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Abstract−A theoretical analysis of buoyancy-driven instability under transient basic fields is conducted in an initially
quiescent, fluid-saturated, horizontal, isotropic porous layer. Darcy’s law is employed to explain characteristics of fluid
motion, and Boussinesq approximation is used to consider the density variation. Under the principle of exchange of
stabilities, a stability analysis is conducted based on the linear stability analysis and energy method and their modi-
fications. The critical condition of onset of buoyancy-driven convection is obtained as a function of the Darcy-Rayleigh
number. The propagation theory and the modified energy method under the self-similar coordinate suggest reasonable
stability criteria and support each other. The former one based on the linear stability theory predicts more stable results
than the latter based on the energy method. The growth period for disturbances to grow seems to be required until the
instabilities are detected experimentally.
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INTRODUCTION

Buoyancy-driven convection may occur in a fluid-saturated porous
medium due to temperature or solute concentration gradient. Heat-
ing from below or increasing the solute concentration from above
creates an unstable density profile. It is well known that the buoy-
ancy-driven phenomena in porous media have a wide variety of
engineering applications, such as geothermal reservoirs, agricultural
product storage system, packed-bed catalytic reactors, the pollutant
transport in underground and the heat removal of nuclear power
plants. The current interest in the phenomena of natural convection
in porous media is the enhanced carbon dioxide dissolution into
the saline water confined within the geologically stable formations
[1-3].

The analysis of convective instabilities in porous media begins
with Horton-Rogers-Lapwood convection [4,5]. They examined
thermally-driven convection and used the methods developed for
convection in a homogeneous fluid. It was assumed that there was
a linear increase in temperature with depth, appropriate for gradual
heating or for a steady state, e.g., the naturally occurring geother-
mal gradients in the subsurface. However, in many experimental
situations and field studies there is a relatively rapid change in tem-
perature or solute concentration at one boundary. The basic profile
of temperature or concentration before the onset of convection is
then time-dependent. Dealing with startup, transient phenomena
may eventually lead to a better understanding of the history-depen-
dence of flows in this and other systems, something that a static
analysis will not do. The related instability analysis has been con-
ducted by using the frozen-time model [6], propagation theory [7],
maximum-Rayleigh-number criterion [8] and amplification theory
[9]. All of these methods have a parallel history of application in
the Rayleigh-B?nard convection. The first two models are based

on linear theory and yield the critical time as the parameter based
on the quasi-static approximation. In the maximum-Rayleigh-num-
ber criterion the temperature profile is assumed to be linear within
Z=Zmax(t), and the onset time defined when newly defined tran-
sient-Rayleigh number reaches the conventional steady-state Darcy-
Rayleigh number. Zmax(t) is the vertical distance at which the tran-
sient-Rayleigh number has its maximum value. The last method is
the initial value model; it requires the initial conditions at the time
t=0 and the criterion to define manifest convection. Also, the stabil-
ity of time-dependent base states has been investigated by energy
method [6]. Recently, Ennis-King et al. [1], Xu et al. [2] and Riaz
et al. [3] reexamined this problem with the connection to the en-
hanced carbon dioxide dissolution into the saline water confined
within the geologically stable formations. Ennis-King et al. [1] cor-
rected Catagirone’s [6] energy method results and extended Cata-
girone’s analysis into the anisotropic porous media. Energy meth-
ods give a lower bound for the onset of the instability, but give no
information about the growth rate and wavenumber of the most dan-
gerous disturbance. Riaz et al. [3] analyzed the onset of convection in
porous media under the time-dependent concentration field in self-
similar coordinate. They employed the dominant mode analysis with-
out the quasi-steady state approximation and showed that the quasi-
steady state approximation in self-similar coordinate, which is quite
similar to the propagation theory, provides quite accurate results.

In the present study the onset of buoyancy-driven convection in
isotropic porous media is investigated by conventional frozen-time
model, the propagation theory we developed [5,10-12] and the mod-
ified energy method which is firstly introduced in the present study.
Our predictions will be also compared with the existing theoretical
results [1-3,6,8].

