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Abstract−We propose two parameter update schemes which employ recursive update of partial Least Squares (PLS)

model parameters as well as a model bias update to the process data. These update schemes have been applied to the

successful prediction of Melt Index (MI) in grade-change operations of High Density Polyethylene (HDPE) plants.

The lack of sophisticated software support hinders the recurrent use of these techniques. This paper also presents user-

friendly, easy to use, graphical user interface to raise the usability and accessibility of the approach of online update

of the PLS models.
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INTRODUCTION

Accurate prediction of quality variables is essential for efficient

and professional monitoring and control of chemical processes. How-

ever, due to complexity of method and time delay in measuring the

quality variable analytically, inferential models have been widely

applied. First principle modeling (i.e., mathematical modeling) has

been successfully applied to various chemical processes including

polymerization processes [1,2]. In fact, the development of the first

principle model for some highly complex nonlinear processes is

practically infeasible. In chemical industries, there is a huge amount

of production data that possesses statistical correlations between

process and quality variables that can be exploited for the prediction

of the quality variables. The models developed for these relations are

based on black box modeling techniques including neural networks

[3], statistical data modeling (SDM) such as partial least squares

regressions [4], support vector machines [5] and hybrid modeling

[3,6,7]. In this era, data based modeling is now a well-developed

area of research that has provided industries with various soft sensors

for the prediction of quality variables. Chemical industries use these

soft sensors as essential industrial equipment for efficient online

monitoring of quality variables to reduce the amount of off-specifi-

cation products and operation cost. Under the category of SDM,

the partial least squares (PLS) technique has been a proficient and

powerful multivariate regression technique for addressing noisy

and highly correlated process variables [8]. It has an advantage over

other methods because unlike other methods it models the input

space as well as the output space, reducing the dimensionality. It

simply copes with the ill-conditioning problem of ordinary least

squares (OLS) by projecting the data information onto a subspace

of orthogonal latent variables and regressing the input and output

data by univariate regression correspondingly [4,9].

Many chemical processes, particularly polymerization processes,

involve high dimensionality, collinearity, nonlinearity and grade-

changes. High dimensionality and collinearity problems can be over-

come by developing the linear relationship between latent vectors

of the process and quality variable employing linear PLS frame-

work. To capture the nonlinearity, many nonlinear techniques have

been proposed both within and without the PLS framework. Tech-

niques within the PLS framework include Quadratic PLS [9,10],

Spline-PLS [11], neural network PLS [6,12,13] and Fuzzy-PLS [7].

Techniques without the PLS framework include the support vector

machines [5], neural network model [13] and the neuro-fuzzy model

[3,14]. In addition to capturing nonlinearity, the time varying nature

of a process has been addressed [15-17].

Market conditions and increasing demand of products encour-

age frequent grade changes in the highly nonlinear, time-variant

processes in the same reactor. The requirement to reduce off-spec

product during grade changing events while satisfying other process

constraints recommends online adaptation of the model. Time-vari-

ant processes may be modeled including process dynamics in the

PLS model. However, the dynamic PLS is mostly used for the short

sampling frequency processes. For processes having large offline

sampling interval, dynamic PLS may not adequately capture a time-

variant process [18]. Recursively adaptive data models can be em-

ployed to properly cope with the grade-changing characteristics of

the HDPE process. Many researchers have paid considerable atten-

tion to online adaptation of the model based on PLS [17,18]. A re-

cursive PLS-based soft sensor for prediction of the melt index (MI)

has successfully applied to estimate MI in HDPE plant [19]. Dynamic

estimation of MI based on correlation relations has also been pro-

posed [20-22]. In this work, inspired by recursive update of PLS

parameters by new process data points with mean and variance up-

date [18] and model bias update [23], two update schemes are devel-

oped for the prediction of quality variable by the combination of

these update methods. The proposed update schemes with inherent

selection criteria keep track of grade-changing characteristics by

model bias update. These schemes take the benefits of the recursively

updated PLS by adding new process data point(s) and removing
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the oldest one(s) to update the model recursively with the update

of mean and variance each time the PLS model is selected to up-

date the model. These schemes along with comparative strategies

(to be described in subsequent sections) have been employed in the

graphical user interface (GUI). The GUI includes the options for

the k-cross validation (CV) for the selection of number of latent

factors (LF) to be used in the PLS model and optimization of par-

ameters of different strategies and the proposed schemes. The article

includes description of model update methods, the proposed schemes

and their parameter’s optimization and the application to the HDPE

process.

