Hydrogen production by decomposition of ethane-containing methane over carbon black catalysts

Mi So Kim, Sang Yup Lee, Jung Hun Kwak, Gui Young Han, and Ki June Yoon*†*

School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea (Received 27 January 2011 • accepted 14 March 2011)

Abstract*−*Mixtures of methane and small amounts of ethane were decomposed in the presence of carbon black (CB) catalysts at 1,073-1,223 K for hydrogen production. Although most of the added ethane was first decomposed to ethylene and hydrogen predominantly by non-catalytic reaction, subsequent decomposition of ethylene was effectively facilitated by the CB catalysts. Because some methane was produced from ethane, the net methane conversion decreased as the added ethane increased. The rate of hydrogen production from methane was decreased by the added ethane. A reason for this is that adsorption of methane on the active sites is inhibited by more easily adsorbing ethylene. In spite of this, the hydrogen yield increased with an increase of the added ethane because the contribution of ethane and ethylene decomposition to the hydrogen production was dominant over methane decomposition. A higher hydrogen yield was obtained in the presence of a higher-surface-area CB catalyst.

Key words: Carbon Black Catalyst, Decomposition, Ethane, Hydrogen Production, Methane

INTRODUCTION

The steam reforming of natural gas is currently the largest and most economical process for the production of $H₂$, but this process is accompanied by simultaneous production of CO₂ which is to be reduced due to the greenhouse effect. An attractive alternative for the production of H_2 without CO_2 emission is catalytic decomposition of methane $(CH_4 \rightarrow C(s)+2H_2)$ [1-5]. Transition metals such as Fe, Ni and Co can be used as the catalyst for $CH₄$ decomposition at low temperatures (450-1,000 K), but the carbon build-up induces rapid catalyst deactivation as well as other problems such as reactor blocking and bothersome catalyst regeneration. Regeneration of those catalysts by combustion or gasification of carbon deposits results in production of a large amount of $CO₂$ [6-9]. On the contrary, several recent studies have shown that carbon black (CB) is a stable and effective catalyst for $CH₄$ decomposition [10-16]. CH₄ decomposition using CB as a catalyst has several advantages compared with the conventional steam reforming. The produced clean carbon can be commercialized, and additional treatments such as the water gas shift reaction, CO_x removal, and catalyst regeneration are not necessary, which simplifies the process significantly [11].

Although natural gas is mostly composed of $CH₄$, it contains considerable amounts (5-30%) of higher hydrocarbons such as C_2H_6 , C_3H_8 and C_4H_{10} . However, the studies cited above have mostly been confined to the decomposition of pure $CH₄$. Because those higher hydrocarbons are less stable than $CH₄$, they can decompose more easily than CH₄, and moreover CH₄ and C₂H₄ can be produced in addition to the solid carbon and H_2 . For example, it has been reported that when pure C_2H_6 is decomposed at 1,123 K over a CB catalyst, the compositions of H_2 , CH₄ and C₂H₄ in the reactor effluent

E-mail: kijyoon@skku.edu

gas are 55, 32 and 11 vol%, respectively [17]. Therefore, the H_2 yield and product distribution obtained by the decomposition of mixtures of CH_4 and C_2H_6 will be different from those by the decomposition of pure CH4. Nevertheless, studies on decomposition of mixtures of CH₄ and higher hydrocarbons over CB catalysts are rare. A recent study reported that when mixtures of CH_4 and C_2H_6 or C_3H_8 were decomposed in the presence of a CB catalyst, higher H2 yields could be obtained compared with the decomposition of pure CH4 [17]. However, the detailed distributions of the products from the mixtures, especially $CH₄$ and $C₂H₄$, were not presented; moreover, the reason for the higher $H₂$ yield was only superficially proposed by attributing it to the higher content of hydrogen in C_2H_6 and C_3H_8 . Therefore, a more detailed study on the decomposition of mixtures of CH₄ and C₂H₆ or C₃H₈ is required.