THEORETICAL ANALYSIS

1. Governing Equations
The system considered here is an initially quiescent, fluid-satu-
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rated, horizontal porous layer of depth d, as shown in Fig. 1. The
solid substrate has a constant porosity ε and permeability K. And
the interstitial fluid is characterized by thermal expansion coefficient
β, density ρ, heat capacity (ρc)f and kinematic viscosity ν. The por-
ous medium is regarded as a homogeneous and isotropic fluid with
heat capacity (ρc)*=ε(ρc)f+(1−ε)(ρc)s and thermal conductivity
k*=εkf+(1−ε)ks; here the subscripts f and s represent the fluid and
solid phase, respectively. Before heating, the fluid layer is main-
tained at uniform temperature Ti for time t<0. For time t≥0 the lower
boundary is heated with constant temperature Tw. For this system
the governing equations of flow and temperature fields are expressed
employing the Boussinesq approximation and Darcy’s model [1]:

(1)

(2)

(3)

ρ=ρi[1−β(T−Ti)] (4)

where U is the velocity vector, T the temperature, P the pressure, µ
the viscosity, α(=k*/(ρc)*) the effective thermal diffusivity and g
the gravitational acceleration. The important parameter to describe
the present system is the Darcy-Rayleigh number RaD defined by

(5)

where ∆T=(Tw−Ti).
For a system of large RaD, the stability problem becomes tran-

sient and very difficult, and the critical time tc to mark the onset of
buoyancy-driven motion remains unsolved. For this transient sta-
bility analysis we define a set of nondimensionalized variables τ, z,
θ0 by using the scale of time d2/α, length d and temperature ∆T. Then
the basic conduction state is represented in dimensionless form by

(6)

with the following initial and boundary conditions,

θ0=0 at t=0 (7a)
θ0=1 at z=0 and θ0=0 at z=1 (7b)

The above equations can be solved by using conventional separa-
tion of variables technique or Laplace transform method as follows:

(8a)

(8b)

where ζ=z/ . Eq. (8b) converges more rapidly than Eq. (8a) for
a small time region. The evolution of the basic profiles of tempera-
ture with time is described in Fig. 2. For the deep-pool region of
τ ≤0.01, the base temperature profiles reduced:

(9)

The above Leveque-type soutions of Eq. (9) is in good agreement
with the exact solutions of Eq. (8) in the region of τ<0.1. For τ ≤
0.01 Eq. (8b) with n=0 yields almost the same temperature profile
as Eq. (9).
2. Propagation Theory

Under the linear stability theory the disturbances caused by the
onset of thermal convection can be formulated, in dimensionless form,
in terms of the temperature component θ1 and the vertical velocity
component by decomposing Eqs. (1)-(4):

(10)

(11)

where ∇2=(∂2/∂x2)+(∂2/∂y2)+(∂2/∂z2) and ∇2
1=(∂2/∂x2)+(∂2/∂y2). The

velocity component has the scale of α/d and the concentration com-
ponent has the scale of αν/(gβd3). The proper boundary conditions
are given by

w1=θ1=0 at z=0 and z=1 (12)

The boundary conditions represent no flow through the boundaries
and the fixed temperature on the upper boundary and the mass flux
condition of the lower boundary.

According to the normal mode analysis, convective motion is
assumed to exhibit the horizontal periodicity [13]. Then the per-
turbed quantities can be expressed as follows:

[w1(τ, x, y, z), θ1(τ, x, y, z)]=[w1(τ, z), θ1(τ, z)]exp[i(axx+ayy) (13)

where “i” is the imaginary number. Substituting the above Eq. (13)
into Eqs. (10)-(11) produces the usual amplitude functions in terms

