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Abstract−The collected training data often include both normal and faulty samples for complex chemical processes.

However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), indepen-

dent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal op-

eration model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose

a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical

process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal

subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes

the multimodality within the faulty data into account, and thus improves the capability of process monitoring signifi-

cantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the con-

ventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios

demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.

Keywords: Chemical Process Monitoring, Fault Detection and Classification, Local Discriminant Analysis, Hyperplane

Distance Neighbor Clustering, Tennessee Eastman Process

INTRODUCTION

Effective and reliable monitoring plays an important role in ensur-

ing safe plant operation, stable product quality, reduced maintenance

and improved profit margin in complex chemical processes. Once

abnormal events occur during production, early detection helps to

avoid serious incidents [1]. Multivariate statistical process monitoring

(MSPM) techniques, such as principal component analysis (PCA)

and partial least squares (PLS), have been widely applied to chemi-

cal process monitoring [2-6]. These techniques can project the meas-

urement data from the historical process space (original input space)

to the low-dimensional linear subspace with the second-order sta-

tistic, covariance or correlation information. Consequently, the pro-

cess faults can be identified through the derived Hotelling’s T2 and

squared prediction error (SPE) statistics [3,7]. The MSPM meth-

ods based on PCA or PLS usually assume that the process data obey

a Gaussian distribution. However, actual industry processes exhibit

non-Gaussian characteristics due to the process nonlinearity, oper-

ating condition shift and production strategy change [8].

Independent component analysis (ICA) has been developed to

deal with non-Gaussian processes [1,9-11]. By characterizing the

normal operating region of statistically independent components,

the ICA method extracts the inherent non-Gaussianity and reveals

more hidden features. The Gaussian mixture model (GMM) has

been proposed for monitoring non-Gaussian processes, which as-

sumes that the process data follow one of the multiple Gaussian

distributions with different means and covariances at a fixed prior

probability [12,13]. Some machine learning models such as artificial

neural network (ANN) have also been employed to address non-

Gaussian processes [14-16].

The common feature of all aforementioned methods is that a set of

purely normal process data are required to train the fault-free model.

Nevertheless, because the plant operations contain different types

of faults, the collected training data are usually mixed with both

normal and faulty samples. Alternatively, the supervised monitoring

methods such as Fisher discriminant analysis (FDA) [17,18] and

support vector machine (SVM) [19,20] can handle such modeling

problems. The SVM can divide the collected data into two classes

by maximizing the margin between support vector planes, and the

FDA can search the leading directions with maximized discrimi-

nation between normal and faulty data. For these two methods, the

class labels of training data are assumed to be known so that their

practical applications are restricted.

In this study, we propose a novel monitoring strategy for com-

plex chemical processes. First, the hyperplane distance neighbor

clustering (HDNC) is proposed to separate normal samples and dif-

ferent types of faulty ones without class labels. Then the local dis-

criminative algorithm (LDA) is used to search for the characteristic

direction with maximized hetero-cluster separability and minimized

homo-cluster compactness as well as preserving local information.

Finally, the effectiveness of the HDNC-LDA method is verified

through the well-known Tennessee Eastman process (TEP) and waste-

water treatment process (WWTP) and compared to that of the con-

ventional FDA based on the K-nearest neighbor (KNN-FDA) method.
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METHODOLOGY

1. Hyperplane Distance Neighbor Clustering

The K nearest neighbors of a monitored point can span an affine

hyperplane [21], and in the HDNC the clustering is conducted based

on the point-to-hyperplane distance metric. For each clustering, the

local hyperplane is constructed and thus multiple local hyperplanes

are determined by the different clusters. Suppose that there is a set

of n-dimensional input measurements in the training set X={x1, …,

xi, …, xm}, where xi is given input sample and m is the number of

training samples. Although the class labels are unavailable, HDNC

has a good capability of unsupervised learning. The K nearest neigh-

bors of a given sample x from each cluster can be denoted in a cluster

l by xlk (k=1, ..., K) and their collection is defined as V
K
(x). αlk is

defined as the reconstruction weight coefficient. The affine hyper-

plane of l cluster is written as [21,22]:

(1)

where  is the centroid of the cluster and defined as 

The square distance from x to the hyperplane Hl(x) is defined as:

(2)

where ||·|| denotes Euclidean distance, Xl=[xl1− , …, xlk− ] and

αl=(αl1, …, αlk)
T.