BACKGROUND

1. Partial Least Squares (PLS) Method

PLS is a widely used multivariate statistical tool in chemometrics

practices to handle high dimensionality and collinearity by project-

ing the input variable matrix X and output variable(s) Y onto the

low dimensional latent subspace. Several algorithms have been pro-

posed for the projection of input variables to the low dimensional

subspace through different iterative manners [4,16]. Among them,

non-iterative partial least squares (NIPALS) is the most intuitive

method that calculates the outer model parameters by decompos-

ing matrices X and Y into bilinear terms as follows [4]:

X=t1p1
T+E1 (1)

Y=u1q1
T+F1 (2)

where t1 and u1 are the latent score vectors and p1 and q1 are the

loading vectors of the first latent factor of X and Y, respectively. E1

and F1 are the residuals which are to be minimized so as to extract

possible maximum information from the first factor. Score vectors

t1 and u1 are related to each other by a linear relation forming an

inner model defined as:

u1=b1t1+r1 (3)

where r1 is the residual which is minimized to determine the re-

gression coefficient b1 for the first latent factor. Further latent factors

are extracted from the deflated X and Y matrices until all the re-

quired information is pulled out by the specified number of latent

factors. X and Y matrices are deflated as follows:

E1=X−t1p1
T (4)

F1=Y−b1t1q1
T (5)

After extracting all the specified latent factors, PLS regression coeffi-

cient matrix is calculated as

Cpls=W
*BQT (6)

where

B=diag(b1, b2, … ba), W
*=[w1

*, w2
*, …, wa

*]

(w1
*=w1), 

k=(2, …a), and IK is the identity matrix of dimension K. Details on

NIPALS algorithm can be found elsewhere [4,17]. Usually the num-

ber of latent factors is calculated by cross validation. The root mean

squared error of cross validation (RMSECV) is computed for dif-

ferent number of latent factors using leave-one-out (LOOCV), re-

peated random sub-sampling validation or V-fold cross validation

(also called k-fold cross validation), while the number of optimal

factors giving the least RMSECV is chosen for information extrac-

tion from input and output data set [4,24]. Leave-one-out cross valida-

tion may not be suitable for estimating generalization error of grade-

changing processes because it may affect the RMSECV adversely

based on the grade-changing instance. The problem is the lack of

continuity of the same grade and a small change in the data can cause

a large change in the model selected [25]. The same problem is with

the repeated random sub-sampling which selects the test set ran-

domly and may spread the data samples of the different grade. This

sparseness of the data samples of different grade may behave as

outliers, consequently giving biased result. V-fold cross validation

covers this problem up to some extent by distributing the data set

into V partitions and computing RMSECV by taking all the parti-

tions as the test set one by one in rotation, remaining partitions being

the training set. It was found that 10-fold and 5-fold cross valida-

tion give better results than those of LOOCV [26].

2. PLS Model Parameters Update

To address the time-varying effects of processes, the employ-

ment of an adaptive model is indispensable. A recursive PLS model

was proposed by updating the training data set recursively and remov-

ing the oldest data sample(s) simultaneously [15]. The proposed

recursive PLS was further extended [17]. In this way, the size of

the matrices can be kept constant, the model can be adapted with

new events, and the process history can be retained partially. Each

new measurement added to the data set removes the oldest meas-

urement and the PLS parameters are updated to be compatible for

predicting the new process environment.

3. Mean and Variance Update

Before a model is developed, process data are often scaled to mean-

center and unit variance. Mean of a given variable is subtracted from

each data point of that variable followed by the division by stan-

dard deviation of same variable.

(7)

where xi,ms is the transformed value of xi, i=1, 2, …N, and m and s

represent the mean and the standard deviation of the corresponding

variable, respectively. Whenever the model is updated by PLS on

the availability of new process data, the mean and the variance are

updated as well to adapt with the scaling of new process data. The

updating method is given as [18]:

(8)

(9)

where mh and sh are the mean and the variance of training data at

the hth addition of the new measurement, respectively, and mh+1 and

sh+1 represent the corresponding values at (h+1)
th addition.