∇ U = 0⋅

µ
K
----U = − ∇P + ρg

∂
∂t
---- + 

ρc( )f

ρc( )*
------------U ∇⋅⎝ ⎠

⎛ ⎞T  = α∇2T

RaD = 
gβK∆Td

αν
--------------------- ρc( )f

ρc( )*
------------,

∂θ0

∂τ
------- = 

∂2θ0

∂z2
---------

θ0 =1− z − 2 nπz( )sin
nπ

-------------------- − n2π2τ( ),exp
n=0

∞

∑

θ0 = erfc n
τ

------ + 
ζ
2
---⎝ ⎠

⎛ ⎞  − erfc n +1
τ

---------- − 
ζ
2
---⎝ ⎠

⎛ ⎞
⎩ ⎭
⎨ ⎬
⎧ ⎫

,
n=0

∞

∑

τ

θ0 = erfc ζ
2
---⎝ ⎠
⎛ ⎞,

∇2w1= − ∇1
2θ,

∂θ1

∂τ
------- + RaDw1

∂θ0

∂z
------- = ∇2θ1,

Fig. 1. Schematic diagram of system considered here.

Fig. 2. Base temperature fields.
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of the horizontal wave number a=(ax
2+ay

2)1/2.

(14)

(15)

The propagation theory employed for finding the critical time τc

is based on the assumption that disturbances at the onset of con-
vection are propagated mainly within the penetration depth ∆ and
this is a proper length scaling factor. So, it is assumed that at the
onset of convective motion the following scale analysis in terms of
the thermal penetration depth ∆(∝t1/2) is valid for perturbed quanti-
ties of Eqs. (2) and (3), respectively.

(16a)

(16b)

Now, based on the above relations the following amplitude rela-
tion can be obtained:

w1~θ1 (17a)
RaD

*w1~θ1 (17b)

where RaD
* is the Rayleigh number based on the penetration depth

∆ and temperature difference ∆T. With increasing RaD both the di-
mensionless onset time and the corresponding ∆ become smaller
and the characteristic value of RaD

*(=RaD(∆/d)) will become a con-
stant. Therefore, taking the dimensional reasoning into account, we
can obtain the following relation:

(18a)

RaD
*=RaDδ~constant (18b)

where δ(∝ ) is the dimensionless penetration depth. Eq. (18b)
means that the Darcy-Rayleigh number based on penetration depth
becomes a constant. Similar scaling-analysis can be found in vari-
ous systems, such as solidification system [14,15], Marangoni-Bénard
convection [16,17] and Taylor-vortex system [18,19]. There are many
possible forms of dimensionless amplitude functions of disturbances
like

(19)

which satisfy the relation of Eq. (18). Propagation theory is based
on the scaling relations of Eq. (18). To determine n in Eq. (19), the
momentary instability condition which was suggested by Shen [20]
is employed. According to his conception the temporal growth rate
of the kinetic energy of the perturbation velocity should exceed that
of the basic velocity at the onset condition of secondary motion.

Buoyancy-driven convection sets in due to the buoyancy force,
and therefore, the temporal growth rate of the perturbation energy
(r1) and the base energy (r0) are defined as the root-mean-squared
quantities of concentration components:

 and (20a&b)

Where E is the thermal energy integrated over the system volume

Ω, E=  r0 and r1 have the meaning of the growth rates in
the global (τ, z) coordinate. According to the momentary instability
condition, the onset condition is determined at the time r0=r1. For
the deep-pool region, the temporal growth rate of the base temperature
(r0) can be obtained by using the base temperareure of Eq. (8) as

 for t→0. (21)

For the case of n=0, which is already used in the dominant mode
analysis of Riaz et al. [3], the relation of Eq. (19) with n=0 bounds
the momentary instability conception for τ→0, which will be dis-
cussed later. It is interesting that the dominant mode solution of Riaz
et al.’s [3], i.e. θ*=A1(τ)ζexp(−ζ2/4) satisfied the condition r0=r1 of
at the marginal codition of (1/A1)(∂A1/∂τ)=0, here A1(τ) is the time-
dependent amplitude function.