The optimal reconstruction weights αl can be obtained by solv-

ing the following optimization problem:

(3)

Eq. (3) is equivalent to solving a linear system in αl, which can be

easily expressed in the matrix form as [23]:

(4)

If Xl

T
Xl is nonsingular, we can obtain αl as follows:

(5)

Once the optimal solution αl
* is solved using the gradient search

procedure, the affine hyperplane Hl(x) can be computed. At the same

time, the distance from x to Hl(x) can be also figured out for all the

clusters by Eq. (2), and the minimum distance can be determined

by

(6)

Given a threshold θ, dm(x) is compared against it. If dm(x)>θ, a

new cluster is generated by the point x; if dm(x)≤θ, the point is as-

signed to the corresponding cluster in which the minimum distance

is found.

When Xl

T
Xl is ill-conditioned due to the collinearity, an addi-

tional diagonal term is introduced to modify Eq. (2):

(7)

where ε plays a role of removing the ill condition of matrix Xl

T
Xl

by adding a positive number to all the diagonal entries [12,24] and

I is the identity matrix. A small value of ε is recommended to make

the optimal solution robust. Note that a careful selection of ε value

is not necessary as long as it is significantly smaller than the average

value of Xl

T
Xl [25]. The rectified reconstruction weights can be ob-

tained by

(8)

Similarly, the minimum distance  can be determined.

The HDNC process is summarized as follows. We start the first

point x1 as the first cluster C1. Then the distances between the new

sample and all the defined local hyperplanes are computed using

Eq. (7), and the minimum distance for all the clusters is determined

using Eq. (6). Next we decide whether the new sample is added to

the corresponding cluster or a new cluster is generated according to

the threshold θ. This process is repeated until all the training sam-

ples are clustered. The flow chart of the HDNC algorithm is shown

in Fig. 1.

2. LDA

In this section, a new local discriminative dimensionality reduc-

tion algorithm, termed LDA, is developed. Given a sample xi∈X,

its index set of the vicinity containing K nearest neighbors is denoted

by VW

K
(xi)=(j|xj is one of the K homo-cluster nearest neighbors of

xi} and VB

K
(xi)={p|xp is one of the K hetero-cluster nearest neigh-

bors of xi}, respectively. Here, the homo-cluster and hetero-cluster

represent the same cluster and different clusters, respectively. Based

on the obtained reconstruction weights, the homo-cluster local dis-

tance from xi to its nearest homo-cluster affine hyperplane is defined

as follows:

Hl x( ) = h|h = xl + αlk xlk − xl( ), αlk R∈ , αlk =1K
k=1∑

K

k=1∑{ }

xl xl = 

1

K
---- x

K

k=1 lk.∑

dl x Hl x( ),( ) = x − h
2

 = x − xl − αlk xlk  − xl( )K

k=1∑
2

 = αl

T
Xl

T
Xlαl

xl xl

αl

T
Xl

T
Xlαl

αl

limmin

s.t. α
K

k=1 lk =1∑

Xl

T
Xl αl = Xl

T
x − xl( )⋅ ⋅

αl
*

 = Xl

T
Xl( )

−1

Xl

T
x − xl( )

dm x( ) = min dl x Hl x( ),( )
all l

d̃l x Hl x( ),( ) = αl

T
Xl

T
Xl + εI( )αl

α̃l
*

 = Xl

T
Xl + εI( )

−1

Xl

T
x − xl( )

d̃m x( )

Fig. 1. The flow chart of HDNC algorithm.
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(9)

The hetero-cluster local distance from xi to its nearest hetero-cluster

affine hyperplane is defined as follows:

(10)

Obviously, the distances between the close samples of the same

cluster should be as small as possible, while that between the close

samples of the different clusters should be as large as possible. The

average homo-cluster local distance  is the average dis-

tance of all samples to their nearest homo-cluster affine hyperplane,

representing the compactness of the close samples in the same cluster.