A study on decomposition of pure C_2H_6 in the presence of CB catalysts has recently been reported [18]. C_2H_6 starts to thermally (in the absence of a catalyst) decompose from 950 K, while CH₄ does from 1,223 K [10]. In the presence of CB catalysts the C_2H_6 conversion and the $H₂$ yield increase significantly. For example, at 1,173 K the C_2H_6 conversion and the H_2 yield in the absence of a catalyst are 94% and 50%, respectively, while in the presence of a CB catalyst they are 99% and 80%, respectively. The marked increase of the $H₂$ yield is mainly owing to a considerable decrease of the selectivity of C_2H_4 that has been produced by dehydrogenation of C_2H_6 , which indicates that CB catalysts are efficient for decomposition of C_2H_4 to H_2 and solid carbon. Another study on decomposition of pure C_2H_6 in the presence of a CB catalyst has reported similar results [17]. Studies on decomposition of pure C_3H_8 and C_4H_{10} in the presence of a CB catalyst have also been reported [17,19], and the trends for the C_3H_8 or C_4H_{10} conversion, the H_2 yield and the C_2H_4 selectivity are similar to those obtained from the decomposition of pure C_2H_6 .

Because C_2H_6 is the second most abundant component of natural gas, this study investigated the $H₂$ production by decomposition

[†] To whom correspondence should be addressed.

EXPERIMENTAL

with the results of non-catalytic thermal decomposition and by com-

paring the activities of CB catalysts one another.

Three representative CB catalysts were selected in this study from the previous studies on decomposition of pure CH₄ and C₂H₆ [13, 16,18]: a pelletized rubber CB (N330(P): surface area=70 m²/g, from OCI, Korea), a fluffy rubber CB (N330(F): surface area= $77 \text{ m}^2/\text{g}$, from OCI, Korea), and a color CB (HI-900L: surface area=256 m²/ g, from Degussa, Germany). In the decomposition of pure $CH₄$ and pure C_2H_6 , the catalytic activities of N330(F) and HI-900L were comparable to each other but higher than the activity of N330(P).

The experimental procedure was essentially the same as in the previous studies [13,16,18]. All the CB catalysts were dried at 373 K for 24 h in air before the reaction test. The decomposition reaction was carried out in a vertical, fixed-bed, 8 mm I.D. quartz-tube flow reactor heated by an electric tube furnace (Lindberg Blue M, US). The tube was narrowed somewhat in the middle and rock wool was placed there to support the CB particles. $CH₄$ (99.99%, Dong-a Gas, Korea), C_2H_6 (99.95%, Duckyang Energen, Korea) and Ar (MS Dongmin Specialty Gas, Korea) were used without further purification. The standard reaction conditions were a catalyst charge of 0.1 g, a fixed CH₄ flow rate of 30 cm³ (STP)/min (a volumetric hourly space velocity (VHSV) of 18,000 cm³ CH₄/h·g_{CB}: g_{CB} denotes the mass in grams of before-reaction dried CB), and C_2H_6 flow rates of 1.58-5.29 cm³ (STP)/min (C₂H₆/CH₄ feed ratios=5/95, 10/90, and 15/85). The reaction temperature ranged from 1,073 to 1,223 K in 50 K intervals. Non-catalytic thermal decomposition was also performed for comparison purpose. Because the stainless steel sheath of the thermocouple is a good catalyst for hydrocarbon decomposition [10], the thermocouple was removed before the reaction experiments after the desired temperature was reached under Ar flow. The first sampling and analysis was usually done 5 min after the feed gas flowed, because it took time to flush the Ar gas initially present and for the reaction system to reach steady state. Afterwards, the sampling and analysis was done every 15 min for 2 h. The product gas was analyzed by gas chromatography (Younglin M600D, Korea), using a HayeSep Q column (Supelco, US) with Ar carrier and a thermal conductivity detector. The oven temperature of the gas chromatograph was maintained at 323 K for 0.7 min and then raised to 473 K with 45 K/min. The amounts of H_2 , CH₄, C₂H₄, and C_2H_6 in the product gas were determined using calibrated data.