It is well-known that a fundamental difficulty of this kind of prob-
lem is that the eigenfunctions of w1 and θ1 are localized in the bound-
ary layer, while the eigenfunctions of the operator ∂2/∂z2 are global
modes [21]. Hence, they do not provide an appropriate basis for
streamwise disturbances. For the boundary-layer systems of small
critical time, we set *(τ, z)=w*(τ, ζ) and *(τ, z)=θ*(τ, ζ). Here

* and * are disturbances in global domain of (τ, z), while w* and
θ* are those in boundary layer domain of (τ, ζ). Furthermore, it is
assumed that ∂ */∂τ=−(ζ/(2τ))(∂ */∂ζ). This assumption means
that ∂ */∂τ=0 at the marginal stability conditions. Riaz et al. called
this a quasi-steady steate approximation (QSSA) [3]. This means
that the propagation theory is a frozen-time model in self-similar
(τ, ζ) domain rather than global (τ, z) domain and satisfys the mar-
ginal stability condition of ∂ */∂τ=0. And, in the propagation the-
ory, the amplitude function of disturbances is assumed to be a func-
tion of ζ only. With the above reasoning the dimensionless ampli-
tude functions of disturbances are given the following forms:

[w1(τ, z), θ1(τ, z)]=[w*(ζ), θ*(ζ)] (22)

By using these relations the stability equation is obtained from
Eqs. (10) and (11) as

(D2−a*2)w*=a*2θ* (23)

(24)

with the following boundary conditions:

w*=θ*=0 at ζ=0 and ζ=∞ (25)

where, a*=a , RaD
*=RaD  and D=d/dζ. It is assumed that a*

and RaD
* are the eigenvalues, and also the onset time of buoyancy-

driven convection for a given RaD is unique under the principle of
exchange of stabilities. This trend was predicted by Riaz et al. [3],
Caltagirone [6], Tan et al. [8] and Elder [22,25] theoretically. The
above procedure is the essence of our propagation theory.

In their dominant mode analysis, Riaz et al. [3] obtained the tem-
poral growth rate by solving the following equation analytically:

(26)

with Eq. (23) and the boundary condition of Eq. (25). And they de-
termined the onset condition where ∂θ*/∂τ=0. At this stability con-

∂2

∂z2
------- − a2

⎝ ⎠
⎛ ⎞w1= a2θ1

∂θ1

∂τ
------- = 

∂2

∂z2
------- − a2

⎝ ⎠
⎛ ⎞θ1− RaDw1

∂θ0

∂z
-------

ρrgβT1~
µ
K
----W1, W1~

gβK
ν

----------T1

∂T1

∂t
--------~W1

∂T0

∂Z
--------~αe

∂2T
∂Z2
--------~αe

T1

∆2
-----

w1

θ1
------ ~1

τ

w1
* τ z,( ) θ1

* τ z,( ),[ ] = τnw* τ z,( ) τnθ * τ z,( ),[ ],

r0 = 
1
E0
-----dE0

dτ
-------- r1= 

1
E1
-----dE1

dτ
--------,

θ 2dΩ.
Ω
∫

r0 = 
1
2τ
-----

w θ
w θ

θ θ
θ

θ

D2
 + 

1
2
---ζD − a*2

⎝ ⎠
⎛ ⎞θ*

 = RaD
* w*Dθ0

τ τ

∂θ*

∂τ
------- = D2

 + 
1
2
---ζD⎝ ⎠

⎛ ⎞θ*
 − RaD

* w*Dθ0
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dition of ∂θ*/∂τ=0, Eq. (26) is a long-wave approximation of Eq.
(24), which means the stability result of the dominant mode analy-
sis is an approximation of that of propagation theory for the limiting
case of a*→0.

The conventional frozen-time model neglects the terms involving
∂(·)/∂τ in Eq. (15) in (τ, z) coordinate rather than (τ, ζ) coordinate.
This results in (D2−a*2)w*=a*2θ* and (D2−a*2)θ*=RaD

*w*Dθ0 instead
of Eqs. (23) and (24).
3. Modified Energy Method

Consider the following temperature, velocity and pressure per-
turbations: RT1=T−T0, U1=U−U0 and P1=P−P0 with R= . Let’s
introduce these perturbations into Eqs. (1)-(4). Then we can obtain
the following dimensionless equations:

∇·u1=0 (27)

u1+∇p1−Rθ1k=0 (28)

(29)

under the following boundary conditions:

u1=θ1=0 at z=0 and z=1 (30)

Here, the perturbations need not necessarily to be infinitesimal, and
therefore Eq. (29) is different from Eq. (15) where the disturbances
are assumed to be infinitesimal. In (τ, ζ) domain Eq. (29) can be
expressed as