The average hetero-cluster local distance  is the average

distance of all samples to their nearest hetero-cluster affine hyper-

plane, representing the separability of the close samples in the dif-

ferent clusters.

A linear transformation can transfer high-dimensional data into

low-dimensional transformed space by yi=U
T
xi, which can preserve

local reconstruction weights. To better keep hetero-cluster separa-

tion and homo-cluster local structure discrimination, we define the

objective function to satisfy the following criterion.

For yi in the low-dimensional subspace, to make the average homo-

cluster local distance as small as possible, we have

(11)

Meanwhile, to make the average hetero-cluster local distance as

large as possible, we have

(12)

Since, the measurement formed by the local distance can be con-

sidered approximately linear [26]. The projection can be derived

by solving the following objective function

(13)

where β is a multiplicative factor in [0, 1] to balance the influence of

the constraints and here β=0.2. We define the coefficients vector as

wi=[1, …, 1, −β, …, −β]T (14)

And Eq. (13) can be reduced to

(15)

where

(16)

(17)

(18)

To make the projection matrix U linear and orthogonal, we im-

pose a constraint to Eq. (15) by

(19)

The above optimization problem can be solved by the standard eigen-

value decomposition

(20)

where λ is the eigenvalue and u denotes the eigenvector correspond-

ing to a local discriminant direction. By arranging the eigenvalues

λ1<λ2<…<λn in an ascending order, we can obtain the LDA pro-

jection matrix ULDA=[u1, u2, …, us] with the s smallest eigenvalues. In

process monitoring, the normal and faulty process samples are sepa-

rated by projecting the raw data set onto the low-dimensional feature

subspace, which is composed of the leading local discriminant vectors.

3. HDNC-LDA Based Process Monitoring Approach

Based on the above LDA algorithm, a new process monitoring

approach HDNC-LDA is proposed to deal with the plant operating

data mixed with both unlabeled normal and multiple types of faulty

data. The historical data that we use as the training set is assumed to

include both normal and faulty samples with unavailable class labels.

These training samples are scaled to zero means and unit variances

along all the measurement variables in the preprocessing step. Then

the normalized training set is separated into multiple clusters using

the HDNC approach. Each cluster corresponds to either the normal

data or an individual process fault. To eliminate the requirement of

a priori knowledge on the exact number of process faults existing

in the data set, the geometrical validity index (GI) based on the ratio

of the within-cluster density to the between-cluster separation is used

to optimize the number of clusters automatically [27]. Let us sup-

pose that m training samples are categorized into L clusters and the

lth (1≤l≤L) cluster Cl contains ml samples. The GI is expressed as

(20)

where n is the dimension of the process data, the denominator is

the Euclidean distance of the two closest cluster centroids and is

taken as a measure of the between-cluster separation, while the nu-

merator is a geometrical measure of the within-cluster scatter. The

centroid of Cl is denoted by vl=  δjl is the eigenvalue of the

sample covariance matrix, whose elements are defined as

d̃W xi( ) = xi − α̃ijxj∑
2

j∈V
W

K
(x

i
)

d̃B xi( ) = xi − α̃ipxp∑
2
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B

K
(x

i
)

1

m
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m
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1
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1
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)
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(21)

where  and  are the sample mean of ith and jth measurement

variables, respectively. If some of the eigenvalues are negative, the

index is modified by using their absolute values. The smaller the

GI, the better the quality of the clustering is. The optimum combi-

nation of K and θ can be determined by computing GI for running

the HDNC algorithm.

After isolating normal samples from faulty ones by the HDNC

algorithm, we apply the LDA method to the training data set to obtain

the optimal directions and to better classify the test data set. The

LDA eigenvectors span the s-dimensional discriminant subspace.