When a mixture of CH₄ and C_2H_6 is decomposed, some CH₄ is produced from C_2H_6 [17,18] while a part of the CH₄ fed is concurrently decomposed. Because the produced $CH₄$ is not distinguishable from the unreacted feed $CH₄$, the conversion of the feed $CH₄$ cannot be determined separately. Therefore, only the net $CH₄$ conversion, accounting for the sum of the produced $CH₄$ and the unreacted feed CH4, is presented in this study. nnot be determined separately. Therefore, only the net CH₄ constrained accounting for the sum of the produced CH₄ and the unteracted feed CH₄, is presented in this study.
Net CH₄ conversion (%)=100×(moles of CH₄

out of the reactor)/(moles of CH_4 fed)

September, 2011

 $C₂H₆$ conversion is defined as follows:

 C_2H_6 conversion (%)=100×(moles of C_2H_6 converted)/(moles of C_2H_6 fed)

 $C₂H₄$ selectivity and $H₂$ yield are defined as follows:

 C_2H_4 selectivity (%)=100×(moles of C_2H_4 produced)/(moles of C_2H_6 fed) H₂ yield $(\%)=100\times$ (moles of H₂ produced)/

[$2\times$ (moles of CH₄ fed)+3×(moles of C₂H₆ fed)]

RESULTS AND DISCUSSION

1. C_2H_6 Conversion and C_2H_4 Selectivity

The conversions of C_2H_6 with the C_2H_6/CH_4 feed ratios of 5/95 and 15/85 are presented in Fig. 1. Since the conversions with the C_2H_6/CH_4 feed ratio of 10/90 were between those with the $C_2H_6/$ CH4 feed ratios of 5/95 and 15/85 [20], they are not shown here for brevity. At $1,073$ K, the C₂H₆ conversion by the non-catalytic reaction with the C_2H_4/CH_4 feed ratio of 5/95 was 66% and those in the presence of the catalysts were 70-76%. The C_2H_6 conversion by the non-catalytic reaction with the C_2H_4/CH_4 feed ratio of 15/85 was 81% and those in the presence of the catalysts were 75-78%. The higher C_2H_6 conversion by the non-catalytic reaction at 1,073 K with the C_2H_6/CH_4 feed ratio of 15/85 than that with the C_2H_6/CH_4 feed ratio of $5/95$ is considered due to the higher C_2H_6 partial pressure, or generation of a higher concentration of ethyl radicals that propagate the homogeneous gas-phase dehydrogenation of C_2H_6 . However, in the presence of the catalysts the differences in the C_2H_6 conversion were small. At higher temperatures from 1,123 to 1,223 K the conversions were very high (93-99%) and nearly the same regardless of the presence of the catalysts and the C_2H_6/CH_4 feed ratio. These results indicate that conversion of C_2H_6 , more precisely de-

Fig. 1. C_2H_6 conversion in non-catalytic reaction and in the presence of catalysts at different temperatures (VHSV=18,000 cm³ CH₄/h·g_{CB}; C₂H₆/CH₄ feed ratio=5/95 (solid symbols): non-catalytic (●), N330(P) (▼), N330(F) (▲), HI-900L (\blacksquare); C₂H_o/CH₄ feed ratio=15/85 (open symbols): non-catalytic (\bigcirc), N330(P) (∇), N330(F) (\triangle), HI-900L (\square)).

hydrogenation of C_2H_6 , proceeds dominantly by the non-catalytic reaction. In decomposition of pure C_2H_6 , it has been observed that the C_2H_6 conversions over the CB catalysts are considerably higher than the non-catalytic C_2H_6 conversion [18]. However, the results in Fig. 1 show that the contribution of the CB catalysts to the C_2H_6 conversion is not significant. This is attributable to the much lower partial pressures of C_2H_6 in this study compared with the case of feeding pure C_2H_6 .

On the other hand, with the C_2H_6/CH_4 feed ratio of 15/85, the non-catalytic C_2H_6 conversion at 1,073 K was higher than the catalytic conversion. This is an unexpected result when considering the result in the previous study [18]. One possible explanation for this may be given as follows by taking into account the low partial pressure of C_2H_6 and the action of the CB catalyst. By the free-radical chain reaction mechanism for the non-catalytic reaction, ethyl radicals generated in the gas phase in the initiation and propagation steps are transformed to ethylene and hydrogen [18]. However, in the presence of a CB catalyst, an ethyl radical can be transformed to an ethylene molecule and an adsorbed hydrogen atom with the aid of the catalyst [18],

$$
C_2H_5 \rightarrow S \rightarrow C_2H_4 + H-S \tag{1}
$$

where S denotes the active site on CB. This reaction (1) accelerates the C₂H₆ dehydrogenation rate, as observed in the case with the C₂H₆/ CH4 feed ratio of 5/95 at 1,073 K in the presence of the catalyst. On the other hand, an ethyl radical can react with the adsorbed hydrogen atom to produce an ethane molecule.