4. Model Bias Update

Drifts in process environment with time may affect the relation

between process input variables and output quality variable. More-

over, grade-changing events in the operations of chemical processes

wa
*
 = IK − wkpk

T( )wa

a−1

k=1
∏

xi ms,  = 

xi − m

s
-------------

mh+1= 

N −1
N

-----------mh + 

1

N
----xh+1

sh+1
2 = 

N − 2

N −1
------------sh

2

 + 

1

N −1
----------- xh+1− mh+1( )2
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may result in PLS overfitting the data and giving deviated and un-

desirable predictions. To circumvent this situation, model bias update

is incorporated in the soft sensor to make it reliable and robustly

adaptive [23]. The difference of predicted value and corresponding

measurement, calculated by Eq. (11), is termed as model bias which

is added to the predicted value at the next time step to modify the

prediction. At t=0,

Ypred=X(t)×Cpls (10)

where t is the index of model update run: t=0 represents the instance

before the update. At t=tth run,

bias(t)=Ylab(t−1)−Ypred(t−1) (11)

where bias(t) is the model bias at the tth run to be used in the model

output modification by Eq. (12) with bias(0)=0.

Ymod(t)=Ypred(t)+bias(t) (12)

where Ylab and Ypred represent the measurement and the predicted

value respectively. Ymod is the modified value of Ypred by the model

bias.

NEW UPDATE SCHEMES

The proposed update schemes consist of the model adaptation

with the recursive update of the parameters of the PLS model and

the model bias update as well. The main idea of the schemes is to

combine the two update methods and devise a selection criterion

to choose one method for a specific instance of update in a fashion

so as to minimize the prediction error. The model is updated with

the update methods one at a time, i.e., the PLS model parameters

update or the model bias update. For the performance evaluation,

relative RMSE given by Eq. (13) is used:

(13)

where Nt is the number of observations in the test data set whereas

Yi, actual and Yi,mod are the actual and modified values of the MI. The

term RMSE used in the article represents the relative RMSE.

1. Proposed Scheme-I

In most industrial processes, it takes quite a long time (often several

hours) to measure the quality variable. During the first interval after

the training data is collected and the initial model is built, quality

variable is predicted through the model initially built by the train-

ing data samples. Later on the PLS model parameters or model bias

is updated on the arrival of each new measurement and predictions

are carried out for the next interval. The selection criterion of the

update methods for this scheme are based on the threshold constant

d below which there is no effect on the relative root mean square

error (RMSE) of predictions. This threshold constant decides whether

to use PLS model parameters update or model bias update depend-

ing on the changing behavior of quality variable. Threshold con-

stant is an arbitrary constant which is optimized for a certain set of

calibration data (see section 2.3). The absolute value of the differ-

ence between the values of current and previous measurements is

termed as adiff. When a new measurement is available, adiff is calcu-

lated and compared with the threshold constant d. If the adiff is less

than or equal to d, PLS model parameters update is selected, other-

wise the model is updated by model bias update. At first we intended

to use the PLS model parameters update during small variations in

quality variable behavior, and model bias update to capture a large

impulse (grade changing event). However, smaller values of d affect

the model predictions positively at the occurrence of undersized

variations along with the grade changing events. The update of PLS

model parameters is performed followed by mean and variance up-

date until adiff reached the threshold constant or the process changes

its grade. With a value of adiff higher than d, the model bias term

is updated to new value. Eventually, all the predictions are modified

by the model bias using Eq. (12). The procedure is illustrated in

Fig. 1.

When the process shifts from one grade to another, the differ-

ence of the first value of the shifted grade and immediately previ-

ous value belonging to the prior grade is termed as grade-change-

defining-value (GCDV). When the operation consists of several

grades, GCDV may be different for various grades. In this case,

the minimum GCDV is selected for the optimization, which is 1.94

for this application. The threshold constant is obtained by the opti-

mization; one can start with the GCDV proceeding towards lower

RMSE = 

1

Nt

-----
Yi actual,  − Yi mold,

Yi actual,

---------------------------------
⎝ ⎠
⎛ ⎞

2

i=1

N
t

∑

Fig. 1. Flowchart of the update scheme-I.
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values. The threshold value giving the lowest RMSE is used as the

update method selector d (see section 2.3).

