was close to the linear instability threshold. We can see
from Fig. 20 that as the value of Rc moves from the switching point,
the actual threshold will be close to the linear instability threshold.

As Rc is increased, the oscillatory modes become present in the
linear instability thresholds. The results for Rc=20 and Rc=30 in
Figs. 22 and 23, respectively, are presented. Fig. 22, shows Rayleigh

numbers for Rc=20, with solutions for Eqs. (17)-(19) and (34)-(36),
which produced the following stability results: RaL=331.65, RaE=
57.31, Lx=2.5 and Ly=1.8. The difference between the critical Rayleigh
numbers of linear and nonlinear theories is considerable, with Fig.
22 showing that for Ra=290, Ra=299, R2=308 and Ra=312 the
solutions achieve the basic steady state soon and satisfy the con-
vergence criterion at τ=2.72325, τ=3.16905, τ=3.83985 and τ=
4.30165, respectively. Moreover, for Ra=327 the solutions do not
satisfy the convergence criterion and the program stops at τ=6,
but it is clear that the solutions can achieve the convergence crite-
rion on the next occasion. Furthermore, for Ra=330, the solutions
could not reach any steady state and the program did not prog-
ress beyond τ=6. For Ra=330, the convection behaviour oscillated
and access to a stable state was impossible. In Fig. 23, the value of
Rc was 30. As previously mentioned, as the value of Rc increases,
the linear instability threshold converges from the actual thresh-
old; however, the behavior of the solutions becomes more oscil-
lated.

CONCLUSIONS

We have explored double diffusive convection in porous media
with vertical magnetic field, chemical reaction and variable grav-
ity effects. Regions of very large subcritical instabilities, i.e., where
agreement between the linear instability thresholds and nonlinear
stability thresholds is poor, are studied by solving for the full three-
dimensional system. The results indicate that the linear threshold
accurately predicts the onset of instability in the basic steady state.
However, the required time to arrive at steady state increases sig-
nificantly as the Rayleigh number tends to the linear threshold.

Numerically, convection has three different patterns. The first
picture, where R2 is less than RaL, is that the solution perturbations

Fig. 23. The numerical results for different Ra. We present the results for the maximum and minimum values of velocities versus time for
Rc=30, RaL=449.61, RaE=57.31, Lx=2.2, Ly=1.9. The solid, dash, dot, dash dot, dash dot dot and short dash lines represent umax, umin,
vmax, vmin, wmax, and wmin, respectively. (a) Ra=414, (b) Ra=422, (c) Ra=431, (d) Ra=440, (e) Ra=449, (f) Ra=451.
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vanish, sending the solution back to the steady state, before the lin-
ear thresholds are reached. The required time to arrive at the steady
state increases as the value of R2 increases. The second picture, where
R2 is close to RaL, is that solutions can tend to a steady state, which
is different from the basic steady state =(0, 0, 0). In the third pic-
ture, where R2>RaL, the solution does not arrive at any steady state
and oscillates.
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