$$
C_2H_5 + H-S \leftrightarrow C_2H_6 + S \tag{2}
$$

If reaction (2) is significant, the net C_2H_6 conversion decreases. Between reactions (1) and (2), which one is more significant may depend on the conditions such as the concentrations of C_2H_5 and H-S and temperature. Because reaction (2) can be more significant than reaction (1) with the C_2H_6/CH_4 feed ratio of 15/85 at 1,073 K in the presence of the catalyst, where the concentrations of C_2H_5 and H-S are higher than those with the C_2H_6/CH_4 feed ratio of 5/95, the lower catalytic C_2H_6 conversion than the non-catalytic conversion may be explained. When the partial pressure of C_2H_6 is much higher or the reaction temperature is higher, reaction (2) proceeds much faster and will be almost equilibrated, and thus the net effect of reaction (2) on the C_2H_6 conversion makes negligible difference regardless of the presence of the catalyst. Under these conditions, however, other reaction steps - non-catalytic reactions, reaction (1), $2H-S \leftrightarrow$ H_2+2S , and catalytic decomposition of C_2H_4 - can proceed faster, resulting in a higher rate of C_2H_6 conversion. All in all, the differences between the non-catalytic and catalytic C_2H_6 conversions were observed to be small in this study.

The selectivities of C_2H_4 with different C_2H_6/CH_4 feed ratios are shown in Fig. 2. The selectivities of C_2H_4 in the presence of the catalysts were considerably lower than those for the non-catalytic decomposition, indicating that CB catalysts are effective for decomposition of C_2H_4 to H_2 and solid carbon. The effectiveness of the CB catalysts for the decomposition of C_2H_4 was in the order HI-900L> N330(F)>N330(P). This trend is in agreement with the results of the previous study on the decomposition of pure C_2H_6 over the CB catalysts [18]. When the selectivities of C_2H_4 in the non-catalytic reaction with the C_2H_6/CH_4 feed ratio of 5/95 were compared with

Fig. 2. C_2H_4 selectivity in non-catalytic reaction and in the presence of catalysts at different temperatures (VHSV=18,000 cm³ CH₄/h·g_{CB}; C₂H₆/CH₄ feed ratio=5/95 (solid symbols): non-catalytic (●), N330(P) (▼), N330(F) (▲), HI-900L (\blacksquare); C₂H_e/CH₄ feed ratio=15/85 (open symbols): non-catalytic (O), N330(P) (∇), N330(F) (Δ), HI-900L (\square)).

those with the C_2H_6/CH_4 feed ratio of 15/85, the former were considerably higher than the latter at the temperatures 1,123-1,223 K. The higher decomposition rate of C_2H_4 with the C_2H_6/CH_4 feed ratio of 15/85 is again considered due to the higher partial pressure of C2H4. However, in the presence of the catalysts, the differences in the selectivity of C_2H_4 with different C_2H_6/CH_4 feed ratios were relatively small, which indicates that in the presence of the catalysts the effect of the partial pressure of C_2H_4 on the selectivity of C_2H_4 is small. Nevertheless, this in turn indicates that the rate of C_2H_4 decomposition is almost proportional to the partial pressure of C_2H_4 over a specified catalyst.

The results in Figs. 1 and 2 are summarized as follows: 1) in the first stage dehydrogenation of C_2H_6 to C_2H_4 and H₂ proceeds dominantly by the non-catalytic reaction and the effect of the catalyst on dehydrogenation of C_2H_6 is not significant; 2) the conversions of C_2H_6 are nearly the same regardless of the C_2H_6/CH_4 feed ratio and the presence of the catalysts especially at temperatures from 1,123 to 1,223 K; 3) however, subsequent decomposition of C_2H_4 to H_2 and solid carbon is considerably facilitated by the CB catalysts, which is in agreement with the previous study [18].