2. Proposed Scheme-II

Despite the fact that the model adaptation is vital for the soft sensor

to predict deviated response of the process, undue updating may

encompass potential to cause relative overfitting. Proposed scheme-

II is the extension of scheme-I. It detects the process response be-

havior more critically and is developed with the aim of making the

soft sensor more sensitive for the selection of update method to pre-

vent undue model updating. This prevention from unnecessary updat-

ing circumvents from the potential risk of overfitting and over modi-

fication, on the other hand, automatically reduces the computation

time as well up to some extent.

During update selection procedures preference is given to no up-

date at all (when there is no need to update) followed by model bias

update and PLS model parameters update. In other words, the param-

eters are to be optimized so as to minimize the number of PLS model

parameters update runs (NPR). A lower bound value d1 is identi-

fied below which the system, if left without updating, does not exhibit

any remarkable change and has no or negligible increasing effect

on the relative RMSE. Therefore, the model does not require updat-

ing in these cases. On the other hand, to capture the sharp and rapid

changes an upper bound d2 is selected so that the model bias update

updates the bias above d2. The value of d2 is optimized to make use

of the model bias update during the significant changes within the

same grade and drastic changes of grade-changing events as well.

The range (the difference between lower and upper threshold bounds)

represents the activation of the RPLS update.

Scheme-II follows the same procedure as that of scheme-I except

the selection criteria. If the value of adiff lies out of the ranges of d1
or d2, no update or the model bias update is performed. Otherwise, the

PLS model parameters update is activated. Eventually, as in scheme-

I, predictions from both update methods are modified by the model

bias using Eq. (12). The procedure is illustrated in Fig. 2.

Scheme-II is set up with the minimized NPR, which may cause

a negligible increase in RMSE. The value up to which the increase

in RMSE is acceptable is termed as the compensation factor (cf).

The placement and the range between lower and upper bounds are

to be optimized to minimize the NPR. One can start with d (param-

eter of scheme-I, threshold constant) and far less value than GCDV

as the lower and upper bounds, respectively, proceeding towards

each other. GCDV is the maximum limit for the upper bound but

usually the optimization results in upper bound value near to lower

bound value and far less than GCDV. The placement of the bounds

and the range giving the least RMSE are used as the update method

selection criteria as described in the subsequent section.

3. Determination of the Threshold Constant and Bounds

For the determination of the parameters for scheme-I, the prob-

lem can be set up as the unconstrained optimization problem with

the RMSE as the objective function to be minimized subject to d.

Minimize: RMSE(d)=scheme-I (14.1)

Subject to: 0≤d≤GCDV (14.2)

The threshold constant d turns out to be a variable to be opti-

mized and is related to the RMSE through the update scheme-I. A

value of d closer to GCDV results in frequently activated PLS model

parameters update, which leads towards the potential of overfitting.

On the other hand, the model bias update is activated too fre-

quently for the value of d nearly zero, resulting in the possibility of

over modification.

For scheme-II, the determination of the parameters is a constrained

optimization problem with RMSE, NPR as objective function to

be minimized, and bounds placement and range as the variables to

be optimized. The optimization problem takes the form as:

Minimize: NPR=scheme-II (15.1)

Subject to: RMsE II≤RMSE I+cf (15.2)

Subject to: 0≤d1≤GCDV; d<d2≤GCDV (15.3)

where RMSE I and RMSE II represent the RMSE obtained by the

scheme-I and scheme-II, respectively and cf is the compensation

factor. If the values of d1 and d2 move simultaneously in the same

direction on a scale from zero to GCDV, they can be considered as

a single parameter which affects the selection of update method by

moving towards left minimizing the probability of selecting no update

and towards right maximizing the probability of selecting no update.

The value of d1 and d2 approaching or going farther from each other

decides the range which corresponds to the selection of PLS model

parameters update.