(31)

by using the relation of ∂θ1/∂τ=∂θ '1/∂τ −1/2(ζ/τ)(∂θ '1/∂ζ) which
was used in the propagation theory. Now, multiply Eq. (28) by θ '1
and Eq. (31) by u1 and integrate over the volume Ω, then Eqs. (28)
and (31) become

(32)

(33)

Using the divergence theorem, the following energy identities can
be obtained

(34)

(35)

where the primes are dropped.
In the present system the dimensionless natural energy can be

defined as a linear combination of Eqs. (34) and (35) with coupling
constant λ>0:

(36)

and the following energy identity can be derived:

(37)

By setting  the above energy identity can be expressed as

(38)

The above relation can be represented as

(39)

where

(40)

(41)

where the hats are dropped.
The stability with respect to most dangerous disturbances is guar-

anteed under the condition of dE/dτ ≤0 for all τ. The disturbance
energy E(τ) decreases and the fluid layer is stable when R<Rλ where

(42)

under the condition of

(43)

This maximum problem can be solved by the variational technique
[23]. Eqs. (42) and (43) satisfy the condition of r0=r1 based on Eqs.
(20) and (21), since (¹( ))/∂τ=1/2τ ( ). In the usual man-
ner, the following Euler-Lagrange equations can be obtained:

∇·u1=0 (27)

(44)

(45)

The fluid layer is strongly stable if R= < , where

(46)

A detailed discussion on strong stability has been given in Homsy
[24] and Caltagirone [9].

Taking the double curl on Eq. (44) and taking into account Eq.
(27), the following equations can be obtained.

(47)

(48)

with the following boundary conditions

w1=θ1=0 at z=0 and 1 (49)

Under the normal mode analysis, the critical value RaD(τs) under
which the disturbance energy decrease exponentially is given by

(50)

RaD

∂θ1

∂τ
------- = ∇2θ1− Rw1

∂θ0

∂z
-------  − u1 ∇θ1⋅

∂θ '1
∂τ
-------- = ∇2θ '1− Rw1

∂θ0

∂z
------- − u1 ∇θ '1⋅  + 

1
2
---ζ
τ
--∂θ

'1
∂ζ
--------

u1 u1dΩ + u1 ∇p1dΩ − R θ'1w1dΩ = 0
Ω
∫⋅

Ω
∫⋅

Ω
∫

1
2
---∂θ

'12

∂τ
---------dΩ = θ'1∇2θ'1dΩ − R w1θ'1

∂θ0

∂z
-------dΩ  + 

1
2
---ζ
τ
--∂θ

'1
∂ζ
--------dΩ

Ω
∫

Ω
∫

Ω
∫

Ω
∫

0 = R θ1w1〈 〉  − u1
2〈 〉

1
2
---∂ θ1

2〈 〉
∂τ

--------------- = − ∇θ1
2〈 〉  − R 1

τ
------ w∂θ0

∂ζ
-------θ1  + 

1
4τ
----- θ1

2〈 〉

E τ( ) = 
1
2
--- u1〈 〉2

 + 
1
2
---λ θ1〈 〉2

1
2
---∂ λ θ1

2〈 〉( )
∂τ

----------------------- = − λ ∇θ1
2〈 〉  - R λ

τ
------ w∂θ0

∂ζ
-------θ1

+ 
λ
4τ
----- θ̂1〈 〉  + R wθ1〈 〉  − u1

2〈 〉

θ1=  θ̂1/λ1/2,

1
2
---∂ θ̂ 2〈 〉( )

∂τ
------------------ = − ∇θ̂ 2

 + u1
2

 − 
1
4τ
-----θ̂ 2

 + R w θ̂
λ

------- − 
1
τ

------w∂θ0

∂ζ
------- λθ̂

dE
dτ
------  = RI − B = − B 1− 

I
B
----R⎝ ⎠

⎛ ⎞

I = w θ
λ

------- − 
1
τ

------w∂θ0

∂ζ
------- λθ

B = ∇θ 2
 + u1

2
 − 

1
4τ
-----θ 2

1
Rλ
----- = 

w1θ1〈 〉
λ1/2

--------------- − λ1/2 w1θ1
∂θ0

∂z
-------⎝ ⎠

⎛ ⎞
H

limmax

B = ∇θ 2
 + u1

2
 − 

1
4τ
-----θ 2

 =1.