2. Net $CH₄$ Conversion and $H₂$ Yield

Fig. 3 presents the net CH_4 conversions with the C_2H_4/CH_4 feed ratio of $5/95$. The net $CH₄$ conversions in the presence of the catalysts were higher than those for the non-catalytic decomposition. Although a part of C_2H_6 is converted to CH_4 and the amount of CH_4 produced from C_2H_6 is larger in the presence of the catalysts than in the absence of the catalyst $[18]$, the higher net $CH₄$ conversions in the presence of the catalysts manifest the effectiveness of the CB catalysts for decomposition of CH4. On the other hand, because of the production of some CH₄ from C_2H_6 , the net CH₄ conversions in

the presence of the catalysts for the feed containing a small amount of C_2H_6 are lower than the CH₄ conversions obtained in decomposition of pure CH₄. For example, in the presence of N330(F), the net CH₄

Fig. 3. Net CH₄ conversion in non-catalytic reaction and in the presence of catalysts at different temperatures (VHSV=18,000 cm³ CH₄/h·g_{CB}; C₂H₆/CH₄ feed ratio=5/95: non-catalytic (●), N330(P) (▼), N330(F) (▲), HI-900L (■); C₂H₆/CH₄ feed ratio=0/100 over N330(F) (\star) , adopted from [21] and corrected for the given VHSV).

Fig. 4. Net CH₄ conversion in non-catalytic reaction and in the presence of catalysts at different temperatures (VHSV=18,000 cm³ CH₄/h·g_{CB}; C₂H₆/CH₄ feed ratio=10/90 (solid symbols): non-catalytic (●), N330(P) (▼), N330(F) (▲), HI-900L (\blacksquare); C₂H_e/CH₄ feed ratio=15/85 (open symbols): non-catalytic (\bigcirc), N330(P) (∇), N330(F) (\triangle), HI-900L (\square)).

conversion at 1,223 K with the C_2H_6/CH_4 feed ratio of 5/95 is 7%, while the corresponding $CH₄$ conversions in decomposition of pure $CH₄$ is 15% [10]; in the presence of HI-900L, the net $CH₄$ conversion at 1,173 K with the C_2H_6/CH_4 feed ratio of 5/95 is 3.5%, while the corresponding CH_4 conversion in decomposition of pure CH_4 is 6% [16]. For the purpose of comparison, the CH₄ conversions obtained in decomposition of pure $CH₄$ over N330(F), which are adopted from [21] and corrected for the same VHSV, are also presented in Fig. 3.

The net CH₄ conversions with higher C_2H_6/CH_4 feed ratios are presented in Fig. 4. As the C_2H_6/CH_4 feed ratio increased, the net CH4 conversion decreased considerably, and moreover negative values of the net CH₄ conversion were obtained. This is certainly due to the higher CH₄ production with a higher amount of C_2H_6 fed since the CH₄ production from C₂H₆ is (moles of C₂H₆ fed)×(C₂H₆ conversion)×(CH₄ selectivity from C₂H₆). With the feed ratio C₂H₆/ CH_4 of 10/90, the net CH_4 conversions at 1,123 K were lower than those at 1,073 K even though the former temperature was higher. This is because the CH₄ selectivity from C_2H_6 and the C_2H_6 conversion vary depending on the temperature and the catalyst. In decomposition of pure C_2H_6 , the following results were reported [18]: 1) in the absence of the catalyst and in the presence of N330(P), the CH4 selectivity increased gradually with temperature from 1,073 to $1,173$ K (from 4-5 to 10% of the CH₄ selectivity), but 2) in the presence of N330 (F) and HI-900L, the CH₄ selectivity reached the highest value $(-15%)$ at 1,073 K and then decreased slightly with temperature. Therefore, the lower net $CH₄$ conversion at $1,123$ K than that at $1,073$ K is due to the higher CH₄ production at $1,123$ K be-

Fig. 5. H₂ yield in non-catalytic reaction and in the presence of catalysts at different temperatures (VHSV=18,000 cm³ CH₄/h· g_{CB} ; C₂H₆/CH₄ feed ratio=5/95 (solid symbols): non-catalytic (●), N330(P) (▼), N330(F) (▲), HI-900L (■); C₂H₆/ CH₄ feed ratio=15/85 (open symbols): non-catalytic (O) , N330(P) (∇), N330(F) (Δ), HI-900L (\square); C₂H₆/CH₄ feed ratio=0/100 over N330(F) (\bigstar) , adopted from [21] and corrected for the given VHSV).