A graphical user interface (GUI) can be easily constructed for

convenient use of the proposed model adaptation schemes. The GUI

shown in Fig.3 is developed with the compatibility with the MicrosoftFig. 2. Flowchart of the update scheme-II.
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Excel and Matlab and mainly consists of two sections. The first section

is a common input section in which some input fields appear that

are common to all strategies and schemes. The other section con-

sists of five different tabs; each tab has input fields for distinct specific

input parameters for prediction, cross validation and optimization,

and buttons for displaying output in MS Excel sheet. Both the solo

strategies are the exceptions; these two strategies do not have any

parameters that require optimization. The Load button opens a dia-

logue box asking for an excel file. Once the file is selected it de-

tects the number of sheets existing in the excel file and extracts from

all sheets the columns as inserted in the X Columns and Y Column

input fields. Based on the sampling interval inserted in the respec-

tive field, GUI displays the total number of samples available for

model fitting, calibration and/or testing. Pressing the Load button

and selecting a file (same or other), while the previous data is already

loaded, concatenates newly loaded data to the bottom of previous

data. This concatenation can be done for more than two files. The

number of columns extracted from all files must be same for the

concatenation. After the other file is loaded, the Total Samples field

shows increased number of samples.

Under each tab, the strategies and schemes have distinct param-

eters but the method of using the GUI is the same. We will discuss

the Scheme-II tab. Under the Scheme-II tab, Predict button runs the

scheme-II algorithm in Matlab and displays the relative RMSE on

the right. These buttons are used when one knows the number of

latent factors and the optimized parameters. Matlab’s graph appears

showing the comparison between original and predicted values of

quality variable on pressing the Plot button. Under the Cross Vali-

dation and Optimization subsection, Lower Bound Opt. range and

Upper Bound Opt. range are the input ranges for the optimization

of the parameters. Cross Validation and Optimization buttons run

the optimization algorithm based on scheme-II and k-fold cross vali-

dation algorithm, respectively. Result in Excel buttons displays the

corresponding result in Excel sheet. The subsection Test Data Result

is used after the number of latent factors and parameters are opti-

mized by the Cross Validation and Optimization subsection. The

Predict Test Data button initializes the predictions from the calibra-

tion data and continues to predict the test data, but the result and

plot are for test data only. The Predict button does not include the

calibration data in the algorithm to initialize predictions. The Unload

button simply unloads the loaded data.

APPLICATION TO THE HDPE PROCESS

1. Process Description

HDPE is produced under the edge-cutting low-pressure poly-

merization manufacturing process in LG Petrochemicals plant located

in the southwestern region of Korea. There are two polymerization

processes named K1 and K2 in the plant. Two parallel reactors are

employed in the K1 process, whereas the K2 process uses a cascade

arrangement. Due to the exothermic nature, these reactions gener-

ate 1,000 kcal/kg ethylene. To remove polymerization heat from

the reactor, an efficient cooling system is used. The reactant feed of

the reactor includes ethylene co-monomer, hydrogen, activator, cata-

lyst, co-catalyst, and hexane and continuously recycled mother liquor.

The reactor volume is filled up to 90-95% with reaction slurry, which

is transferred to the subsequent equipment with the rise in pressure

to maintain the slurry level within the reactor. The pressure ranges

for K1 and K2 processes operate under 8-10 kg/cm
2 and 2-4 kg/cm2

respectively with a temperature range of 74-85 oC in both processes.

2. Numerical Simulations

For the simulation purpose, 1156 measurements were collected

with the interval of 2hours in 97 days. Out of 1156, first three hundred

measurements were selected for training of the initial model. For

calibration of model parameters through optimization, 206 meas-

urements were used from which one measurement was used for

the predictions before starting the online update, and 650 measure-

ments were used as test data to examine the model for prediction

accuracy. Variable selection is a crucial task in developing a statis-

tical model. In the LG Petrochemicals plant, 43 input variables are

recorded on a daily basis. Activator feed rate was observed constant

throughout the process, so it was deleted from the data. From the

remaining 42 process input variables, 14 variables were selected

using interval PLS for the input variable selection with the help of

PLS_Toolbox 4.2, Eigenvector Research Inc. An initial PLS model

was set up with 300 data points for the update strategies, and pro-

posed schemes using one latent factor except for solo PLS strategy

for which five latent factors were used. The initially built model

was used for the predictions with a gap of 5minutes before the model

started online adaptation until the entrance of new measurement in

the input data. The time required by the offline measurements of

MI in LG petrochemicals is two hours. After each two hours at the

arrival of a new measurement of MI, it is added to the existing pro-

cess data and a certain update method is activated to update the PLS

model parameters or model bias. The recently updated model then

Fig. 3. A snapshot of StatPred-PLS.
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predicts MI for next two hours unless a new measurement is carried