Finally, the distance from the test sample xt to the local affine hy-

perplane in the transformed space can be expressed by

(22)

and then the monitored sample is categorized into the correspond-

ing cluster by Eq. (6).

The flow chart of the HDNC-LDA based process monitoring

approach is shown in Fig. 2 and the step-by-step procedure is as

follows:

(1) Collect a set of historical data with unknown class labels as

the training set under all possible operation conditions.

(2) Normalize the training set to scale them to zero means and

unit variances along all measurement variables.

(3) Perform clustering using the HDNC approach to categorize

the normal and multiple types of faulty samples.

(4) Compute the matrix GI by Eq. (16).

(5) Apply generalized eigenvalue decomposition to Eq. (20) to

derive the local discriminant directions.

(6) For any monitored sample, scale it to zero mean and unit vari-

ance.

(7) Calculate the distance from the monitored sample to the local

affine hyperplane of all different clusters in the reduced-dimensional

discriminant space by Eq. (22).

(8) Assign the monitored sample to the corresponding cluster

 = 
1

ml −1
------------- xil − xi( )m

l

l=1
xjl − xj( )∑ij∑

xi xj

d̃l xi Hl xt( ),( ) = ULDA

T
xt − x̃

l
( ) − α̃lk

* ULDA

T
xlk  − x̃

l
( )K

k=1
∑

2

Fig. 2. Schematic diagram of the HDNC-LDA based process mon-
itoring approach.

Fig. 3. Schematic diagram of the Tennessee Eastman process.
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through Eq. (6).

(9) Determine whether any fault occurs in the monitored opera-

tion and which type of fault it belongs to.

APPLICATION

In this section, the proposed HDNC-LDA based process moni-

toring approach is applied to two case studies, the Tennessee Eastman

process and wastewater treatment process, respectively.

1. Case Study on TEP

1-1. Tennessee Eastman Process

The TEP is simulated under normal and various types of faulty

operations. Furthermore, the performance of the HDNC-LDA based

process monitoring approach is evaluated by using the collected

historical data in comparison with that of the conventional K-nearest

neighbor Fisher discriminant analysis (KNN-FDA) method.

There are five major unit operations in the process: a reactor, a

partial condenser, a recycle compressor, a stripper and a vapor/liquid

separator. Four chemical reactants (A, C, D and E) are fed into the

reactor to form two products (G and H) together with a byproduct

(F) [28]. The schematic diagram of TEP is shown in Fig. 3. The

process has 22 continuous process measurements, 12 manipulated

variables and 19 composition measurement samples. As shown in

Table1, there are 22 continuous measurement variables and 12 manip-

ulated variables in total. The decentralized control strategy has been

implemented with multiple feedback or loops in this TEP [29]. In

this study, only the 22 continuous measurement variables are cho-

sen as monitored variables with sampling time of 0.05 h. Several

types of process faults are mixed in two different scenarios to evaluate

and compare the capability of detecting and classifying multiple

faults.

Data sets composed of both normal and faulty samples in the two

scenarios are listed in Table 2. In the first case, the training set starts

with 300 normal samples under the steady-state condition [30]. Then

a step error in D feed temperature takes place for 200 samples in

the process. Afterwards, 100 faulty samples follow with the occur-

rence of increased random variation in reactor cooling water inlet

temperature. The testing set includes the first 200 normal operation

samples and the following 100 faulty samples with the increased

random variation in reactor coolant temperature. After that, the pro-

cess operation shifts back to normal state with 100 samples. From

the 401st sample, a step error in D feed temperature occurs and main-

tains for 100 samples. The second case includes three categories of

faults, which are step error in B composition in Stream 4, slow drift

in reactor kinetics, and condenser cooling water valve stiction, respec-

tively. The training set is initiated with 400 normal operation sam-

ples followed by 600 faults of the above-mentioned three categories.

The testing set involves first 200 normal samples followed by faulty

and normal segments alternating with each other. Each alternating

segment is composed of 150 or 100 samples as listed in Table 2.