cause the C_2H_6 conversion at 1,123 K (92-96%) is considerably higher than that at $1,073$ K (70-82%), while the CH₄ selectivity at $1,123$ K is almost equal to or higher than that at 1,073 K. As a consequence, if it is assumed that the CH₄ selectivity from C_2H_6 remains the same whether the feed is pure C_2H_6 or not (but actually it is expected that the CH₄ selectivity from C₂H₆ will change if the C₂H₆ partial pressure changes), a rough estimation predicts that the amount of CH₄ produced from C_2H_6 at 1,123 K is higher by 0.5-1 mole per 10 moles of C_2H_6 fed than that produced at 1,073 K, which could result in a decrease of the net CH_4 conversion by approximately 0.5-1%, although a slightly more $CH₄$ is decomposed at a higher temperature. The lower net CH₄ conversion at 1,173 K with the feed ratio C_2H_6 / $CH₄$ of 15/85 than that at 1,123 K can be explained in the same manner, especially by the higher C_2H_6 fed. The increase of the net CH_4 conversion with temperature from $1,073$ or $1,123$ K to $1,223$ K is due to the higher extent of $CH₄$ decomposition with increasing temperature.

The H₂ yields are shown in Fig. 5. Again the data with the feed ratio C_2H_4/CH_4 of 10/90 are not shown here for brevity because they were between those with the C_2H_6/CH_4 feed ratios of 5/95 and 15/ 85. As the feed ratio C_2H_6/CH_4 increased, the H_2 yield increased although the net CH₄ conversion decreased. This is because most of the H_2 is produced from C_2H_6 owing to high C_2H_6 conversion and low C_2H_4 selectivity, while the net CH_4 conversion is quite low or even negative. For example, if the relative contributions of C_2H_6 and CH₄ to the H₂ yield at the highest temperature of $1,223$ K in this study were estimated from the material balances of hydrogen and carbon by using the C_2H_6 conversion, net CH₄ conversion and C_2H_4 selectivity, the relative contributions of C_2H_6 were roughly 50% with the C₂H₆/CH₄ feed ratios of 5/95, 80% with the C₂H₆/CH₄ feed ratios of 10/90, and near 100% with the C_2H_6/CH_4 feed ratios of 15/85; at lower temperatures they were even higher [20]. The estimated relative contributions to the $H₂$ yields are listed in Tables 1-3. Due to the negative net $CH₄$ conversions or more production of CH₄ from C_2H_6 in several cases, negative contributions by CH₄ decomposition were estimated.

For the purpose of comparison, the $H₂$ yields obtained in decomposition of pure CH_4 over N330(F), which are adopted from [21] and corrected for the same VHSV, are also presented in Fig. 5. At and below 1,173 K, these yields were lower than those with the $C_2H_6/$ CH4 feed ratios of 5/95. As mentioned before, this was mainly due to the easy decomposition of C_2H_6 . However, at 1,223 K the H₂ yield

Table 1. Relative contributions to H_2 production by CH_4 and C_2H_6 decomposition $(C_2H_6/CH_4$ feed ratio=5/95)

Catalyst	Source	Relative contribution, %				
			1,073 K 1,123 K 1,173 K 1,223 K			
Non-catalytic $CH4$		9	11	31	52	
	C_2H_6	91	89	69	48	
N330(P)	CH ₄	9	14	35	56	
	C_2H_6	91	86	65	44	
N330(F)	CH ₄	46	14	52	53	
	C_2H_6	54	86	48	47	
HI-900L	CH ₄	3	19	37	53	
	C_2H_6	97	81	63	47	

Table 2. Relative contributions to H₂ production by CH₄ and C₂H₆

\mathbf{u} of \mathbf{u} and \mathbf{v} contributions to \mathbf{u} production by \mathbf{u} and \mathbf{v} , \mathbf{u} decomposition $(C_2H_6/CH_4$ feed ratio=10/90)								
Catalyst	Source	Relative contribution, %						
			1,073 K 1,123 K 1,173 K 1,223 K					
Non-catalytic $CH4$		0	-13	5	15			
	C_2H_6	100	113	95	85			
N330(P)	CH ₄	3	-9	8	20			
	C_2H_6	97	109	92	80			
N330(F)	CH ₄	20	-6	18	26			
	C_2H_6	80	106	82	74			
HI-900L	CH ₄	-1	-1	18	26			
	C_2H_6	101	101	82	74			