out analytically in lab. In this fashion, model update and predic-

tions are executed sequentially with the interval of two hours. The

number of latent factors to be used in PLS model for update strategies

and proposed schemes was selected using 5-fold cross validation.

CV results for strategies and the proposed schemes are tabulated in

Table 1. Although the 14 latent factors give the least RMSECV but

the difference in RMSECVs against 1 latent factor and 14 latent

factors is not considerable. It clearly suggests one latent factor for

scheme-II. Similarly, one latent factor was selected for scheme-I,

period strategy and solo bias strategy. For the solo PLS strategy an

optimal number of latent factors equal to five was selected. The dif-

ferent strategies and proposed schemes are set up as follows:

2-1. Solo PLS Strategy

At each arrival of a new MI measurement in the training data

set, the parameters of the PLS model are updated recursively along

with means and variances which are updated by Eqs. (8) and (9).

There is no selection of model bias update or no update in this strat-

egy. The PLS model then uses the updated parameters to predict

the MI values for the interval. For the PLS model five latent factors

were selected based on the cross validation result from GUI as shown

in Table 1.

2-2. Solo Bias Strategy

After the initial predictions for the first interval through the initial

PLS model, solo bias strategy updates the model bias at the arrival

of each new measurement. For the subsequent intervals the model

bias is added to the model predictions to incorporate the bias effect

into the predictions. One latent factor was used for the initial PLS

model.

2-3. Period Strategy

It utilizes the arbitrarily constant parameter period throughout

the model predictions. Period equal to two acts as a switch between

PLS model parameters update and model bias update, and acti-

vates them alternately. Similarly, period equal to three updates the

bias every two consecutive intervals and PLS model parameters

every third interval. One latent factor was selected for the initial

and subsequent PLS update models. Optimization results generated

by the GUI suggested period=7 giving the least RMSE for the calibra-

tion data.

2-4. Proposed Scheme-I

For the proposed scheme-I, optimization of threshold constant

was carried out by the GUI using the calibration data resulting in

the value of d equal to 0.01 in this application, and latent factor equal

to one based on the result of CV.

2-5. Proposed Scheme-II

The proposed scheme-II is characterized by the lower and upper

bounds d1 and d2, which were optimized using calibration data giving

d1 and d2 equal to 0.01 and 0.03 respectively as shown in Fig. 4.

One latent factor was used for the PLS model.

RESULTS AND DISCUSSION

1. Results

Results of predictive ability of the strategies and proposed schemes

are compared in Fig. 5. The solo PLS strategy and solo bias strategy

Table 1. CV Results: RMSECV for strategies and proposed schemes
against LF

LF Scheme-II Scheme-I
Period

strategy

Solo PLS

strategy

Solo bias

strategy

01 1.2259 1.2478 1.2517 4.5624 1.1105

02 1.6291 1.2271 1.2419 4.5297 1.5986

03 1.8127 1.7379 1.3801 2.9777 1.7369

04 1.9448 1.7420 1.4691 1.9082 1.6580

05 1.6850 1.7905 1.4499 1.7000 1.4337

06 1.8739 1.7952 1.4436 1.5942 1.6874

07 1.7654 1.7491 1.4041 1.5585 1.5169

08 1.4310 1.7618 1.4058 1.5370 1.3387

09 1.3913 1.7313 1.4107 1.4983 1.2794

10 1.3463 1.6925 1.3979 1.4601 1.2118

11 1.4927 1.7334 1.4110 1.4493 1.3300

12 1.6493 1.7424 1.4156 1.4156 1.4824

13 1.2172 1.7790 1.4081 1.4146 1.1080

14 1.0978 1.7560 1.4124 1.3846 1.0055

Fig. 4. Scheme-II: Cut off results of optimization through GUI
shown in microsoft excel.