1-2. Process Monitoring Results

Since the training set is easily contaminated by faults, the com-

mon process monitoring methods like PCA and PLS may suffer

greatly from this limitation. For both scenarios, the training sets are

Table 1. Continuous measurement and manipulated variables in
the TEP

No. Measured variable No. Manipulated variable

01 A Feed rate 01 D Feed flow valve

02 D Feed rate 02 E Feed flow valve 

03 E Feed rate 03 A Feed flow valve

04 A+C Feed rate 04 A+C Feed flow valve

05 Recycle flow rate 05 Recycle valve

06 Reactor feed rate 06 Purge valve

07 Reactor pressure 07 Separator valve

08 Reactor level 08 Stripper valve

09 Reactor temperature 09 Steam valve

10 Purge rate 10 Reactor coolant flow

11 Separator temperature 11 Condenser coolant flow

12 Separator level 12 Agitator speed

13 Separator pressure

14 Separator underflow

15 Stripper level

16 Stripper pressure

17 Stripper underflow

18 Stripper temperature

19 Stem flow rate 

20 Compressor work

21 Reactor coolant temperature

22 Condenser coolant temperature

Table 2. Two scenarios in the simulated TEP

Case

No.
Description

1 Training set:

300 normal samples

200 faulty samples with step error in D feed temperature

100 faulty samples with random variations in reactor

coolant temperature

Testing set:

1st-200th samples: normal operation

201st-300th samples: random variations in reactor coolant

temperature

301st-400th samples: normal operation

401st-500th samples: step error in D feed temperature

2 Training set:

400 normal samples

200 faulty samples with step error in B composition in

Stream 4

200 faulty samples with drift error in reactor kinetics

200 faulty samples with condenser coolant flow valve

stiction

Testing set:

1st-200th samples: normal operation

201st-300th samples: random variations

301st-400th samples: normal operation

401st-550th samples: step error in B composition in

Stream 4

551st-700th samples: normal operation

701st-800th samples: condenser coolant flow valve stiction
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used to build the KNN-FDA or HDNC-LDA model, while the testing

sets are used to validate the model in terms of fault detection and

classification. Due to the unavailable class labels of data sets, the

KNN and HDNC clustering procedures are used to identify normal

operation and various types of faults, respectively. Then the FDA

or LDA is implemented on the training set to extract the leading

directions and separate the normal clusters from multiple faulty ones.

Both methods adopt the quantitative performance indices, i.e., Type-

I error, Type-II error and faulty classification rate, as listed in Table 3.

For the first case, the fault detection results of KNN-FDA and

HDNC-LDA methods are illustrated in Fig. 4(a) and (b). Note that

the KNN-FDA approach is unable to identify abundant normal sam-

ples and detect abnormal events. The fault detection performance

degrades because the conventional FDA algorithm sacrifices the be-

tween-cluster separability in order to minimize the within-cluster

scatter [18]. In this case, the abnormal data include two types of

faults, which do not always follow similar statistical distribution.

The method only focuses on the global characteristics so that the

multimodality within the faulty data makes the leading directions of

FDA nonoptimal in separating normal and faulty clusters. There-

fore, the fault detection accuracy is affected. Meanwhile, a poor fault

classification is produced. In contrast, the HDNC-LDA significantly

improves the fault detection accuracy. From Fig. 4(b), one can ob-

serve that there are only twelve normal samples triggering false alarm.

The Type-I error is 6.5%. Such frequent alerts are acceptable during

Table 3. Comparison of fault detection and classification indices between KNN-FDA and HDNC-LDA methods

Type-I error (%) Type-II error (%) Fault classification rate (%)

KNN-FDA HDNC-LDA KNN-FDA HDNC-LDA KNN-FDA HDNC-LDA

Case 1 11.6 6.5 08.3 4.6 89.0 93.2

Case 2 12.8 7.4 10.5 5.1 86.8 92.5

Case 3 10.5 7.3 12.6 8.4 83.5 90.8

Fig. 4. Fault detection results in the first case of TEP using (a) KNN-
FDA and (b) the proposed HDNC-LDA approach.