θ1
2〈 〉 θ1

2〈 〉

1
2
---Rλ

1
λ1/2
------- − 

λ1/2

τ
-------∂θ0

∂ζ
-------⎝ ⎠

⎛ ⎞θ1k − u1− ∇p1= 0

0 = ∇2θ1− 1
4τ
-----θ1+ 

1
2
---R 1

λ1/2
------- − 

λ1/2

τ
-------∂θ0

∂ζ
-------⎝ ⎠

⎛ ⎞w1

RaD R̃

R̃ = Rλ
λ

limmax

∇2w1= 
1
2
---Rλ

1
λ1/2
------- − 

λ1/2

τ
-------∂θ0

∂ζ
-------⎝ ⎠

⎛ ⎞∇1
2θ1

∇2θ1= 
1
4τ
-----θ1− 

1
2
---R 1

λ1/2
------- − 

λ1/2

τ
-------∂θ0

∂ζ
-------⎝ ⎠

⎛ ⎞w1

RaD
1/2
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a

lim
λ

limmax min
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For any given τ, a and γ, the function Rγ may be determined by the
solution method of a eigenvalue problem. By setting =((1/λ1/2)−
(λ1/2/ )(∂θ0/∂ζ)θ1, Eqs. (47) and (48) will be transformed as 

(D2−a*2)w1=−a*2θ1 (51)

(52)

where D=d/dζ and a*=a , and the tildes are dropped. By setting
R*2=R2 , λ*=λ/ , w*=w1 and θ*=1/ ((1/ )− Dθ0)−1θ1,
the following stability equations can be derived:

(53)

(54)

The strong stability condition is to find

(55)

to satisfy Eqs. (53) and (54) under the following boundary conditions:

w*=θ*=0 at ζ=0 and 1/ (56)

The conventional energy method1,2 neglects −1/2(ζ/τ)(∂θ'1/∂ζ) term
in Eq. (31) in (τ, z) coordinate rather than (τ, ζ) coordinate. This
results in (D2−a*2)w*=−(1/2) ((1/ )− Dθ0)a*2θ* and (D2−
a*2)θ*=−(1/2) ((1/ )− Dθ0)w*.

RESULTS AND DISCUSSION

From propagation theory, the following marginal conditions may
be obtained:

 and  for τ→0 (57)

based on the marginal stability curve of Fig. 3. The solution proce-
dure is summarized in the Appendix. This criterion is quite close to
the results from the dominant mode analysis of Riaz et al. [3]. At
the critical conditions illustrated above, the amplitude functions of
w* and θ* are featured in Fig. 4, wherein the quantities have been

normalized by the corresponding maximum magnitude θ*
max. It is

seen that incipient temperature disturbances are confined mainly
within the dimensionless concentration penetration depth, but veloc-
ity disturbances are driven more upward over the thermal penetra-
tion depth. Based on the distribution of temperature disturbance,
the relation of r0=r1 can be obtained with the aid of Eq. (21) at τ=
τc. As shown in Figs. 3 and 4, the propagation theory under QSSA
in (τ, ζ)-coordinate represents the dominant mode analysis without
QSSA in (τ, ζ)-coordinate.

Now, the domain of time is extended to τc>0.01 by keeping Eqs.
(23) and (24) and using Eq. (8b). In the condition of Eq. (25) the
upper boundary ζ→∞ is replaced with z=1, i.e., ζ=1/  and in
Eqs. (23) and (24) RaD

* and a* are replaced with RaD  and a .
Also, in Eq. (8b) τ is replaced with τc but ζ is maintained. Since τc

is the fixed parameter, the resulting stability equations are a func-
tion of ζ only and the physics of Eq. (22) is still alive. For a given
τc the minimum RaD-value and its corresponding wavenumber ac

are obtained. The solution procedure is almost the same as that in
the previous section. The results are summarized in Fig. 5, wherein
those obtained from the conventional frozen-time model are also