Fig. 5. Comparison of actual and predicted MI. (a) Solo PLS strat-
egy; (b) Solo bias strategy; (c) Period strategy with period
=7; (d) Proposed scheme-I; (e) Proposed scheme-II.
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capture the grade-changing events but with over modification at

some instances giving noise and shoot-ups in predictions. The solo

PLS strategy gives the predictions up to the acceptable range, except

for some instances where it produces spikes and near the end where

it loses the trend (Fig. 5(a)). Solo bias strategy tends to over-modify

the model predictions, giving some spikes as shown in Fig. 5(b).

The reason for the spikes may be the noise and/or a change in the

process input variables at the instances near or during the grade-

changing events. The noise and a change in process input variables

have the tendency for the update method to over-modify the predic-

tions, and solo strategies are vulnerable to this tendency. In contrast

to the solo strategies, period strategy (Fig. 5(c)) circumvents the

situation of over modification imposed by the noise or a change in

input variables. It predicts the MI smoothly and overcomes the devia-

tions in predictions by activating the PLS at a period equal to seven.

Fig. 5(d) represents scheme-I, which is characterized by its sophis-

ticated ability to choose an appropriate update method at a certain

instance outperforms and predicts the MI more closer to the actual

values of MI giving lower RMSE than that given by the period strat-

egy. Proposed scheme-II (Fig. 5(e)) minimizes the NPR by opti-

mizing the bounds placement and limiting the range between d1 and

d2 and minimizes the RMSE as compared to the RMSE from scheme-

I. Values of RMSE of calibration and test data for the strategies and

schemes are shown in Table 2.

The optimization was performed for both schemes with calibra-

tion data using Eqs. (14) and (15). The results were truncated to

focus on the small variations in the minimum RMSE value as shown

in Figs. 6 and 7. Therefore, the iteration numbers shown in Figs. 6

and 7 and given in Table 3 are not the same as the actual iteration

numbers of the performed optimization. The optimization for the

scheme-I converges at the 40th iteration giving RMSE=0.0943 at

d=0.01 with the NPR=84 as shown in Fig. 6. Utilizing an analo-

gous approach as above, the optimization was performed for scheme-

II, giving variation in NPR and RMSE with different bounds place-

ments and ranges shown in Fig. 7. The minimized NPR=4 with

acceptable compensation (cf=0.0003 in this case) in RMSE was

found at d1=0.01 and d2=0.03 (8
th iteration). The results of optimi-

zation for the period strategy and the schemes are summarized in

Table 3. It also tabulates the results of comparison between the NPR

of the period strategy and that of proposed schemes using calibra-

tion data set and test data set as well. In Table 3, the sum of NPR,

NMBR and NNP for calibration data is 205 because the first meas-

urement is used for the prediction by initial model without updating.

Table 2. Comparison of update strategies and schemes

No. Procedure
RMSE

(calibration data)

RMSE

(test data)

1 Solo PLS strategy 0.3611 0.6418

2 Solo bias strategy 0.5209 0.7569

3 Period strategy 0.0961 0.1533

4 Scheme-I 0.0943 0.1504

5 Scheme-II 0.0946 0.1466

Fig. 6. Threshold constants corresponding to values of RMSE and
NPR.

Fig. 7. Bounds placements and ranges corresponding to the val-
ues of NPR and RMSE.

Table 3. Parameter comparison among update schemes and period strategy

Update scheme NPR NMBR NNP Optimized parameters Iteration number NPR NMBR NNP

Period strategy 29 176 - period=7 - 093 557 -

Scheme-I 84 121 - d=0.01 40th (Fig. 6) 289 361 -

Scheme-II 04 117 84 d1=0.01, d2=0.03 08th (Fig. 7) 039 322 289

NMBR=number of model bias update runs

NNP=number of no update runs

Last three columns refer to test data set
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2. Discussion

Continuous polymerization processes are characterized by fre-

quent grade changes, and for that purpose the process input vari-

ables are to be changed to shift to the other grade. The solo PLS

strategy renovates the PLS parameters recursively, overcoming the

deviation caused by the abrupt changes in process data and captur-

ing the trend appropriately except for giving some spikes at instances

near the grade change where it over-fits the newly available data,

but soon after captures the trend again. Solo bias strategy is also

susceptible to these changes and over-modifies the predictions at

these instances by updating the model bias unduly. It depicts the

input data noise in the predictions up to a relatively large extent caused

by the absence of PLS model parameters update. In fact, the PLS

method models the output space as well as the input space, creat-

ing better inner relation between input and output score vectors.