Fig. 5. Fault classification results in the first case of TEP using KNN-
FDA method (a) 1st faulty segment: 201st-300th samples and
(b) 2nd faulty segment: 401st-500th samples.



Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring 1949

Korean J. Chem. Eng.(Vol. 31, No. 11)

normal process operation. Moreover, the Type-II error is 4.6%, which

reaches a desirable faulty detection rate. Only eight faulty samples

are not captured. Few Type-I and Type-II errors occur since the LDA

algorithm involves the localities of data with different class-labels

and performs well in isolating the normal data from these two types

of faulty data. On the one hand, the method can minimize the homo-

cluster local distance to preserve the multimodality within the faulty

data. On the other hand, it can maximize the hetero-cluster local

distance to well separate the normal operations and multiple faulty

events. Meanwhile, the classification results of different types of

faulty data reveal that the HDNC-LDA approach has a stronger ability

in classification than the KNN-FDA, as shown in Figs. 5 and 6. Ten

samples are misclassified as step error for the KNN-FDA method

when the fault of increased random variation occurs during the oper-

ating period. Another eleven faulty samples belonging to step error

are wrongly separated as random variation. The method reaches an

overall fault classification rate of 89.0%. In contrast, the proposed

HDNC-LDA approach misclassifies only six faulty samples as step

error and eight as random variation, obtaining a fault classification

accuracy of 93.2%.

The second scenario designed with three types of faulty events

in the process is employed to further examine the performance of

these two methods. The results shown in Figs. 7, 8 and 9 demon-

strate their different capabilities in detecting and classifying multi-

ple kinds of process faults. The Type-I error, Type-II error and fault

classification rate of the KNN-FDA method are 12.8%, 10.5% and

86.8%, respectively. In the normal operating period, fifty-seven false

alarms are generated. Besides, a total of thirty-six faulty samples

are misclassified as normal ones. Among the detected faulty sam-

ples, forty-two observations are classified into uncorrected classes.

The corresponding performance indices of the HDNC-LDA method

are 7.4%, 5.1% and 92.5%, indicating that the proposed method is

suitable to monitor the complex processes with several kinds of ab-

normal events. Thirty-three normal samples trigger false alarms.

Eighteen faulty samples are not detected and only twenty-five faulty

ones are categorized into wrong types. Similar to the first case, the

proposed method has superior ability to detect multiple types of

process faults as well as to classify different faulty clusters with high

accuracy.

2. Case Study on WWTP

2-1. Wastewater Treatment Process

The HDNC-LDA based process monitoring approach is also tested

for its ability to detect some internal disturbances in simulated data

Fig. 6. Fault classification results in the first case of TEP using
HDNC-LDA method (a) 1st faulty segment: 201st-300th sam-
ples and (b) 2nd faulty segment: 401st-500th samples.

Fig. 7. Fault detection results in the second case of TEP using (a)
KNN-FDA and (b) the proposed HDNC-LDA approach.
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obtained from a ‘benchmark simulation’ of the WWTP. The acti-

vated sludge model No. 1 (ASM 1) and a 10-layer settler model

are used to simulate the biological reactions and the settling pro-

cess, respectively. The plant consists of five bioreactors and a second-

ary settler. The first two compartments of the bioreactor are unaerated

but fully mixed, whereas the other three are well aerated. As for

the secondary settler, it is modeled as one-dimensional series of 10

layers. The flow diagram of the WWTP is shown in Fig. 10. More

Fig. 8. Fault classification results in the second case of TEP using
KNN-FDA method (a) 1st faulty segment: 201st-300th sam-
ples, (b) 2nd faulty segment: 401st-550th samples and (c) 3rd

faulty segment: 701st-800th samples.

Fig. 9. Fault classification results in the second case of TEP using
HDNC-LDA method (a) 1st faulty segment: 201st-300th sam-
ples, (b) 2nd faulty segment: 401st-550th samples and (c) 3rd

faulty segment: 701st-800th samples.
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detailed process descriptions are available in the COST website at

http://www.ensic.u-nancy.fr/COSTWWTP/.