θ̃1

τ

D2
 − a*2( )θ1= 

1
4
---θ1− 

1
2
---R2 τ τ1/2

λ
------- − 

λ
τ1/2
-------Dθ0⎝ ⎠

⎛ ⎞
2

w1

τ
τ τ R* λ* λ*

D2
 − a*2( )w*

 = − 
1
2
--- R* 1

λ*
----- − λ*Dθ0⎝ ⎠

⎛ ⎞a*2θ*

D2
 − a*2( )θ*

 = 
1
4
---θ*

 − 
1
2
--- R* 1

λ*
----- − λ*Dθ0⎝ ⎠

⎛ ⎞w*

RaD
*

 = R*

a*
lim

λ*
limmaxmin

τ

R* λ* λ*

R* λ* λ*

RaDτc P,
1/2

 =12.94 ac τc P,  = 0.90

τc

τc τc

Fig. 3. Marginal stability curves based on the propagation theory.

Fig. 4. Distribution of disturbances quantities based on the propa-
gation theory and the dominant mode analysis.

Fig. 5. The critical times for a given based on the various methods.
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shown. For τc<0.01 the former ones are the same as those of the
deep-pool system (Eq. (57)). For large τc they approach the frozen-
time model since the basic concentration profile becomes linear. It
is known that the terms involving ∂(·)/∂τ in Eq. (15) stabilize the
system. It is interesting that propagation theory yields smoothly the
stability criteria over the whole domain of time, and the results based
on QSSA represent those of dominant mode analysis without QSSA.

Based on the modified energy method in (τ, ζ)-coordinate, a new
strong stability condition is obtained as,

 for τ→0. (58)

It is interesting that based on Eqs. (57) and (58), for the limiting
case of τ→0, τc, P=2.00τc, M can be obtained, as shown in Fig. 5 and
Table 1. And, the same relation might be applied between the fro-
zen-time model and the conventional energy method. This means
that it takes more time for the infinitesimal disturbances to grow in
the propagation theory/frozen-time model than for the finite distur-
bance in the modified energy method/energy method. Usually, the
linear stability theory predicts higher stability limits than the energy
method. To check and confirm our solution method, the strong sta-
bility results of the energy method are compared with those of Ennis-
King et al. [1]. As shown in Fig. 6, our results are quite similar to
theirs. Furthermore, our results show the subcritical region which
can be shown in Ennis-King et al. [1]. It is interesting that there exists
a subcritical region, where the critical values of RaD are lower than

RaDτc M,
1/2

 = 9.16

Table 1. Comparison of the critical conditions in the form of τc=
ARaD−2 for the limiting case of τ→0

Method A
Propagation theory 167.44
Frozen-time model 55.65
Modified energy method 83.72
Energy method 27.83 (~30*)
Amplification theory [1,2] ~75
Elder [22] 400
Tan et al. [8] 2262

*Value suggested by Ennis-King et al. [1]

Fig. 6. Comparison with Ennis-King et al.’s [1] result based on the
energy method. The inset clearly shows a subcritical region.

Fig. 7. Comparison of the critical times based on the various pre-
dictions.

the well-known value of 4π 2, which does not exist in the present
propagation theory, modified energy method and the frozen-time
model. The minimum value of the critical RaD is 38.46 at τ=0.09.

For the present system, Elder [22] suggested the following sim-
ple and crude prediction:

RaDδ*=4π 2, (59)

where δ* is the thickness of the heated layer of order 2 . This
re- lation predicts τc=400RaD

−2. Recently, Tan et al. [8] suggested a
sim- ple instability analysis assuming that at the onset of convec-
tion the following relation is maintained, based on the original
Horton-Rogers-Lapwood convection:

Maximum of (60)

which is satisfied by ∂T0/∂Z=0.83∆T/  at Zmax=2  from Eq.
(9). This concept is quite similar to Elder’s suggestion of Eq. (59)
and Zmax corresponds to δ* in Eq. (59). Tan et al.’s suggestion of
Eq. (60) results in τc=2262RaD

−2. Eq. (60) seems to correspond to
the upper bound of critical Rayleigh number, wherein the concen-
tration profile assumed to be linear within Z=Zmax. But it is interest-
ing that common physics is involved in the above results: RaD

*~
constant, which is adopted in the present propagation theory.