Table 3. Relative contributions to H, production by $\rm CH_{4}$ and $\rm C_{2}H_{6}$

in decomposition of pure $CH₄$ was quite high, higher than that with the C₂H₆/CH₄ feed ratios of 5/95 but lower than that with the C₂H₆/ $CH₄$ feed ratios of 15/85. The high H₂ yield in decomposition of pure CH_4 at 1,223 K can be explained as follows. CH_4 is more difficult to decompose than C_2H_6 , which means that the activation energy of CH4 decomposition is much higher. As the temperature increases, the CH₄ decomposition rate increases more rapidly and hence the $CH₄$ conversion can be that high at 1,223 K. Another aspect to consider is that the amount of C_2H_6 is limited and almost all the C_2H_6 is decomposed above 1,123 K as shown in Fig. 1. Thus, the contribution of $CH₄$ to the $H₂$ yield becomes greater with further increase of the temperature as seen in Tables 1-3.

N330(F) was observed to be more effective for CH₄ decomposition than HI-900L on the whole (Figs. 3 and 4) while the latter is more effective for C_2H_4 decomposition (Fig. 2). Therefore, the H_2 yields obtained over N330(F) and HI-900L were similar to each other, but these were higher than those over N330(P) and even higher than those for the non-catalytic decomposition.

3. Effect of Added C₂H₆ on the H₂ Production Rate from CH₄

Muradov et al. $[11]$ reported in decomposition of $CH₄$ over carbon catalysts that after a pulse of C_2H_4 was injected into the reactor a sharp increase in CH4 decomposition rate was observed, followed by its gradual decrease over a period of half an hour. This increase was attributed to highly active small carbon crystallites deposited from C_2H_4 . From this observation, an increase in the CH₄ decomposition rate may be expected if C_2H_4 is present. However, contrary to the expectation, when the H_2 production rate from CH_4 in

this study was compared with that in decomposition of pure CH₄, the former was estimated to be considerably lower than the latter. For example, at 1,223 K in the presence of N330(F), the overall H_2 production rate with the C_2H_6/CH_4 feed ratio of 5/95 was 3.8 mmole/ min $·g_{CB}$, but approximately a half of this was contributed from CH₄ as mentioned before, and thus the H_2 production rate only from CH_4 was estimated to be 1.9 mmole/min· g_{CB} , while the H₂ production rate in decomposition of pure $CH₄$ was reported to be 4.0 mmole/ $\min_{\mathcal{B}_{CR}}$ [10].

The lower H_2 production rate from CH₄ with added C_2H_6 can be explained as follows. One reason is the difference in the experimental method between this study and the previous study [11]: in this study C_2H_6 was continuously introduced into the reactor and C_2H_4 was accordingly continuously produced, while in the previous study C_2H_4 was injected in a pulse only for a short time. Initially, very small carbon crystallites may be formed from C_2H_4 , but in this study due to the continuous deposition of carbon from continuously and rapidly decomposing C_2H_4 , the carbon crystallites will rapidly grow and hence the high activity of the deposited carbon for the $CH₄$ decomposition will be obscured in a short period. Another reason is the competition for the active sites between CH_4 and C_2H_4 . Decomposition of both CH_4 and C_2H_4 requires active sites on carbon, but adsorption of C_2H_4 is much easier than CH_4 . Therefore, adsorption of CH₄ is inhibited by more reactive C_2H_4 which occupies a greater part of the active sites and results in a lower rate of $CH₄$ decomposition. This argument can also explain the lower contribution of $CH₄$ to the overall H_2 yield with the higher C_2H_6/CH_4 feed ratio [20]. Nonetheless, it is again notable that the added C_2H_6 increases the overall $H₂$ production rate.

CONCLUSIONS

 C_2H_6 contained in low concentrations in CH_4 was first converted to C_2H_4 and H_2 predominantly by non-catalytic reaction. The conversions of C_2H_6 were very high at 1,073-1,223 K (around 70% to 99%) and were nearly the same regardless of the presence of the CB catalysts and the C_2H_6/CH_4 feed ratio. C_2H_4 was subsequently decomposed to solid carbon and $H₂$, and this decomposition was much more effectively facilitated by the CB catalysts than by the non-catalytic decomposition. Because some CH₄ was produced from C_2H_6 , the net CH₄ conversions decreased as the C_2H_6 /CH₄ feed ratio increased, and moreover, the net $CH₄$ conversion became negative depending on the C_2H_6/CH_4 feed ratio and temperature. With the C_2H_0/CH_4 feed ratios of 10/90 and 15/85, the net CH₄ conversions at intermediate temperatures of 1,123 and/or 1,173 K were lower than those at 1,073 K due to the higher CH₄ production from C_2H_6 . Nevertheless, the net CH_4 conversions in the presence of the CB catalysts were higher than those in the non-catalytic reaction. The rate of H₂ production from CH₄ was decreased by the added C₂H₆. A reason for this is the competition for the active sites on CB between CH_4 and C_2H_4 , that is, adsorption of CH_4 on the active sites is inhibited by more reactive C_2H_4 , resulting in a lower rate of CH_4 decomposition. However, in spite of a decrease of the net $CH₄$ conversion, the H₂ yield increased with an increase of the $C_2H_6\text{CH}_4$