Subsequently, the solo PLS strategy, even at the instances of noisy

input data, gives less noisy predictions relative to that of model bias

strategy. Hence, the combination of both the methods is exploited

in the period strategy and proposed schemes. The period strategy

circumvents the problem of over-modification and contends with

the rapid changes by using the PLS model parameters update and

model bias update activated at the optimized period. The PLS model

parameters update and the model bias update complement each other,

giving lower RMSE of predictions by reducing the risk of over-

fitting and over-modification. The proposed schemes exploit this

combination with an inherent and decisive selection criterion that

makes the schemes more sophisticated.

The proposed schemes are not only found robust in predictions

without over-fitting and over-modification but also outperform the

other strategies. The reason for superiority may be described as:

during grade-changing industrial operations, the instances or the

time difference between two consecutive grade-changing events

may differ. Furthermore, the duration for which the product of one

grade is manufactured may also be changed. An arbitrarily fixed

parameter “period” is used in period strategy throughout the model

and the calibration of specific period of grade changing instances is

used for the optimization of period for the lowest RMSE. On the

other hand, the proposed scheme-I shifts the decision power of selec-

tion from being based on calibration data to online quality variable

behavior and selects the update method based on the current require-

ment of the process. In addition, scheme-II further adds the possi-

bility of no update at certain instances. These capabilities render

the selection criterion of scheme-II more sensitive for the detection

of process response behavior that helps in selecting the appropriate

update method circumspectly, where no, undersized or relatively

large variations are identified during the operation and are treated

with no update, the PLS model parameters update or the model bias

update respectively.

CONCLUSIONS

New update method selection criteria for two different update

methods are introduced. The proposed update method selection crite-

ria are used in two different schemes for the prediction of MI values

of HDPE with grade changing behavior. Process modeling through

scheme-I focuses on the minimization of RMSE by taking advan-

tage of activating two update methods, PLS model parameters update

and model bias update, with the online selection criterion called

threshold constant. Scheme-II centers on the idea of minimizing

the NPR while maintaining the RMSE with some compensation

factor and in some cases even minimizing the RMSE with respect

to that of resulted from scheme-I. The update method selection crite-

ria employed in proposed schemes render them able to cope with

the irregular grade-changing events along with regular operation.

We are looking forward to having these schemes being employed

in the soft sensors categorized by online model adaptation.
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NOMENCLATURE

a : index of factors (a=1, 2…, A) [-]

A : number of factors in PLS model [-]

b : inner model coefficient [-]

B : matrix of regression coefficients, size (K*M) [-]

Cpls : PLS regression coefficient matrix [-]

d : threshold constant [-]

d1 : lower bound [-]

d2 : upper bound [-]

E : residual matrix for X [-]

F : residual matrix for Y [-]

k : index of w (k=1, 2, …, a) [-]

K : no. of variables in X [-]

N : no. of observations (samples) in training data set [-]

Nt : no. of observations (samples) in test data set [-]

p : loading vector for X [-]

q : loading vector for Y [-]

Q : weight matrix for Y, size (M*A) [-]

r : residual vector for inner model of PLS [-]

range : difference between d2 and d1 [-]

t : score vector for X [-]

u : score vector for Y [-]

w : column vector of W [-]

W : weight matrix for X, size (K*A) [-]

w* : column vector of W* [-]

W* : matrix of transformed PLS weights [-]

X : matrix of process input data, size (N*K) [-]

Y : matrix of response variable, size (N*M) [-]

Ymod : modified value of response variable by model bias [-]

Ypred : prediction value of response variable [-]
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