The stability boundaries are summarized in Fig. 7. And the sta-
bility limit based on the propagation theory is higher than those sug-
gested by using the energy method and linear amplification theory
(given by Fig. 2 of Ennis-King et al. [1]) and quite lower than that
of Tan et al. [6]. However, for the region of large τ, the propagation
theory approaches the results obtained by using the frozen-time mod-
el, the energy method and the linear amplification theory. The propa-
gation theory represents the dominant mode for short time region
and the frozen-time model for long time region quite well. It is in-
teresting that the modified energy method shows quite similar re-
sults with those of the amplification theory.

To validate the theoretical analysis, the predictions of tc should
be compared with experimental observations. Unfortunately, Elder
[25] only states the Darcy-Rayleigh number of his experiments and
does not give all the data necessary to calculate tc. He only reported

τ

gβKZ2

εναs
---------------- ∂T0

∂Z
--------⎝ ⎠
⎛ ⎞

⎩ ⎭
⎨ ⎬
⎧ ⎫

 = 4π2,

αt αt
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the relation of a*~constant. Foster [26] commented that with cor-
rect dimensional relations the relation of to≅4tc would be kept for
the case of horizontal fluid layers heated isothermally from below.
This means that a growth period for disturbances to grow is required
until they are detected experimentally. Therefore, it seems evident
that the predicted onset time tc is smaller than the detection time to.
This means that a fastest growing mode of instabilities, which set
in at t=tc, will grow with time until manifest motion is first detected
experimentally. As commented by Riaz et al. [3], since, for the bound-
ary-layer systems of small τ, (τ, ζ)-domain is more appropriate than
(τ, z)-domain, the critical time τc might be set to τc, P based on the
propagation theory. The validity to≅4tc, P of requires further study,
but this relation is kept in the various transient diffusive systems
[10,12,16-19]. It seems evident that convective motion is very weak
during tc≤t≤to since the related transport is well represented by the
diffusion state.

CONCLUSIONS

The critical condition to mark the onset of convective motion in
an initially quiescent, horizontal isotropic porous layer has been ana-
lyzed by using the dominant mode analysis, the propagation the-
ory, the frozen-time model and also the energy method and its mod-
ification. The resulting stability criteria compare reasonably well
with previous theoretical predictions. The present result shows that
the propagation theory can be applied to the stability analysis of
diffusive systems without loss of generality.

APPENDIX

To find eigenvalues and eigenfunctions for differential equations,
several methods such as compound matrix method and shooting
method are proposed [27]. The stability Eqs. (35)-(37) based on
the propagation theory are solved by employing the outward shoot-
ing scheme. To integrate these stability equations the proper values
of Dw* and Dθ* at ζ=0 are assumed for a given a*. Since the sta-
bility equations and their boundary conditions are all homogeneous,
the value of Dw*(0) can be assigned arbitrarily and the value of the
parameter RaD

* is assumed. This procedure can be understood easily
by taking into account the characteristics of eigenvalue problems.
After all the values at ζ=0 are provided, this eigenvalue problem
can proceed numerically.

Integration is performed from ζ=0 to a fictitious upper bound-
ary with the fourth-order Runge-Kutta-Gill method. If the guessed
values of RaD

* and Dθ*(0) are correct, w* and θ* will vanish at the
upper boundary. To improve the initial guesses the Newton-Raphson
iteration is used. When convergence is achieved, the upper bound-
ary for computation is increased by a predetermined value and the
above procedure is repeated. Since the temperature disturbances
decay exponentially outside the thermal penetration depth, the in-
cremental change of RaD

* also decays fast with increasing the fic-
titious upper boundary thickness. This behavior enables us to ex-

trapolate the eigenvalue to an infinite depth. For the isotropic case,
the maginal stability curve is comapred with that of the dominant
mode analysis in Fig. 3. Similar procedure can be applied to the
energy method and modified energy method.
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