feed ratio. This is because the contribution of C_2H_6 dehydrogenation and subsequent C_2H_4 decomposition to the H_2 production is dominant over CH_4 decomposition. The highest H_2 yield was obtained in the presence of N330(F) and HI-900L with the C_2H_6/CH_4 feed ratio of 15/85.

ACKNOWLEDGEMENTS

This work was financially supported by the "National R&D Organization for Hydrogen and Fuel Cells," component of the New and Renewable Energy Program of the Korea Energy Management Corporation under the Ministry of Knowledge Economy of Korea (2004- N-HY12-P-03-0000). The authors would also like to thank OCI for supplying carbon black samples.

REFERENCES

- 1. N. Z. Muradov, Int. J. Hydrog. Energy, 18(3), 211 (1993).
- 2. L. Fulcheri and Y. Schwob, Int. J. Hydrog. Energy, 20(3), 197 (1995).
- 3. B. Gaudernack and S. Lynum, Int. J. Hydrog. Energy, 23(12), 1087 (1998).
- 4. M. Steinberg, Int. J. Hydrog. Energy, 24, 771 (1999).
- 5. N. Muradov, Int. J. Hydrog. Energy, 26, 1165 (2001).
- 6. T. Koerts, M. J. A. G. Deelen and R. A. van Santen, J. Catal., 138, 101 (1992).
- 7. M. G. Poirier and C. Sapundzhiev, Int. J. Hydrog. Energy, 22(4), 429 (1997).
- 8. A. Steinfeld, V. Kirillov, G. Kuvshinov, Y. Mogilnykh and A. Reller, Chem. Eng. Sci., 52(20), 3599 (1997).
- 9. R. Aiello, J. E. Fiscus, H.-C. zur Loye and M. D. Amiridis, Appl. Catal. A, 192, 227 (2000).
- 10. E. K. Lee, S. Y. Lee, G. Y. Han, B. K. Lee, T. J. Lee, J. H. Jun and K. J. Yoon, Carbon, 42, 2641 (2004).
- 11. N. Muradov, F. Smith and A. T-Raissi, Catal. Today, 102, 225 (2005).
- 12. I. Suelves, M. J. Lázaro, R. Moliner, J. L. Pinilla and H. Cubero, Int. J. Hydrog. Energy, 32, 3320 (2007).
- 13. B. H. Ryu, S. Y. Lee, D. H. Lee, G. H. Han, T. J. Lee and K. J. Yoon, Catal. Today, 123, 303 (2007).
- 14. J. L. Pinilla, I. Suelves, M. J. Lázaro and R. Moliner, Chem. Eng. J., 138, 301 (2008).
- 15. M. J. Lázaro, J. L. Pinilla, I. Suelves and R. Moliner, Int. J. Hydrog. Energy, 33, 4104 (2008).
- 16. S. Y. Lee, B. H. Ryu, G. Y. Han, T. J. Lee and K. J. Yoon, Carbon, 46, 1978 (2008).
- 17. J. L. Pinilla, I. Suelves, M. J. Lázaro and R. Moliner, J. Power Sources, 192, 100 (2009).
- 18. S. Y. Lee, M. S. Kim, J. H. Kwak, G. Y. Han, J. H. Park, T. J. Lee and K. J. Yoon, Carbon, 48(7), 2030 (2010).
- 19. S. H. Yoon, N. K. Park, T. J. Lee, K. J. Yoon and G. Y. Han, Catal. Today, 146, 202 (2009).
- 20. M. S. Kim, MS Thesis, Sungkyunkwan University (2008).
- 21. E. K. Lee, MS Thesis, Sungkyunkwan University (2003).