The ten monitored process variables are listed in Table 4. In the

training period, the process starts with one-week normal operation

under dry weather and then is shifted to a step decrease in aerobic

growth rate of autotrophs from 4.0 to 3.0 per day. After three days,

a linear drift in the ammonification rate of soluble nitrogen increases

from 0.05 to 0.1 m3 COD/g per day within three days. The sam-

pling period is 15 min, and thus the training set is composed of 672

normal data and 576 abnormal process events. The test scenario

(Case 3) is initiated with the normal operation for four days and

then followed by a step decrease in aerobic growth rate of autotro-

phs from 4.0 to 3.0 per day. After three days, the process is switched

to routine operation with four days duration. Finally, a linear increase

in the ammonification rate of soluble nitrogen from 0.05 to 0.1 m3

COD/g per day suddenly occurs and the faulty data in a three-day

period are collected.

2-2. Process Monitoring Results

The fault detection results on the test dataset of Case 3 are illus-

trated in Fig. 11. The Type-I error and Type-II error of HDNC-LDA

Fig. 11. Fault detection results in the third case of WWTP using
(a) KNN-FDA and (b) the proposed HDNC-LDA approach.

Fig. 10. Diagram of the simulated wastewater treatment process.

Table 4. Monitored variables in the WWTP

No. Monitored variable

01 Nitrate and nitrite nitrogen SNO

02 Slowly biodegradable substrate XS

03 Soluble biodegradable organic nitrogen SND

04 Dissolved oxygen in Tank 3 SO, 3

05 Dissolved oxygen in Tank 4 SO, 4

06 Readily biodegradable substrate SS

07 Soluble inert organic matter SI

08 Influent flow rate Qin

09 NH4
++NH3 nitrogen SNH

10 Particulate biodegradable organic nitrogen XND

Fig. 12. Fault classification results in the third case of WWTP us-
ing KNN-FDA method (a) 1st faulty segment: 385th-672nd

samples and (b) 2nd faulty segment: 1057th-1344th samples.
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method are 7.3% and 8.4%. The KNN-FDA method has higher Type-

I error of 10.5% and Type-II error of 12.6%. Such results demon-

strate that the proposed method has better performance for fault de-

tection than the KNN-FDA method. The fault classification results

of the two methods are compared in Fig. 12 and Fig. 13. The HDNC-

LDA method leads to the better fault classification with the overall

accuracy of 90.8%, while the KNN-FDA method obtains 83.5%

fault classification rate. Therefore, the HDNC-LDA method can

become a promising one in detecting and classifying multiple kinds

of process faults.

CONCLUSIONS

We have proposed a systematic monitoring strategy for complex

chemical processes with various kinds of faults. The basic idea is to

first conduct the HDNC algorithm to identify the normal and multi-

ple types of faulty clusters. The local homo-cluster and hetero-cluster

distance metrics are further computed to minimize the compactness

within the same cluster and maximize the separation between dif-

ferent clusters. Meanwhile, the local discriminative information is

preserved. Hence, the HDNC-LDA scheme can be used to detect

abnormal events and classify multiple types of operation faults. In

comparison with the KNN-FDA method, our method has the fol-

lowing advantages: (1) the capability of fault classification is enhanced

due to the unchanged local structure of multiple faulty clusters; (2)

various types of faults are treated as individual cluster to be sepa-

rated from the normal region, resulting in a higher accuracy of fault

detection; and (3) the HDNC can automatically search for the opti-

mal number of clusters, requiring no prior process knowledge on

the total number of faults.

The HDNC-LDA approach is applied to deal with unlabeled pro-

cess data of the TEP and WWTP in three scenarios. The results in-

dicate that the HDNC-LDA approach exhibits better performance

than the KNN-FDA method in terms of quantitative indices such

as the Type-I error (false alarm rate), the Type-II error (fault detection

rate) and the fault classification rate. Therefore, the HDNC-LDA

method can serve a powerful tool for fault detection and classifica-

tion of complex chemical process.
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